|
a |
|
b/app/utils/perflog.py |
|
|
1 |
import json |
|
|
2 |
import time |
|
|
3 |
|
|
|
4 |
from numpyencoder import NumpyEncoder |
|
|
5 |
from omegaconf import OmegaConf |
|
|
6 |
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String, create_engine |
|
|
7 |
from sqlalchemy.ext.declarative import declarative_base |
|
|
8 |
from sqlalchemy.orm import Session, relationship, sessionmaker |
|
|
9 |
|
|
|
10 |
Base = declarative_base() |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
class Perflog(Base): |
|
|
14 |
__tablename__ = "perflog" |
|
|
15 |
id = Column(Integer, primary_key=True, index=True) |
|
|
16 |
dataset = Column(String) |
|
|
17 |
task = Column(String) |
|
|
18 |
model_type = Column(String) |
|
|
19 |
model_name = Column(String) |
|
|
20 |
hidden_dim = Column(Integer) |
|
|
21 |
performance = Column(String) |
|
|
22 |
config = Column(String) |
|
|
23 |
record_time = Column(Integer) |
|
|
24 |
|
|
|
25 |
|
|
|
26 |
def process_performance_raw_info( |
|
|
27 |
cfg, |
|
|
28 |
mae=None, |
|
|
29 |
mse=None, |
|
|
30 |
rmse=None, |
|
|
31 |
mape=None, |
|
|
32 |
acc=None, |
|
|
33 |
auroc=None, |
|
|
34 |
auprc=None, |
|
|
35 |
early_prediction_score=None, |
|
|
36 |
multitask_prediction_score=None, |
|
|
37 |
verbose=0, |
|
|
38 |
): |
|
|
39 |
result = [] |
|
|
40 |
if mae is not None: |
|
|
41 |
result.extend( |
|
|
42 |
[ |
|
|
43 |
{"name": "mae", "mean": mae.mean(), "std": mae.std()}, |
|
|
44 |
{"name": "mse", "mean": mse.mean(), "std": mse.std()}, |
|
|
45 |
{"name": "rmse", "mean": rmse.mean(), "std": rmse.std()}, |
|
|
46 |
{"name": "mape", "mean": mape.mean(), "std": mape.std()}, |
|
|
47 |
] |
|
|
48 |
) |
|
|
49 |
if acc is not None: |
|
|
50 |
result.extend( |
|
|
51 |
[ |
|
|
52 |
{"name": "acc", "mean": acc.mean(), "std": acc.std()}, |
|
|
53 |
{"name": "auroc", "mean": auroc.mean(), "std": auroc.std()}, |
|
|
54 |
{"name": "auprc", "mean": auprc.mean(), "std": auprc.std()}, |
|
|
55 |
] |
|
|
56 |
) |
|
|
57 |
thresholds = cfg.thresholds |
|
|
58 |
if early_prediction_score is not None: |
|
|
59 |
for i in range(len(thresholds)): |
|
|
60 |
result.append( |
|
|
61 |
{ |
|
|
62 |
"name": "early_prediction_score", |
|
|
63 |
"mean": early_prediction_score.mean(axis=0)[i], |
|
|
64 |
"std": early_prediction_score.std(axis=0)[i], |
|
|
65 |
"threshold": thresholds[i], |
|
|
66 |
} |
|
|
67 |
) |
|
|
68 |
if multitask_prediction_score is not None: |
|
|
69 |
for i in range(len(thresholds)): |
|
|
70 |
result.append( |
|
|
71 |
{ |
|
|
72 |
"name": "multitask_prediction_score", |
|
|
73 |
"mean": multitask_prediction_score.mean(axis=0)[i], |
|
|
74 |
"std": multitask_prediction_score.std(axis=0)[i], |
|
|
75 |
"threshold": thresholds[i], |
|
|
76 |
} |
|
|
77 |
) |
|
|
78 |
if verbose == 1: |
|
|
79 |
print(result) |
|
|
80 |
return result |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
def create_perflog(db: Session, cfg, perf=None): |
|
|
84 |
hid_dim = 0 |
|
|
85 |
if "hidden_dim" in cfg: |
|
|
86 |
hid_dim = cfg.hidden_dim |
|
|
87 |
db_perflog = Perflog( |
|
|
88 |
task=cfg.task, |
|
|
89 |
dataset=cfg.dataset, |
|
|
90 |
model_type=cfg.model_type, |
|
|
91 |
model_name=cfg.model, |
|
|
92 |
hidden_dim=hid_dim, |
|
|
93 |
performance=json.dumps(perf, cls=NumpyEncoder), |
|
|
94 |
config=OmegaConf.to_yaml(cfg), |
|
|
95 |
record_time=int(time.time()), |
|
|
96 |
) |
|
|
97 |
db.add(db_perflog) |
|
|
98 |
db.commit() |
|
|
99 |
db.refresh(db_perflog) |
|
|
100 |
return db_perflog |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
def process_and_upload_performance( |
|
|
104 |
cfg, |
|
|
105 |
mae=None, |
|
|
106 |
mse=None, |
|
|
107 |
rmse=None, |
|
|
108 |
mape=None, |
|
|
109 |
acc=None, |
|
|
110 |
auroc=None, |
|
|
111 |
auprc=None, |
|
|
112 |
early_prediction_score=None, |
|
|
113 |
multitask_prediction_score=None, |
|
|
114 |
verbose=0, |
|
|
115 |
upload=False, |
|
|
116 |
): |
|
|
117 |
perf = process_performance_raw_info( |
|
|
118 |
cfg, |
|
|
119 |
mae=mae, |
|
|
120 |
mse=mse, |
|
|
121 |
rmse=rmse, |
|
|
122 |
mape=mape, |
|
|
123 |
acc=acc, |
|
|
124 |
auroc=auroc, |
|
|
125 |
auprc=auprc, |
|
|
126 |
early_prediction_score=early_prediction_score, |
|
|
127 |
multitask_prediction_score=multitask_prediction_score, |
|
|
128 |
verbose=verbose, |
|
|
129 |
) |
|
|
130 |
if upload: |
|
|
131 |
db_cfg = OmegaConf.load("configs/_base_/db.yaml") |
|
|
132 |
|
|
|
133 |
engine, username, password, host, port, database = ( |
|
|
134 |
db_cfg.engine, |
|
|
135 |
db_cfg.username, |
|
|
136 |
db_cfg.password, |
|
|
137 |
db_cfg.host, |
|
|
138 |
db_cfg.port, |
|
|
139 |
db_cfg.database, |
|
|
140 |
) |
|
|
141 |
SQLALCHEMY_DATABASE_URL = ( |
|
|
142 |
f"{engine}://{username}:{password}@{host}:{port}/{database}" |
|
|
143 |
) |
|
|
144 |
engine = create_engine(SQLALCHEMY_DATABASE_URL) |
|
|
145 |
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) |
|
|
146 |
|
|
|
147 |
db = SessionLocal() |
|
|
148 |
create_perflog(db=db, cfg=cfg, perf=perf) |
|
|
149 |
db.close() |