--- a +++ b/datasets/tjh/preprocess.ipynb @@ -0,0 +1,1087 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "# Import necessary packages\n", + "import numpy as np\n", + "import pandas as pd\n", + "import torch" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Read raw data\n", + "df_train: pd.DataFrame = pd.read_excel('./raw_data/time_series_375_prerpocess_en.xlsx')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Steps:\n", + "\n", + "- fill `patient_id`\n", + "- only reserve y-m-d for `RE_DATE` column\n", + "- merge lab tests of the same (patient_id, date)\n", + "- calculate and save features' statistics information (demographic and lab test data are calculated separately)\n", + "- normalize data\n", + "- feature selection\n", + "- fill missing data (our filling strategy will be described below)\n", + "- combine above data to time series data (one patient one record)\n", + "- export to python pickle file" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# fill `patient_id` rows\n", + "df_train['PATIENT_ID'].fillna(method='ffill', inplace=True)\n", + "\n", + "# gender transformation: 1--male, 0--female\n", + "df_train['gender'].replace(2, 0, inplace=True)\n", + "\n", + "# only reserve y-m-d for `RE_DATE` and `Discharge time` columns\n", + "df_train['RE_DATE'] = df_train['RE_DATE'].dt.strftime('%Y-%m-%d')\n", + "df_train['Discharge time'] = df_train['Discharge time'].dt.strftime('%Y-%m-%d')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_train = df_train.dropna(subset = ['PATIENT_ID', 'RE_DATE', 'Discharge time'], how='any')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# calculate raw data's los interval\n", + "df_grouped = df_train.groupby('PATIENT_ID')\n", + "\n", + "los_interval_list = []\n", + "los_interval_alive_list = []\n", + "los_interval_dead_list = []\n", + "\n", + "for name, group in df_grouped:\n", + " sorted_group = group.sort_values(by=['RE_DATE'], ascending=True)\n", + " # print(sorted_group['outcome'])\n", + " # print('---')\n", + " # print(type(sorted_group))\n", + " intervals = sorted_group['RE_DATE'].tolist()\n", + " outcome = sorted_group['outcome'].tolist()[0]\n", + " cur_visits_len = len(intervals)\n", + " # print(cur_visits_len)\n", + " if cur_visits_len == 1:\n", + " continue\n", + " for i in range(1, len(intervals)):\n", + " los_interval_list.append((pd.to_datetime(intervals[i])-pd.to_datetime(intervals[i-1])).days)\n", + " if outcome == 0:\n", + " los_interval_alive_list.append((pd.to_datetime(intervals[i])-pd.to_datetime(intervals[i-1])).days)\n", + " else:\n", + " los_interval_dead_list.append((pd.to_datetime(intervals[i])-pd.to_datetime(intervals[i-1])).days)\n", + "\n", + "los_interval_list = np.array(los_interval_list)\n", + "los_interval_alive_list = np.array(los_interval_alive_list)\n", + "los_interval_dead_list = np.array(los_interval_dead_list)\n", + "\n", + "output = {\n", + " 'overall': los_interval_list,\n", + " 'alive': los_interval_alive_list,\n", + " 'dead': los_interval_dead_list,\n", + "}\n", + "# pd.to_pickle(output, 'raw_tjh_los_interval_list.pkl')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# we have 2 types of prediction tasks: 1) predict mortality outcome, 2) length of stay\n", + "\n", + "# below are all lab test features\n", + "labtest_features_str = \"\"\"\n", + "Hypersensitive cardiac troponinI\themoglobin\tSerum chloride\tProthrombin time\tprocalcitonin\teosinophils(%)\tInterleukin 2 receptor\tAlkaline phosphatase\talbumin\tbasophil(%)\tInterleukin 10\tTotal bilirubin\tPlatelet count\tmonocytes(%)\tantithrombin\tInterleukin 8\tindirect bilirubin\tRed blood cell distribution width \tneutrophils(%)\ttotal protein\tQuantification of Treponema pallidum antibodies\tProthrombin activity\tHBsAg\tmean corpuscular volume\thematocrit\tWhite blood cell count\tTumor necrosis factorα\tmean corpuscular hemoglobin concentration\tfibrinogen\tInterleukin 1β\tUrea\tlymphocyte count\tPH value\tRed blood cell count\tEosinophil count\tCorrected calcium\tSerum potassium\tglucose\tneutrophils count\tDirect bilirubin\tMean platelet volume\tferritin\tRBC distribution width SD\tThrombin time\t(%)lymphocyte\tHCV antibody quantification\tD-D dimer\tTotal cholesterol\taspartate aminotransferase\tUric acid\tHCO3-\tcalcium\tAmino-terminal brain natriuretic peptide precursor(NT-proBNP)\tLactate dehydrogenase\tplatelet large cell ratio \tInterleukin 6\tFibrin degradation products\tmonocytes count\tPLT distribution width\tglobulin\tγ-glutamyl transpeptidase\tInternational standard ratio\tbasophil count(#)\t2019-nCoV nucleic acid detection\tmean corpuscular hemoglobin \tActivation of partial thromboplastin time\tHypersensitive c-reactive protein\tHIV antibody quantification\tserum sodium\tthrombocytocrit\tESR\tglutamic-pyruvic transaminase\teGFR\tcreatinine\n", + "\"\"\"\n", + "\n", + "# below are 2 demographic features\n", + "demographic_features_str = \"\"\"\n", + "age\tgender\n", + "\"\"\"\n", + "\n", + "labtest_features = [f for f in labtest_features_str.strip().split('\\t')]\n", + "demographic_features = [f for f in demographic_features_str.strip().split('\\t')]\n", + "target_features = ['outcome', 'LOS']\n", + "\n", + "# from our observation, `2019-nCoV nucleic acid detection` feature (in lab test) are all -1 value\n", + "# so we remove this feature here\n", + "labtest_features.remove('2019-nCoV nucleic acid detection')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# if some values are negative, set it as Null\n", + "df_train[df_train[demographic_features + labtest_features]<0] = np.nan" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# merge lab tests of the same (patient_id, date)\n", + "df_train = df_train.groupby(['PATIENT_ID', 'RE_DATE', 'Discharge time'], dropna=True, as_index = False).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# calculate length-of-stay lable\n", + "df_train['LOS'] = (pd.to_datetime(df_train['Discharge time']) - pd.to_datetime(df_train['RE_DATE'])).dt.days" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# if los values are negative, set it as 0\n", + "df_train['LOS'] = df_train['LOS'].clip(lower=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# save features' statistics information\n", + "\n", + "def calculate_statistic_info(df, features):\n", + " \"\"\"all values calculated\"\"\"\n", + " statistic_info = {}\n", + " len_df = len(df)\n", + " for _, e in enumerate(features):\n", + " h = {}\n", + " h['count'] = int(df[e].count())\n", + " h['missing'] = str(round(float((100-df[e].count()*100/len_df)),3))+\"%\"\n", + " h['mean'] = float(df[e].mean())\n", + " h['max'] = float(df[e].max())\n", + " h['min'] = float(df[e].min())\n", + " h['median'] = float(df[e].median())\n", + " h['std'] = float(df[e].std())\n", + " statistic_info[e] = h\n", + " return statistic_info\n", + "\n", + "def calculate_middle_part_statistic_info(df, features):\n", + " \"\"\"calculate 5% ~ 95% percentile data\"\"\"\n", + " statistic_info = {}\n", + " len_df = len(df)\n", + " # calculate 5% and 95% percentile of dataframe\n", + " middle_part_df_info = df.quantile([.05, .95])\n", + "\n", + " for _, e in enumerate(features):\n", + " low_value = middle_part_df_info[e][.05]\n", + " high_value = middle_part_df_info[e][.95]\n", + " middle_part_df_element = df.loc[(df[e] >= low_value) & (df[e] <= high_value)][e]\n", + " h = {}\n", + " h['count'] = int(middle_part_df_element.count())\n", + " h['missing'] = str(round(float((100-middle_part_df_element.count()*100/len_df)),3))+\"%\"\n", + " h['mean'] = float(middle_part_df_element.mean())\n", + " h['max'] = float(middle_part_df_element.max())\n", + " h['min'] = float(middle_part_df_element.min())\n", + " h['median'] = float(middle_part_df_element.median())\n", + " h['std'] = float(middle_part_df_element.std())\n", + " statistic_info[e] = h\n", + " return statistic_info\n", + "\n", + "# labtest_statistic_info = calculate_statistic_info(df_train, labtest_features)\n", + "\n", + "\n", + "# group by patient_id, then calculate lab test/demographic features' statistics information\n", + "groupby_patientid_df = df_train.groupby(['PATIENT_ID'], dropna=True, as_index = False).mean()\n", + "\n", + "\n", + "# calculate statistic info (all values calculated)\n", + "labtest_patientwise_statistic_info = calculate_statistic_info(groupby_patientid_df, labtest_features)\n", + "demographic_statistic_info = calculate_statistic_info(groupby_patientid_df, demographic_features) # it's also patient-wise\n", + "\n", + "# calculate statistic info (5% ~ 95% only)\n", + "demographic_statistic_info_2 = calculate_middle_part_statistic_info(groupby_patientid_df, demographic_features) \n", + "labtest_patientwise_statistic_info_2 = calculate_middle_part_statistic_info(groupby_patientid_df, labtest_features) \n", + "\n", + "# take 2 statistics information's union\n", + "statistic_info = labtest_patientwise_statistic_info_2 | demographic_statistic_info_2\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# observe features, export to csv file [optional]\n", + "to_export_dict = {'name': [], 'missing_rate': [], 'count': [], 'mean': [], 'max': [], 'min': [], 'median': [], 'std': []}\n", + "for key in statistic_info:\n", + " detail = statistic_info[key]\n", + " to_export_dict['name'].append(key)\n", + " to_export_dict['count'].append(detail['count'])\n", + " to_export_dict['missing_rate'].append(detail['missing'])\n", + " to_export_dict['mean'].append(detail['mean'])\n", + " to_export_dict['max'].append(detail['max'])\n", + " to_export_dict['min'].append(detail['min'])\n", + " to_export_dict['median'].append(detail['median'])\n", + " to_export_dict['std'].append(detail['std'])\n", + "to_export_df = pd.DataFrame.from_dict(to_export_dict)\n", + "# to_export_df.to_csv('statistic_info.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# normalize data\n", + "def normalize_data(df, features, statistic_info):\n", + " \n", + " df_features = df[features]\n", + " df_features = df_features.apply(lambda x: (x - statistic_info[x.name]['mean']) / (statistic_info[x.name]['std']+1e-12))\n", + " df = pd.concat([df[['PATIENT_ID', 'gender', 'RE_DATE', 'outcome', 'LOS']], df_features], axis=1)\n", + " return df\n", + "df_train = normalize_data(df_train, ['age'] + labtest_features, statistic_info) # gender don't need to be normalized" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# filter outliers\n", + "def filter_data(df, features, bar=3):\n", + " for f in features:\n", + " df[f] = df[f].mask(df[f].abs().gt(bar))\n", + " return df\n", + "df_train = filter_data(df_train, demographic_features + labtest_features, bar=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# drop rows if all labtest_features are recorded nan\n", + "df_train = df_train.dropna(subset = labtest_features, how='all')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate data statistics after preprocessing steps (before imputation)\n", + "\n", + "# Step 1: reverse z-score normalization operation\n", + "df_reverse = df_train\n", + "# reverse normalize data\n", + "def reverse_normalize_data(df, features, statistic_info):\n", + " df_features = df[features]\n", + " df_features = df_features.apply(lambda x: x * (statistic_info[x.name]['std']+1e-12) + statistic_info[x.name]['mean'])\n", + " df = pd.concat([df[['PATIENT_ID', 'gender', 'RE_DATE', 'outcome', 'LOS']], df_features], axis=1)\n", + " return df\n", + "df_reverse = reverse_normalize_data(df_reverse, ['age'] + labtest_features, statistic_info) # gender don't need to be normalized\n", + "\n", + "statistics = {}\n", + "\n", + "for f in demographic_features+labtest_features:\n", + " statistics[f]={}\n", + "\n", + "def calculate_quantile_statistic_info(df, features, case):\n", + " \"\"\"all values calculated\"\"\"\n", + " for _, e in enumerate(features):\n", + " # print(e, lo, mi, hi)\n", + " if e == 'gender':\n", + " unique, count=np.unique(df[e],return_counts=True)\n", + " data_count=dict(zip(unique,count)) # key = 1 male, 0 female\n", + " print(data_count)\n", + " male_percentage = data_count[1.0]*100/(data_count[1.0]+data_count[0.0])\n", + " statistics[e][case] = f\"{male_percentage:.2f}% Male\"\n", + " print(statistics[e][case])\n", + " else:\n", + " lo = round(np.nanpercentile(df[e], 25), 2)\n", + " mi = round(np.nanpercentile(df[e], 50), 2)\n", + " hi = round(np.nanpercentile(df[e], 75), 2)\n", + " statistics[e][case] = f\"{mi:.2f} [{lo:.2f}, {hi:.2f}]\"\n", + "\n", + "def calculate_missing_rate(df, features, case='missing_rate'):\n", + " for _, e in enumerate(features):\n", + " missing_rate = round(float(df[e].isnull().sum()*100/df[e].shape[0]), 2)\n", + " statistics[e][case] = f\"{missing_rate:.2f}%\"\n", + "\n", + "tmp_groupby_pid = df_reverse.groupby(['PATIENT_ID'], dropna=True, as_index = False).mean()\n", + "\n", + "calculate_quantile_statistic_info(tmp_groupby_pid, demographic_features, 'overall')\n", + "calculate_quantile_statistic_info(tmp_groupby_pid[tmp_groupby_pid['outcome']==0], demographic_features, 'alive')\n", + "calculate_quantile_statistic_info(tmp_groupby_pid[tmp_groupby_pid['outcome']==1], demographic_features, 'dead')\n", + "\n", + "calculate_quantile_statistic_info(df_reverse, labtest_features, 'overall')\n", + "calculate_quantile_statistic_info(df_reverse[df_reverse['outcome']==0], labtest_features, 'alive')\n", + "calculate_quantile_statistic_info(df_reverse[df_reverse['outcome']==1], labtest_features, 'dead')\n", + "\n", + "calculate_missing_rate(df_reverse, demographic_features+labtest_features, 'missing_rate')\n", + "\n", + "export_quantile_statistics = {'Characteristics':[], 'Overall':[], 'Alive':[], 'Dead':[], 'Missing Rate':[]}\n", + "for f in demographic_features+labtest_features:\n", + " export_quantile_statistics['Characteristics'].append(f)\n", + " export_quantile_statistics['Overall'].append(statistics[f]['overall'])\n", + " export_quantile_statistics['Alive'].append(statistics[f]['alive'])\n", + " export_quantile_statistics['Dead'].append(statistics[f]['dead'])\n", + " export_quantile_statistics['Missing Rate'].append(statistics[f]['missing_rate'])\n", + "\n", + "# pd.DataFrame.from_dict(export_quantile_statistics).to_csv('statistics.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def calculate_data_existing_length(data):\n", + " res = 0\n", + " for i in data:\n", + " if not pd.isna(i):\n", + " res += 1\n", + " return res\n", + "# elements in data are sorted in time ascending order\n", + "def fill_missing_value(data, to_fill_value=0):\n", + " data_len = len(data)\n", + " data_exist_len = calculate_data_existing_length(data)\n", + " if data_len == data_exist_len:\n", + " return data\n", + " elif data_exist_len == 0:\n", + " # data = [to_fill_value for _ in range(data_len)]\n", + " for i in range(data_len):\n", + " data[i] = to_fill_value\n", + " return data\n", + " if pd.isna(data[0]):\n", + " # find the first non-nan value's position\n", + " not_na_pos = 0\n", + " for i in range(data_len):\n", + " if not pd.isna(data[i]):\n", + " not_na_pos = i\n", + " break\n", + " # fill element before the first non-nan value with median\n", + " for i in range(not_na_pos):\n", + " data[i] = to_fill_value\n", + " # fill element after the first non-nan value\n", + " for i in range(1, data_len):\n", + " if pd.isna(data[i]):\n", + " data[i] = data[i-1]\n", + " return data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# fill missing data using our strategy and convert to time series records\n", + "grouped = df_train.groupby('PATIENT_ID')\n", + "\n", + "all_x_demographic = []\n", + "all_x_labtest = []\n", + "all_y = []\n", + "all_missing_mask = []\n", + "\n", + "for name, group in grouped:\n", + " sorted_group = group.sort_values(by=['RE_DATE'], ascending=True)\n", + " patient_demographic = []\n", + " patient_labtest = []\n", + " patient_y = []\n", + " \n", + " for f in demographic_features+labtest_features:\n", + " to_fill_value = (statistic_info[f]['median'] - statistic_info[f]['mean'])/(statistic_info[f]['std']+1e-12)\n", + " # take median patient as the default to-fill missing value\n", + " # print(sorted_group[f].values)\n", + " fill_missing_value(sorted_group[f].values, to_fill_value)\n", + " # print(sorted_group[f].values)\n", + " # print('-----------')\n", + " all_missing_mask.append((np.isfinite(sorted_group[demographic_features+labtest_features].to_numpy())).astype(int))\n", + "\n", + " for _, v in sorted_group.iterrows():\n", + " patient_y.append([v['outcome'], v['LOS']])\n", + " demo = []\n", + " lab = []\n", + " for f in demographic_features:\n", + " demo.append(v[f])\n", + " for f in labtest_features:\n", + " lab.append(v[f])\n", + " patient_labtest.append(lab)\n", + " patient_demographic.append(demo)\n", + " all_y.append(patient_y)\n", + " all_x_demographic.append(patient_demographic[-1])\n", + " all_x_labtest.append(patient_labtest)\n", + "\n", + "# all_x_demographic (2 dim, record each patients' demographic features)\n", + "# all_x_labtest (3 dim, record each patients' lab test features)\n", + "# all_y (3 dim, patients' outcome/los of all visits)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "all_x_labtest = np.array(all_x_labtest, dtype=object)\n", + "x_lab_length = [len(_) for _ in all_x_labtest]\n", + "x_lab_length = torch.tensor(x_lab_length, dtype=torch.int)\n", + "max_length = int(x_lab_length.max())\n", + "all_x_labtest = [torch.tensor(_) for _ in all_x_labtest]\n", + "# pad lab test sequence to the same shape\n", + "all_x_labtest = torch.nn.utils.rnn.pad_sequence((all_x_labtest), batch_first=True)\n", + "\n", + "all_x_demographic = torch.tensor(all_x_demographic)\n", + "batch_size, demo_dim = all_x_demographic.shape\n", + "# repeat demographic tensor\n", + "all_x_demographic = torch.reshape(all_x_demographic.repeat(1, max_length), (batch_size, max_length, demo_dim))\n", + "# demographic tensor concat with lab test tensor\n", + "all_x = torch.cat((all_x_demographic, all_x_labtest), 2)\n", + "\n", + "all_y = np.array(all_y, dtype=object)\n", + "all_y = [torch.Tensor(_) for _ in all_y]\n", + "# pad [outcome/los] sequence as well\n", + "all_y = torch.nn.utils.rnn.pad_sequence((all_y), batch_first=True)\n", + "\n", + "all_missing_mask = np.array(all_missing_mask, dtype=object)\n", + "all_missing_mask = [torch.tensor(_) for _ in all_missing_mask]\n", + "all_missing_mask = torch.nn.utils.rnn.pad_sequence((all_missing_mask), batch_first=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# save pickle format dataset (export torch tensor)\n", + "pd.to_pickle(all_x, f'./processed_data/x.pkl')\n", + "pd.to_pickle(all_y, f'./processed_data/y.pkl')\n", + "pd.to_pickle(x_lab_length, f'./processed_data/visits_length.pkl')\n", + "pd.to_pickle(all_missing_mask, f'./processed_data/missing_mask.pkl')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate patients' outcome statistics (patients-wise)\n", + "outcome_list = []\n", + "y_outcome = all_y[:, :, 0]\n", + "indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", + "for i in indices:\n", + " outcome_list.append(y_outcome[i][0].item())\n", + "outcome_list = np.array(outcome_list)\n", + "print(len(outcome_list))\n", + "unique, count=np.unique(outcome_list,return_counts=True)\n", + "data_count=dict(zip(unique,count))\n", + "print(data_count)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate patients' outcome statistics (records-wise)\n", + "outcome_records_list = []\n", + "y_outcome = all_y[:, :, 0]\n", + "indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", + "for i in indices:\n", + " outcome_records_list.extend(y_outcome[i][0:x_lab_length[i]].tolist())\n", + "outcome_records_list = np.array(outcome_records_list)\n", + "print(len(outcome_records_list))\n", + "unique, count=np.unique(outcome_records_list,return_counts=True)\n", + "data_count=dict(zip(unique,count))\n", + "print(data_count)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate patients' mean los and 95% percentile los\n", + "los_list = []\n", + "y_los = all_y[:, :, 1]\n", + "indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", + "for i in indices:\n", + " # los_list.extend(y_los[i][: x_lab_length[i].long()].tolist())\n", + " los_list.append(y_los[i][0].item())\n", + "los_list = np.array(los_list)\n", + "print(los_list.mean() * 0.5)\n", + "print(np.median(los_list) * 0.5)\n", + "print(np.percentile(los_list, 95))\n", + "\n", + "print('median:', np.median(los_list))\n", + "print('Q1:', np.percentile(los_list, 25))\n", + "print('Q3:', np.percentile(los_list, 75))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "los_alive_list = np.array([los_list[i] for i in range(len(los_list)) if outcome_list[i] == 0])\n", + "los_dead_list = np.array([los_list[i] for i in range(len(los_list)) if outcome_list[i] == 1])\n", + "print(len(los_alive_list))\n", + "print(len(los_dead_list))\n", + "\n", + "print('[Alive]')\n", + "print('median:', np.median(los_alive_list))\n", + "print('Q1:', np.percentile(los_alive_list, 25))\n", + "print('Q3:', np.percentile(los_alive_list, 75))\n", + "\n", + "print('[Dead]')\n", + "print('median:', np.median(los_dead_list))\n", + "print('Q1:', np.percentile(los_dead_list, 25))\n", + "print('Q3:', np.percentile(los_dead_list, 75))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tjh_los_statistics = {\n", + " 'overall': los_list,\n", + " 'alive': los_alive_list,\n", + " 'dead': los_dead_list\n", + "}\n", + "# pd.to_pickle(tjh_los_statistics, 'tjh_los_statistics.pkl')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# calculate visits length Median [Q1, Q3]\n", + "visits_list = np.array(x_lab_length)\n", + "visits_alive_list = np.array([x_lab_length[i] for i in range(len(x_lab_length)) if outcome_list[i] == 0])\n", + "visits_dead_list = np.array([x_lab_length[i] for i in range(len(x_lab_length)) if outcome_list[i] == 1])\n", + "print(len(visits_alive_list))\n", + "print(len(visits_dead_list))\n", + "\n", + "print('[Total]')\n", + "print('median:', np.median(visits_list))\n", + "print('Q1:', np.percentile(visits_list, 25))\n", + "print('Q3:', np.percentile(visits_list, 75))\n", + "\n", + "print('[Alive]')\n", + "print('median:', np.median(visits_alive_list))\n", + "print('Q1:', np.percentile(visits_alive_list, 25))\n", + "print('Q3:', np.percentile(visits_alive_list, 75))\n", + "\n", + "print('[Dead]')\n", + "print('median:', np.median(visits_dead_list))\n", + "print('Q1:', np.percentile(visits_dead_list, 25))\n", + "print('Q3:', np.percentile(visits_dead_list, 75))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Length-of-stay interval (overall/alive/dead)\n", + "los_interval_list = []\n", + "los_interval_alive_list = []\n", + "los_interval_dead_list = []\n", + "\n", + "y_los = all_y[:, :, 1]\n", + "indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", + "for i in indices:\n", + " cur_visits_len = x_lab_length[i]\n", + " if cur_visits_len == 1:\n", + " continue\n", + " for j in range(1, cur_visits_len):\n", + " los_interval_list.append(y_los[i][j-1]-y_los[i][j])\n", + " if outcome_list[i] == 0:\n", + " los_interval_alive_list.append(y_los[i][j-1]-y_los[i][j])\n", + " else:\n", + " los_interval_dead_list.append(y_los[i][j-1]-y_los[i][j])\n", + "\n", + "los_interval_list = np.array(los_interval_list)\n", + "los_interval_alive_list = np.array(los_interval_alive_list)\n", + "los_interval_dead_list = np.array(los_interval_dead_list)\n", + "\n", + "output = {\n", + " 'overall': los_interval_list,\n", + " 'alive': los_interval_alive_list,\n", + " 'dead': los_interval_dead_list,\n", + "}\n", + "# pd.to_pickle(output, 'tjh_los_interval_list.pkl')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(los_interval_list), len(los_interval_alive_list), len(los_interval_dead_list)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def check_nan(x):\n", + " if np.isnan(np.sum(x.cpu().numpy())):\n", + " print(\"some values from input are nan\")\n", + " else:\n", + " print(\"no nan\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Draw Charts" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from matplotlib.ticker import PercentFormatter\n", + "import matplotlib.font_manager as font_manager\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "plt.style.use('seaborn-whitegrid')\n", + "color = 'cornflowerblue'\n", + "ec = 'None'\n", + "alpha=0.5\n", + "alive_color = 'olivedrab'\n", + "dead_color = 'orchid'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tj_overall = pd.read_csv('./tjh_data_raw.csv')\n", + "tj_overall.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tj_alive = tj_overall.loc[tj_overall['outcome'] == 0]\n", + "tj_dead = tj_overall.loc[tj_overall['outcome'] == 1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tj_overall.describe().to_csv('tjh_describe.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "limit = 0.05\n", + "\n", + "from matplotlib.ticker import PercentFormatter\n", + "import matplotlib.font_manager as font_manager\n", + "plt.style.use('seaborn-whitegrid')\n", + "color = 'cornflowerblue'\n", + "ec = 'None'\n", + "alive_color = 'olivedrab'\n", + "# dead_color = 'mediumslateblue'\n", + "dead_color = 'orchid'\n", + "alpha=0.5\n", + "\n", + "csfont = {'fontname':'Times New Roman', 'fontsize': 18}\n", + "font = 'Times New Roman'\n", + "fig=plt.figure(figsize=(16,12), dpi= 500, facecolor='w', edgecolor='k')\n", + "\n", + "idx = 1\n", + "\n", + "key = 'age'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "ax = plt.subplot(4, 4, idx)\n", + "ax.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha, label='overall')\n", + "plt.xlabel('Age',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "ax.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2, label='alive')\n", + "ax.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2, label='dead')\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'White blood cell count'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel(key,**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'Red blood cell count'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel(key,**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'neutrophils(%)'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('neutrophils %',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = '(%)lymphocyte'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('lymphocyte %',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'monocytes(%)'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel(key,**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'Platelet count'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel(key,**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'lymphocyte count'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('Lymphocyte count',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'hemoglobin'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('Hemoglobin',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'calcium'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('Calcium',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'hematocrit'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('Hematocrit',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'albumin'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('Albumin',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'neutrophils count'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('Neutrophils count',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'monocytes count'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('Monocytes count',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'basophil count(#)'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('Basophil count',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "key = 'eosinophils(%)'\n", + "low = tj_overall[key].quantile(limit)\n", + "high = tj_overall[key].quantile(1 - limit)\n", + "tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", + "tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", + "tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", + "plt.xlabel('Eosinophils %',**csfont)\n", + "plt.ylabel('Percentage',**csfont)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.subplot(4, 4, idx)\n", + "plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.subplot(4, 4, idx)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", + "plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", + "plt.xticks(**csfont)\n", + "plt.yticks(**csfont)\n", + "idx += 1\n", + "\n", + "handles, labels = ax.get_legend_handles_labels()\n", + "print(handles, labels)\n", + "plt.figlegend(handles, labels, loc='upper center', ncol=5, fontsize=18, bbox_to_anchor=(0.5, 1.05), prop=font_manager.FontProperties(family='Times New Roman',\n", + " style='normal', size=18))\n", + "\n", + "fig.tight_layout()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.7.11 ('python37')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + }, + "vscode": { + "interpreter": { + "hash": "a10b846bdc9fc41ee38835cbc29d70b69dd5fd54e1341ea2c410a7804a50447a" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}