|
a |
|
b/datasets/tjh/preprocess.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": { |
|
|
7 |
"slideshow": { |
|
|
8 |
"slide_type": "-" |
|
|
9 |
} |
|
|
10 |
}, |
|
|
11 |
"outputs": [], |
|
|
12 |
"source": [ |
|
|
13 |
"# Import necessary packages\n", |
|
|
14 |
"import numpy as np\n", |
|
|
15 |
"import pandas as pd\n", |
|
|
16 |
"import torch" |
|
|
17 |
] |
|
|
18 |
}, |
|
|
19 |
{ |
|
|
20 |
"cell_type": "code", |
|
|
21 |
"execution_count": null, |
|
|
22 |
"metadata": {}, |
|
|
23 |
"outputs": [], |
|
|
24 |
"source": [ |
|
|
25 |
"# Read raw data\n", |
|
|
26 |
"df_train: pd.DataFrame = pd.read_excel('./raw_data/time_series_375_prerpocess_en.xlsx')" |
|
|
27 |
] |
|
|
28 |
}, |
|
|
29 |
{ |
|
|
30 |
"cell_type": "markdown", |
|
|
31 |
"metadata": {}, |
|
|
32 |
"source": [ |
|
|
33 |
"Steps:\n", |
|
|
34 |
"\n", |
|
|
35 |
"- fill `patient_id`\n", |
|
|
36 |
"- only reserve y-m-d for `RE_DATE` column\n", |
|
|
37 |
"- merge lab tests of the same (patient_id, date)\n", |
|
|
38 |
"- calculate and save features' statistics information (demographic and lab test data are calculated separately)\n", |
|
|
39 |
"- normalize data\n", |
|
|
40 |
"- feature selection\n", |
|
|
41 |
"- fill missing data (our filling strategy will be described below)\n", |
|
|
42 |
"- combine above data to time series data (one patient one record)\n", |
|
|
43 |
"- export to python pickle file" |
|
|
44 |
] |
|
|
45 |
}, |
|
|
46 |
{ |
|
|
47 |
"cell_type": "code", |
|
|
48 |
"execution_count": null, |
|
|
49 |
"metadata": {}, |
|
|
50 |
"outputs": [], |
|
|
51 |
"source": [ |
|
|
52 |
"# fill `patient_id` rows\n", |
|
|
53 |
"df_train['PATIENT_ID'].fillna(method='ffill', inplace=True)\n", |
|
|
54 |
"\n", |
|
|
55 |
"# gender transformation: 1--male, 0--female\n", |
|
|
56 |
"df_train['gender'].replace(2, 0, inplace=True)\n", |
|
|
57 |
"\n", |
|
|
58 |
"# only reserve y-m-d for `RE_DATE` and `Discharge time` columns\n", |
|
|
59 |
"df_train['RE_DATE'] = df_train['RE_DATE'].dt.strftime('%Y-%m-%d')\n", |
|
|
60 |
"df_train['Discharge time'] = df_train['Discharge time'].dt.strftime('%Y-%m-%d')\n" |
|
|
61 |
] |
|
|
62 |
}, |
|
|
63 |
{ |
|
|
64 |
"cell_type": "code", |
|
|
65 |
"execution_count": null, |
|
|
66 |
"metadata": {}, |
|
|
67 |
"outputs": [], |
|
|
68 |
"source": [ |
|
|
69 |
"df_train = df_train.dropna(subset = ['PATIENT_ID', 'RE_DATE', 'Discharge time'], how='any')" |
|
|
70 |
] |
|
|
71 |
}, |
|
|
72 |
{ |
|
|
73 |
"cell_type": "code", |
|
|
74 |
"execution_count": null, |
|
|
75 |
"metadata": {}, |
|
|
76 |
"outputs": [], |
|
|
77 |
"source": [ |
|
|
78 |
"# calculate raw data's los interval\n", |
|
|
79 |
"df_grouped = df_train.groupby('PATIENT_ID')\n", |
|
|
80 |
"\n", |
|
|
81 |
"los_interval_list = []\n", |
|
|
82 |
"los_interval_alive_list = []\n", |
|
|
83 |
"los_interval_dead_list = []\n", |
|
|
84 |
"\n", |
|
|
85 |
"for name, group in df_grouped:\n", |
|
|
86 |
" sorted_group = group.sort_values(by=['RE_DATE'], ascending=True)\n", |
|
|
87 |
" # print(sorted_group['outcome'])\n", |
|
|
88 |
" # print('---')\n", |
|
|
89 |
" # print(type(sorted_group))\n", |
|
|
90 |
" intervals = sorted_group['RE_DATE'].tolist()\n", |
|
|
91 |
" outcome = sorted_group['outcome'].tolist()[0]\n", |
|
|
92 |
" cur_visits_len = len(intervals)\n", |
|
|
93 |
" # print(cur_visits_len)\n", |
|
|
94 |
" if cur_visits_len == 1:\n", |
|
|
95 |
" continue\n", |
|
|
96 |
" for i in range(1, len(intervals)):\n", |
|
|
97 |
" los_interval_list.append((pd.to_datetime(intervals[i])-pd.to_datetime(intervals[i-1])).days)\n", |
|
|
98 |
" if outcome == 0:\n", |
|
|
99 |
" los_interval_alive_list.append((pd.to_datetime(intervals[i])-pd.to_datetime(intervals[i-1])).days)\n", |
|
|
100 |
" else:\n", |
|
|
101 |
" los_interval_dead_list.append((pd.to_datetime(intervals[i])-pd.to_datetime(intervals[i-1])).days)\n", |
|
|
102 |
"\n", |
|
|
103 |
"los_interval_list = np.array(los_interval_list)\n", |
|
|
104 |
"los_interval_alive_list = np.array(los_interval_alive_list)\n", |
|
|
105 |
"los_interval_dead_list = np.array(los_interval_dead_list)\n", |
|
|
106 |
"\n", |
|
|
107 |
"output = {\n", |
|
|
108 |
" 'overall': los_interval_list,\n", |
|
|
109 |
" 'alive': los_interval_alive_list,\n", |
|
|
110 |
" 'dead': los_interval_dead_list,\n", |
|
|
111 |
"}\n", |
|
|
112 |
"# pd.to_pickle(output, 'raw_tjh_los_interval_list.pkl')\n" |
|
|
113 |
] |
|
|
114 |
}, |
|
|
115 |
{ |
|
|
116 |
"cell_type": "code", |
|
|
117 |
"execution_count": null, |
|
|
118 |
"metadata": {}, |
|
|
119 |
"outputs": [], |
|
|
120 |
"source": [ |
|
|
121 |
"# we have 2 types of prediction tasks: 1) predict mortality outcome, 2) length of stay\n", |
|
|
122 |
"\n", |
|
|
123 |
"# below are all lab test features\n", |
|
|
124 |
"labtest_features_str = \"\"\"\n", |
|
|
125 |
"Hypersensitive cardiac troponinI\themoglobin\tSerum chloride\tProthrombin time\tprocalcitonin\teosinophils(%)\tInterleukin 2 receptor\tAlkaline phosphatase\talbumin\tbasophil(%)\tInterleukin 10\tTotal bilirubin\tPlatelet count\tmonocytes(%)\tantithrombin\tInterleukin 8\tindirect bilirubin\tRed blood cell distribution width \tneutrophils(%)\ttotal protein\tQuantification of Treponema pallidum antibodies\tProthrombin activity\tHBsAg\tmean corpuscular volume\thematocrit\tWhite blood cell count\tTumor necrosis factorα\tmean corpuscular hemoglobin concentration\tfibrinogen\tInterleukin 1β\tUrea\tlymphocyte count\tPH value\tRed blood cell count\tEosinophil count\tCorrected calcium\tSerum potassium\tglucose\tneutrophils count\tDirect bilirubin\tMean platelet volume\tferritin\tRBC distribution width SD\tThrombin time\t(%)lymphocyte\tHCV antibody quantification\tD-D dimer\tTotal cholesterol\taspartate aminotransferase\tUric acid\tHCO3-\tcalcium\tAmino-terminal brain natriuretic peptide precursor(NT-proBNP)\tLactate dehydrogenase\tplatelet large cell ratio \tInterleukin 6\tFibrin degradation products\tmonocytes count\tPLT distribution width\tglobulin\tγ-glutamyl transpeptidase\tInternational standard ratio\tbasophil count(#)\t2019-nCoV nucleic acid detection\tmean corpuscular hemoglobin \tActivation of partial thromboplastin time\tHypersensitive c-reactive protein\tHIV antibody quantification\tserum sodium\tthrombocytocrit\tESR\tglutamic-pyruvic transaminase\teGFR\tcreatinine\n", |
|
|
126 |
"\"\"\"\n", |
|
|
127 |
"\n", |
|
|
128 |
"# below are 2 demographic features\n", |
|
|
129 |
"demographic_features_str = \"\"\"\n", |
|
|
130 |
"age\tgender\n", |
|
|
131 |
"\"\"\"\n", |
|
|
132 |
"\n", |
|
|
133 |
"labtest_features = [f for f in labtest_features_str.strip().split('\\t')]\n", |
|
|
134 |
"demographic_features = [f for f in demographic_features_str.strip().split('\\t')]\n", |
|
|
135 |
"target_features = ['outcome', 'LOS']\n", |
|
|
136 |
"\n", |
|
|
137 |
"# from our observation, `2019-nCoV nucleic acid detection` feature (in lab test) are all -1 value\n", |
|
|
138 |
"# so we remove this feature here\n", |
|
|
139 |
"labtest_features.remove('2019-nCoV nucleic acid detection')" |
|
|
140 |
] |
|
|
141 |
}, |
|
|
142 |
{ |
|
|
143 |
"cell_type": "code", |
|
|
144 |
"execution_count": null, |
|
|
145 |
"metadata": {}, |
|
|
146 |
"outputs": [], |
|
|
147 |
"source": [ |
|
|
148 |
"# if some values are negative, set it as Null\n", |
|
|
149 |
"df_train[df_train[demographic_features + labtest_features]<0] = np.nan" |
|
|
150 |
] |
|
|
151 |
}, |
|
|
152 |
{ |
|
|
153 |
"cell_type": "code", |
|
|
154 |
"execution_count": null, |
|
|
155 |
"metadata": {}, |
|
|
156 |
"outputs": [], |
|
|
157 |
"source": [ |
|
|
158 |
"# merge lab tests of the same (patient_id, date)\n", |
|
|
159 |
"df_train = df_train.groupby(['PATIENT_ID', 'RE_DATE', 'Discharge time'], dropna=True, as_index = False).mean()" |
|
|
160 |
] |
|
|
161 |
}, |
|
|
162 |
{ |
|
|
163 |
"cell_type": "code", |
|
|
164 |
"execution_count": null, |
|
|
165 |
"metadata": {}, |
|
|
166 |
"outputs": [], |
|
|
167 |
"source": [ |
|
|
168 |
"# calculate length-of-stay lable\n", |
|
|
169 |
"df_train['LOS'] = (pd.to_datetime(df_train['Discharge time']) - pd.to_datetime(df_train['RE_DATE'])).dt.days" |
|
|
170 |
] |
|
|
171 |
}, |
|
|
172 |
{ |
|
|
173 |
"cell_type": "code", |
|
|
174 |
"execution_count": null, |
|
|
175 |
"metadata": {}, |
|
|
176 |
"outputs": [], |
|
|
177 |
"source": [ |
|
|
178 |
"# if los values are negative, set it as 0\n", |
|
|
179 |
"df_train['LOS'] = df_train['LOS'].clip(lower=0)" |
|
|
180 |
] |
|
|
181 |
}, |
|
|
182 |
{ |
|
|
183 |
"cell_type": "code", |
|
|
184 |
"execution_count": null, |
|
|
185 |
"metadata": {}, |
|
|
186 |
"outputs": [], |
|
|
187 |
"source": [ |
|
|
188 |
"# save features' statistics information\n", |
|
|
189 |
"\n", |
|
|
190 |
"def calculate_statistic_info(df, features):\n", |
|
|
191 |
" \"\"\"all values calculated\"\"\"\n", |
|
|
192 |
" statistic_info = {}\n", |
|
|
193 |
" len_df = len(df)\n", |
|
|
194 |
" for _, e in enumerate(features):\n", |
|
|
195 |
" h = {}\n", |
|
|
196 |
" h['count'] = int(df[e].count())\n", |
|
|
197 |
" h['missing'] = str(round(float((100-df[e].count()*100/len_df)),3))+\"%\"\n", |
|
|
198 |
" h['mean'] = float(df[e].mean())\n", |
|
|
199 |
" h['max'] = float(df[e].max())\n", |
|
|
200 |
" h['min'] = float(df[e].min())\n", |
|
|
201 |
" h['median'] = float(df[e].median())\n", |
|
|
202 |
" h['std'] = float(df[e].std())\n", |
|
|
203 |
" statistic_info[e] = h\n", |
|
|
204 |
" return statistic_info\n", |
|
|
205 |
"\n", |
|
|
206 |
"def calculate_middle_part_statistic_info(df, features):\n", |
|
|
207 |
" \"\"\"calculate 5% ~ 95% percentile data\"\"\"\n", |
|
|
208 |
" statistic_info = {}\n", |
|
|
209 |
" len_df = len(df)\n", |
|
|
210 |
" # calculate 5% and 95% percentile of dataframe\n", |
|
|
211 |
" middle_part_df_info = df.quantile([.05, .95])\n", |
|
|
212 |
"\n", |
|
|
213 |
" for _, e in enumerate(features):\n", |
|
|
214 |
" low_value = middle_part_df_info[e][.05]\n", |
|
|
215 |
" high_value = middle_part_df_info[e][.95]\n", |
|
|
216 |
" middle_part_df_element = df.loc[(df[e] >= low_value) & (df[e] <= high_value)][e]\n", |
|
|
217 |
" h = {}\n", |
|
|
218 |
" h['count'] = int(middle_part_df_element.count())\n", |
|
|
219 |
" h['missing'] = str(round(float((100-middle_part_df_element.count()*100/len_df)),3))+\"%\"\n", |
|
|
220 |
" h['mean'] = float(middle_part_df_element.mean())\n", |
|
|
221 |
" h['max'] = float(middle_part_df_element.max())\n", |
|
|
222 |
" h['min'] = float(middle_part_df_element.min())\n", |
|
|
223 |
" h['median'] = float(middle_part_df_element.median())\n", |
|
|
224 |
" h['std'] = float(middle_part_df_element.std())\n", |
|
|
225 |
" statistic_info[e] = h\n", |
|
|
226 |
" return statistic_info\n", |
|
|
227 |
"\n", |
|
|
228 |
"# labtest_statistic_info = calculate_statistic_info(df_train, labtest_features)\n", |
|
|
229 |
"\n", |
|
|
230 |
"\n", |
|
|
231 |
"# group by patient_id, then calculate lab test/demographic features' statistics information\n", |
|
|
232 |
"groupby_patientid_df = df_train.groupby(['PATIENT_ID'], dropna=True, as_index = False).mean()\n", |
|
|
233 |
"\n", |
|
|
234 |
"\n", |
|
|
235 |
"# calculate statistic info (all values calculated)\n", |
|
|
236 |
"labtest_patientwise_statistic_info = calculate_statistic_info(groupby_patientid_df, labtest_features)\n", |
|
|
237 |
"demographic_statistic_info = calculate_statistic_info(groupby_patientid_df, demographic_features) # it's also patient-wise\n", |
|
|
238 |
"\n", |
|
|
239 |
"# calculate statistic info (5% ~ 95% only)\n", |
|
|
240 |
"demographic_statistic_info_2 = calculate_middle_part_statistic_info(groupby_patientid_df, demographic_features) \n", |
|
|
241 |
"labtest_patientwise_statistic_info_2 = calculate_middle_part_statistic_info(groupby_patientid_df, labtest_features) \n", |
|
|
242 |
"\n", |
|
|
243 |
"# take 2 statistics information's union\n", |
|
|
244 |
"statistic_info = labtest_patientwise_statistic_info_2 | demographic_statistic_info_2\n" |
|
|
245 |
] |
|
|
246 |
}, |
|
|
247 |
{ |
|
|
248 |
"cell_type": "code", |
|
|
249 |
"execution_count": null, |
|
|
250 |
"metadata": {}, |
|
|
251 |
"outputs": [], |
|
|
252 |
"source": [ |
|
|
253 |
"# observe features, export to csv file [optional]\n", |
|
|
254 |
"to_export_dict = {'name': [], 'missing_rate': [], 'count': [], 'mean': [], 'max': [], 'min': [], 'median': [], 'std': []}\n", |
|
|
255 |
"for key in statistic_info:\n", |
|
|
256 |
" detail = statistic_info[key]\n", |
|
|
257 |
" to_export_dict['name'].append(key)\n", |
|
|
258 |
" to_export_dict['count'].append(detail['count'])\n", |
|
|
259 |
" to_export_dict['missing_rate'].append(detail['missing'])\n", |
|
|
260 |
" to_export_dict['mean'].append(detail['mean'])\n", |
|
|
261 |
" to_export_dict['max'].append(detail['max'])\n", |
|
|
262 |
" to_export_dict['min'].append(detail['min'])\n", |
|
|
263 |
" to_export_dict['median'].append(detail['median'])\n", |
|
|
264 |
" to_export_dict['std'].append(detail['std'])\n", |
|
|
265 |
"to_export_df = pd.DataFrame.from_dict(to_export_dict)\n", |
|
|
266 |
"# to_export_df.to_csv('statistic_info.csv')" |
|
|
267 |
] |
|
|
268 |
}, |
|
|
269 |
{ |
|
|
270 |
"cell_type": "code", |
|
|
271 |
"execution_count": null, |
|
|
272 |
"metadata": {}, |
|
|
273 |
"outputs": [], |
|
|
274 |
"source": [ |
|
|
275 |
"# normalize data\n", |
|
|
276 |
"def normalize_data(df, features, statistic_info):\n", |
|
|
277 |
" \n", |
|
|
278 |
" df_features = df[features]\n", |
|
|
279 |
" df_features = df_features.apply(lambda x: (x - statistic_info[x.name]['mean']) / (statistic_info[x.name]['std']+1e-12))\n", |
|
|
280 |
" df = pd.concat([df[['PATIENT_ID', 'gender', 'RE_DATE', 'outcome', 'LOS']], df_features], axis=1)\n", |
|
|
281 |
" return df\n", |
|
|
282 |
"df_train = normalize_data(df_train, ['age'] + labtest_features, statistic_info) # gender don't need to be normalized" |
|
|
283 |
] |
|
|
284 |
}, |
|
|
285 |
{ |
|
|
286 |
"cell_type": "code", |
|
|
287 |
"execution_count": null, |
|
|
288 |
"metadata": {}, |
|
|
289 |
"outputs": [], |
|
|
290 |
"source": [ |
|
|
291 |
"# filter outliers\n", |
|
|
292 |
"def filter_data(df, features, bar=3):\n", |
|
|
293 |
" for f in features:\n", |
|
|
294 |
" df[f] = df[f].mask(df[f].abs().gt(bar))\n", |
|
|
295 |
" return df\n", |
|
|
296 |
"df_train = filter_data(df_train, demographic_features + labtest_features, bar=3)" |
|
|
297 |
] |
|
|
298 |
}, |
|
|
299 |
{ |
|
|
300 |
"cell_type": "code", |
|
|
301 |
"execution_count": null, |
|
|
302 |
"metadata": {}, |
|
|
303 |
"outputs": [], |
|
|
304 |
"source": [ |
|
|
305 |
"# drop rows if all labtest_features are recorded nan\n", |
|
|
306 |
"df_train = df_train.dropna(subset = labtest_features, how='all')" |
|
|
307 |
] |
|
|
308 |
}, |
|
|
309 |
{ |
|
|
310 |
"cell_type": "code", |
|
|
311 |
"execution_count": null, |
|
|
312 |
"metadata": {}, |
|
|
313 |
"outputs": [], |
|
|
314 |
"source": [ |
|
|
315 |
"# Calculate data statistics after preprocessing steps (before imputation)\n", |
|
|
316 |
"\n", |
|
|
317 |
"# Step 1: reverse z-score normalization operation\n", |
|
|
318 |
"df_reverse = df_train\n", |
|
|
319 |
"# reverse normalize data\n", |
|
|
320 |
"def reverse_normalize_data(df, features, statistic_info):\n", |
|
|
321 |
" df_features = df[features]\n", |
|
|
322 |
" df_features = df_features.apply(lambda x: x * (statistic_info[x.name]['std']+1e-12) + statistic_info[x.name]['mean'])\n", |
|
|
323 |
" df = pd.concat([df[['PATIENT_ID', 'gender', 'RE_DATE', 'outcome', 'LOS']], df_features], axis=1)\n", |
|
|
324 |
" return df\n", |
|
|
325 |
"df_reverse = reverse_normalize_data(df_reverse, ['age'] + labtest_features, statistic_info) # gender don't need to be normalized\n", |
|
|
326 |
"\n", |
|
|
327 |
"statistics = {}\n", |
|
|
328 |
"\n", |
|
|
329 |
"for f in demographic_features+labtest_features:\n", |
|
|
330 |
" statistics[f]={}\n", |
|
|
331 |
"\n", |
|
|
332 |
"def calculate_quantile_statistic_info(df, features, case):\n", |
|
|
333 |
" \"\"\"all values calculated\"\"\"\n", |
|
|
334 |
" for _, e in enumerate(features):\n", |
|
|
335 |
" # print(e, lo, mi, hi)\n", |
|
|
336 |
" if e == 'gender':\n", |
|
|
337 |
" unique, count=np.unique(df[e],return_counts=True)\n", |
|
|
338 |
" data_count=dict(zip(unique,count)) # key = 1 male, 0 female\n", |
|
|
339 |
" print(data_count)\n", |
|
|
340 |
" male_percentage = data_count[1.0]*100/(data_count[1.0]+data_count[0.0])\n", |
|
|
341 |
" statistics[e][case] = f\"{male_percentage:.2f}% Male\"\n", |
|
|
342 |
" print(statistics[e][case])\n", |
|
|
343 |
" else:\n", |
|
|
344 |
" lo = round(np.nanpercentile(df[e], 25), 2)\n", |
|
|
345 |
" mi = round(np.nanpercentile(df[e], 50), 2)\n", |
|
|
346 |
" hi = round(np.nanpercentile(df[e], 75), 2)\n", |
|
|
347 |
" statistics[e][case] = f\"{mi:.2f} [{lo:.2f}, {hi:.2f}]\"\n", |
|
|
348 |
"\n", |
|
|
349 |
"def calculate_missing_rate(df, features, case='missing_rate'):\n", |
|
|
350 |
" for _, e in enumerate(features):\n", |
|
|
351 |
" missing_rate = round(float(df[e].isnull().sum()*100/df[e].shape[0]), 2)\n", |
|
|
352 |
" statistics[e][case] = f\"{missing_rate:.2f}%\"\n", |
|
|
353 |
"\n", |
|
|
354 |
"tmp_groupby_pid = df_reverse.groupby(['PATIENT_ID'], dropna=True, as_index = False).mean()\n", |
|
|
355 |
"\n", |
|
|
356 |
"calculate_quantile_statistic_info(tmp_groupby_pid, demographic_features, 'overall')\n", |
|
|
357 |
"calculate_quantile_statistic_info(tmp_groupby_pid[tmp_groupby_pid['outcome']==0], demographic_features, 'alive')\n", |
|
|
358 |
"calculate_quantile_statistic_info(tmp_groupby_pid[tmp_groupby_pid['outcome']==1], demographic_features, 'dead')\n", |
|
|
359 |
"\n", |
|
|
360 |
"calculate_quantile_statistic_info(df_reverse, labtest_features, 'overall')\n", |
|
|
361 |
"calculate_quantile_statistic_info(df_reverse[df_reverse['outcome']==0], labtest_features, 'alive')\n", |
|
|
362 |
"calculate_quantile_statistic_info(df_reverse[df_reverse['outcome']==1], labtest_features, 'dead')\n", |
|
|
363 |
"\n", |
|
|
364 |
"calculate_missing_rate(df_reverse, demographic_features+labtest_features, 'missing_rate')\n", |
|
|
365 |
"\n", |
|
|
366 |
"export_quantile_statistics = {'Characteristics':[], 'Overall':[], 'Alive':[], 'Dead':[], 'Missing Rate':[]}\n", |
|
|
367 |
"for f in demographic_features+labtest_features:\n", |
|
|
368 |
" export_quantile_statistics['Characteristics'].append(f)\n", |
|
|
369 |
" export_quantile_statistics['Overall'].append(statistics[f]['overall'])\n", |
|
|
370 |
" export_quantile_statistics['Alive'].append(statistics[f]['alive'])\n", |
|
|
371 |
" export_quantile_statistics['Dead'].append(statistics[f]['dead'])\n", |
|
|
372 |
" export_quantile_statistics['Missing Rate'].append(statistics[f]['missing_rate'])\n", |
|
|
373 |
"\n", |
|
|
374 |
"# pd.DataFrame.from_dict(export_quantile_statistics).to_csv('statistics.csv')" |
|
|
375 |
] |
|
|
376 |
}, |
|
|
377 |
{ |
|
|
378 |
"cell_type": "code", |
|
|
379 |
"execution_count": null, |
|
|
380 |
"metadata": {}, |
|
|
381 |
"outputs": [], |
|
|
382 |
"source": [ |
|
|
383 |
"def calculate_data_existing_length(data):\n", |
|
|
384 |
" res = 0\n", |
|
|
385 |
" for i in data:\n", |
|
|
386 |
" if not pd.isna(i):\n", |
|
|
387 |
" res += 1\n", |
|
|
388 |
" return res\n", |
|
|
389 |
"# elements in data are sorted in time ascending order\n", |
|
|
390 |
"def fill_missing_value(data, to_fill_value=0):\n", |
|
|
391 |
" data_len = len(data)\n", |
|
|
392 |
" data_exist_len = calculate_data_existing_length(data)\n", |
|
|
393 |
" if data_len == data_exist_len:\n", |
|
|
394 |
" return data\n", |
|
|
395 |
" elif data_exist_len == 0:\n", |
|
|
396 |
" # data = [to_fill_value for _ in range(data_len)]\n", |
|
|
397 |
" for i in range(data_len):\n", |
|
|
398 |
" data[i] = to_fill_value\n", |
|
|
399 |
" return data\n", |
|
|
400 |
" if pd.isna(data[0]):\n", |
|
|
401 |
" # find the first non-nan value's position\n", |
|
|
402 |
" not_na_pos = 0\n", |
|
|
403 |
" for i in range(data_len):\n", |
|
|
404 |
" if not pd.isna(data[i]):\n", |
|
|
405 |
" not_na_pos = i\n", |
|
|
406 |
" break\n", |
|
|
407 |
" # fill element before the first non-nan value with median\n", |
|
|
408 |
" for i in range(not_na_pos):\n", |
|
|
409 |
" data[i] = to_fill_value\n", |
|
|
410 |
" # fill element after the first non-nan value\n", |
|
|
411 |
" for i in range(1, data_len):\n", |
|
|
412 |
" if pd.isna(data[i]):\n", |
|
|
413 |
" data[i] = data[i-1]\n", |
|
|
414 |
" return data" |
|
|
415 |
] |
|
|
416 |
}, |
|
|
417 |
{ |
|
|
418 |
"cell_type": "code", |
|
|
419 |
"execution_count": null, |
|
|
420 |
"metadata": {}, |
|
|
421 |
"outputs": [], |
|
|
422 |
"source": [ |
|
|
423 |
"# fill missing data using our strategy and convert to time series records\n", |
|
|
424 |
"grouped = df_train.groupby('PATIENT_ID')\n", |
|
|
425 |
"\n", |
|
|
426 |
"all_x_demographic = []\n", |
|
|
427 |
"all_x_labtest = []\n", |
|
|
428 |
"all_y = []\n", |
|
|
429 |
"all_missing_mask = []\n", |
|
|
430 |
"\n", |
|
|
431 |
"for name, group in grouped:\n", |
|
|
432 |
" sorted_group = group.sort_values(by=['RE_DATE'], ascending=True)\n", |
|
|
433 |
" patient_demographic = []\n", |
|
|
434 |
" patient_labtest = []\n", |
|
|
435 |
" patient_y = []\n", |
|
|
436 |
" \n", |
|
|
437 |
" for f in demographic_features+labtest_features:\n", |
|
|
438 |
" to_fill_value = (statistic_info[f]['median'] - statistic_info[f]['mean'])/(statistic_info[f]['std']+1e-12)\n", |
|
|
439 |
" # take median patient as the default to-fill missing value\n", |
|
|
440 |
" # print(sorted_group[f].values)\n", |
|
|
441 |
" fill_missing_value(sorted_group[f].values, to_fill_value)\n", |
|
|
442 |
" # print(sorted_group[f].values)\n", |
|
|
443 |
" # print('-----------')\n", |
|
|
444 |
" all_missing_mask.append((np.isfinite(sorted_group[demographic_features+labtest_features].to_numpy())).astype(int))\n", |
|
|
445 |
"\n", |
|
|
446 |
" for _, v in sorted_group.iterrows():\n", |
|
|
447 |
" patient_y.append([v['outcome'], v['LOS']])\n", |
|
|
448 |
" demo = []\n", |
|
|
449 |
" lab = []\n", |
|
|
450 |
" for f in demographic_features:\n", |
|
|
451 |
" demo.append(v[f])\n", |
|
|
452 |
" for f in labtest_features:\n", |
|
|
453 |
" lab.append(v[f])\n", |
|
|
454 |
" patient_labtest.append(lab)\n", |
|
|
455 |
" patient_demographic.append(demo)\n", |
|
|
456 |
" all_y.append(patient_y)\n", |
|
|
457 |
" all_x_demographic.append(patient_demographic[-1])\n", |
|
|
458 |
" all_x_labtest.append(patient_labtest)\n", |
|
|
459 |
"\n", |
|
|
460 |
"# all_x_demographic (2 dim, record each patients' demographic features)\n", |
|
|
461 |
"# all_x_labtest (3 dim, record each patients' lab test features)\n", |
|
|
462 |
"# all_y (3 dim, patients' outcome/los of all visits)" |
|
|
463 |
] |
|
|
464 |
}, |
|
|
465 |
{ |
|
|
466 |
"cell_type": "code", |
|
|
467 |
"execution_count": null, |
|
|
468 |
"metadata": {}, |
|
|
469 |
"outputs": [], |
|
|
470 |
"source": [ |
|
|
471 |
"all_x_labtest = np.array(all_x_labtest, dtype=object)\n", |
|
|
472 |
"x_lab_length = [len(_) for _ in all_x_labtest]\n", |
|
|
473 |
"x_lab_length = torch.tensor(x_lab_length, dtype=torch.int)\n", |
|
|
474 |
"max_length = int(x_lab_length.max())\n", |
|
|
475 |
"all_x_labtest = [torch.tensor(_) for _ in all_x_labtest]\n", |
|
|
476 |
"# pad lab test sequence to the same shape\n", |
|
|
477 |
"all_x_labtest = torch.nn.utils.rnn.pad_sequence((all_x_labtest), batch_first=True)\n", |
|
|
478 |
"\n", |
|
|
479 |
"all_x_demographic = torch.tensor(all_x_demographic)\n", |
|
|
480 |
"batch_size, demo_dim = all_x_demographic.shape\n", |
|
|
481 |
"# repeat demographic tensor\n", |
|
|
482 |
"all_x_demographic = torch.reshape(all_x_demographic.repeat(1, max_length), (batch_size, max_length, demo_dim))\n", |
|
|
483 |
"# demographic tensor concat with lab test tensor\n", |
|
|
484 |
"all_x = torch.cat((all_x_demographic, all_x_labtest), 2)\n", |
|
|
485 |
"\n", |
|
|
486 |
"all_y = np.array(all_y, dtype=object)\n", |
|
|
487 |
"all_y = [torch.Tensor(_) for _ in all_y]\n", |
|
|
488 |
"# pad [outcome/los] sequence as well\n", |
|
|
489 |
"all_y = torch.nn.utils.rnn.pad_sequence((all_y), batch_first=True)\n", |
|
|
490 |
"\n", |
|
|
491 |
"all_missing_mask = np.array(all_missing_mask, dtype=object)\n", |
|
|
492 |
"all_missing_mask = [torch.tensor(_) for _ in all_missing_mask]\n", |
|
|
493 |
"all_missing_mask = torch.nn.utils.rnn.pad_sequence((all_missing_mask), batch_first=True)" |
|
|
494 |
] |
|
|
495 |
}, |
|
|
496 |
{ |
|
|
497 |
"cell_type": "code", |
|
|
498 |
"execution_count": null, |
|
|
499 |
"metadata": {}, |
|
|
500 |
"outputs": [], |
|
|
501 |
"source": [ |
|
|
502 |
"# save pickle format dataset (export torch tensor)\n", |
|
|
503 |
"pd.to_pickle(all_x, f'./processed_data/x.pkl')\n", |
|
|
504 |
"pd.to_pickle(all_y, f'./processed_data/y.pkl')\n", |
|
|
505 |
"pd.to_pickle(x_lab_length, f'./processed_data/visits_length.pkl')\n", |
|
|
506 |
"pd.to_pickle(all_missing_mask, f'./processed_data/missing_mask.pkl')" |
|
|
507 |
] |
|
|
508 |
}, |
|
|
509 |
{ |
|
|
510 |
"cell_type": "code", |
|
|
511 |
"execution_count": null, |
|
|
512 |
"metadata": {}, |
|
|
513 |
"outputs": [], |
|
|
514 |
"source": [ |
|
|
515 |
"# Calculate patients' outcome statistics (patients-wise)\n", |
|
|
516 |
"outcome_list = []\n", |
|
|
517 |
"y_outcome = all_y[:, :, 0]\n", |
|
|
518 |
"indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", |
|
|
519 |
"for i in indices:\n", |
|
|
520 |
" outcome_list.append(y_outcome[i][0].item())\n", |
|
|
521 |
"outcome_list = np.array(outcome_list)\n", |
|
|
522 |
"print(len(outcome_list))\n", |
|
|
523 |
"unique, count=np.unique(outcome_list,return_counts=True)\n", |
|
|
524 |
"data_count=dict(zip(unique,count))\n", |
|
|
525 |
"print(data_count)" |
|
|
526 |
] |
|
|
527 |
}, |
|
|
528 |
{ |
|
|
529 |
"cell_type": "code", |
|
|
530 |
"execution_count": null, |
|
|
531 |
"metadata": {}, |
|
|
532 |
"outputs": [], |
|
|
533 |
"source": [ |
|
|
534 |
"# Calculate patients' outcome statistics (records-wise)\n", |
|
|
535 |
"outcome_records_list = []\n", |
|
|
536 |
"y_outcome = all_y[:, :, 0]\n", |
|
|
537 |
"indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", |
|
|
538 |
"for i in indices:\n", |
|
|
539 |
" outcome_records_list.extend(y_outcome[i][0:x_lab_length[i]].tolist())\n", |
|
|
540 |
"outcome_records_list = np.array(outcome_records_list)\n", |
|
|
541 |
"print(len(outcome_records_list))\n", |
|
|
542 |
"unique, count=np.unique(outcome_records_list,return_counts=True)\n", |
|
|
543 |
"data_count=dict(zip(unique,count))\n", |
|
|
544 |
"print(data_count)" |
|
|
545 |
] |
|
|
546 |
}, |
|
|
547 |
{ |
|
|
548 |
"cell_type": "code", |
|
|
549 |
"execution_count": null, |
|
|
550 |
"metadata": {}, |
|
|
551 |
"outputs": [], |
|
|
552 |
"source": [ |
|
|
553 |
"# Calculate patients' mean los and 95% percentile los\n", |
|
|
554 |
"los_list = []\n", |
|
|
555 |
"y_los = all_y[:, :, 1]\n", |
|
|
556 |
"indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", |
|
|
557 |
"for i in indices:\n", |
|
|
558 |
" # los_list.extend(y_los[i][: x_lab_length[i].long()].tolist())\n", |
|
|
559 |
" los_list.append(y_los[i][0].item())\n", |
|
|
560 |
"los_list = np.array(los_list)\n", |
|
|
561 |
"print(los_list.mean() * 0.5)\n", |
|
|
562 |
"print(np.median(los_list) * 0.5)\n", |
|
|
563 |
"print(np.percentile(los_list, 95))\n", |
|
|
564 |
"\n", |
|
|
565 |
"print('median:', np.median(los_list))\n", |
|
|
566 |
"print('Q1:', np.percentile(los_list, 25))\n", |
|
|
567 |
"print('Q3:', np.percentile(los_list, 75))" |
|
|
568 |
] |
|
|
569 |
}, |
|
|
570 |
{ |
|
|
571 |
"cell_type": "code", |
|
|
572 |
"execution_count": null, |
|
|
573 |
"metadata": {}, |
|
|
574 |
"outputs": [], |
|
|
575 |
"source": [ |
|
|
576 |
"los_alive_list = np.array([los_list[i] for i in range(len(los_list)) if outcome_list[i] == 0])\n", |
|
|
577 |
"los_dead_list = np.array([los_list[i] for i in range(len(los_list)) if outcome_list[i] == 1])\n", |
|
|
578 |
"print(len(los_alive_list))\n", |
|
|
579 |
"print(len(los_dead_list))\n", |
|
|
580 |
"\n", |
|
|
581 |
"print('[Alive]')\n", |
|
|
582 |
"print('median:', np.median(los_alive_list))\n", |
|
|
583 |
"print('Q1:', np.percentile(los_alive_list, 25))\n", |
|
|
584 |
"print('Q3:', np.percentile(los_alive_list, 75))\n", |
|
|
585 |
"\n", |
|
|
586 |
"print('[Dead]')\n", |
|
|
587 |
"print('median:', np.median(los_dead_list))\n", |
|
|
588 |
"print('Q1:', np.percentile(los_dead_list, 25))\n", |
|
|
589 |
"print('Q3:', np.percentile(los_dead_list, 75))" |
|
|
590 |
] |
|
|
591 |
}, |
|
|
592 |
{ |
|
|
593 |
"cell_type": "code", |
|
|
594 |
"execution_count": null, |
|
|
595 |
"metadata": {}, |
|
|
596 |
"outputs": [], |
|
|
597 |
"source": [ |
|
|
598 |
"tjh_los_statistics = {\n", |
|
|
599 |
" 'overall': los_list,\n", |
|
|
600 |
" 'alive': los_alive_list,\n", |
|
|
601 |
" 'dead': los_dead_list\n", |
|
|
602 |
"}\n", |
|
|
603 |
"# pd.to_pickle(tjh_los_statistics, 'tjh_los_statistics.pkl')" |
|
|
604 |
] |
|
|
605 |
}, |
|
|
606 |
{ |
|
|
607 |
"cell_type": "code", |
|
|
608 |
"execution_count": null, |
|
|
609 |
"metadata": {}, |
|
|
610 |
"outputs": [], |
|
|
611 |
"source": [ |
|
|
612 |
"# calculate visits length Median [Q1, Q3]\n", |
|
|
613 |
"visits_list = np.array(x_lab_length)\n", |
|
|
614 |
"visits_alive_list = np.array([x_lab_length[i] for i in range(len(x_lab_length)) if outcome_list[i] == 0])\n", |
|
|
615 |
"visits_dead_list = np.array([x_lab_length[i] for i in range(len(x_lab_length)) if outcome_list[i] == 1])\n", |
|
|
616 |
"print(len(visits_alive_list))\n", |
|
|
617 |
"print(len(visits_dead_list))\n", |
|
|
618 |
"\n", |
|
|
619 |
"print('[Total]')\n", |
|
|
620 |
"print('median:', np.median(visits_list))\n", |
|
|
621 |
"print('Q1:', np.percentile(visits_list, 25))\n", |
|
|
622 |
"print('Q3:', np.percentile(visits_list, 75))\n", |
|
|
623 |
"\n", |
|
|
624 |
"print('[Alive]')\n", |
|
|
625 |
"print('median:', np.median(visits_alive_list))\n", |
|
|
626 |
"print('Q1:', np.percentile(visits_alive_list, 25))\n", |
|
|
627 |
"print('Q3:', np.percentile(visits_alive_list, 75))\n", |
|
|
628 |
"\n", |
|
|
629 |
"print('[Dead]')\n", |
|
|
630 |
"print('median:', np.median(visits_dead_list))\n", |
|
|
631 |
"print('Q1:', np.percentile(visits_dead_list, 25))\n", |
|
|
632 |
"print('Q3:', np.percentile(visits_dead_list, 75))" |
|
|
633 |
] |
|
|
634 |
}, |
|
|
635 |
{ |
|
|
636 |
"cell_type": "code", |
|
|
637 |
"execution_count": null, |
|
|
638 |
"metadata": {}, |
|
|
639 |
"outputs": [], |
|
|
640 |
"source": [ |
|
|
641 |
"# Length-of-stay interval (overall/alive/dead)\n", |
|
|
642 |
"los_interval_list = []\n", |
|
|
643 |
"los_interval_alive_list = []\n", |
|
|
644 |
"los_interval_dead_list = []\n", |
|
|
645 |
"\n", |
|
|
646 |
"y_los = all_y[:, :, 1]\n", |
|
|
647 |
"indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", |
|
|
648 |
"for i in indices:\n", |
|
|
649 |
" cur_visits_len = x_lab_length[i]\n", |
|
|
650 |
" if cur_visits_len == 1:\n", |
|
|
651 |
" continue\n", |
|
|
652 |
" for j in range(1, cur_visits_len):\n", |
|
|
653 |
" los_interval_list.append(y_los[i][j-1]-y_los[i][j])\n", |
|
|
654 |
" if outcome_list[i] == 0:\n", |
|
|
655 |
" los_interval_alive_list.append(y_los[i][j-1]-y_los[i][j])\n", |
|
|
656 |
" else:\n", |
|
|
657 |
" los_interval_dead_list.append(y_los[i][j-1]-y_los[i][j])\n", |
|
|
658 |
"\n", |
|
|
659 |
"los_interval_list = np.array(los_interval_list)\n", |
|
|
660 |
"los_interval_alive_list = np.array(los_interval_alive_list)\n", |
|
|
661 |
"los_interval_dead_list = np.array(los_interval_dead_list)\n", |
|
|
662 |
"\n", |
|
|
663 |
"output = {\n", |
|
|
664 |
" 'overall': los_interval_list,\n", |
|
|
665 |
" 'alive': los_interval_alive_list,\n", |
|
|
666 |
" 'dead': los_interval_dead_list,\n", |
|
|
667 |
"}\n", |
|
|
668 |
"# pd.to_pickle(output, 'tjh_los_interval_list.pkl')" |
|
|
669 |
] |
|
|
670 |
}, |
|
|
671 |
{ |
|
|
672 |
"cell_type": "code", |
|
|
673 |
"execution_count": null, |
|
|
674 |
"metadata": {}, |
|
|
675 |
"outputs": [], |
|
|
676 |
"source": [ |
|
|
677 |
"len(los_interval_list), len(los_interval_alive_list), len(los_interval_dead_list)" |
|
|
678 |
] |
|
|
679 |
}, |
|
|
680 |
{ |
|
|
681 |
"cell_type": "code", |
|
|
682 |
"execution_count": null, |
|
|
683 |
"metadata": {}, |
|
|
684 |
"outputs": [], |
|
|
685 |
"source": [ |
|
|
686 |
"def check_nan(x):\n", |
|
|
687 |
" if np.isnan(np.sum(x.cpu().numpy())):\n", |
|
|
688 |
" print(\"some values from input are nan\")\n", |
|
|
689 |
" else:\n", |
|
|
690 |
" print(\"no nan\")" |
|
|
691 |
] |
|
|
692 |
}, |
|
|
693 |
{ |
|
|
694 |
"cell_type": "markdown", |
|
|
695 |
"metadata": {}, |
|
|
696 |
"source": [ |
|
|
697 |
"# Draw Charts" |
|
|
698 |
] |
|
|
699 |
}, |
|
|
700 |
{ |
|
|
701 |
"cell_type": "code", |
|
|
702 |
"execution_count": null, |
|
|
703 |
"metadata": {}, |
|
|
704 |
"outputs": [], |
|
|
705 |
"source": [ |
|
|
706 |
"import matplotlib.pyplot as plt\n", |
|
|
707 |
"from matplotlib.ticker import PercentFormatter\n", |
|
|
708 |
"import matplotlib.font_manager as font_manager\n", |
|
|
709 |
"import pandas as pd\n", |
|
|
710 |
"import numpy as np\n", |
|
|
711 |
"\n", |
|
|
712 |
"plt.style.use('seaborn-whitegrid')\n", |
|
|
713 |
"color = 'cornflowerblue'\n", |
|
|
714 |
"ec = 'None'\n", |
|
|
715 |
"alpha=0.5\n", |
|
|
716 |
"alive_color = 'olivedrab'\n", |
|
|
717 |
"dead_color = 'orchid'" |
|
|
718 |
] |
|
|
719 |
}, |
|
|
720 |
{ |
|
|
721 |
"cell_type": "code", |
|
|
722 |
"execution_count": null, |
|
|
723 |
"metadata": {}, |
|
|
724 |
"outputs": [], |
|
|
725 |
"source": [ |
|
|
726 |
"tj_overall = pd.read_csv('./tjh_data_raw.csv')\n", |
|
|
727 |
"tj_overall.head()" |
|
|
728 |
] |
|
|
729 |
}, |
|
|
730 |
{ |
|
|
731 |
"cell_type": "code", |
|
|
732 |
"execution_count": null, |
|
|
733 |
"metadata": {}, |
|
|
734 |
"outputs": [], |
|
|
735 |
"source": [ |
|
|
736 |
"tj_alive = tj_overall.loc[tj_overall['outcome'] == 0]\n", |
|
|
737 |
"tj_dead = tj_overall.loc[tj_overall['outcome'] == 1]" |
|
|
738 |
] |
|
|
739 |
}, |
|
|
740 |
{ |
|
|
741 |
"cell_type": "code", |
|
|
742 |
"execution_count": null, |
|
|
743 |
"metadata": {}, |
|
|
744 |
"outputs": [], |
|
|
745 |
"source": [ |
|
|
746 |
"tj_overall.describe().to_csv('tjh_describe.csv', index=False)" |
|
|
747 |
] |
|
|
748 |
}, |
|
|
749 |
{ |
|
|
750 |
"cell_type": "code", |
|
|
751 |
"execution_count": null, |
|
|
752 |
"metadata": {}, |
|
|
753 |
"outputs": [], |
|
|
754 |
"source": [ |
|
|
755 |
"limit = 0.05\n", |
|
|
756 |
"\n", |
|
|
757 |
"from matplotlib.ticker import PercentFormatter\n", |
|
|
758 |
"import matplotlib.font_manager as font_manager\n", |
|
|
759 |
"plt.style.use('seaborn-whitegrid')\n", |
|
|
760 |
"color = 'cornflowerblue'\n", |
|
|
761 |
"ec = 'None'\n", |
|
|
762 |
"alive_color = 'olivedrab'\n", |
|
|
763 |
"# dead_color = 'mediumslateblue'\n", |
|
|
764 |
"dead_color = 'orchid'\n", |
|
|
765 |
"alpha=0.5\n", |
|
|
766 |
"\n", |
|
|
767 |
"csfont = {'fontname':'Times New Roman', 'fontsize': 18}\n", |
|
|
768 |
"font = 'Times New Roman'\n", |
|
|
769 |
"fig=plt.figure(figsize=(16,12), dpi= 500, facecolor='w', edgecolor='k')\n", |
|
|
770 |
"\n", |
|
|
771 |
"idx = 1\n", |
|
|
772 |
"\n", |
|
|
773 |
"key = 'age'\n", |
|
|
774 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
775 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
776 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
777 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
778 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
779 |
"ax = plt.subplot(4, 4, idx)\n", |
|
|
780 |
"ax.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha, label='overall')\n", |
|
|
781 |
"plt.xlabel('Age',**csfont)\n", |
|
|
782 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
783 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
784 |
"ax.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2, label='alive')\n", |
|
|
785 |
"ax.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2, label='dead')\n", |
|
|
786 |
"plt.xticks(**csfont)\n", |
|
|
787 |
"plt.yticks(**csfont)\n", |
|
|
788 |
"idx += 1\n", |
|
|
789 |
"\n", |
|
|
790 |
"key = 'White blood cell count'\n", |
|
|
791 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
792 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
793 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
794 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
795 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
796 |
"plt.subplot(4, 4, idx)\n", |
|
|
797 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
798 |
"plt.xlabel(key,**csfont)\n", |
|
|
799 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
800 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
801 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
802 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
803 |
"plt.xticks(**csfont)\n", |
|
|
804 |
"plt.yticks(**csfont)\n", |
|
|
805 |
"idx += 1\n", |
|
|
806 |
"\n", |
|
|
807 |
"key = 'Red blood cell count'\n", |
|
|
808 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
809 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
810 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
811 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
812 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
813 |
"plt.subplot(4, 4, idx)\n", |
|
|
814 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
815 |
"plt.xlabel(key,**csfont)\n", |
|
|
816 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
817 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
818 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
819 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
820 |
"plt.xticks(**csfont)\n", |
|
|
821 |
"plt.yticks(**csfont)\n", |
|
|
822 |
"idx += 1\n", |
|
|
823 |
"\n", |
|
|
824 |
"key = 'neutrophils(%)'\n", |
|
|
825 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
826 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
827 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
828 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
829 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
830 |
"plt.subplot(4, 4, idx)\n", |
|
|
831 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
832 |
"plt.xlabel('neutrophils %',**csfont)\n", |
|
|
833 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
834 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
835 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
836 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
837 |
"plt.xticks(**csfont)\n", |
|
|
838 |
"plt.yticks(**csfont)\n", |
|
|
839 |
"idx += 1\n", |
|
|
840 |
"\n", |
|
|
841 |
"key = '(%)lymphocyte'\n", |
|
|
842 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
843 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
844 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
845 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
846 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
847 |
"plt.subplot(4, 4, idx)\n", |
|
|
848 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
849 |
"plt.xlabel('lymphocyte %',**csfont)\n", |
|
|
850 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
851 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
852 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
853 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
854 |
"plt.xticks(**csfont)\n", |
|
|
855 |
"plt.yticks(**csfont)\n", |
|
|
856 |
"idx += 1\n", |
|
|
857 |
"\n", |
|
|
858 |
"key = 'monocytes(%)'\n", |
|
|
859 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
860 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
861 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
862 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
863 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
864 |
"plt.subplot(4, 4, idx)\n", |
|
|
865 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
866 |
"plt.xlabel(key,**csfont)\n", |
|
|
867 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
868 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
869 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
870 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
871 |
"plt.xticks(**csfont)\n", |
|
|
872 |
"plt.yticks(**csfont)\n", |
|
|
873 |
"idx += 1\n", |
|
|
874 |
"\n", |
|
|
875 |
"key = 'Platelet count'\n", |
|
|
876 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
877 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
878 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
879 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
880 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
881 |
"plt.subplot(4, 4, idx)\n", |
|
|
882 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
883 |
"plt.xlabel(key,**csfont)\n", |
|
|
884 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
885 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
886 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
887 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
888 |
"plt.xticks(**csfont)\n", |
|
|
889 |
"plt.yticks(**csfont)\n", |
|
|
890 |
"idx += 1\n", |
|
|
891 |
"\n", |
|
|
892 |
"key = 'lymphocyte count'\n", |
|
|
893 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
894 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
895 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
896 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
897 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
898 |
"plt.subplot(4, 4, idx)\n", |
|
|
899 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
900 |
"plt.xlabel('Lymphocyte count',**csfont)\n", |
|
|
901 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
902 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
903 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
904 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
905 |
"plt.xticks(**csfont)\n", |
|
|
906 |
"plt.yticks(**csfont)\n", |
|
|
907 |
"idx += 1\n", |
|
|
908 |
"\n", |
|
|
909 |
"key = 'hemoglobin'\n", |
|
|
910 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
911 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
912 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
913 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
914 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
915 |
"plt.subplot(4, 4, idx)\n", |
|
|
916 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
917 |
"plt.xlabel('Hemoglobin',**csfont)\n", |
|
|
918 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
919 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
920 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
921 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
922 |
"plt.xticks(**csfont)\n", |
|
|
923 |
"plt.yticks(**csfont)\n", |
|
|
924 |
"idx += 1\n", |
|
|
925 |
"\n", |
|
|
926 |
"key = 'calcium'\n", |
|
|
927 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
928 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
929 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
930 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
931 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
932 |
"plt.subplot(4, 4, idx)\n", |
|
|
933 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
934 |
"plt.xlabel('Calcium',**csfont)\n", |
|
|
935 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
936 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
937 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
938 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
939 |
"plt.xticks(**csfont)\n", |
|
|
940 |
"plt.yticks(**csfont)\n", |
|
|
941 |
"idx += 1\n", |
|
|
942 |
"\n", |
|
|
943 |
"key = 'hematocrit'\n", |
|
|
944 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
945 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
946 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
947 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
948 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
949 |
"plt.subplot(4, 4, idx)\n", |
|
|
950 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
951 |
"plt.xlabel('Hematocrit',**csfont)\n", |
|
|
952 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
953 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
954 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
955 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
956 |
"plt.xticks(**csfont)\n", |
|
|
957 |
"plt.yticks(**csfont)\n", |
|
|
958 |
"idx += 1\n", |
|
|
959 |
"\n", |
|
|
960 |
"key = 'albumin'\n", |
|
|
961 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
962 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
963 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
964 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
965 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
966 |
"plt.subplot(4, 4, idx)\n", |
|
|
967 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
968 |
"plt.xlabel('Albumin',**csfont)\n", |
|
|
969 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
970 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
971 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
972 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
973 |
"plt.xticks(**csfont)\n", |
|
|
974 |
"plt.yticks(**csfont)\n", |
|
|
975 |
"idx += 1\n", |
|
|
976 |
"\n", |
|
|
977 |
"key = 'neutrophils count'\n", |
|
|
978 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
979 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
980 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
981 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
982 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
983 |
"plt.subplot(4, 4, idx)\n", |
|
|
984 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
985 |
"plt.xlabel('Neutrophils count',**csfont)\n", |
|
|
986 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
987 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
988 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
989 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
990 |
"plt.xticks(**csfont)\n", |
|
|
991 |
"plt.yticks(**csfont)\n", |
|
|
992 |
"idx += 1\n", |
|
|
993 |
"\n", |
|
|
994 |
"key = 'monocytes count'\n", |
|
|
995 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
996 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
997 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
998 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
999 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
1000 |
"plt.subplot(4, 4, idx)\n", |
|
|
1001 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
1002 |
"plt.xlabel('Monocytes count',**csfont)\n", |
|
|
1003 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1004 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1005 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1006 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1007 |
"plt.xticks(**csfont)\n", |
|
|
1008 |
"plt.yticks(**csfont)\n", |
|
|
1009 |
"idx += 1\n", |
|
|
1010 |
"\n", |
|
|
1011 |
"key = 'basophil count(#)'\n", |
|
|
1012 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
1013 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
1014 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
1015 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
1016 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
1017 |
"plt.subplot(4, 4, idx)\n", |
|
|
1018 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
1019 |
"plt.xlabel('Basophil count',**csfont)\n", |
|
|
1020 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1021 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1022 |
"plt.subplot(4, 4, idx)\n", |
|
|
1023 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1024 |
"plt.subplot(4, 4, idx)\n", |
|
|
1025 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1026 |
"plt.xticks(**csfont)\n", |
|
|
1027 |
"plt.yticks(**csfont)\n", |
|
|
1028 |
"idx += 1\n", |
|
|
1029 |
"\n", |
|
|
1030 |
"key = 'eosinophils(%)'\n", |
|
|
1031 |
"low = tj_overall[key].quantile(limit)\n", |
|
|
1032 |
"high = tj_overall[key].quantile(1 - limit)\n", |
|
|
1033 |
"tj_AGE_overall = tj_overall[tj_overall[key].between(low, high)]\n", |
|
|
1034 |
"tj_AGE_dead = tj_dead[tj_dead[key].between(low, high)]\n", |
|
|
1035 |
"tj_AGE_alive = tj_alive[tj_alive[key].between(low, high)]\n", |
|
|
1036 |
"plt.subplot(4, 4, idx)\n", |
|
|
1037 |
"plt.hist(tj_AGE_overall[key], bins=20, weights=np.ones(len(tj_AGE_overall[key])) / len(tj_AGE_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
1038 |
"plt.xlabel('Eosinophils %',**csfont)\n", |
|
|
1039 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1040 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1041 |
"plt.subplot(4, 4, idx)\n", |
|
|
1042 |
"plt.hist(tj_AGE_alive[key], bins=20, weights=np.ones(len(tj_AGE_alive[key])) / len(tj_AGE_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1043 |
"plt.subplot(4, 4, idx)\n", |
|
|
1044 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1045 |
"plt.hist(tj_AGE_dead[key], bins=20, weights=np.ones(len(tj_AGE_dead[key])) / len(tj_AGE_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1046 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1047 |
"plt.xticks(**csfont)\n", |
|
|
1048 |
"plt.yticks(**csfont)\n", |
|
|
1049 |
"idx += 1\n", |
|
|
1050 |
"\n", |
|
|
1051 |
"handles, labels = ax.get_legend_handles_labels()\n", |
|
|
1052 |
"print(handles, labels)\n", |
|
|
1053 |
"plt.figlegend(handles, labels, loc='upper center', ncol=5, fontsize=18, bbox_to_anchor=(0.5, 1.05), prop=font_manager.FontProperties(family='Times New Roman',\n", |
|
|
1054 |
" style='normal', size=18))\n", |
|
|
1055 |
"\n", |
|
|
1056 |
"fig.tight_layout()\n", |
|
|
1057 |
"plt.show()" |
|
|
1058 |
] |
|
|
1059 |
} |
|
|
1060 |
], |
|
|
1061 |
"metadata": { |
|
|
1062 |
"kernelspec": { |
|
|
1063 |
"display_name": "Python 3.7.11 ('python37')", |
|
|
1064 |
"language": "python", |
|
|
1065 |
"name": "python3" |
|
|
1066 |
}, |
|
|
1067 |
"language_info": { |
|
|
1068 |
"codemirror_mode": { |
|
|
1069 |
"name": "ipython", |
|
|
1070 |
"version": 3 |
|
|
1071 |
}, |
|
|
1072 |
"file_extension": ".py", |
|
|
1073 |
"mimetype": "text/x-python", |
|
|
1074 |
"name": "python", |
|
|
1075 |
"nbconvert_exporter": "python", |
|
|
1076 |
"pygments_lexer": "ipython3", |
|
|
1077 |
"version": "3.7.11" |
|
|
1078 |
}, |
|
|
1079 |
"vscode": { |
|
|
1080 |
"interpreter": { |
|
|
1081 |
"hash": "a10b846bdc9fc41ee38835cbc29d70b69dd5fd54e1341ea2c410a7804a50447a" |
|
|
1082 |
} |
|
|
1083 |
} |
|
|
1084 |
}, |
|
|
1085 |
"nbformat": 4, |
|
|
1086 |
"nbformat_minor": 2 |
|
|
1087 |
} |