|
a |
|
b/app/models/backbones/tcn.py |
|
|
1 |
import argparse |
|
|
2 |
import copy |
|
|
3 |
import datetime |
|
|
4 |
import math |
|
|
5 |
import os |
|
|
6 |
import pickle |
|
|
7 |
import random |
|
|
8 |
import re |
|
|
9 |
|
|
|
10 |
import numpy as np |
|
|
11 |
import torch |
|
|
12 |
import torch.nn.functional as F |
|
|
13 |
import torch.nn.utils.rnn as rnn_utils |
|
|
14 |
from sklearn.model_selection import KFold, StratifiedKFold |
|
|
15 |
from torch import nn |
|
|
16 |
from torch.autograd import Variable |
|
|
17 |
from torch.nn.utils import weight_norm |
|
|
18 |
from torch.utils import data |
|
|
19 |
from torch.utils.data import ( |
|
|
20 |
ConcatDataset, |
|
|
21 |
DataLoader, |
|
|
22 |
Dataset, |
|
|
23 |
Subset, |
|
|
24 |
SubsetRandomSampler, |
|
|
25 |
TensorDataset, |
|
|
26 |
random_split, |
|
|
27 |
) |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
# From TCN original paper https://github.com/locuslab/TCN |
|
|
31 |
class Chomp1d(nn.Module): |
|
|
32 |
def __init__(self, chomp_size): |
|
|
33 |
super(Chomp1d, self).__init__() |
|
|
34 |
self.chomp_size = chomp_size |
|
|
35 |
|
|
|
36 |
def forward(self, x): |
|
|
37 |
return x[:, :, : -self.chomp_size].contiguous() |
|
|
38 |
|
|
|
39 |
|
|
|
40 |
class TemporalBlock(nn.Module): |
|
|
41 |
def __init__( |
|
|
42 |
self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2 |
|
|
43 |
): |
|
|
44 |
super(TemporalBlock, self).__init__() |
|
|
45 |
self.conv1 = weight_norm( |
|
|
46 |
nn.Conv1d( |
|
|
47 |
n_inputs, |
|
|
48 |
n_outputs, |
|
|
49 |
kernel_size, |
|
|
50 |
stride=stride, |
|
|
51 |
padding=padding, |
|
|
52 |
dilation=dilation, |
|
|
53 |
), |
|
|
54 |
dim=None, |
|
|
55 |
) |
|
|
56 |
self.chomp1 = Chomp1d(padding) |
|
|
57 |
self.relu1 = nn.ReLU() |
|
|
58 |
self.dropout1 = nn.Dropout(dropout) |
|
|
59 |
|
|
|
60 |
self.conv2 = weight_norm( |
|
|
61 |
nn.Conv1d( |
|
|
62 |
n_outputs, |
|
|
63 |
n_outputs, |
|
|
64 |
kernel_size, |
|
|
65 |
stride=stride, |
|
|
66 |
padding=padding, |
|
|
67 |
dilation=dilation, |
|
|
68 |
), |
|
|
69 |
dim=None, |
|
|
70 |
) |
|
|
71 |
self.chomp2 = Chomp1d(padding) |
|
|
72 |
self.relu2 = nn.ReLU() |
|
|
73 |
self.dropout2 = nn.Dropout(dropout) |
|
|
74 |
|
|
|
75 |
self.net = nn.Sequential( |
|
|
76 |
self.conv1, |
|
|
77 |
self.chomp1, |
|
|
78 |
self.relu1, |
|
|
79 |
self.dropout1, |
|
|
80 |
self.conv2, |
|
|
81 |
self.chomp2, |
|
|
82 |
self.relu2, |
|
|
83 |
self.dropout2, |
|
|
84 |
) |
|
|
85 |
self.downsample = ( |
|
|
86 |
nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None |
|
|
87 |
) |
|
|
88 |
self.relu = nn.ReLU() |
|
|
89 |
self.init_weights() |
|
|
90 |
|
|
|
91 |
def init_weights(self): |
|
|
92 |
self.conv1.weight.data.normal_(0, 0.01) |
|
|
93 |
self.conv2.weight.data.normal_(0, 0.01) |
|
|
94 |
if self.downsample is not None: |
|
|
95 |
self.downsample.weight.data.normal_(0, 0.01) |
|
|
96 |
|
|
|
97 |
def forward(self, x): |
|
|
98 |
out = self.net(x) |
|
|
99 |
res = x if self.downsample is None else self.downsample(x) |
|
|
100 |
return self.relu(out + res) |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
# From TCN original paper https://github.com/locuslab/TCN |
|
|
104 |
class TemporalConvNet(nn.Module): |
|
|
105 |
def __init__( |
|
|
106 |
self, |
|
|
107 |
num_inputs, |
|
|
108 |
num_channels, # serve as hidden dim |
|
|
109 |
max_seq_length=0, |
|
|
110 |
kernel_size=2, |
|
|
111 |
dropout=0.0, |
|
|
112 |
): |
|
|
113 |
super(TemporalConvNet, self).__init__() |
|
|
114 |
self.num_channels = num_channels |
|
|
115 |
|
|
|
116 |
layers = [] |
|
|
117 |
|
|
|
118 |
# We compute automatically the depth based on the desired seq_length. |
|
|
119 |
if isinstance(num_channels, int) and max_seq_length: |
|
|
120 |
num_channels = [num_channels] * int( |
|
|
121 |
np.ceil(np.log(max_seq_length / 2) / np.log(kernel_size)) |
|
|
122 |
) |
|
|
123 |
elif isinstance(num_channels, int) and not max_seq_length: |
|
|
124 |
raise Exception( |
|
|
125 |
"a maximum sequence length needs to be provided if num_channels is int" |
|
|
126 |
) |
|
|
127 |
|
|
|
128 |
num_levels = len(num_channels) |
|
|
129 |
for i in range(num_levels): |
|
|
130 |
dilation_size = 2 ** i |
|
|
131 |
in_channels = num_inputs if i == 0 else num_channels[i - 1] |
|
|
132 |
out_channels = num_channels[i] |
|
|
133 |
layers += [ |
|
|
134 |
TemporalBlock( |
|
|
135 |
in_channels, |
|
|
136 |
out_channels, |
|
|
137 |
kernel_size, |
|
|
138 |
stride=1, |
|
|
139 |
dilation=dilation_size, |
|
|
140 |
padding=(kernel_size - 1) * dilation_size, |
|
|
141 |
dropout=dropout, |
|
|
142 |
) |
|
|
143 |
] |
|
|
144 |
|
|
|
145 |
self.network = nn.Sequential(*layers) |
|
|
146 |
|
|
|
147 |
def forward(self, x, device, info=None): |
|
|
148 |
"""extra info is not used here""" |
|
|
149 |
batch_size, time_steps, _ = x.size() |
|
|
150 |
out = torch.zeros((batch_size, time_steps, self.num_channels)).to(device) |
|
|
151 |
for cur_time in range(time_steps): |
|
|
152 |
cur_x = x[:, : cur_time + 1, :] |
|
|
153 |
cur_x = cur_x.permute(0, 2, 1) # Permute to channel first |
|
|
154 |
o = self.network(cur_x) |
|
|
155 |
o = o.permute(0, 2, 1) # Permute to channel last |
|
|
156 |
out[:, cur_time, :] = torch.mean(o, dim=1) |
|
|
157 |
return out |