|
a |
|
b/datasets/cdsl/preprocess.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# hm dataset pre-processing\n", |
|
|
8 |
"\n", |
|
|
9 |
"import packages" |
|
|
10 |
] |
|
|
11 |
}, |
|
|
12 |
{ |
|
|
13 |
"cell_type": "code", |
|
|
14 |
"execution_count": null, |
|
|
15 |
"metadata": {}, |
|
|
16 |
"outputs": [], |
|
|
17 |
"source": [ |
|
|
18 |
"import os\n", |
|
|
19 |
"import pandas as pd\n", |
|
|
20 |
"import numpy as np\n", |
|
|
21 |
"import matplotlib.pyplot as plt\n", |
|
|
22 |
"import pickle as pkl\n", |
|
|
23 |
"import torch\n", |
|
|
24 |
"import math\n", |
|
|
25 |
"import datetime\n", |
|
|
26 |
"from tqdm import tqdm\n", |
|
|
27 |
"import datetime\n", |
|
|
28 |
"import re\n", |
|
|
29 |
"from functools import reduce" |
|
|
30 |
] |
|
|
31 |
}, |
|
|
32 |
{ |
|
|
33 |
"cell_type": "markdown", |
|
|
34 |
"metadata": {}, |
|
|
35 |
"source": [ |
|
|
36 |
"## Demographic data" |
|
|
37 |
] |
|
|
38 |
}, |
|
|
39 |
{ |
|
|
40 |
"cell_type": "code", |
|
|
41 |
"execution_count": null, |
|
|
42 |
"metadata": {}, |
|
|
43 |
"outputs": [], |
|
|
44 |
"source": [ |
|
|
45 |
"demographic = pd.read_csv('./raw_data/19_04_2021/COVID_DSL_01.CSV', encoding='ISO-8859-1', sep='|')\n", |
|
|
46 |
"print(len(demographic))\n", |
|
|
47 |
"demographic.head()" |
|
|
48 |
] |
|
|
49 |
}, |
|
|
50 |
{ |
|
|
51 |
"cell_type": "code", |
|
|
52 |
"execution_count": null, |
|
|
53 |
"metadata": {}, |
|
|
54 |
"outputs": [], |
|
|
55 |
"source": [ |
|
|
56 |
"med = pd.read_csv('./raw_data/19_04_2021/COVID_DSL_04.CSV', encoding='ISO-8859-1', sep='|')\n", |
|
|
57 |
"print(len(med))\n", |
|
|
58 |
"med.head()" |
|
|
59 |
] |
|
|
60 |
}, |
|
|
61 |
{ |
|
|
62 |
"cell_type": "code", |
|
|
63 |
"execution_count": null, |
|
|
64 |
"metadata": {}, |
|
|
65 |
"outputs": [], |
|
|
66 |
"source": [ |
|
|
67 |
"len(med['ID_ATC7'].unique())" |
|
|
68 |
] |
|
|
69 |
}, |
|
|
70 |
{ |
|
|
71 |
"cell_type": "markdown", |
|
|
72 |
"metadata": {}, |
|
|
73 |
"source": [ |
|
|
74 |
"get rid of patient with missing label" |
|
|
75 |
] |
|
|
76 |
}, |
|
|
77 |
{ |
|
|
78 |
"cell_type": "code", |
|
|
79 |
"execution_count": null, |
|
|
80 |
"metadata": {}, |
|
|
81 |
"outputs": [], |
|
|
82 |
"source": [ |
|
|
83 |
"print(len(demographic))\n", |
|
|
84 |
"demographic = demographic.dropna(axis=0, how='any', subset=['IDINGRESO', 'F_INGRESO_ING', 'F_ALTA_ING', 'MOTIVO_ALTA_ING'])\n", |
|
|
85 |
"print(len(demographic))" |
|
|
86 |
] |
|
|
87 |
}, |
|
|
88 |
{ |
|
|
89 |
"cell_type": "code", |
|
|
90 |
"execution_count": null, |
|
|
91 |
"metadata": {}, |
|
|
92 |
"outputs": [], |
|
|
93 |
"source": [ |
|
|
94 |
"def outcome2num(x):\n", |
|
|
95 |
" if x == 'Fallecimiento':\n", |
|
|
96 |
" return 1\n", |
|
|
97 |
" else:\n", |
|
|
98 |
" return 0\n", |
|
|
99 |
"\n", |
|
|
100 |
"def to_one_hot(x, feature):\n", |
|
|
101 |
" if x == feature:\n", |
|
|
102 |
" return 1\n", |
|
|
103 |
" else:\n", |
|
|
104 |
" return 0" |
|
|
105 |
] |
|
|
106 |
}, |
|
|
107 |
{ |
|
|
108 |
"cell_type": "code", |
|
|
109 |
"execution_count": null, |
|
|
110 |
"metadata": {}, |
|
|
111 |
"outputs": [], |
|
|
112 |
"source": [ |
|
|
113 |
"# select necessary columns from demographic\n", |
|
|
114 |
"demographic = demographic[\n", |
|
|
115 |
" [\n", |
|
|
116 |
" 'IDINGRESO', \n", |
|
|
117 |
" 'EDAD',\n", |
|
|
118 |
" 'SEX',\n", |
|
|
119 |
" 'F_INGRESO_ING', \n", |
|
|
120 |
" 'F_ALTA_ING', \n", |
|
|
121 |
" 'MOTIVO_ALTA_ING', \n", |
|
|
122 |
" 'ESPECIALIDAD_URGENCIA', \n", |
|
|
123 |
" 'DIAG_URG'\n", |
|
|
124 |
" ]\n", |
|
|
125 |
" ]\n", |
|
|
126 |
"\n", |
|
|
127 |
"# rename column\n", |
|
|
128 |
"demographic = demographic.rename(columns={\n", |
|
|
129 |
" 'IDINGRESO': 'PATIENT_ID',\n", |
|
|
130 |
" 'EDAD': 'AGE',\n", |
|
|
131 |
" 'SEX': 'SEX',\n", |
|
|
132 |
" 'F_INGRESO_ING': 'ADMISSION_DATE',\n", |
|
|
133 |
" 'F_ALTA_ING': 'DEPARTURE_DATE',\n", |
|
|
134 |
" 'MOTIVO_ALTA_ING': 'OUTCOME',\n", |
|
|
135 |
" 'ESPECIALIDAD_URGENCIA': 'DEPARTMENT_OF_EMERGENCY',\n", |
|
|
136 |
" 'DIAG_URG': 'DIAGNOSIS_AT_EMERGENCY_VISIT'\n", |
|
|
137 |
"})\n", |
|
|
138 |
"\n", |
|
|
139 |
"# SEX: male: 1; female: 0\n", |
|
|
140 |
"demographic['SEX'].replace('MALE', 1, inplace=True)\n", |
|
|
141 |
"demographic['SEX'].replace('FEMALE', 0, inplace=True)\n", |
|
|
142 |
"\n", |
|
|
143 |
"# outcome: Fallecimiento(dead): 1; others: 0\n", |
|
|
144 |
"demographic['OUTCOME'] = demographic['OUTCOME'].map(outcome2num)\n", |
|
|
145 |
"\n", |
|
|
146 |
"# diagnosis at emergency visit (loss rate < 10%)\n", |
|
|
147 |
"# demographic['DIFFICULTY_BREATHING'] = demographic['DIAGNOSIS_AT_EMERGENCY_VISIT'].map(lambda x: to_one_hot(x, 'DIFICULTAD RESPIRATORIA')) # 1674\n", |
|
|
148 |
"# demographic['SUSPECT_COVID'] = demographic['DIAGNOSIS_AT_EMERGENCY_VISIT'].map(lambda x: to_one_hot(x, 'SOSPECHA COVID-19')) # 960\n", |
|
|
149 |
"# demographic['FEVER'] = demographic['DIAGNOSIS_AT_EMERGENCY_VISIT'].map(lambda x: to_one_hot(x, 'FIEBRE')) # 455\n", |
|
|
150 |
"\n", |
|
|
151 |
"# department of emergency (loss rate < 10%)\n", |
|
|
152 |
"# demographic['EMERGENCY'] = demographic['DEPARTMENT_OF_EMERGENCY'].map(lambda x: to_one_hot(x, 'Medicina de Urgencias')) # 3914" |
|
|
153 |
] |
|
|
154 |
}, |
|
|
155 |
{ |
|
|
156 |
"cell_type": "code", |
|
|
157 |
"execution_count": null, |
|
|
158 |
"metadata": {}, |
|
|
159 |
"outputs": [], |
|
|
160 |
"source": [ |
|
|
161 |
"# del useless data\n", |
|
|
162 |
"demographic = demographic[\n", |
|
|
163 |
" [\n", |
|
|
164 |
" 'PATIENT_ID',\n", |
|
|
165 |
" 'AGE',\n", |
|
|
166 |
" 'SEX',\n", |
|
|
167 |
" 'ADMISSION_DATE',\n", |
|
|
168 |
" 'DEPARTURE_DATE',\n", |
|
|
169 |
" 'OUTCOME',\n", |
|
|
170 |
" # 'DIFFICULTY_BREATHING',\n", |
|
|
171 |
" # 'SUSPECT_COVID',\n", |
|
|
172 |
" # 'FEVER',\n", |
|
|
173 |
" # 'EMERGENCY'\n", |
|
|
174 |
" ]\n", |
|
|
175 |
" ]" |
|
|
176 |
] |
|
|
177 |
}, |
|
|
178 |
{ |
|
|
179 |
"cell_type": "code", |
|
|
180 |
"execution_count": null, |
|
|
181 |
"metadata": {}, |
|
|
182 |
"outputs": [], |
|
|
183 |
"source": [ |
|
|
184 |
"demographic.describe().to_csv('demographic_overview.csv', mode='w', index=False)\n", |
|
|
185 |
"demographic.describe()" |
|
|
186 |
] |
|
|
187 |
}, |
|
|
188 |
{ |
|
|
189 |
"cell_type": "markdown", |
|
|
190 |
"metadata": {}, |
|
|
191 |
"source": [ |
|
|
192 |
"### Analyze data" |
|
|
193 |
] |
|
|
194 |
}, |
|
|
195 |
{ |
|
|
196 |
"cell_type": "code", |
|
|
197 |
"execution_count": null, |
|
|
198 |
"metadata": {}, |
|
|
199 |
"outputs": [], |
|
|
200 |
"source": [ |
|
|
201 |
"plt.scatter(demographic['PATIENT_ID'], demographic['AGE'], s=1)\n", |
|
|
202 |
"plt.xlabel('Patient Id')\n", |
|
|
203 |
"plt.ylabel('Age')\n", |
|
|
204 |
"plt.title('Patient-Age Scatter Plot')" |
|
|
205 |
] |
|
|
206 |
}, |
|
|
207 |
{ |
|
|
208 |
"cell_type": "code", |
|
|
209 |
"execution_count": null, |
|
|
210 |
"metadata": {}, |
|
|
211 |
"outputs": [], |
|
|
212 |
"source": [ |
|
|
213 |
"plt.scatter(demographic['PATIENT_ID'], demographic['AGE'], s=1)\n", |
|
|
214 |
"plt.xlabel('Patient Id')\n", |
|
|
215 |
"plt.ylabel('Age')\n", |
|
|
216 |
"plt.title('Patient-Age Scatter Plot')" |
|
|
217 |
] |
|
|
218 |
}, |
|
|
219 |
{ |
|
|
220 |
"cell_type": "code", |
|
|
221 |
"execution_count": null, |
|
|
222 |
"metadata": {}, |
|
|
223 |
"outputs": [], |
|
|
224 |
"source": [ |
|
|
225 |
"demographic.to_csv('demographic.csv', mode='w', index=False)\n", |
|
|
226 |
"demographic.head()" |
|
|
227 |
] |
|
|
228 |
}, |
|
|
229 |
{ |
|
|
230 |
"cell_type": "markdown", |
|
|
231 |
"metadata": {}, |
|
|
232 |
"source": [ |
|
|
233 |
"## Vital Signal" |
|
|
234 |
] |
|
|
235 |
}, |
|
|
236 |
{ |
|
|
237 |
"cell_type": "code", |
|
|
238 |
"execution_count": null, |
|
|
239 |
"metadata": {}, |
|
|
240 |
"outputs": [], |
|
|
241 |
"source": [ |
|
|
242 |
"vital_signs = pd.read_csv('./raw_data/19_04_2021/COVID_DSL_02.CSV', encoding='ISO-8859-1', sep='|')\n", |
|
|
243 |
"print(len(vital_signs))\n", |
|
|
244 |
"vital_signs.head()" |
|
|
245 |
] |
|
|
246 |
}, |
|
|
247 |
{ |
|
|
248 |
"cell_type": "code", |
|
|
249 |
"execution_count": null, |
|
|
250 |
"metadata": {}, |
|
|
251 |
"outputs": [], |
|
|
252 |
"source": [ |
|
|
253 |
"vital_signs = vital_signs.rename(columns={\n", |
|
|
254 |
" 'IDINGRESO': 'PATIENT_ID',\n", |
|
|
255 |
" 'CONSTANTS_ING_DATE': 'RECORD_DATE',\n", |
|
|
256 |
" 'CONSTANTS_ING_TIME': 'RECORD_TIME',\n", |
|
|
257 |
" 'FC_HR_ING': 'HEART_RATE',\n", |
|
|
258 |
" 'GLU_GLY_ING': 'BLOOD_GLUCOSE',\n", |
|
|
259 |
" 'SAT_02_ING': 'OXYGEN_SATURATION',\n", |
|
|
260 |
" 'TA_MAX_ING': 'MAX_BLOOD_PRESSURE',\n", |
|
|
261 |
" 'TA_MIN_ING': 'MIN_BLOOD_PRESSURE',\n", |
|
|
262 |
" 'TEMP_ING': 'TEMPERATURE'\n", |
|
|
263 |
"})\n", |
|
|
264 |
"vital_signs['RECORD_TIME'] = vital_signs['RECORD_DATE'] + ' ' + vital_signs['RECORD_TIME']\n", |
|
|
265 |
"vital_signs['RECORD_TIME'] = vital_signs['RECORD_TIME'].map(lambda x: str(datetime.datetime.strptime(x, '%Y-%m-%d %H:%M')))\n", |
|
|
266 |
"vital_signs = vital_signs.drop(['RECORD_DATE', 'SAT_02_ING_OBS', 'BLOOD_GLUCOSE'], axis=1)" |
|
|
267 |
] |
|
|
268 |
}, |
|
|
269 |
{ |
|
|
270 |
"cell_type": "code", |
|
|
271 |
"execution_count": null, |
|
|
272 |
"metadata": {}, |
|
|
273 |
"outputs": [], |
|
|
274 |
"source": [ |
|
|
275 |
"vital_signs.describe()" |
|
|
276 |
] |
|
|
277 |
}, |
|
|
278 |
{ |
|
|
279 |
"cell_type": "code", |
|
|
280 |
"execution_count": null, |
|
|
281 |
"metadata": {}, |
|
|
282 |
"outputs": [], |
|
|
283 |
"source": [ |
|
|
284 |
"vital_signs.head()" |
|
|
285 |
] |
|
|
286 |
}, |
|
|
287 |
{ |
|
|
288 |
"cell_type": "code", |
|
|
289 |
"execution_count": null, |
|
|
290 |
"metadata": {}, |
|
|
291 |
"outputs": [], |
|
|
292 |
"source": [ |
|
|
293 |
"def format_temperature(x):\n", |
|
|
294 |
" if type(x) == str:\n", |
|
|
295 |
" return float(x.replace(',', '.'))\n", |
|
|
296 |
" else:\n", |
|
|
297 |
" return float(x)\n", |
|
|
298 |
"\n", |
|
|
299 |
"def format_oxygen(x):\n", |
|
|
300 |
" x = float(x)\n", |
|
|
301 |
" if x > 100:\n", |
|
|
302 |
" return np.nan\n", |
|
|
303 |
" else:\n", |
|
|
304 |
" return x\n", |
|
|
305 |
"\n", |
|
|
306 |
"def format_heart_rate(x):\n", |
|
|
307 |
" x = int(x)\n", |
|
|
308 |
" if x > 220:\n", |
|
|
309 |
" return np.nan\n", |
|
|
310 |
" else:\n", |
|
|
311 |
" return x\n", |
|
|
312 |
"\n", |
|
|
313 |
"vital_signs['TEMPERATURE'] = vital_signs['TEMPERATURE'].map(lambda x: format_temperature(x))\n", |
|
|
314 |
"vital_signs['OXYGEN_SATURATION'] = vital_signs['OXYGEN_SATURATION'].map(lambda x: format_oxygen(x))\n", |
|
|
315 |
"vital_signs['HEART_RATE'] = vital_signs['HEART_RATE'].map(lambda x: format_heart_rate(x))" |
|
|
316 |
] |
|
|
317 |
}, |
|
|
318 |
{ |
|
|
319 |
"cell_type": "code", |
|
|
320 |
"execution_count": null, |
|
|
321 |
"metadata": {}, |
|
|
322 |
"outputs": [], |
|
|
323 |
"source": [ |
|
|
324 |
"vital_signs = vital_signs.replace(0, np.NAN)" |
|
|
325 |
] |
|
|
326 |
}, |
|
|
327 |
{ |
|
|
328 |
"cell_type": "code", |
|
|
329 |
"execution_count": null, |
|
|
330 |
"metadata": {}, |
|
|
331 |
"outputs": [], |
|
|
332 |
"source": [ |
|
|
333 |
"vital_signs = vital_signs.groupby(['PATIENT_ID', 'RECORD_TIME'], dropna=True, as_index = False).mean()\n", |
|
|
334 |
"vital_signs.head()" |
|
|
335 |
] |
|
|
336 |
}, |
|
|
337 |
{ |
|
|
338 |
"cell_type": "code", |
|
|
339 |
"execution_count": null, |
|
|
340 |
"metadata": {}, |
|
|
341 |
"outputs": [], |
|
|
342 |
"source": [ |
|
|
343 |
"vital_signs.describe()" |
|
|
344 |
] |
|
|
345 |
}, |
|
|
346 |
{ |
|
|
347 |
"cell_type": "code", |
|
|
348 |
"execution_count": null, |
|
|
349 |
"metadata": {}, |
|
|
350 |
"outputs": [], |
|
|
351 |
"source": [ |
|
|
352 |
"vital_signs.describe().to_csv('vital_signs_overview.csv', index=False, mode='w')\n", |
|
|
353 |
"vital_signs.describe()" |
|
|
354 |
] |
|
|
355 |
}, |
|
|
356 |
{ |
|
|
357 |
"cell_type": "code", |
|
|
358 |
"execution_count": null, |
|
|
359 |
"metadata": {}, |
|
|
360 |
"outputs": [], |
|
|
361 |
"source": [ |
|
|
362 |
"#plt.rcParams['figure.figsize'] = [10, 5]\n", |
|
|
363 |
"fig=plt.figure(figsize=(16,10), dpi= 100, facecolor='w', edgecolor='k')\n", |
|
|
364 |
"\n", |
|
|
365 |
"plt.subplot(2, 3, 1)\n", |
|
|
366 |
"plt.scatter(vital_signs.index, vital_signs['MAX_BLOOD_PRESSURE'], s=1)\n", |
|
|
367 |
"plt.xlabel('Index')\n", |
|
|
368 |
"plt.ylabel('Max Blood Pressure')\n", |
|
|
369 |
"plt.title('Visit-Max Blood Pressure Scatter Plot')\n", |
|
|
370 |
"\n", |
|
|
371 |
"plt.subplot(2, 3, 2)\n", |
|
|
372 |
"plt.scatter(vital_signs.index, vital_signs['MIN_BLOOD_PRESSURE'], s=1)\n", |
|
|
373 |
"plt.xlabel('Index')\n", |
|
|
374 |
"plt.ylabel('Min Blood Pressure')\n", |
|
|
375 |
"plt.title('Visit-Min Blood Pressure Scatter Plot')\n", |
|
|
376 |
"\n", |
|
|
377 |
"plt.subplot(2, 3, 3)\n", |
|
|
378 |
"plt.scatter(vital_signs.index, vital_signs['TEMPERATURE'], s=1)\n", |
|
|
379 |
"plt.xlabel('Index')\n", |
|
|
380 |
"plt.ylabel('Temperature')\n", |
|
|
381 |
"plt.title('Visit-Temperature Scatter Plot')\n", |
|
|
382 |
"\n", |
|
|
383 |
"plt.subplot(2, 3, 4)\n", |
|
|
384 |
"plt.scatter(vital_signs.index, vital_signs['HEART_RATE'], s=1)\n", |
|
|
385 |
"plt.xlabel('Index')\n", |
|
|
386 |
"plt.ylabel('Heart Rate')\n", |
|
|
387 |
"plt.title('Visit-Heart Rate Scatter Plot')\n", |
|
|
388 |
"\n", |
|
|
389 |
"plt.subplot(2, 3, 5)\n", |
|
|
390 |
"plt.scatter(vital_signs.index, vital_signs['OXYGEN_SATURATION'], s=1)\n", |
|
|
391 |
"plt.xlabel('Index')\n", |
|
|
392 |
"plt.ylabel('Oxygen Saturation')\n", |
|
|
393 |
"plt.title('Visit-Oxygen Saturation Scatter Plot')\n", |
|
|
394 |
"\n", |
|
|
395 |
"plt.show()" |
|
|
396 |
] |
|
|
397 |
}, |
|
|
398 |
{ |
|
|
399 |
"cell_type": "code", |
|
|
400 |
"execution_count": null, |
|
|
401 |
"metadata": {}, |
|
|
402 |
"outputs": [], |
|
|
403 |
"source": [ |
|
|
404 |
"#plt.rcParams['figure.figsize'] = [10, 5]\n", |
|
|
405 |
"fig=plt.figure(figsize=(16,10), dpi= 100, facecolor='w', edgecolor='k')\n", |
|
|
406 |
"\n", |
|
|
407 |
"plt.subplot(2, 3, 1)\n", |
|
|
408 |
"plt.hist(vital_signs['MAX_BLOOD_PRESSURE'], bins=30)\n", |
|
|
409 |
"plt.xlabel('Index')\n", |
|
|
410 |
"plt.ylabel('Max Blood Pressure')\n", |
|
|
411 |
"plt.title('Visit-Max Blood Pressure Histogram')\n", |
|
|
412 |
"\n", |
|
|
413 |
"plt.subplot(2, 3, 2)\n", |
|
|
414 |
"plt.hist(vital_signs['MIN_BLOOD_PRESSURE'], bins=30)\n", |
|
|
415 |
"plt.xlabel('Index')\n", |
|
|
416 |
"plt.ylabel('Min Blood Pressure')\n", |
|
|
417 |
"plt.title('Visit-Min Blood Pressure Histogram')\n", |
|
|
418 |
"\n", |
|
|
419 |
"plt.subplot(2, 3, 3)\n", |
|
|
420 |
"plt.hist(vital_signs['TEMPERATURE'], bins=30)\n", |
|
|
421 |
"plt.xlabel('Index')\n", |
|
|
422 |
"plt.ylabel('Temperature')\n", |
|
|
423 |
"plt.title('Visit-Temperature Histogram')\n", |
|
|
424 |
"\n", |
|
|
425 |
"plt.subplot(2, 3, 4)\n", |
|
|
426 |
"plt.hist(vital_signs['HEART_RATE'], bins=30)\n", |
|
|
427 |
"plt.xlabel('Index')\n", |
|
|
428 |
"plt.ylabel('Heart Rate')\n", |
|
|
429 |
"plt.title('Visit-Heart Rate Histogram')\n", |
|
|
430 |
"\n", |
|
|
431 |
"plt.subplot(2, 3, 5)\n", |
|
|
432 |
"plt.hist(vital_signs['OXYGEN_SATURATION'], bins=30)\n", |
|
|
433 |
"plt.xlabel('Index')\n", |
|
|
434 |
"plt.ylabel('Oxygen Saturation')\n", |
|
|
435 |
"plt.title('Visit-Oxygen Saturation Histogram')\n", |
|
|
436 |
"\n", |
|
|
437 |
"plt.show()" |
|
|
438 |
] |
|
|
439 |
}, |
|
|
440 |
{ |
|
|
441 |
"cell_type": "markdown", |
|
|
442 |
"metadata": {}, |
|
|
443 |
"source": [ |
|
|
444 |
"### Missing rate of each visit" |
|
|
445 |
] |
|
|
446 |
}, |
|
|
447 |
{ |
|
|
448 |
"cell_type": "code", |
|
|
449 |
"execution_count": null, |
|
|
450 |
"metadata": {}, |
|
|
451 |
"outputs": [], |
|
|
452 |
"source": [ |
|
|
453 |
"sum(vital_signs.T.isnull().sum()) / ((len(vital_signs.T) - 2) * len(vital_signs))" |
|
|
454 |
] |
|
|
455 |
}, |
|
|
456 |
{ |
|
|
457 |
"cell_type": "markdown", |
|
|
458 |
"metadata": {}, |
|
|
459 |
"source": [ |
|
|
460 |
"### Normalize data" |
|
|
461 |
] |
|
|
462 |
}, |
|
|
463 |
{ |
|
|
464 |
"cell_type": "code", |
|
|
465 |
"execution_count": null, |
|
|
466 |
"metadata": {}, |
|
|
467 |
"outputs": [], |
|
|
468 |
"source": [ |
|
|
469 |
"\"\"\"\n", |
|
|
470 |
"for key in vital_signs.keys()[2:]:\n", |
|
|
471 |
" vital_signs[key] = (vital_signs[key] - vital_signs[key].mean()) / (vital_signs[key].std() + 1e-12)\n", |
|
|
472 |
"\n", |
|
|
473 |
"vital_signs.describe()\n", |
|
|
474 |
"\"\"\"" |
|
|
475 |
] |
|
|
476 |
}, |
|
|
477 |
{ |
|
|
478 |
"cell_type": "code", |
|
|
479 |
"execution_count": null, |
|
|
480 |
"metadata": {}, |
|
|
481 |
"outputs": [], |
|
|
482 |
"source": [ |
|
|
483 |
"vital_signs.to_csv('visual_signs.csv', mode='w', index=False)" |
|
|
484 |
] |
|
|
485 |
}, |
|
|
486 |
{ |
|
|
487 |
"cell_type": "code", |
|
|
488 |
"execution_count": null, |
|
|
489 |
"metadata": {}, |
|
|
490 |
"outputs": [], |
|
|
491 |
"source": [ |
|
|
492 |
"len(vital_signs) / len(vital_signs['PATIENT_ID'].unique())" |
|
|
493 |
] |
|
|
494 |
}, |
|
|
495 |
{ |
|
|
496 |
"cell_type": "markdown", |
|
|
497 |
"metadata": {}, |
|
|
498 |
"source": [ |
|
|
499 |
"## Lab Tests" |
|
|
500 |
] |
|
|
501 |
}, |
|
|
502 |
{ |
|
|
503 |
"cell_type": "code", |
|
|
504 |
"execution_count": null, |
|
|
505 |
"metadata": {}, |
|
|
506 |
"outputs": [], |
|
|
507 |
"source": [ |
|
|
508 |
"lab_tests = pd.read_csv('./raw_data/19_04_2021/COVID_DSL_06_v2.CSV', encoding='ISO-8859-1', sep=';')\n", |
|
|
509 |
"lab_tests = lab_tests.rename(columns={'IDINGRESO': 'PATIENT_ID'})\n", |
|
|
510 |
"print(len(lab_tests))\n", |
|
|
511 |
"\n", |
|
|
512 |
"# del useless data\n", |
|
|
513 |
"lab_tests = lab_tests[\n", |
|
|
514 |
" [\n", |
|
|
515 |
" 'PATIENT_ID',\n", |
|
|
516 |
" 'LAB_NUMBER',\n", |
|
|
517 |
" 'LAB_DATE',\n", |
|
|
518 |
" 'TIME_LAB',\n", |
|
|
519 |
" 'ITEM_LAB',\n", |
|
|
520 |
" 'VAL_RESULT'\n", |
|
|
521 |
" # UD_RESULT: unit\n", |
|
|
522 |
" # REF_VALUES: reference values\n", |
|
|
523 |
" ]\n", |
|
|
524 |
" ]\n", |
|
|
525 |
"\n", |
|
|
526 |
"lab_tests.head()" |
|
|
527 |
] |
|
|
528 |
}, |
|
|
529 |
{ |
|
|
530 |
"cell_type": "code", |
|
|
531 |
"execution_count": null, |
|
|
532 |
"metadata": {}, |
|
|
533 |
"outputs": [], |
|
|
534 |
"source": [ |
|
|
535 |
"lab_tests = lab_tests.groupby(['PATIENT_ID', 'LAB_NUMBER', 'LAB_DATE', 'TIME_LAB', 'ITEM_LAB'], dropna=True, as_index = False).first()\n", |
|
|
536 |
"lab_tests = lab_tests.set_index(['PATIENT_ID', 'LAB_NUMBER', 'LAB_DATE', 'TIME_LAB', 'ITEM_LAB'], drop = True).unstack('ITEM_LAB')['VAL_RESULT'].reset_index()\n", |
|
|
537 |
"\n", |
|
|
538 |
"lab_tests = lab_tests.drop([\n", |
|
|
539 |
" 'CFLAG -- ALARMA HEMOGRAMA', \n", |
|
|
540 |
" 'CORONA -- PCR CORONAVIRUS 2019nCoV', \n", |
|
|
541 |
" 'CRIOGLO -- CRIOGLOBULINAS',\n", |
|
|
542 |
" 'EGCOVID -- ESTUDIO GENETICO COVID-19',\n", |
|
|
543 |
" 'FRO1 -- ',\n", |
|
|
544 |
" 'FRO1 -- FROTIS EN SANGRE PERIFERICA',\n", |
|
|
545 |
" 'FRO2 -- ',\n", |
|
|
546 |
" 'FRO2 -- FROTIS EN SANGRE PERIFERICA',\n", |
|
|
547 |
" 'FRO3 -- ',\n", |
|
|
548 |
" 'FRO3 -- FROTIS EN SANGRE PERIFERICA',\n", |
|
|
549 |
" 'FRO_COMEN -- ',\n", |
|
|
550 |
" 'FRO_COMEN -- FROTIS EN SANGRE PERIFERICA',\n", |
|
|
551 |
" 'G-CORONAV (RT-PCR) -- Tipo de muestra: ASPIRADO BRONCOALVEOLAR',\n", |
|
|
552 |
" 'G-CORONAV (RT-PCR) -- Tipo de muestra: EXUDADO',\n", |
|
|
553 |
" 'GRRH -- GRUPO SANGUÖNEO Y FACTOR Rh',\n", |
|
|
554 |
" 'HEML -- RECUENTO CELULAR LIQUIDO',\n", |
|
|
555 |
" 'HEML -- Recuento Hemat¡es',\n", |
|
|
556 |
" 'IFSUERO -- INMUNOFIJACION EN SUERO',\n", |
|
|
557 |
" 'OBS_BIOMOL -- OBSERVACIONES GENETICA MOLECULAR',\n", |
|
|
558 |
" 'OBS_BIOO -- Observaciones Bioqu¡mica Orina',\n", |
|
|
559 |
" 'OBS_CB -- Observaciones Coagulaci¢n',\n", |
|
|
560 |
" 'OBS_GASES -- Observaciones Gasometr¡a Arterial',\n", |
|
|
561 |
" 'OBS_GASV -- Observaciones Gasometr¡a Venosa',\n", |
|
|
562 |
" 'OBS_GEN2 -- OBSERVACIONES GENETICA',\n", |
|
|
563 |
" 'OBS_HOR -- Observaciones Hormonas',\n", |
|
|
564 |
" 'OBS_MICRO -- Observaciones Microbiolog¡a',\n", |
|
|
565 |
" 'OBS_NULA2 -- Observaciones Bioqu¡mica',\n", |
|
|
566 |
" 'OBS_NULA3 -- Observaciones Hematolog¡a',\n", |
|
|
567 |
" 'OBS_PESP -- Observaciones Pruebas especiales',\n", |
|
|
568 |
" 'OBS_SERO -- Observaciones Serolog¡a',\n", |
|
|
569 |
" 'OBS_SIS -- Observaciones Orina',\n", |
|
|
570 |
" 'PCR VIRUS RESPIRATORIOS -- Tipo de muestra: ASPIRADO BRONCOALVEOLAR',\n", |
|
|
571 |
" 'PCR VIRUS RESPIRATORIOS -- Tipo de muestra: BAS',\n", |
|
|
572 |
" 'PCR VIRUS RESPIRATORIOS -- Tipo de muestra: ESPUTO',\n", |
|
|
573 |
" 'PCR VIRUS RESPIRATORIOS -- Tipo de muestra: EXUDADO',\n", |
|
|
574 |
" 'PCR VIRUS RESPIRATORIOS -- Tipo de muestra: LAVADO BRONCOALVEOLAR',\n", |
|
|
575 |
" 'PCR VIRUS RESPIRATORIOS -- Tipo de muestra: LAVADO NASOFARÖNGEO',\n", |
|
|
576 |
" 'PTGOR -- PROTEINOGRAMA ORINA',\n", |
|
|
577 |
" 'RESUL_IFT -- ESTUDIO DE INMUNOFENOTIPO',\n", |
|
|
578 |
" 'RESUL_IFT -- Resultado',\n", |
|
|
579 |
" 'Resultado -- Resultado',\n", |
|
|
580 |
" 'SED1 -- ',\n", |
|
|
581 |
" 'SED1 -- SEDIMENTO',\n", |
|
|
582 |
" 'SED2 -- ',\n", |
|
|
583 |
" 'SED2 -- SEDIMENTO',\n", |
|
|
584 |
" 'SED3 -- ',\n", |
|
|
585 |
" 'SED3 -- SEDIMENTO',\n", |
|
|
586 |
" 'TIPOL -- TIPO DE LIQUIDO',\n", |
|
|
587 |
" 'Tecnica -- T\\x82cnica',\n", |
|
|
588 |
" 'TpMues -- Tipo de muestra',\n", |
|
|
589 |
" 'VHCBLOT -- INMUNOBLOT VIRUS HEPATITIS C',\n", |
|
|
590 |
" 'VIR_TM -- VIRUS TIPO DE MUESTRA',\n", |
|
|
591 |
" 'LEGIORI -- AG. LEGIONELA PNEUMOPHILA EN ORINA',\n", |
|
|
592 |
" 'NEUMOORI -- AG NEUMOCOCO EN ORINA',\n", |
|
|
593 |
" 'VIHAC -- VIH AC'\n", |
|
|
594 |
" ], axis=1)\n", |
|
|
595 |
"\n", |
|
|
596 |
" \n", |
|
|
597 |
"lab_tests.head()" |
|
|
598 |
] |
|
|
599 |
}, |
|
|
600 |
{ |
|
|
601 |
"cell_type": "code", |
|
|
602 |
"execution_count": null, |
|
|
603 |
"metadata": {}, |
|
|
604 |
"outputs": [], |
|
|
605 |
"source": [ |
|
|
606 |
"lab_tests = lab_tests.replace('Sin resultado.', np.nan)\n", |
|
|
607 |
"lab_tests = lab_tests.replace('Sin resultado', np.nan)\n", |
|
|
608 |
"lab_tests = lab_tests.replace('----', np.nan).replace('---', np.nan)\n", |
|
|
609 |
"lab_tests = lab_tests.replace('> ', '').replace('< ', '')\n", |
|
|
610 |
"\n", |
|
|
611 |
"def change_format(x):\n", |
|
|
612 |
" if x is None:\n", |
|
|
613 |
" return np.nan\n", |
|
|
614 |
" elif type(x) == str:\n", |
|
|
615 |
" if x.startswith('Negativo ('):\n", |
|
|
616 |
" return x.replace('Negativo (', '-')[:-1]\n", |
|
|
617 |
" elif x.startswith('Positivo ('):\n", |
|
|
618 |
" return x.replace('Positivo (', '')[:-1]\n", |
|
|
619 |
" elif x.startswith('Zona limite ('):\n", |
|
|
620 |
" return x.replace('Zona limite (', '')[:-1]\n", |
|
|
621 |
" elif x.startswith('>'):\n", |
|
|
622 |
" return x.replace('> ', '').replace('>', '')\n", |
|
|
623 |
" elif x.startswith('<'):\n", |
|
|
624 |
" return x.replace('< ', '').replace('<', '')\n", |
|
|
625 |
" elif x.endswith(' mg/dl'):\n", |
|
|
626 |
" return x.replace(' mg/dl', '')\n", |
|
|
627 |
" elif x.endswith('/æl'):\n", |
|
|
628 |
" return x.replace('/æl', '')\n", |
|
|
629 |
" elif x.endswith(' copias/mL'):\n", |
|
|
630 |
" return x.replace(' copias/mL', '')\n", |
|
|
631 |
" elif x == 'Numerosos':\n", |
|
|
632 |
" return 1.5\n", |
|
|
633 |
" elif x == 'Aislados':\n", |
|
|
634 |
" return 0.5\n", |
|
|
635 |
" elif x == 'Se detecta' or x == 'Se observan' or x == 'Normal' or x == 'Positivo':\n", |
|
|
636 |
" return 1\n", |
|
|
637 |
" elif x == 'No se detecta' or x == 'No se observan' or x == 'Negativo':\n", |
|
|
638 |
" return 0\n", |
|
|
639 |
" elif x == 'Indeterminado':\n", |
|
|
640 |
" return np.nan\n", |
|
|
641 |
" else:\n", |
|
|
642 |
" num = re.findall(\"[-+]?\\d+\\.\\d+\", x)\n", |
|
|
643 |
" if len(num) == 0:\n", |
|
|
644 |
" return np.nan\n", |
|
|
645 |
" else:\n", |
|
|
646 |
" return num[0]\n", |
|
|
647 |
" else:\n", |
|
|
648 |
" return x\n", |
|
|
649 |
"\n", |
|
|
650 |
"feature_value_dict = dict()\n", |
|
|
651 |
"\n", |
|
|
652 |
"for k in tqdm(lab_tests.keys()[4:]):\n", |
|
|
653 |
" lab_tests[k] = lab_tests[k].map(lambda x: change_format(change_format(x)))\n", |
|
|
654 |
" feature_value_dict[k] = lab_tests[k].unique()" |
|
|
655 |
] |
|
|
656 |
}, |
|
|
657 |
{ |
|
|
658 |
"cell_type": "code", |
|
|
659 |
"execution_count": null, |
|
|
660 |
"metadata": {}, |
|
|
661 |
"outputs": [], |
|
|
662 |
"source": [ |
|
|
663 |
"def nan_and_not_nan(x):\n", |
|
|
664 |
" if x == x:\n", |
|
|
665 |
" return 1\n", |
|
|
666 |
" else: # nan\n", |
|
|
667 |
" return 0\n", |
|
|
668 |
"\n", |
|
|
669 |
"def is_float(num):\n", |
|
|
670 |
" try:\n", |
|
|
671 |
" float(num)\n", |
|
|
672 |
" return True\n", |
|
|
673 |
" except ValueError:\n", |
|
|
674 |
" return False\n", |
|
|
675 |
"\n", |
|
|
676 |
"def is_all_float(x):\n", |
|
|
677 |
" for i in x:\n", |
|
|
678 |
" if i == i and (i != None):\n", |
|
|
679 |
" if not is_float(i):\n", |
|
|
680 |
" return False\n", |
|
|
681 |
" return True\n", |
|
|
682 |
"\n", |
|
|
683 |
"def to_float(x):\n", |
|
|
684 |
" if x != None:\n", |
|
|
685 |
" return float(x)\n", |
|
|
686 |
" else:\n", |
|
|
687 |
" return np.nan\n", |
|
|
688 |
"\n", |
|
|
689 |
"other_feature_dict = dict()\n", |
|
|
690 |
"\n", |
|
|
691 |
"for feature in tqdm(feature_value_dict.keys()):\n", |
|
|
692 |
" values = feature_value_dict[feature]\n", |
|
|
693 |
" if is_all_float(values):\n", |
|
|
694 |
" lab_tests[feature] = lab_tests[feature].map(lambda x: to_float(x))\n", |
|
|
695 |
" elif len(values) == 2:\n", |
|
|
696 |
" lab_tests[feature] = lab_tests[feature].map(lambda x: nan_and_not_nan(x))\n", |
|
|
697 |
" else:\n", |
|
|
698 |
" other_feature_dict[feature] = values" |
|
|
699 |
] |
|
|
700 |
}, |
|
|
701 |
{ |
|
|
702 |
"cell_type": "code", |
|
|
703 |
"execution_count": null, |
|
|
704 |
"metadata": {}, |
|
|
705 |
"outputs": [], |
|
|
706 |
"source": [ |
|
|
707 |
"other_feature_dict" |
|
|
708 |
] |
|
|
709 |
}, |
|
|
710 |
{ |
|
|
711 |
"cell_type": "code", |
|
|
712 |
"execution_count": null, |
|
|
713 |
"metadata": {}, |
|
|
714 |
"outputs": [], |
|
|
715 |
"source": [ |
|
|
716 |
"def format_time(t):\n", |
|
|
717 |
" if '/' in t:\n", |
|
|
718 |
" return str(datetime.datetime.strptime(t, '%d/%m/%Y %H:%M'))\n", |
|
|
719 |
" else:\n", |
|
|
720 |
" return str(datetime.datetime.strptime(t, '%d-%m-%Y %H:%M'))\n", |
|
|
721 |
"\n", |
|
|
722 |
"lab_tests['RECORD_TIME'] = lab_tests['LAB_DATE'] + ' ' + lab_tests['TIME_LAB']\n", |
|
|
723 |
"lab_tests['RECORD_TIME'] = lab_tests['RECORD_TIME'].map(lambda x: format_time(x))\n", |
|
|
724 |
"lab_tests = lab_tests.drop(['LAB_NUMBER', 'LAB_DATE', 'TIME_LAB'], axis=1)\n", |
|
|
725 |
"# lab_tests = lab_tests.drop(['LAB_NUMBER', 'TIME_LAB'], axis=1)\n", |
|
|
726 |
"lab_tests.head()" |
|
|
727 |
] |
|
|
728 |
}, |
|
|
729 |
{ |
|
|
730 |
"cell_type": "code", |
|
|
731 |
"execution_count": null, |
|
|
732 |
"metadata": {}, |
|
|
733 |
"outputs": [], |
|
|
734 |
"source": [ |
|
|
735 |
"lab_tests_patient = lab_tests.groupby(['PATIENT_ID'], dropna=True, as_index = False).mean()\n", |
|
|
736 |
"print(len(lab_tests_patient))\n", |
|
|
737 |
"count = [i for i in lab_tests_patient.count()[1:]]\n", |
|
|
738 |
"plt.hist(count)" |
|
|
739 |
] |
|
|
740 |
}, |
|
|
741 |
{ |
|
|
742 |
"cell_type": "code", |
|
|
743 |
"execution_count": null, |
|
|
744 |
"metadata": {}, |
|
|
745 |
"outputs": [], |
|
|
746 |
"source": [ |
|
|
747 |
"patient_total = len(lab_tests_patient)\n", |
|
|
748 |
"threshold = patient_total * 0.1\n", |
|
|
749 |
"reserved_keys = []\n", |
|
|
750 |
"\n", |
|
|
751 |
"for key in lab_tests_patient.keys():\n", |
|
|
752 |
" if lab_tests_patient[key].count() > threshold:\n", |
|
|
753 |
" reserved_keys.append(key)\n", |
|
|
754 |
"\n", |
|
|
755 |
"print(len(reserved_keys))\n", |
|
|
756 |
"reserved_keys" |
|
|
757 |
] |
|
|
758 |
}, |
|
|
759 |
{ |
|
|
760 |
"cell_type": "code", |
|
|
761 |
"execution_count": null, |
|
|
762 |
"metadata": {}, |
|
|
763 |
"outputs": [], |
|
|
764 |
"source": [ |
|
|
765 |
"reserved_keys.insert(1, 'RECORD_TIME')\n", |
|
|
766 |
"\n", |
|
|
767 |
"lab_tests = lab_tests.groupby(['PATIENT_ID', 'RECORD_TIME'], dropna=True, as_index = False).mean()\n", |
|
|
768 |
"\n", |
|
|
769 |
"lab_tests = lab_tests[reserved_keys]\n", |
|
|
770 |
"lab_tests.head()" |
|
|
771 |
] |
|
|
772 |
}, |
|
|
773 |
{ |
|
|
774 |
"cell_type": "markdown", |
|
|
775 |
"metadata": {}, |
|
|
776 |
"source": [ |
|
|
777 |
"### Missing rate of each visit" |
|
|
778 |
] |
|
|
779 |
}, |
|
|
780 |
{ |
|
|
781 |
"cell_type": "code", |
|
|
782 |
"execution_count": null, |
|
|
783 |
"metadata": {}, |
|
|
784 |
"outputs": [], |
|
|
785 |
"source": [ |
|
|
786 |
"sum(lab_tests.T.isnull().sum()) / ((len(lab_tests.T) - 2) * len(lab_tests))" |
|
|
787 |
] |
|
|
788 |
}, |
|
|
789 |
{ |
|
|
790 |
"cell_type": "markdown", |
|
|
791 |
"metadata": {}, |
|
|
792 |
"source": [ |
|
|
793 |
"### Scatter Plot" |
|
|
794 |
] |
|
|
795 |
}, |
|
|
796 |
{ |
|
|
797 |
"cell_type": "code", |
|
|
798 |
"execution_count": null, |
|
|
799 |
"metadata": {}, |
|
|
800 |
"outputs": [], |
|
|
801 |
"source": [ |
|
|
802 |
"fig=plt.figure(figsize=(16,200), dpi= 100, facecolor='w', edgecolor='k')\n", |
|
|
803 |
"\n", |
|
|
804 |
"i = 1\n", |
|
|
805 |
"for key in lab_tests.keys()[2:]:\n", |
|
|
806 |
" plt.subplot(33, 3, i)\n", |
|
|
807 |
" plt.scatter(lab_tests.index, lab_tests[key], s=1)\n", |
|
|
808 |
" plt.ylabel(key)\n", |
|
|
809 |
" i += 1\n", |
|
|
810 |
"\n", |
|
|
811 |
"plt.show()" |
|
|
812 |
] |
|
|
813 |
}, |
|
|
814 |
{ |
|
|
815 |
"cell_type": "code", |
|
|
816 |
"execution_count": null, |
|
|
817 |
"metadata": {}, |
|
|
818 |
"outputs": [], |
|
|
819 |
"source": [ |
|
|
820 |
"fig=plt.figure(figsize=(20,120), dpi= 100, facecolor='w', edgecolor='k')\n", |
|
|
821 |
"\n", |
|
|
822 |
"i = 1\n", |
|
|
823 |
"for key in lab_tests.keys()[2:]:\n", |
|
|
824 |
" plt.subplot(23, 4, i)\n", |
|
|
825 |
" plt.hist(lab_tests[key], bins=30)\n", |
|
|
826 |
" q3 = lab_tests[key].quantile(0.75)\n", |
|
|
827 |
" q1 = lab_tests[key].quantile(0.25)\n", |
|
|
828 |
" qh = q3 + 3 * (q3 - q1)\n", |
|
|
829 |
" ql = q1 - 3 * (q3 - q1)\n", |
|
|
830 |
" sigma = 5\n", |
|
|
831 |
" plt.axline([sigma*lab_tests[key].std() + lab_tests[key].mean(), 0], [sigma*lab_tests[key].std() + lab_tests[key].mean(), 1], color = \"r\", linestyle=(0, (5, 5)))\n", |
|
|
832 |
" plt.axline([-sigma*lab_tests[key].std() + lab_tests[key].mean(), 0], [-sigma*lab_tests[key].std() + lab_tests[key].mean(), 1], color = \"r\", linestyle=(0, (5, 5)))\n", |
|
|
833 |
" #plt.axline([lab_tests[key].quantile(0.25), 0], [lab_tests[key].quantile(0.25), 1], color = \"k\", linestyle=(0, (5, 5)))\n", |
|
|
834 |
" #plt.axline([lab_tests[key].quantile(0.75), 0], [lab_tests[key].quantile(0.75), 1], color = \"k\", linestyle=(0, (5, 5)))\n", |
|
|
835 |
" plt.axline([qh, 0], [qh, 1], color='k', linestyle=(0, (5, 5)))\n", |
|
|
836 |
" plt.axline([ql, 0], [ql, 1], color='k', linestyle=(0, (5, 5)))\n", |
|
|
837 |
" plt.ylabel(key)\n", |
|
|
838 |
" i += 1\n", |
|
|
839 |
"\n", |
|
|
840 |
"plt.show()" |
|
|
841 |
] |
|
|
842 |
}, |
|
|
843 |
{ |
|
|
844 |
"cell_type": "markdown", |
|
|
845 |
"metadata": {}, |
|
|
846 |
"source": [ |
|
|
847 |
"### Normalize data" |
|
|
848 |
] |
|
|
849 |
}, |
|
|
850 |
{ |
|
|
851 |
"cell_type": "code", |
|
|
852 |
"execution_count": null, |
|
|
853 |
"metadata": {}, |
|
|
854 |
"outputs": [], |
|
|
855 |
"source": [ |
|
|
856 |
"\"\"\"\n", |
|
|
857 |
"for key in lab_tests.keys()[2:]:\n", |
|
|
858 |
" lab_tests[key] = (lab_tests[key] - lab_tests[key].mean()) / (lab_tests[key].std() + 1e-12)\n", |
|
|
859 |
"\n", |
|
|
860 |
"lab_tests.describe()\n", |
|
|
861 |
"\"\"\"" |
|
|
862 |
] |
|
|
863 |
}, |
|
|
864 |
{ |
|
|
865 |
"cell_type": "code", |
|
|
866 |
"execution_count": null, |
|
|
867 |
"metadata": {}, |
|
|
868 |
"outputs": [], |
|
|
869 |
"source": [ |
|
|
870 |
"# 【del normalization】\n", |
|
|
871 |
"# for key in lab_tests.keys()[2:]:\n", |
|
|
872 |
"# r = lab_tests[lab_tests[key].between(lab_tests[key].quantile(0.05), lab_tests[key].quantile(0.95))]\n", |
|
|
873 |
"# lab_tests[key] = (lab_tests[key] - r[key].mean()) / (r[key].std() + 1e-12)" |
|
|
874 |
] |
|
|
875 |
}, |
|
|
876 |
{ |
|
|
877 |
"cell_type": "code", |
|
|
878 |
"execution_count": null, |
|
|
879 |
"metadata": {}, |
|
|
880 |
"outputs": [], |
|
|
881 |
"source": [ |
|
|
882 |
"lab_tests.to_csv('lab_test.csv', mode='w', index=False)" |
|
|
883 |
] |
|
|
884 |
}, |
|
|
885 |
{ |
|
|
886 |
"cell_type": "markdown", |
|
|
887 |
"metadata": {}, |
|
|
888 |
"source": [ |
|
|
889 |
"# Concat data" |
|
|
890 |
] |
|
|
891 |
}, |
|
|
892 |
{ |
|
|
893 |
"cell_type": "code", |
|
|
894 |
"execution_count": null, |
|
|
895 |
"metadata": {}, |
|
|
896 |
"outputs": [], |
|
|
897 |
"source": [ |
|
|
898 |
"demographic['PATIENT_ID'] = demographic['PATIENT_ID'].map(lambda x: str(int(x)))\n", |
|
|
899 |
"vital_signs['PATIENT_ID'] = vital_signs['PATIENT_ID'].map(lambda x: str(int(x)))\n", |
|
|
900 |
"lab_tests['PATIENT_ID'] = lab_tests['PATIENT_ID'].map(lambda x: str(int(x)))" |
|
|
901 |
] |
|
|
902 |
}, |
|
|
903 |
{ |
|
|
904 |
"cell_type": "code", |
|
|
905 |
"execution_count": null, |
|
|
906 |
"metadata": {}, |
|
|
907 |
"outputs": [], |
|
|
908 |
"source": [ |
|
|
909 |
"len(demographic['PATIENT_ID'].unique()), len(vital_signs['PATIENT_ID'].unique()), len(lab_tests['PATIENT_ID'].unique())" |
|
|
910 |
] |
|
|
911 |
}, |
|
|
912 |
{ |
|
|
913 |
"cell_type": "code", |
|
|
914 |
"execution_count": null, |
|
|
915 |
"metadata": {}, |
|
|
916 |
"outputs": [], |
|
|
917 |
"source": [ |
|
|
918 |
"train_df = pd.merge(vital_signs, lab_tests, on=['PATIENT_ID', 'RECORD_TIME'], how='outer')\n", |
|
|
919 |
"\n", |
|
|
920 |
"train_df = train_df.groupby(['PATIENT_ID', 'RECORD_TIME'], dropna=True, as_index = False).mean()\n", |
|
|
921 |
"\n", |
|
|
922 |
"train_df = pd.merge(demographic, train_df, on=['PATIENT_ID'], how='left')\n", |
|
|
923 |
"\n", |
|
|
924 |
"train_df.head()" |
|
|
925 |
] |
|
|
926 |
}, |
|
|
927 |
{ |
|
|
928 |
"cell_type": "code", |
|
|
929 |
"execution_count": null, |
|
|
930 |
"metadata": {}, |
|
|
931 |
"outputs": [], |
|
|
932 |
"source": [ |
|
|
933 |
"# del rows without patient_id, admission_date, record_time, or outcome\n", |
|
|
934 |
"train_df = train_df.dropna(axis=0, how='any', subset=['PATIENT_ID', 'ADMISSION_DATE', 'RECORD_TIME', 'OUTCOME'])" |
|
|
935 |
] |
|
|
936 |
}, |
|
|
937 |
{ |
|
|
938 |
"cell_type": "code", |
|
|
939 |
"execution_count": null, |
|
|
940 |
"metadata": {}, |
|
|
941 |
"outputs": [], |
|
|
942 |
"source": [ |
|
|
943 |
"train_df.to_csv('train.csv', mode='w', index=False)\n", |
|
|
944 |
"train_df.describe()" |
|
|
945 |
] |
|
|
946 |
}, |
|
|
947 |
{ |
|
|
948 |
"cell_type": "markdown", |
|
|
949 |
"metadata": {}, |
|
|
950 |
"source": [ |
|
|
951 |
"## Missing rate of each visit" |
|
|
952 |
] |
|
|
953 |
}, |
|
|
954 |
{ |
|
|
955 |
"cell_type": "code", |
|
|
956 |
"execution_count": null, |
|
|
957 |
"metadata": {}, |
|
|
958 |
"outputs": [], |
|
|
959 |
"source": [ |
|
|
960 |
"sum(train_df.T.isnull().sum()) / ((len(train_df.T) - 2) * len(train_df))" |
|
|
961 |
] |
|
|
962 |
}, |
|
|
963 |
{ |
|
|
964 |
"cell_type": "markdown", |
|
|
965 |
"metadata": {}, |
|
|
966 |
"source": [ |
|
|
967 |
"# Split and save data" |
|
|
968 |
] |
|
|
969 |
}, |
|
|
970 |
{ |
|
|
971 |
"cell_type": "markdown", |
|
|
972 |
"metadata": {}, |
|
|
973 |
"source": [ |
|
|
974 |
"* demo: demographic data\n", |
|
|
975 |
"* x: lab test & vital signs\n", |
|
|
976 |
"* y: outcome & length of stay" |
|
|
977 |
] |
|
|
978 |
}, |
|
|
979 |
{ |
|
|
980 |
"cell_type": "code", |
|
|
981 |
"execution_count": null, |
|
|
982 |
"metadata": {}, |
|
|
983 |
"outputs": [], |
|
|
984 |
"source": [ |
|
|
985 |
"patient_ids = train_df['PATIENT_ID'].unique()\n", |
|
|
986 |
"\n", |
|
|
987 |
"demo_cols = ['AGE', 'SEX'] # , 'DIFFICULTY_BREATHING', 'FEVER', 'SUSPECT_COVID', 'EMERGENCY'\n", |
|
|
988 |
"test_cols = []\n", |
|
|
989 |
"\n", |
|
|
990 |
"# get column names\n", |
|
|
991 |
"for k in train_df.keys():\n", |
|
|
992 |
" if not k in demographic.keys():\n", |
|
|
993 |
" if not k == 'RECORD_TIME':\n", |
|
|
994 |
" test_cols.append(k)\n", |
|
|
995 |
"\n", |
|
|
996 |
"test_median = train_df[test_cols].median()" |
|
|
997 |
] |
|
|
998 |
}, |
|
|
999 |
{ |
|
|
1000 |
"cell_type": "code", |
|
|
1001 |
"execution_count": null, |
|
|
1002 |
"metadata": {}, |
|
|
1003 |
"outputs": [], |
|
|
1004 |
"source": [ |
|
|
1005 |
"test_cols" |
|
|
1006 |
] |
|
|
1007 |
}, |
|
|
1008 |
{ |
|
|
1009 |
"cell_type": "code", |
|
|
1010 |
"execution_count": null, |
|
|
1011 |
"metadata": {}, |
|
|
1012 |
"outputs": [], |
|
|
1013 |
"source": [ |
|
|
1014 |
"train_df['RECORD_TIME_DAY'] = train_df['RECORD_TIME'].map(lambda x: datetime.datetime.strptime(x, '%Y-%m-%d %H:%M:%S').strftime('%Y-%m-%d'))\n", |
|
|
1015 |
"train_df['RECORD_TIME_HOUR'] = train_df['RECORD_TIME'].map(lambda x: datetime.datetime.strptime(x, '%Y-%m-%d %H:%M:%S').strftime('%Y-%m-%d %H'))\n", |
|
|
1016 |
"train_df.head()" |
|
|
1017 |
] |
|
|
1018 |
}, |
|
|
1019 |
{ |
|
|
1020 |
"cell_type": "code", |
|
|
1021 |
"execution_count": null, |
|
|
1022 |
"metadata": {}, |
|
|
1023 |
"outputs": [], |
|
|
1024 |
"source": [ |
|
|
1025 |
"train_df_day = train_df.groupby(['PATIENT_ID', 'ADMISSION_DATE', 'DEPARTURE_DATE', 'RECORD_TIME_DAY'], dropna=True, as_index = False).mean()\n", |
|
|
1026 |
"train_df_hour = train_df.groupby(['PATIENT_ID', 'ADMISSION_DATE', 'DEPARTURE_DATE', 'RECORD_TIME_HOUR'], dropna=True, as_index = False).mean()\n", |
|
|
1027 |
"\n", |
|
|
1028 |
"len(train_df), len(train_df_day), len(train_df_hour)" |
|
|
1029 |
] |
|
|
1030 |
}, |
|
|
1031 |
{ |
|
|
1032 |
"attachments": {}, |
|
|
1033 |
"cell_type": "markdown", |
|
|
1034 |
"metadata": {}, |
|
|
1035 |
"source": [ |
|
|
1036 |
"\n", |
|
|
1037 |
"```\n", |
|
|
1038 |
"number of visits (total)\n", |
|
|
1039 |
"- Original data: 168777\n", |
|
|
1040 |
"- Merge by hour: 130141\n", |
|
|
1041 |
"- Merge by day: 42204\n", |
|
|
1042 |
"```" |
|
|
1043 |
] |
|
|
1044 |
}, |
|
|
1045 |
{ |
|
|
1046 |
"cell_type": "code", |
|
|
1047 |
"execution_count": null, |
|
|
1048 |
"metadata": {}, |
|
|
1049 |
"outputs": [], |
|
|
1050 |
"source": [ |
|
|
1051 |
"len(train_df['PATIENT_ID'].unique())" |
|
|
1052 |
] |
|
|
1053 |
}, |
|
|
1054 |
{ |
|
|
1055 |
"cell_type": "code", |
|
|
1056 |
"execution_count": null, |
|
|
1057 |
"metadata": {}, |
|
|
1058 |
"outputs": [], |
|
|
1059 |
"source": [ |
|
|
1060 |
"def get_visit_intervals(df):\n", |
|
|
1061 |
" ls = []\n", |
|
|
1062 |
" for pat in df['PATIENT_ID'].unique():\n", |
|
|
1063 |
" ls.append(len(df[df['PATIENT_ID'] == pat]))\n", |
|
|
1064 |
" return ls" |
|
|
1065 |
] |
|
|
1066 |
}, |
|
|
1067 |
{ |
|
|
1068 |
"cell_type": "code", |
|
|
1069 |
"execution_count": null, |
|
|
1070 |
"metadata": {}, |
|
|
1071 |
"outputs": [], |
|
|
1072 |
"source": [ |
|
|
1073 |
"ls_org = get_visit_intervals(train_df)\n", |
|
|
1074 |
"ls_hour = get_visit_intervals(train_df_hour)\n", |
|
|
1075 |
"ls_day = get_visit_intervals(train_df_day)" |
|
|
1076 |
] |
|
|
1077 |
}, |
|
|
1078 |
{ |
|
|
1079 |
"cell_type": "code", |
|
|
1080 |
"execution_count": null, |
|
|
1081 |
"metadata": {}, |
|
|
1082 |
"outputs": [], |
|
|
1083 |
"source": [ |
|
|
1084 |
"import matplotlib.pyplot as plt\n", |
|
|
1085 |
"from matplotlib.ticker import PercentFormatter\n", |
|
|
1086 |
"import matplotlib.font_manager as font_manager\n", |
|
|
1087 |
"import pandas as pd\n", |
|
|
1088 |
"import numpy as np\n", |
|
|
1089 |
"csfont = {'fontname':'Times New Roman', 'fontsize': 18}\n", |
|
|
1090 |
"font = 'Times New Roman'\n", |
|
|
1091 |
"fig=plt.figure(figsize=(18,4), dpi= 100, facecolor='w', edgecolor='k')\n", |
|
|
1092 |
"plt.style.use('seaborn-whitegrid')\n", |
|
|
1093 |
"color = 'cornflowerblue'\n", |
|
|
1094 |
"ec = 'None'\n", |
|
|
1095 |
"alpha=0.5\n", |
|
|
1096 |
"\n", |
|
|
1097 |
"ax = plt.subplot(1, 3, 1)\n", |
|
|
1098 |
"ax.hist(ls_org, bins=20, weights=np.ones(len(ls_org)) / len(ls_org), color=color, ec=ec, alpha=alpha, label='overall')\n", |
|
|
1099 |
"plt.xlabel('Num of visits (org)',**csfont)\n", |
|
|
1100 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1101 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1102 |
"plt.xticks(**csfont)\n", |
|
|
1103 |
"plt.yticks(**csfont)\n", |
|
|
1104 |
"\n", |
|
|
1105 |
"ax = plt.subplot(1, 3, 2)\n", |
|
|
1106 |
"ax.hist(ls_hour, bins=20, weights=np.ones(len(ls_hour)) / len(ls_hour), color=color, ec=ec, alpha=alpha, label='overall')\n", |
|
|
1107 |
"plt.xlabel('Num of visits (hour)',**csfont)\n", |
|
|
1108 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1109 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1110 |
"plt.xticks(**csfont)\n", |
|
|
1111 |
"plt.yticks(**csfont)\n", |
|
|
1112 |
"\n", |
|
|
1113 |
"ax = plt.subplot(1, 3, 3)\n", |
|
|
1114 |
"ax.hist(ls_day, bins=20, weights=np.ones(len(ls_day)) / len(ls_day), color=color, ec=ec, alpha=alpha, label='overall')\n", |
|
|
1115 |
"plt.xlabel('Num of visits (day)',**csfont)\n", |
|
|
1116 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1117 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1118 |
"plt.xticks(**csfont)\n", |
|
|
1119 |
"plt.yticks(**csfont)\n", |
|
|
1120 |
"\n", |
|
|
1121 |
"plt.show()" |
|
|
1122 |
] |
|
|
1123 |
}, |
|
|
1124 |
{ |
|
|
1125 |
"cell_type": "code", |
|
|
1126 |
"execution_count": null, |
|
|
1127 |
"metadata": {}, |
|
|
1128 |
"outputs": [], |
|
|
1129 |
"source": [ |
|
|
1130 |
"def get_statistic(lst, name):\n", |
|
|
1131 |
" print(f'[{name}]\\tMax:\\t{max(lst)}, Min:\\t{min(lst)}, Median:\\t{np.median(lst)}, Mean:\\t{np.mean(lst)}, 80%:\\t{np.quantile(lst, 0.8)}, 90%:\\t{np.quantile(lst, 0.9)}, 95%:\\t{np.quantile(lst, 0.95)}')" |
|
|
1132 |
] |
|
|
1133 |
}, |
|
|
1134 |
{ |
|
|
1135 |
"cell_type": "code", |
|
|
1136 |
"execution_count": null, |
|
|
1137 |
"metadata": {}, |
|
|
1138 |
"outputs": [], |
|
|
1139 |
"source": [ |
|
|
1140 |
"get_statistic(ls_org, 'ls_org')\n", |
|
|
1141 |
"get_statistic(ls_hour, 'ls_hour')\n", |
|
|
1142 |
"get_statistic(ls_day, 'ls_day')" |
|
|
1143 |
] |
|
|
1144 |
}, |
|
|
1145 |
{ |
|
|
1146 |
"cell_type": "code", |
|
|
1147 |
"execution_count": null, |
|
|
1148 |
"metadata": {}, |
|
|
1149 |
"outputs": [], |
|
|
1150 |
"source": [ |
|
|
1151 |
"train_df_hour['LOS'] = train_df_hour['ADMISSION_DATE']\n", |
|
|
1152 |
"train_df_hour['LOS_HOUR'] = train_df_hour['ADMISSION_DATE']" |
|
|
1153 |
] |
|
|
1154 |
}, |
|
|
1155 |
{ |
|
|
1156 |
"cell_type": "code", |
|
|
1157 |
"execution_count": null, |
|
|
1158 |
"metadata": {}, |
|
|
1159 |
"outputs": [], |
|
|
1160 |
"source": [ |
|
|
1161 |
"train_df_hour = train_df_hour.reset_index()" |
|
|
1162 |
] |
|
|
1163 |
}, |
|
|
1164 |
{ |
|
|
1165 |
"cell_type": "code", |
|
|
1166 |
"execution_count": null, |
|
|
1167 |
"metadata": {}, |
|
|
1168 |
"outputs": [], |
|
|
1169 |
"source": [ |
|
|
1170 |
"for idx in tqdm(range(len(train_df_hour))):\n", |
|
|
1171 |
" info = train_df_hour.loc[idx]\n", |
|
|
1172 |
" admission = datetime.datetime.strptime(info['ADMISSION_DATE'], '%Y-%m-%d %H:%M:%S')\n", |
|
|
1173 |
" departure = datetime.datetime.strptime(info['DEPARTURE_DATE'], '%Y-%m-%d %H:%M:%S')\n", |
|
|
1174 |
" visit_hour = datetime.datetime.strptime(info['RECORD_TIME_HOUR'], '%Y-%m-%d %H')\n", |
|
|
1175 |
" hour = (departure - visit_hour).seconds / (24 * 60 * 60) + (departure - visit_hour).days\n", |
|
|
1176 |
" los = (departure - admission).seconds / (24 * 60 * 60) + (departure - admission).days\n", |
|
|
1177 |
" train_df_hour.at[idx, 'LOS'] = float(los)\n", |
|
|
1178 |
" train_df_hour.at[idx, 'LOS_HOUR'] = float(hour)" |
|
|
1179 |
] |
|
|
1180 |
}, |
|
|
1181 |
{ |
|
|
1182 |
"cell_type": "code", |
|
|
1183 |
"execution_count": null, |
|
|
1184 |
"metadata": {}, |
|
|
1185 |
"outputs": [], |
|
|
1186 |
"source": [ |
|
|
1187 |
"train_df_hour['LOS']" |
|
|
1188 |
] |
|
|
1189 |
}, |
|
|
1190 |
{ |
|
|
1191 |
"cell_type": "code", |
|
|
1192 |
"execution_count": null, |
|
|
1193 |
"metadata": {}, |
|
|
1194 |
"outputs": [], |
|
|
1195 |
"source": [ |
|
|
1196 |
"los = []\n", |
|
|
1197 |
"for pat in tqdm(train_df_hour['PATIENT_ID'].unique()):\n", |
|
|
1198 |
" los.append(float(train_df_hour[train_df_hour['PATIENT_ID'] == pat]['LOS'].head(1)))" |
|
|
1199 |
] |
|
|
1200 |
}, |
|
|
1201 |
{ |
|
|
1202 |
"cell_type": "code", |
|
|
1203 |
"execution_count": null, |
|
|
1204 |
"metadata": {}, |
|
|
1205 |
"outputs": [], |
|
|
1206 |
"source": [ |
|
|
1207 |
"get_statistic(los, 'los')" |
|
|
1208 |
] |
|
|
1209 |
}, |
|
|
1210 |
{ |
|
|
1211 |
"cell_type": "code", |
|
|
1212 |
"execution_count": null, |
|
|
1213 |
"metadata": {}, |
|
|
1214 |
"outputs": [], |
|
|
1215 |
"source": [ |
|
|
1216 |
"import matplotlib.pyplot as plt\n", |
|
|
1217 |
"from matplotlib.ticker import PercentFormatter\n", |
|
|
1218 |
"import matplotlib.font_manager as font_manager\n", |
|
|
1219 |
"import pandas as pd\n", |
|
|
1220 |
"import numpy as np\n", |
|
|
1221 |
"csfont = {'fontname':'Times New Roman', 'fontsize': 18}\n", |
|
|
1222 |
"font = 'Times New Roman'\n", |
|
|
1223 |
"fig=plt.figure(figsize=(6,6), dpi= 100, facecolor='w', edgecolor='k')\n", |
|
|
1224 |
"plt.style.use('seaborn-whitegrid')\n", |
|
|
1225 |
"color = 'cornflowerblue'\n", |
|
|
1226 |
"ec = 'None'\n", |
|
|
1227 |
"alpha=0.5\n", |
|
|
1228 |
"\n", |
|
|
1229 |
"ax = plt.subplot(1, 1, 1)\n", |
|
|
1230 |
"ax.hist(los, bins=20, weights=np.ones(len(los)) / len(los), color=color, ec=ec, alpha=alpha, label='overall')\n", |
|
|
1231 |
"plt.xlabel('Length of stay',**csfont)\n", |
|
|
1232 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1233 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1234 |
"plt.xticks(**csfont)\n", |
|
|
1235 |
"plt.yticks(**csfont)\n", |
|
|
1236 |
"\n", |
|
|
1237 |
"plt.show()" |
|
|
1238 |
] |
|
|
1239 |
}, |
|
|
1240 |
{ |
|
|
1241 |
"cell_type": "code", |
|
|
1242 |
"execution_count": null, |
|
|
1243 |
"metadata": {}, |
|
|
1244 |
"outputs": [], |
|
|
1245 |
"source": [ |
|
|
1246 |
"train_df_hour_idx = train_df_hour.reset_index()" |
|
|
1247 |
] |
|
|
1248 |
}, |
|
|
1249 |
{ |
|
|
1250 |
"cell_type": "code", |
|
|
1251 |
"execution_count": null, |
|
|
1252 |
"metadata": {}, |
|
|
1253 |
"outputs": [], |
|
|
1254 |
"source": [ |
|
|
1255 |
"train_df_hour_idx['LOS'] = train_df_hour_idx['ADMISSION_DATE']\n", |
|
|
1256 |
"\n", |
|
|
1257 |
"for idx in tqdm(range(len(train_df_hour_idx))):\n", |
|
|
1258 |
" info = train_df_hour_idx.loc[idx]\n", |
|
|
1259 |
" # admission = datetime.datetime.strptime(info['ADMISSION_DATE'], '%Y-%m-%d %H:%M:%S')\n", |
|
|
1260 |
" departure = datetime.datetime.strptime(info['DEPARTURE_DATE'], '%Y-%m-%d %H:%M:%S')\n", |
|
|
1261 |
" visit_hour = datetime.datetime.strptime(info['RECORD_TIME_HOUR'], '%Y-%m-%d %H')\n", |
|
|
1262 |
" hour = (departure - visit_hour).seconds / (24 * 60 * 60) + (departure - visit_hour).days\n", |
|
|
1263 |
" train_df_hour_idx.at[idx, 'LOS'] = float(hour)" |
|
|
1264 |
] |
|
|
1265 |
}, |
|
|
1266 |
{ |
|
|
1267 |
"cell_type": "code", |
|
|
1268 |
"execution_count": null, |
|
|
1269 |
"metadata": {}, |
|
|
1270 |
"outputs": [], |
|
|
1271 |
"source": [ |
|
|
1272 |
"train_df_hour['LOS'] = train_df_hour['LOS_HOUR']\n", |
|
|
1273 |
"train_df_hour.drop(columns=['LOS_HOUR'])" |
|
|
1274 |
] |
|
|
1275 |
}, |
|
|
1276 |
{ |
|
|
1277 |
"cell_type": "code", |
|
|
1278 |
"execution_count": null, |
|
|
1279 |
"metadata": {}, |
|
|
1280 |
"outputs": [], |
|
|
1281 |
"source": [ |
|
|
1282 |
"# los_threshold = 13.0\n", |
|
|
1283 |
"\n", |
|
|
1284 |
"# visit_num_hour = []\n", |
|
|
1285 |
"\n", |
|
|
1286 |
"# for pat in tqdm(train_df_hour_idx['PATIENT_ID'].unique()):\n", |
|
|
1287 |
"# pat_records = train_df_hour_idx[train_df_hour_idx['PATIENT_ID'] == pat]\n", |
|
|
1288 |
"# hour = 0\n", |
|
|
1289 |
"# for vis in pat_records.index:\n", |
|
|
1290 |
"# pat_visit = pat_records.loc[vis]\n", |
|
|
1291 |
"# if pat_visit['LOS_HOUR'] <= los_threshold:\n", |
|
|
1292 |
"# hour += 1\n", |
|
|
1293 |
"# visit_num_hour.append(hour)\n", |
|
|
1294 |
"# if hour == 0:\n", |
|
|
1295 |
"# print(pat)" |
|
|
1296 |
] |
|
|
1297 |
}, |
|
|
1298 |
{ |
|
|
1299 |
"cell_type": "code", |
|
|
1300 |
"execution_count": null, |
|
|
1301 |
"metadata": {}, |
|
|
1302 |
"outputs": [], |
|
|
1303 |
"source": [ |
|
|
1304 |
"# import matplotlib.pyplot as plt\n", |
|
|
1305 |
"# from matplotlib.ticker import PercentFormatter\n", |
|
|
1306 |
"# import matplotlib.font_manager as font_manager\n", |
|
|
1307 |
"# import pandas as pd\n", |
|
|
1308 |
"# import numpy as np\n", |
|
|
1309 |
"# csfont = {'fontname':'Times New Roman', 'fontsize': 18}\n", |
|
|
1310 |
"# font = 'Times New Roman'\n", |
|
|
1311 |
"# fig=plt.figure(figsize=(6,6), dpi= 100, facecolor='w', edgecolor='k')\n", |
|
|
1312 |
"# plt.style.use('seaborn-whitegrid')\n", |
|
|
1313 |
"# color = 'cornflowerblue'\n", |
|
|
1314 |
"# ec = 'None'\n", |
|
|
1315 |
"# alpha=0.5\n", |
|
|
1316 |
"\n", |
|
|
1317 |
"# ax = plt.subplot(1, 1, 1)\n", |
|
|
1318 |
"# ax.hist(visit_num_hour, bins=20, weights=np.ones(len(visit_num_hour)) / len(visit_num_hour), color=color, ec=ec, alpha=alpha, label='overall')\n", |
|
|
1319 |
"# plt.xlabel('Visit num (80% los)',**csfont)\n", |
|
|
1320 |
"# plt.ylabel('Percentage',**csfont)\n", |
|
|
1321 |
"# plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1322 |
"# plt.xticks(**csfont)\n", |
|
|
1323 |
"# plt.yticks(**csfont)\n", |
|
|
1324 |
"\n", |
|
|
1325 |
"# plt.show()" |
|
|
1326 |
] |
|
|
1327 |
}, |
|
|
1328 |
{ |
|
|
1329 |
"cell_type": "code", |
|
|
1330 |
"execution_count": null, |
|
|
1331 |
"metadata": {}, |
|
|
1332 |
"outputs": [], |
|
|
1333 |
"source": [ |
|
|
1334 |
"train_df = train_df_hour\n", |
|
|
1335 |
"train_df.head()" |
|
|
1336 |
] |
|
|
1337 |
}, |
|
|
1338 |
{ |
|
|
1339 |
"cell_type": "code", |
|
|
1340 |
"execution_count": null, |
|
|
1341 |
"metadata": {}, |
|
|
1342 |
"outputs": [], |
|
|
1343 |
"source": [ |
|
|
1344 |
"train_df.describe()" |
|
|
1345 |
] |
|
|
1346 |
}, |
|
|
1347 |
{ |
|
|
1348 |
"cell_type": "code", |
|
|
1349 |
"execution_count": null, |
|
|
1350 |
"metadata": {}, |
|
|
1351 |
"outputs": [], |
|
|
1352 |
"source": [ |
|
|
1353 |
"get_statistic(train_df['LOS'], 'los')" |
|
|
1354 |
] |
|
|
1355 |
}, |
|
|
1356 |
{ |
|
|
1357 |
"cell_type": "code", |
|
|
1358 |
"execution_count": null, |
|
|
1359 |
"metadata": {}, |
|
|
1360 |
"outputs": [], |
|
|
1361 |
"source": [ |
|
|
1362 |
"train_df['LOS'] = train_df['LOS'].clip(lower=0)" |
|
|
1363 |
] |
|
|
1364 |
}, |
|
|
1365 |
{ |
|
|
1366 |
"cell_type": "code", |
|
|
1367 |
"execution_count": null, |
|
|
1368 |
"metadata": {}, |
|
|
1369 |
"outputs": [], |
|
|
1370 |
"source": [ |
|
|
1371 |
"get_statistic(train_df['LOS'], 'los')" |
|
|
1372 |
] |
|
|
1373 |
}, |
|
|
1374 |
{ |
|
|
1375 |
"cell_type": "code", |
|
|
1376 |
"execution_count": null, |
|
|
1377 |
"metadata": {}, |
|
|
1378 |
"outputs": [], |
|
|
1379 |
"source": [ |
|
|
1380 |
"# the first visit of each person\n", |
|
|
1381 |
"def init_prev(prev):\n", |
|
|
1382 |
" miss = []\n", |
|
|
1383 |
" l = len(prev)\n", |
|
|
1384 |
" for idx in range(l):\n", |
|
|
1385 |
" #print(prev[idx])\n", |
|
|
1386 |
" #print(type(prev[idx]))\n", |
|
|
1387 |
" if np.isnan(prev[idx]): # there is no previous record\n", |
|
|
1388 |
" prev[idx] = test_median[idx] # replace nan to median\n", |
|
|
1389 |
" miss.append(1) # mark miss as 1\n", |
|
|
1390 |
" else: # there is a previous record\n", |
|
|
1391 |
" miss.append(0)\n", |
|
|
1392 |
" return miss\n", |
|
|
1393 |
"\n", |
|
|
1394 |
"# the rest of the visits\n", |
|
|
1395 |
"def fill_nan(cur, prev):\n", |
|
|
1396 |
" l = len(prev)\n", |
|
|
1397 |
" miss = []\n", |
|
|
1398 |
" for idx in range(l):\n", |
|
|
1399 |
" #print(cur[idx])\n", |
|
|
1400 |
" if np.isnan(cur[idx]): # there is no record in current timestep\n", |
|
|
1401 |
" cur[idx] = prev[idx] # cur <- prev\n", |
|
|
1402 |
" miss.append(1)\n", |
|
|
1403 |
" else: # there is a record in current timestep\n", |
|
|
1404 |
" miss.append(0)\n", |
|
|
1405 |
" return miss" |
|
|
1406 |
] |
|
|
1407 |
}, |
|
|
1408 |
{ |
|
|
1409 |
"cell_type": "code", |
|
|
1410 |
"execution_count": null, |
|
|
1411 |
"metadata": {}, |
|
|
1412 |
"outputs": [], |
|
|
1413 |
"source": [ |
|
|
1414 |
"index = train_df.loc[0].index\n", |
|
|
1415 |
"\n", |
|
|
1416 |
"csv = dict()\n", |
|
|
1417 |
"for key in ['PatientID', 'RecordTime', 'AdmissionTime', 'DischargeTime', 'Outcome', 'LOS', 'Sex', 'Age']:\n", |
|
|
1418 |
" csv[key] = []\n", |
|
|
1419 |
"for key in index[8:-2]:\n", |
|
|
1420 |
" csv[key] = []\n", |
|
|
1421 |
" \n", |
|
|
1422 |
"for pat in tqdm(patient_ids): # for all patients\n", |
|
|
1423 |
" # get visits for pat.id == PATIENT_ID\n", |
|
|
1424 |
" info = train_df[train_df['PATIENT_ID'] == pat]\n", |
|
|
1425 |
" info = info[max(0, len(info) - 76):]\n", |
|
|
1426 |
" idxs = info.index\n", |
|
|
1427 |
" for i in idxs:\n", |
|
|
1428 |
" visit = info.loc[i]\n", |
|
|
1429 |
" for key in index[8:-2]:\n", |
|
|
1430 |
" csv[key].append(visit[key])\n", |
|
|
1431 |
" # ['PatientID', 'RecordTime', 'AdmissionTime', 'DischargeTime', 'Outcome', 'LOS', 'Sex', 'Age']\n", |
|
|
1432 |
" csv['PatientID'].append(visit['PATIENT_ID'])\n", |
|
|
1433 |
" t, h = visit['RECORD_TIME_HOUR'].split()\n", |
|
|
1434 |
" t = t.split('-')\n", |
|
|
1435 |
" csv['RecordTime'].append(t[1]+'/'+t[2]+'/'+t[0]+' '+h) # 2020-04-06 10 -> 04/06/2020 10\n", |
|
|
1436 |
" t = visit['ADMISSION_DATE'][:10].split('-')\n", |
|
|
1437 |
" csv['AdmissionTime'].append(t[1]+'/'+t[2]+'/'+t[0])\n", |
|
|
1438 |
" t = visit['DEPARTURE_DATE'][:10].split('-')\n", |
|
|
1439 |
" csv['DischargeTime'].append(t[1]+'/'+t[2]+'/'+t[0])\n", |
|
|
1440 |
" csv['Outcome'].append(visit['OUTCOME'])\n", |
|
|
1441 |
" csv['LOS'].append(visit['LOS_HOUR'])\n", |
|
|
1442 |
" csv['Sex'].append(visit['SEX'])\n", |
|
|
1443 |
" csv['Age'].append(visit['AGE'])\n", |
|
|
1444 |
" \n", |
|
|
1445 |
"pd.DataFrame(csv).to_csv('processed_data/CDSL.csv')" |
|
|
1446 |
] |
|
|
1447 |
}, |
|
|
1448 |
{ |
|
|
1449 |
"cell_type": "code", |
|
|
1450 |
"execution_count": null, |
|
|
1451 |
"metadata": {}, |
|
|
1452 |
"outputs": [], |
|
|
1453 |
"source": [ |
|
|
1454 |
"x, y, demo, x_lab_len, missing_mask = [], [], [], [], []\n", |
|
|
1455 |
"\n", |
|
|
1456 |
"for pat in tqdm(patient_ids): # for all patients\n", |
|
|
1457 |
" # get visits for pat.id == PATIENT_ID\n", |
|
|
1458 |
" info = train_df[train_df['PATIENT_ID'] == pat]\n", |
|
|
1459 |
" info = info[max(0, len(info) - 76):]\n", |
|
|
1460 |
" indexes = info.index\n", |
|
|
1461 |
" visit = info.loc[indexes[0]] # get the first visit\n", |
|
|
1462 |
"\n", |
|
|
1463 |
" # demographic data\n", |
|
|
1464 |
" demo.append([visit[k] for k in demo_cols])\n", |
|
|
1465 |
" \n", |
|
|
1466 |
" # label\n", |
|
|
1467 |
" outcome = visit['OUTCOME']\n", |
|
|
1468 |
" los = []\n", |
|
|
1469 |
"\n", |
|
|
1470 |
" # lab test & vital signs\n", |
|
|
1471 |
" tests = []\n", |
|
|
1472 |
" prev = visit[test_cols]\n", |
|
|
1473 |
" miss = [] # missing matrix\n", |
|
|
1474 |
" miss.append(init_prev(prev)) # fill nan for the first visit for every patient and add missing status to missing matrix\n", |
|
|
1475 |
" # leave = datetime.datetime.strptime(visit['DEPARTURE_DATE'], '%Y-%m-%d %H:%M:%S')\n", |
|
|
1476 |
" \n", |
|
|
1477 |
" first = True\n", |
|
|
1478 |
" for i in indexes:\n", |
|
|
1479 |
" visit = info.loc[i]\n", |
|
|
1480 |
" # now = datetime.datetime.strptime(visit['RECORD_TIME'], '%Y-%m-%d %H')\n", |
|
|
1481 |
" cur = visit[test_cols]\n", |
|
|
1482 |
" tmp = fill_nan(cur, prev) # fill nan for the rest of the visits\n", |
|
|
1483 |
" if not first:\n", |
|
|
1484 |
" miss.append(tmp) # add missing status to missing matrix\n", |
|
|
1485 |
" tests.append(cur)\n", |
|
|
1486 |
" # los_visit = (leave - now).days\n", |
|
|
1487 |
" # if los_visit < 0:\n", |
|
|
1488 |
" # los_visit = 0\n", |
|
|
1489 |
" los.append(visit['LOS'])\n", |
|
|
1490 |
" prev = cur\n", |
|
|
1491 |
" first = False\n", |
|
|
1492 |
"\n", |
|
|
1493 |
" valid_visit = len(los)\n", |
|
|
1494 |
" # outcome = [outcome] * valid_visit\n", |
|
|
1495 |
" x_lab_len.append(valid_visit)\n", |
|
|
1496 |
" missing_mask.append(miss) # append the patient's missing matrix to the total missing matrix\n", |
|
|
1497 |
"\n", |
|
|
1498 |
" # tests = np.pad(tests, ((0, max_visit - valid_visit), (0, 0)))\n", |
|
|
1499 |
" # outcome = np.pad(outcome, (0, max_visit - valid_visit))\n", |
|
|
1500 |
" # los = np.pad(los, (0, max_visit - valid_visit))\n", |
|
|
1501 |
" \n", |
|
|
1502 |
" y.append([outcome, los])\n", |
|
|
1503 |
" x.append(tests)" |
|
|
1504 |
] |
|
|
1505 |
}, |
|
|
1506 |
{ |
|
|
1507 |
"cell_type": "code", |
|
|
1508 |
"execution_count": null, |
|
|
1509 |
"metadata": {}, |
|
|
1510 |
"outputs": [], |
|
|
1511 |
"source": [ |
|
|
1512 |
"all_x = x\n", |
|
|
1513 |
"all_x_demo = demo\n", |
|
|
1514 |
"all_y = y\n", |
|
|
1515 |
"all_missing_mask = missing_mask" |
|
|
1516 |
] |
|
|
1517 |
}, |
|
|
1518 |
{ |
|
|
1519 |
"cell_type": "code", |
|
|
1520 |
"execution_count": null, |
|
|
1521 |
"metadata": {}, |
|
|
1522 |
"outputs": [], |
|
|
1523 |
"source": [ |
|
|
1524 |
"all_x_labtest = np.array(all_x, dtype=object)\n", |
|
|
1525 |
"x_lab_length = [len(_) for _ in all_x_labtest]\n", |
|
|
1526 |
"x_lab_length = torch.tensor(x_lab_length, dtype=torch.int)\n", |
|
|
1527 |
"max_length = int(x_lab_length.max())\n", |
|
|
1528 |
"all_x_labtest = [torch.tensor(_) for _ in all_x_labtest]\n", |
|
|
1529 |
"all_x_labtest = torch.nn.utils.rnn.pad_sequence((all_x_labtest), batch_first=True)\n", |
|
|
1530 |
"all_x_demographic = torch.tensor(all_x_demo)\n", |
|
|
1531 |
"batch_size, demo_dim = all_x_demographic.shape\n", |
|
|
1532 |
"all_x_demographic = torch.reshape(all_x_demographic.repeat(1, max_length), (batch_size, max_length, demo_dim))\n", |
|
|
1533 |
"all_x = torch.cat((all_x_demographic, all_x_labtest), 2)\n", |
|
|
1534 |
"\n", |
|
|
1535 |
"all_y = np.array(all_y, dtype=object)\n", |
|
|
1536 |
"patient_list = []\n", |
|
|
1537 |
"for pat in all_y:\n", |
|
|
1538 |
" visits = []\n", |
|
|
1539 |
" for i in pat[1]:\n", |
|
|
1540 |
" visits.append([pat[0], i])\n", |
|
|
1541 |
" patient_list.append(visits)\n", |
|
|
1542 |
"new_all_y = np.array(patient_list, dtype=object)\n", |
|
|
1543 |
"output_all_y = [torch.Tensor(_) for _ in new_all_y]\n", |
|
|
1544 |
"output_all_y = torch.nn.utils.rnn.pad_sequence((output_all_y), batch_first=True)" |
|
|
1545 |
] |
|
|
1546 |
}, |
|
|
1547 |
{ |
|
|
1548 |
"cell_type": "code", |
|
|
1549 |
"execution_count": null, |
|
|
1550 |
"metadata": {}, |
|
|
1551 |
"outputs": [], |
|
|
1552 |
"source": [ |
|
|
1553 |
"all_missing_mask = np.array(all_missing_mask, dtype=object)\n", |
|
|
1554 |
"all_missing_mask = [torch.tensor(_) for _ in all_missing_mask]\n", |
|
|
1555 |
"all_missing_mask = torch.nn.utils.rnn.pad_sequence((all_missing_mask), batch_first=True)" |
|
|
1556 |
] |
|
|
1557 |
}, |
|
|
1558 |
{ |
|
|
1559 |
"cell_type": "code", |
|
|
1560 |
"execution_count": null, |
|
|
1561 |
"metadata": {}, |
|
|
1562 |
"outputs": [], |
|
|
1563 |
"source": [ |
|
|
1564 |
"all_x.shape" |
|
|
1565 |
] |
|
|
1566 |
}, |
|
|
1567 |
{ |
|
|
1568 |
"cell_type": "code", |
|
|
1569 |
"execution_count": null, |
|
|
1570 |
"metadata": {}, |
|
|
1571 |
"outputs": [], |
|
|
1572 |
"source": [ |
|
|
1573 |
"all_missing_mask.shape" |
|
|
1574 |
] |
|
|
1575 |
}, |
|
|
1576 |
{ |
|
|
1577 |
"cell_type": "code", |
|
|
1578 |
"execution_count": null, |
|
|
1579 |
"metadata": {}, |
|
|
1580 |
"outputs": [], |
|
|
1581 |
"source": [ |
|
|
1582 |
"# save pickle format dataset (torch)\n", |
|
|
1583 |
"pd.to_pickle(all_x,f'./processed_data/x.pkl' )\n", |
|
|
1584 |
"pd.to_pickle(all_missing_mask,f'./processed_data/missing_mask.pkl' )\n", |
|
|
1585 |
"pd.to_pickle(output_all_y,f'./processed_data/y.pkl' )\n", |
|
|
1586 |
"pd.to_pickle(x_lab_length,f'./processed_data/visits_length.pkl' )" |
|
|
1587 |
] |
|
|
1588 |
}, |
|
|
1589 |
{ |
|
|
1590 |
"cell_type": "code", |
|
|
1591 |
"execution_count": null, |
|
|
1592 |
"metadata": {}, |
|
|
1593 |
"outputs": [], |
|
|
1594 |
"source": [ |
|
|
1595 |
"# Calculate patients' outcome statistics (patients-wise)\n", |
|
|
1596 |
"outcome_list = []\n", |
|
|
1597 |
"y_outcome = output_all_y[:, :, 0]\n", |
|
|
1598 |
"indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", |
|
|
1599 |
"for i in indices:\n", |
|
|
1600 |
" outcome_list.append(y_outcome[i][0].item())\n", |
|
|
1601 |
"outcome_list = np.array(outcome_list)\n", |
|
|
1602 |
"print(len(outcome_list))\n", |
|
|
1603 |
"unique, count=np.unique(outcome_list,return_counts=True)\n", |
|
|
1604 |
"data_count=dict(zip(unique,count))\n", |
|
|
1605 |
"print(data_count)" |
|
|
1606 |
] |
|
|
1607 |
}, |
|
|
1608 |
{ |
|
|
1609 |
"cell_type": "code", |
|
|
1610 |
"execution_count": null, |
|
|
1611 |
"metadata": {}, |
|
|
1612 |
"outputs": [], |
|
|
1613 |
"source": [ |
|
|
1614 |
"# Calculate patients' outcome statistics (records-wise)\n", |
|
|
1615 |
"outcome_records_list = []\n", |
|
|
1616 |
"y_outcome = output_all_y[:, :, 0]\n", |
|
|
1617 |
"indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", |
|
|
1618 |
"for i in indices:\n", |
|
|
1619 |
" outcome_records_list.extend(y_outcome[i][0:x_lab_length[i]].tolist())\n", |
|
|
1620 |
"outcome_records_list = np.array(outcome_records_list)\n", |
|
|
1621 |
"print(len(outcome_records_list))\n", |
|
|
1622 |
"unique, count=np.unique(outcome_records_list,return_counts=True)\n", |
|
|
1623 |
"data_count=dict(zip(unique,count))\n", |
|
|
1624 |
"print(data_count)" |
|
|
1625 |
] |
|
|
1626 |
}, |
|
|
1627 |
{ |
|
|
1628 |
"cell_type": "code", |
|
|
1629 |
"execution_count": null, |
|
|
1630 |
"metadata": {}, |
|
|
1631 |
"outputs": [], |
|
|
1632 |
"source": [ |
|
|
1633 |
"# Calculate patients' mean los and 95% percentile los\n", |
|
|
1634 |
"los_list = []\n", |
|
|
1635 |
"y_los = output_all_y[:, :, 1]\n", |
|
|
1636 |
"indices = torch.arange(len(x_lab_length), dtype=torch.int64)\n", |
|
|
1637 |
"for i in indices:\n", |
|
|
1638 |
" # los_list.extend(y_los[i][: x_lab_length[i].long()].tolist())\n", |
|
|
1639 |
" los_list.append(y_los[i][0].item())\n", |
|
|
1640 |
"los_list = np.array(los_list)\n", |
|
|
1641 |
"print(los_list.mean() * 0.5)\n", |
|
|
1642 |
"print(np.median(los_list) * 0.5)\n", |
|
|
1643 |
"print(np.percentile(los_list, 95))\n", |
|
|
1644 |
"\n", |
|
|
1645 |
"print('median:', np.median(los_list))\n", |
|
|
1646 |
"print('Q1:', np.percentile(los_list, 25))\n", |
|
|
1647 |
"print('Q3:', np.percentile(los_list, 75))" |
|
|
1648 |
] |
|
|
1649 |
}, |
|
|
1650 |
{ |
|
|
1651 |
"cell_type": "code", |
|
|
1652 |
"execution_count": null, |
|
|
1653 |
"metadata": {}, |
|
|
1654 |
"outputs": [], |
|
|
1655 |
"source": [ |
|
|
1656 |
"los_alive_list = np.array([los_list[i] for i in range(len(los_list)) if outcome_list[i] == 0])\n", |
|
|
1657 |
"los_dead_list = np.array([los_list[i] for i in range(len(los_list)) if outcome_list[i] == 1])\n", |
|
|
1658 |
"print(len(los_alive_list))\n", |
|
|
1659 |
"print(len(los_dead_list))\n", |
|
|
1660 |
"\n", |
|
|
1661 |
"print('[Alive]')\n", |
|
|
1662 |
"print('median:', np.median(los_alive_list))\n", |
|
|
1663 |
"print('Q1:', np.percentile(los_alive_list, 25))\n", |
|
|
1664 |
"print('Q3:', np.percentile(los_alive_list, 75))\n", |
|
|
1665 |
"\n", |
|
|
1666 |
"print('[Dead]')\n", |
|
|
1667 |
"print('median:', np.median(los_dead_list))\n", |
|
|
1668 |
"print('Q1:', np.percentile(los_dead_list, 25))\n", |
|
|
1669 |
"print('Q3:', np.percentile(los_dead_list, 75))" |
|
|
1670 |
] |
|
|
1671 |
}, |
|
|
1672 |
{ |
|
|
1673 |
"cell_type": "code", |
|
|
1674 |
"execution_count": null, |
|
|
1675 |
"metadata": {}, |
|
|
1676 |
"outputs": [], |
|
|
1677 |
"source": [ |
|
|
1678 |
"cdsl_los_statistics = {\n", |
|
|
1679 |
" 'overall': los_list,\n", |
|
|
1680 |
" 'alive': los_alive_list,\n", |
|
|
1681 |
" 'dead': los_dead_list\n", |
|
|
1682 |
"}\n", |
|
|
1683 |
"pd.to_pickle(cdsl_los_statistics, 'cdsl_los_statistics.pkl')" |
|
|
1684 |
] |
|
|
1685 |
}, |
|
|
1686 |
{ |
|
|
1687 |
"cell_type": "code", |
|
|
1688 |
"execution_count": null, |
|
|
1689 |
"metadata": {}, |
|
|
1690 |
"outputs": [], |
|
|
1691 |
"source": [ |
|
|
1692 |
"# calculate visits length Median [Q1, Q3]\n", |
|
|
1693 |
"visits_list = np.array(x_lab_length)\n", |
|
|
1694 |
"visits_alive_list = np.array([x_lab_length[i] for i in range(len(x_lab_length)) if outcome_list[i] == 0])\n", |
|
|
1695 |
"visits_dead_list = np.array([x_lab_length[i] for i in range(len(x_lab_length)) if outcome_list[i] == 1])\n", |
|
|
1696 |
"print(len(visits_alive_list))\n", |
|
|
1697 |
"print(len(visits_dead_list))\n", |
|
|
1698 |
"\n", |
|
|
1699 |
"print('[Total]')\n", |
|
|
1700 |
"print('median:', np.median(visits_list))\n", |
|
|
1701 |
"print('Q1:', np.percentile(visits_list, 25))\n", |
|
|
1702 |
"print('Q3:', np.percentile(visits_list, 75))\n", |
|
|
1703 |
"\n", |
|
|
1704 |
"print('[Alive]')\n", |
|
|
1705 |
"print('median:', np.median(visits_alive_list))\n", |
|
|
1706 |
"print('Q1:', np.percentile(visits_alive_list, 25))\n", |
|
|
1707 |
"print('Q3:', np.percentile(visits_alive_list, 75))\n", |
|
|
1708 |
"\n", |
|
|
1709 |
"print('[Dead]')\n", |
|
|
1710 |
"print('median:', np.median(visits_dead_list))\n", |
|
|
1711 |
"print('Q1:', np.percentile(visits_dead_list, 25))\n", |
|
|
1712 |
"print('Q3:', np.percentile(visits_dead_list, 75))" |
|
|
1713 |
] |
|
|
1714 |
}, |
|
|
1715 |
{ |
|
|
1716 |
"cell_type": "code", |
|
|
1717 |
"execution_count": null, |
|
|
1718 |
"metadata": {}, |
|
|
1719 |
"outputs": [], |
|
|
1720 |
"source": [ |
|
|
1721 |
"def check_nan(x):\n", |
|
|
1722 |
" if np.isnan(np.sum(x.cpu().numpy())):\n", |
|
|
1723 |
" print(\"some values from input are nan\")\n", |
|
|
1724 |
" else:\n", |
|
|
1725 |
" print(\"no nan\")" |
|
|
1726 |
] |
|
|
1727 |
}, |
|
|
1728 |
{ |
|
|
1729 |
"cell_type": "code", |
|
|
1730 |
"execution_count": null, |
|
|
1731 |
"metadata": {}, |
|
|
1732 |
"outputs": [], |
|
|
1733 |
"source": [ |
|
|
1734 |
"check_nan(all_x)" |
|
|
1735 |
] |
|
|
1736 |
}, |
|
|
1737 |
{ |
|
|
1738 |
"cell_type": "markdown", |
|
|
1739 |
"metadata": {}, |
|
|
1740 |
"source": [ |
|
|
1741 |
"# Draw Charts" |
|
|
1742 |
] |
|
|
1743 |
}, |
|
|
1744 |
{ |
|
|
1745 |
"cell_type": "markdown", |
|
|
1746 |
"metadata": {}, |
|
|
1747 |
"source": [ |
|
|
1748 |
"## Import packages" |
|
|
1749 |
] |
|
|
1750 |
}, |
|
|
1751 |
{ |
|
|
1752 |
"cell_type": "code", |
|
|
1753 |
"execution_count": null, |
|
|
1754 |
"metadata": {}, |
|
|
1755 |
"outputs": [], |
|
|
1756 |
"source": [ |
|
|
1757 |
"import matplotlib.pyplot as plt\n", |
|
|
1758 |
"from matplotlib.ticker import PercentFormatter\n", |
|
|
1759 |
"import matplotlib.font_manager as font_manager\n", |
|
|
1760 |
"import pandas as pd\n", |
|
|
1761 |
"import numpy as np\n", |
|
|
1762 |
"\n", |
|
|
1763 |
"plt.style.use('seaborn-whitegrid')\n", |
|
|
1764 |
"color = 'cornflowerblue'\n", |
|
|
1765 |
"ec = 'None'\n", |
|
|
1766 |
"alpha=0.5\n", |
|
|
1767 |
"alive_color = 'olivedrab'\n", |
|
|
1768 |
"dead_color = 'orchid'" |
|
|
1769 |
] |
|
|
1770 |
}, |
|
|
1771 |
{ |
|
|
1772 |
"cell_type": "markdown", |
|
|
1773 |
"metadata": {}, |
|
|
1774 |
"source": [ |
|
|
1775 |
"## Read data" |
|
|
1776 |
] |
|
|
1777 |
}, |
|
|
1778 |
{ |
|
|
1779 |
"cell_type": "code", |
|
|
1780 |
"execution_count": null, |
|
|
1781 |
"metadata": {}, |
|
|
1782 |
"outputs": [], |
|
|
1783 |
"source": [ |
|
|
1784 |
"demographic.head()" |
|
|
1785 |
] |
|
|
1786 |
}, |
|
|
1787 |
{ |
|
|
1788 |
"cell_type": "code", |
|
|
1789 |
"execution_count": null, |
|
|
1790 |
"metadata": {}, |
|
|
1791 |
"outputs": [], |
|
|
1792 |
"source": [ |
|
|
1793 |
"train = pd.read_csv('./train.csv')\n", |
|
|
1794 |
"train['PATIENT_ID']=train['PATIENT_ID'].astype(str)\n", |
|
|
1795 |
"demographic['PATIENT_ID']=demographic['PATIENT_ID'].astype(str)\n", |
|
|
1796 |
"pat = {\n", |
|
|
1797 |
" 'PATIENT_ID': train['PATIENT_ID'].unique()\n", |
|
|
1798 |
"}\n", |
|
|
1799 |
"pat = pd.DataFrame(pat)\n", |
|
|
1800 |
"demo = pd.merge(demographic, pat, on='PATIENT_ID', how='inner')\n", |
|
|
1801 |
"\n", |
|
|
1802 |
"demo_alive = demo.loc[demo['OUTCOME'] == 0]\n", |
|
|
1803 |
"demo_dead = demo.loc[demo['OUTCOME'] == 1]\n", |
|
|
1804 |
"demo_overall = demo" |
|
|
1805 |
] |
|
|
1806 |
}, |
|
|
1807 |
{ |
|
|
1808 |
"cell_type": "code", |
|
|
1809 |
"execution_count": null, |
|
|
1810 |
"metadata": {}, |
|
|
1811 |
"outputs": [], |
|
|
1812 |
"source": [ |
|
|
1813 |
"demo.to_csv('demo_overall.csv', index=False)\n", |
|
|
1814 |
"demo_alive.to_csv('demo_alive.csv', index=False)\n", |
|
|
1815 |
"demo_dead.to_csv('demo_dead.csv', index=False)" |
|
|
1816 |
] |
|
|
1817 |
}, |
|
|
1818 |
{ |
|
|
1819 |
"cell_type": "code", |
|
|
1820 |
"execution_count": null, |
|
|
1821 |
"metadata": {}, |
|
|
1822 |
"outputs": [], |
|
|
1823 |
"source": [ |
|
|
1824 |
"patient = pd.DataFrame({\"PATIENT_ID\": (demo_alive['PATIENT_ID'].unique())})\n", |
|
|
1825 |
"lab_tests_alive = pd.merge(lab_tests, patient, how='inner', on='PATIENT_ID')\n", |
|
|
1826 |
"print(len(lab_tests_alive['PATIENT_ID'].unique()))\n", |
|
|
1827 |
"\n", |
|
|
1828 |
"patient = pd.DataFrame({\"PATIENT_ID\": (demo_dead['PATIENT_ID'].unique())})\n", |
|
|
1829 |
"lab_tests_dead = pd.merge(lab_tests, patient, how='inner', on='PATIENT_ID')\n", |
|
|
1830 |
"print(len(lab_tests_dead['PATIENT_ID'].unique()))\n", |
|
|
1831 |
"\n", |
|
|
1832 |
"patient = pd.DataFrame({\"PATIENT_ID\": (demo_overall['PATIENT_ID'].unique())})\n", |
|
|
1833 |
"lab_tests_overall = pd.merge(lab_tests, patient, how='inner', on='PATIENT_ID')\n", |
|
|
1834 |
"print(len(lab_tests_overall['PATIENT_ID'].unique()))" |
|
|
1835 |
] |
|
|
1836 |
}, |
|
|
1837 |
{ |
|
|
1838 |
"cell_type": "code", |
|
|
1839 |
"execution_count": null, |
|
|
1840 |
"metadata": {}, |
|
|
1841 |
"outputs": [], |
|
|
1842 |
"source": [ |
|
|
1843 |
"patient = pd.DataFrame({\"PATIENT_ID\": (demo_alive['PATIENT_ID'].unique())})\n", |
|
|
1844 |
"vital_signs_alive = pd.merge(vital_signs, patient, how='inner', on='PATIENT_ID')\n", |
|
|
1845 |
"len(vital_signs_alive['PATIENT_ID'].unique())" |
|
|
1846 |
] |
|
|
1847 |
}, |
|
|
1848 |
{ |
|
|
1849 |
"cell_type": "code", |
|
|
1850 |
"execution_count": null, |
|
|
1851 |
"metadata": {}, |
|
|
1852 |
"outputs": [], |
|
|
1853 |
"source": [ |
|
|
1854 |
"patient = pd.DataFrame({\"PATIENT_ID\": (demo_dead['PATIENT_ID'].unique())})\n", |
|
|
1855 |
"vital_signs_dead = pd.merge(vital_signs, patient, how='inner', on='PATIENT_ID')\n", |
|
|
1856 |
"len(vital_signs_dead['PATIENT_ID'].unique())" |
|
|
1857 |
] |
|
|
1858 |
}, |
|
|
1859 |
{ |
|
|
1860 |
"cell_type": "code", |
|
|
1861 |
"execution_count": null, |
|
|
1862 |
"metadata": {}, |
|
|
1863 |
"outputs": [], |
|
|
1864 |
"source": [ |
|
|
1865 |
"patient = pd.DataFrame({\"PATIENT_ID\": (demo_overall['PATIENT_ID'].unique())})\n", |
|
|
1866 |
"vital_signs_overall = pd.merge(vital_signs, patient, how='inner', on='PATIENT_ID')\n", |
|
|
1867 |
"len(vital_signs_overall['PATIENT_ID'].unique())" |
|
|
1868 |
] |
|
|
1869 |
}, |
|
|
1870 |
{ |
|
|
1871 |
"cell_type": "code", |
|
|
1872 |
"execution_count": null, |
|
|
1873 |
"metadata": {}, |
|
|
1874 |
"outputs": [], |
|
|
1875 |
"source": [ |
|
|
1876 |
"limit = 0.05\n", |
|
|
1877 |
"\n", |
|
|
1878 |
"csfont = {'fontname':'Times New Roman', 'fontsize': 18}\n", |
|
|
1879 |
"font = 'Times New Roman'\n", |
|
|
1880 |
"fig=plt.figure(figsize=(16,12), dpi= 100, facecolor='w', edgecolor='k')\n", |
|
|
1881 |
"\n", |
|
|
1882 |
"idx = 1\n", |
|
|
1883 |
"\n", |
|
|
1884 |
"key = 'AGE'\n", |
|
|
1885 |
"low = demo_overall[key].quantile(limit)\n", |
|
|
1886 |
"high = demo_overall[key].quantile(1 - limit)\n", |
|
|
1887 |
"demo_AGE_overall = demo_overall[demo_overall[key].between(low, high)]\n", |
|
|
1888 |
"demo_AGE_dead = demo_dead[demo_dead[key].between(low, high)]\n", |
|
|
1889 |
"demo_AGE_alive = demo_alive[demo_alive[key].between(low, high)]\n", |
|
|
1890 |
"ax = plt.subplot(4, 4, idx)\n", |
|
|
1891 |
"ax.hist(demo_AGE_overall[key], bins=20, weights=np.ones(len(demo_AGE_overall[key])) / len(demo_AGE_overall), color=color, ec=ec, alpha=alpha, label='overall')\n", |
|
|
1892 |
"plt.xlabel('Age',**csfont)\n", |
|
|
1893 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1894 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1895 |
"# ax.title('Age Histogram', **csfont)\n", |
|
|
1896 |
"ax.hist(demo_AGE_alive[key], bins=20, weights=np.ones(len(demo_AGE_alive[key])) / len(demo_AGE_alive), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2, label='alive')\n", |
|
|
1897 |
"ax.hist(demo_AGE_dead[key], bins=20, weights=np.ones(len(demo_AGE_dead[key])) / len(demo_AGE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2, label='dead')\n", |
|
|
1898 |
"plt.xticks(**csfont)\n", |
|
|
1899 |
"plt.yticks(**csfont)\n", |
|
|
1900 |
"idx += 1\n", |
|
|
1901 |
"\n", |
|
|
1902 |
"key = 'TEMPERATURE'\n", |
|
|
1903 |
"low = vital_signs_overall[key].quantile(limit)\n", |
|
|
1904 |
"high = vital_signs_overall[key].quantile(1 - limit)\n", |
|
|
1905 |
"vs_TEMPERATURE_overall = vital_signs_overall[vital_signs_overall[key].between(low, high)]\n", |
|
|
1906 |
"vs_TEMPERATURE_dead = vital_signs_dead[vital_signs_dead[key].between(low, high)]\n", |
|
|
1907 |
"vs_TEMPERATURE_alive = vital_signs_alive[vital_signs_alive[key].between(low, high)]\n", |
|
|
1908 |
"plt.subplot(4, 4, idx)\n", |
|
|
1909 |
"plt.hist(vs_TEMPERATURE_overall['TEMPERATURE'], bins=20, weights=np.ones(len(vs_TEMPERATURE_overall)) / len(vs_TEMPERATURE_overall), color=color, ec=ec, alpha=alpha)\n", |
|
|
1910 |
"plt.xlabel('Temperature',**csfont)\n", |
|
|
1911 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1912 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1913 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
1914 |
"plt.hist(vs_TEMPERATURE_alive['TEMPERATURE'], bins=20, weights=np.ones(len(vs_TEMPERATURE_alive)) / len(vs_TEMPERATURE_alive), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1915 |
"plt.hist(vs_TEMPERATURE_dead['TEMPERATURE'], bins=20, weights=np.ones(len(vs_TEMPERATURE_dead)) / len(vs_TEMPERATURE_dead), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1916 |
"plt.xticks(**csfont)\n", |
|
|
1917 |
"plt.yticks(**csfont)\n", |
|
|
1918 |
"idx += 1\n", |
|
|
1919 |
"\n", |
|
|
1920 |
"# plt.subplot(4, 4, 3)\n", |
|
|
1921 |
"# plt.hist(lab_tests_overall['CREA -- CREATININA'], bins=20, density=True, color=color, ec=ec, alpha=alpha)\n", |
|
|
1922 |
"# plt.xlabel('CREA -- CREATININA',**csfont)\n", |
|
|
1923 |
"# plt.ylabel('Percentage',**csfont)\n", |
|
|
1924 |
"# plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1925 |
"# # plt.title('Temperature Histogram', **csfont)\n", |
|
|
1926 |
"# plt.hist(lab_tests_alive['CREA -- CREATININA'], bins=20, density=True, color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1927 |
"# plt.hist(lab_tests_dead['CREA -- CREATININA'], bins=20, density=True, color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1928 |
"# plt.xticks(**csfont)\n", |
|
|
1929 |
"# plt.yticks(**csfont)\n", |
|
|
1930 |
"\n", |
|
|
1931 |
"key = 'CREA -- CREATININA'\n", |
|
|
1932 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
1933 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
1934 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
1935 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
1936 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
1937 |
"plt.subplot(4, 4, idx)\n", |
|
|
1938 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
1939 |
"plt.xlabel('CREA -- CREATININA',**csfont)\n", |
|
|
1940 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1941 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1942 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
1943 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1944 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1945 |
"plt.xticks(**csfont)\n", |
|
|
1946 |
"plt.yticks(**csfont)\n", |
|
|
1947 |
"idx += 1\n", |
|
|
1948 |
"\n", |
|
|
1949 |
"key = 'HEM -- Hemat¡es'\n", |
|
|
1950 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
1951 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
1952 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
1953 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
1954 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
1955 |
"plt.subplot(4, 4, idx)\n", |
|
|
1956 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
1957 |
"plt.xlabel('HEM -- Hemat¡es',**csfont)\n", |
|
|
1958 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1959 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1960 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
1961 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1962 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1963 |
"plt.xticks(**csfont)\n", |
|
|
1964 |
"plt.yticks(**csfont)\n", |
|
|
1965 |
"idx += 1\n", |
|
|
1966 |
"\n", |
|
|
1967 |
"key = 'LEUC -- Leucocitos'\n", |
|
|
1968 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
1969 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
1970 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
1971 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
1972 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
1973 |
"plt.subplot(4, 4, idx)\n", |
|
|
1974 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
1975 |
"plt.xlabel('LEUC -- Leucocitos',**csfont)\n", |
|
|
1976 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1977 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1978 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
1979 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1980 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1981 |
"plt.xticks(**csfont)\n", |
|
|
1982 |
"plt.yticks(**csfont)\n", |
|
|
1983 |
"idx += 1\n", |
|
|
1984 |
"\n", |
|
|
1985 |
"key = 'PLAQ -- Recuento de plaquetas'\n", |
|
|
1986 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
1987 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
1988 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
1989 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
1990 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
1991 |
"plt.subplot(4, 4, idx)\n", |
|
|
1992 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
1993 |
"plt.xlabel('PLAQ -- Recuento de plaquetas',**csfont)\n", |
|
|
1994 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
1995 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
1996 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
1997 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1998 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
1999 |
"plt.xticks(**csfont)\n", |
|
|
2000 |
"plt.yticks(**csfont)\n", |
|
|
2001 |
"idx += 1\n", |
|
|
2002 |
"\n", |
|
|
2003 |
"key = 'CHCM -- Conc. Hemoglobina Corpuscular Media'\n", |
|
|
2004 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2005 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2006 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2007 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2008 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2009 |
"plt.subplot(4, 4, idx)\n", |
|
|
2010 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2011 |
"plt.xlabel('CHCM',**csfont)\n", |
|
|
2012 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2013 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2014 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2015 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2016 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2017 |
"plt.xticks(**csfont)\n", |
|
|
2018 |
"plt.yticks(**csfont)\n", |
|
|
2019 |
"idx += 1\n", |
|
|
2020 |
"\n", |
|
|
2021 |
"key = 'HCTO -- Hematocrito'\n", |
|
|
2022 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2023 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2024 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2025 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2026 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2027 |
"plt.subplot(4, 4, idx)\n", |
|
|
2028 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2029 |
"plt.xlabel('HCTO -- Hematocrito',**csfont)\n", |
|
|
2030 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2031 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2032 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2033 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2034 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2035 |
"plt.xticks(**csfont)\n", |
|
|
2036 |
"plt.yticks(**csfont)\n", |
|
|
2037 |
"idx += 1\n", |
|
|
2038 |
"\n", |
|
|
2039 |
"key = 'VCM -- Volumen Corpuscular Medio'\n", |
|
|
2040 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2041 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2042 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2043 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2044 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2045 |
"plt.subplot(4, 4, idx)\n", |
|
|
2046 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2047 |
"plt.xlabel('VCM -- Volumen Corpuscular Medio',**csfont)\n", |
|
|
2048 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2049 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2050 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2051 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2052 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2053 |
"plt.xticks(**csfont)\n", |
|
|
2054 |
"plt.yticks(**csfont)\n", |
|
|
2055 |
"idx += 1\n", |
|
|
2056 |
"\n", |
|
|
2057 |
"key = 'HGB -- Hemoglobina'\n", |
|
|
2058 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2059 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2060 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2061 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2062 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2063 |
"plt.subplot(4, 4, idx)\n", |
|
|
2064 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2065 |
"plt.xlabel('HGB -- Hemoglobina',**csfont)\n", |
|
|
2066 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2067 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2068 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2069 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2070 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2071 |
"plt.xticks(**csfont)\n", |
|
|
2072 |
"plt.yticks(**csfont)\n", |
|
|
2073 |
"idx += 1\n", |
|
|
2074 |
"\n", |
|
|
2075 |
"key = 'HCM -- Hemoglobina Corpuscular Media'\n", |
|
|
2076 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2077 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2078 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2079 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2080 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2081 |
"plt.subplot(4, 4, idx)\n", |
|
|
2082 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2083 |
"plt.xlabel('HCM -- Hemoglobina Corpuscular Media',**csfont)\n", |
|
|
2084 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2085 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2086 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2087 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2088 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2089 |
"plt.xticks(**csfont)\n", |
|
|
2090 |
"plt.yticks(**csfont)\n", |
|
|
2091 |
"idx += 1\n", |
|
|
2092 |
"\n", |
|
|
2093 |
"key = 'NEU -- Neutr¢filos'\n", |
|
|
2094 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2095 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2096 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2097 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2098 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2099 |
"plt.subplot(4, 4, idx)\n", |
|
|
2100 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2101 |
"plt.xlabel('NEU -- Neutr¢filos',**csfont)\n", |
|
|
2102 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2103 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2104 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2105 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2106 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2107 |
"plt.xticks(**csfont)\n", |
|
|
2108 |
"plt.yticks(**csfont)\n", |
|
|
2109 |
"idx += 1\n", |
|
|
2110 |
"\n", |
|
|
2111 |
"key = 'NEU% -- Neutr¢filos %'\n", |
|
|
2112 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2113 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2114 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2115 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2116 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2117 |
"plt.subplot(4, 4, idx)\n", |
|
|
2118 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2119 |
"plt.xlabel('NEU% -- Neutr¢filos%',**csfont)\n", |
|
|
2120 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2121 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2122 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2123 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2124 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2125 |
"plt.xticks(**csfont)\n", |
|
|
2126 |
"plt.yticks(**csfont)\n", |
|
|
2127 |
"idx += 1\n", |
|
|
2128 |
"\n", |
|
|
2129 |
"key = 'LIN -- Linfocitos'\n", |
|
|
2130 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2131 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2132 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2133 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2134 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2135 |
"plt.subplot(4, 4, idx)\n", |
|
|
2136 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2137 |
"plt.xlabel('LIN -- Linfocitos',**csfont)\n", |
|
|
2138 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2139 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2140 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2141 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2142 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2143 |
"plt.xticks(**csfont)\n", |
|
|
2144 |
"plt.yticks(**csfont)\n", |
|
|
2145 |
"idx += 1\n", |
|
|
2146 |
"\n", |
|
|
2147 |
"key = 'LIN% -- Linfocitos %'\n", |
|
|
2148 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2149 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2150 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2151 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2152 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2153 |
"plt.subplot(4, 4, idx)\n", |
|
|
2154 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2155 |
"plt.xlabel('LIN% -- Linfocitos%',**csfont)\n", |
|
|
2156 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2157 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2158 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2159 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2160 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2161 |
"plt.xticks(**csfont)\n", |
|
|
2162 |
"plt.yticks(**csfont)\n", |
|
|
2163 |
"idx += 1\n", |
|
|
2164 |
"\n", |
|
|
2165 |
"key = 'ADW -- Coeficiente de anisocitosis'\n", |
|
|
2166 |
"low = lab_tests_overall[key].quantile(limit)\n", |
|
|
2167 |
"high = lab_tests_overall[key].quantile(1 - limit)\n", |
|
|
2168 |
"lt_key_overall = lab_tests_overall[lab_tests_overall[key].between(low, high)]\n", |
|
|
2169 |
"lt_key_dead = lab_tests_dead[lab_tests_dead[key].between(low, high)]\n", |
|
|
2170 |
"lt_key_alive = lab_tests_alive[lab_tests_alive[key].between(low, high)]\n", |
|
|
2171 |
"plt.subplot(4, 4, idx)\n", |
|
|
2172 |
"plt.hist(lt_key_overall[key], bins=20, weights=np.ones(len(lt_key_overall[key])) / len(lt_key_overall[key]), color=color, ec=ec, alpha=alpha)\n", |
|
|
2173 |
"plt.xlabel('ADW -- Coeficiente de anisocitosis',**csfont)\n", |
|
|
2174 |
"plt.ylabel('Percentage',**csfont)\n", |
|
|
2175 |
"plt.gca().yaxis.set_major_formatter(PercentFormatter(1))\n", |
|
|
2176 |
"# plt.title('Temperature Histogram', **csfont)\n", |
|
|
2177 |
"plt.hist(lt_key_alive[key], bins=20, weights=np.ones(len(lt_key_alive[key])) / len(lt_key_alive[key]), color='green', ec=alive_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2178 |
"plt.hist(lt_key_dead[key], bins=20, weights=np.ones(len(lt_key_dead[key])) / len(lt_key_dead[key]), color='green', ec=dead_color, alpha=1, histtype=\"step\", linewidth=2)\n", |
|
|
2179 |
"plt.xticks(**csfont)\n", |
|
|
2180 |
"plt.yticks(**csfont)\n", |
|
|
2181 |
"idx += 1\n", |
|
|
2182 |
"\n", |
|
|
2183 |
"handles, labels = ax.get_legend_handles_labels()\n", |
|
|
2184 |
"print(handles, labels)\n", |
|
|
2185 |
"# fig.legend(handles, labels, loc='upper center')\n", |
|
|
2186 |
"plt.figlegend(handles, labels, loc='upper center', ncol=5, fontsize=18, bbox_to_anchor=(0.5, 1.05), prop=font_manager.FontProperties(family='Times New Roman',\n", |
|
|
2187 |
" style='normal', size=18))\n", |
|
|
2188 |
"# fig.legend(, [], loc='upper center')\n", |
|
|
2189 |
"\n", |
|
|
2190 |
"fig.tight_layout()\n", |
|
|
2191 |
"plt.show()" |
|
|
2192 |
] |
|
|
2193 |
} |
|
|
2194 |
], |
|
|
2195 |
"metadata": { |
|
|
2196 |
"kernelspec": { |
|
|
2197 |
"display_name": "Python 3.7.11 ('python37')", |
|
|
2198 |
"language": "python", |
|
|
2199 |
"name": "python3" |
|
|
2200 |
}, |
|
|
2201 |
"language_info": { |
|
|
2202 |
"codemirror_mode": { |
|
|
2203 |
"name": "ipython", |
|
|
2204 |
"version": 3 |
|
|
2205 |
}, |
|
|
2206 |
"file_extension": ".py", |
|
|
2207 |
"mimetype": "text/x-python", |
|
|
2208 |
"name": "python", |
|
|
2209 |
"nbconvert_exporter": "python", |
|
|
2210 |
"pygments_lexer": "ipython3", |
|
|
2211 |
"version": "3.7.11" |
|
|
2212 |
}, |
|
|
2213 |
"vscode": { |
|
|
2214 |
"interpreter": { |
|
|
2215 |
"hash": "a10b846bdc9fc41ee38835cbc29d70b69dd5fd54e1341ea2c410a7804a50447a" |
|
|
2216 |
} |
|
|
2217 |
} |
|
|
2218 |
}, |
|
|
2219 |
"nbformat": 4, |
|
|
2220 |
"nbformat_minor": 2 |
|
|
2221 |
} |