|
a |
|
b/src/utils/metrics.py |
|
|
1 |
""" |
|
|
2 |
Custom binary prediction metrics using Avalanche |
|
|
3 |
https://github.com/ContinualAI/avalanche/blob/master/notebooks/from-zero-to-hero-tutorial/05_evaluation.ipynb |
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
from typing import List, Union, Dict |
|
|
7 |
from collections import defaultdict |
|
|
8 |
|
|
|
9 |
import torch |
|
|
10 |
import numpy as np |
|
|
11 |
from torch import Tensor, arange |
|
|
12 |
from avalanche.evaluation import Metric, PluginMetric, GenericPluginMetric |
|
|
13 |
from avalanche.evaluation.metrics.mean import Mean |
|
|
14 |
from avalanche.evaluation.metric_utils import phase_and_task |
|
|
15 |
|
|
|
16 |
from sklearn.metrics import average_precision_score, roc_auc_score |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
def confusion(prediction, truth): |
|
|
20 |
"""Returns the confusion matrix for the values in the `prediction` and `truth` |
|
|
21 |
tensors, i.e. the amount of positions where the values of `prediction` |
|
|
22 |
and `truth` are |
|
|
23 |
- 1 and 1 (True Positive) |
|
|
24 |
- 1 and 0 (False Positive) |
|
|
25 |
- 0 and 0 (True Negative) |
|
|
26 |
- 0 and 1 (False Negative) |
|
|
27 |
|
|
|
28 |
Source: https://gist.github.com/the-bass/cae9f3976866776dea17a5049013258d |
|
|
29 |
""" |
|
|
30 |
|
|
|
31 |
confusion_vector = prediction / truth |
|
|
32 |
# Element-wise division of the 2 tensors returns a new tensor which holds a |
|
|
33 |
# unique value for each case: |
|
|
34 |
# 1 where prediction and truth are 1 (True Positive) |
|
|
35 |
# inf where prediction is 1 and truth is 0 (False Positive) |
|
|
36 |
# nan where prediction and truth are 0 (True Negative) |
|
|
37 |
# 0 where prediction is 0 and truth is 1 (False Negative) |
|
|
38 |
|
|
|
39 |
true_positives = torch.sum(confusion_vector == 1).item() |
|
|
40 |
false_positives = torch.sum(confusion_vector == float("inf")).item() |
|
|
41 |
true_negatives = torch.sum(torch.isnan(confusion_vector)).item() |
|
|
42 |
false_negatives = torch.sum(confusion_vector == 0).item() |
|
|
43 |
|
|
|
44 |
return true_positives, false_positives, true_negatives, false_negatives |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
# https://github.com/ContinualAI/avalanche/blob/master/avalanche/evaluation/metrics/mean_scores.py |
|
|
48 |
# Use above for AUPRC etc templates. |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
class BalancedAccuracy(Metric[float]): |
|
|
52 |
""" |
|
|
53 |
The BalancedAccuracy metric. This is a standalone metric. |
|
|
54 |
|
|
|
55 |
The metric keeps a dictionary of <task_label, balancedaccuracy value> pairs. |
|
|
56 |
and update the values through a running average over multiple |
|
|
57 |
<prediction, target> pairs of Tensors, provided incrementally. |
|
|
58 |
The "prediction" and "target" tensors may contain plain labels or |
|
|
59 |
one-hot/logit vectors. |
|
|
60 |
|
|
|
61 |
Each time `result` is called, this metric emits the average balancedaccuracy |
|
|
62 |
across all predictions made since the last `reset`. |
|
|
63 |
|
|
|
64 |
The reset method will bring the metric to its initial state. By default |
|
|
65 |
this metric in its initial state will return an balancedaccuracy value of 0. |
|
|
66 |
""" |
|
|
67 |
|
|
|
68 |
def __init__(self): |
|
|
69 |
""" |
|
|
70 |
Creates an instance of the standalone BalancedAccuracy metric. |
|
|
71 |
|
|
|
72 |
By default this metric in its initial state will return an balancedaccuracy |
|
|
73 |
value of 0. The metric can be updated by using the `update` method |
|
|
74 |
while the running balancedaccuracy can be retrieved using the `result` method. |
|
|
75 |
""" |
|
|
76 |
super().__init__() |
|
|
77 |
self._mean_balancedaccuracy = defaultdict(Mean) |
|
|
78 |
""" |
|
|
79 |
The mean utility that will be used to store the running balancedaccuracy |
|
|
80 |
for each task label. |
|
|
81 |
""" |
|
|
82 |
|
|
|
83 |
@torch.no_grad() |
|
|
84 |
def update( |
|
|
85 |
self, predicted_y: Tensor, true_y: Tensor, task_labels: Union[float, Tensor] |
|
|
86 |
) -> None: |
|
|
87 |
""" |
|
|
88 |
Update the running balancedaccuracy given the true and predicted labels. |
|
|
89 |
Parameter `task_labels` is used to decide how to update the inner |
|
|
90 |
dictionary: if Float, only the dictionary value related to that task |
|
|
91 |
is updated. If Tensor, all the dictionary elements belonging to the |
|
|
92 |
task labels will be updated. |
|
|
93 |
|
|
|
94 |
:param predicted_y: The model prediction. Both labels and logit vectors |
|
|
95 |
are supported. |
|
|
96 |
:param true_y: The ground truth. Both labels and one-hot vectors |
|
|
97 |
are supported. |
|
|
98 |
:param task_labels: the int task label associated to the current |
|
|
99 |
experience or the task labels vector showing the task label |
|
|
100 |
for each pattern. |
|
|
101 |
|
|
|
102 |
:return: None. |
|
|
103 |
""" |
|
|
104 |
if len(true_y) != len(predicted_y): |
|
|
105 |
raise ValueError("Size mismatch for true_y and predicted_y tensors") |
|
|
106 |
|
|
|
107 |
if isinstance(task_labels, Tensor) and len(task_labels) != len(true_y): |
|
|
108 |
raise ValueError("Size mismatch for true_y and task_labels tensors") |
|
|
109 |
|
|
|
110 |
true_y = torch.as_tensor(true_y) |
|
|
111 |
predicted_y = torch.as_tensor(predicted_y) |
|
|
112 |
|
|
|
113 |
# Check if logits or labels |
|
|
114 |
if len(predicted_y.shape) > 1: |
|
|
115 |
# Logits -> transform to labels |
|
|
116 |
predicted_y = torch.max(predicted_y, 1)[1] |
|
|
117 |
|
|
|
118 |
if len(true_y.shape) > 1: |
|
|
119 |
# Logits -> transform to labels |
|
|
120 |
true_y = torch.max(true_y, 1)[1] |
|
|
121 |
|
|
|
122 |
if isinstance(task_labels, int): |
|
|
123 |
( |
|
|
124 |
true_positives, |
|
|
125 |
false_positives, |
|
|
126 |
true_negatives, |
|
|
127 |
false_negatives, |
|
|
128 |
) = confusion(predicted_y, true_y) |
|
|
129 |
|
|
|
130 |
try: |
|
|
131 |
tpr = true_positives / (true_positives + false_negatives) |
|
|
132 |
except ZeroDivisionError: |
|
|
133 |
tpr = 1 |
|
|
134 |
|
|
|
135 |
try: |
|
|
136 |
tnr = true_negatives / (true_negatives + false_positives) |
|
|
137 |
except ZeroDivisionError: |
|
|
138 |
tnr = 1 |
|
|
139 |
|
|
|
140 |
self._mean_balancedaccuracy[task_labels].update( |
|
|
141 |
(tpr + tnr) / 2, len(predicted_y) |
|
|
142 |
) |
|
|
143 |
elif isinstance(task_labels, Tensor): |
|
|
144 |
raise NotImplementedError |
|
|
145 |
else: |
|
|
146 |
raise ValueError( |
|
|
147 |
f"Task label type: {type(task_labels)}, expected int/float or Tensor" |
|
|
148 |
) |
|
|
149 |
|
|
|
150 |
def result(self, task_label=None) -> Dict[int, float]: |
|
|
151 |
""" |
|
|
152 |
Retrieves the running balancedaccuracy. |
|
|
153 |
|
|
|
154 |
Calling this method will not change the internal state of the metric. |
|
|
155 |
|
|
|
156 |
:param task_label: if None, return the entire dictionary of balanced accuracies |
|
|
157 |
for each task. Otherwise return the dictionary |
|
|
158 |
`{task_label: balancedaccuracy}`. |
|
|
159 |
:return: A dict of running balanced accuracies for each task label, |
|
|
160 |
where each value is a float value between 0 and 1. |
|
|
161 |
""" |
|
|
162 |
assert task_label is None or isinstance(task_label, int) |
|
|
163 |
if task_label is None: |
|
|
164 |
return {k: v.result() for k, v in self._mean_balancedaccuracy.items()} |
|
|
165 |
else: |
|
|
166 |
return {task_label: self._mean_balancedaccuracy[task_label].result()} |
|
|
167 |
|
|
|
168 |
def reset(self, task_label=None) -> None: |
|
|
169 |
""" |
|
|
170 |
Resets the metric. |
|
|
171 |
:param task_label: if None, reset the entire dictionary. |
|
|
172 |
Otherwise, reset the value associated to `task_label`. |
|
|
173 |
|
|
|
174 |
:return: None. |
|
|
175 |
""" |
|
|
176 |
assert task_label is None or isinstance(task_label, int) |
|
|
177 |
if task_label is None: |
|
|
178 |
self._mean_balancedaccuracy = defaultdict(Mean) |
|
|
179 |
else: |
|
|
180 |
self._mean_balancedaccuracy[task_label].reset() |
|
|
181 |
|
|
|
182 |
|
|
|
183 |
class BalancedAccuracyPluginMetric(GenericPluginMetric[float]): |
|
|
184 |
""" |
|
|
185 |
Base class for all balanced accuracies plugin metrics |
|
|
186 |
""" |
|
|
187 |
|
|
|
188 |
def __init__(self, reset_at, emit_at, mode): |
|
|
189 |
self._balancedaccuracy = BalancedAccuracy() |
|
|
190 |
super(BalancedAccuracyPluginMetric, self).__init__( |
|
|
191 |
self._balancedaccuracy, reset_at=reset_at, emit_at=emit_at, mode=mode |
|
|
192 |
) |
|
|
193 |
|
|
|
194 |
def reset(self, strategy=None) -> None: |
|
|
195 |
if self._reset_at == "stream" or strategy is None: |
|
|
196 |
self._metric.reset() |
|
|
197 |
else: |
|
|
198 |
self._metric.reset(phase_and_task(strategy)[1]) |
|
|
199 |
|
|
|
200 |
def result(self, strategy=None) -> float: |
|
|
201 |
if self._emit_at == "stream" or strategy is None: |
|
|
202 |
return self._metric.result() |
|
|
203 |
else: |
|
|
204 |
return self._metric.result(phase_and_task(strategy)[1]) |
|
|
205 |
|
|
|
206 |
def update(self, strategy): |
|
|
207 |
# task labels defined for each experience |
|
|
208 |
task_labels = strategy.experience.task_labels |
|
|
209 |
if len(task_labels) > 1: |
|
|
210 |
# task labels defined for each pattern |
|
|
211 |
task_labels = strategy.mb_task_id |
|
|
212 |
else: |
|
|
213 |
task_labels = task_labels[0] |
|
|
214 |
self._balancedaccuracy.update(strategy.mb_output, strategy.mb_y, task_labels) |
|
|
215 |
|
|
|
216 |
|
|
|
217 |
class MinibatchBalancedAccuracy(BalancedAccuracyPluginMetric): |
|
|
218 |
""" |
|
|
219 |
The minibatch plugin balancedaccuracy metric. |
|
|
220 |
This metric only works at training time. |
|
|
221 |
|
|
|
222 |
This metric computes the average balancedaccuracy over patterns |
|
|
223 |
from a single minibatch. |
|
|
224 |
It reports the result after each iteration. |
|
|
225 |
|
|
|
226 |
If a more coarse-grained logging is needed, consider using |
|
|
227 |
:class:`EpochBalancedAccuracy` instead. |
|
|
228 |
""" |
|
|
229 |
|
|
|
230 |
def __init__(self): |
|
|
231 |
""" |
|
|
232 |
Creates an instance of the MinibatchBalancedAccuracy metric. |
|
|
233 |
""" |
|
|
234 |
super(MinibatchBalancedAccuracy, self).__init__( |
|
|
235 |
reset_at="iteration", emit_at="iteration", mode="train" |
|
|
236 |
) |
|
|
237 |
|
|
|
238 |
def __str__(self): |
|
|
239 |
return "BalAcc_MB" |
|
|
240 |
|
|
|
241 |
|
|
|
242 |
class EpochBalancedAccuracy(BalancedAccuracyPluginMetric): |
|
|
243 |
""" |
|
|
244 |
The average balancedaccuracy over a single training epoch. |
|
|
245 |
This plugin metric only works at training time. |
|
|
246 |
|
|
|
247 |
The balancedaccuracy will be logged after each training epoch by computing |
|
|
248 |
the number of correctly predicted patterns during the epoch divided by |
|
|
249 |
the overall number of patterns encountered in that epoch. |
|
|
250 |
""" |
|
|
251 |
|
|
|
252 |
def __init__(self): |
|
|
253 |
""" |
|
|
254 |
Creates an instance of the EpochBalancedAccuracy metric. |
|
|
255 |
""" |
|
|
256 |
|
|
|
257 |
super(EpochBalancedAccuracy, self).__init__( |
|
|
258 |
reset_at="epoch", emit_at="epoch", mode="train" |
|
|
259 |
) |
|
|
260 |
|
|
|
261 |
def __str__(self): |
|
|
262 |
return "BalAcc_Epoch" |
|
|
263 |
|
|
|
264 |
|
|
|
265 |
class RunningEpochBalancedAccuracy(BalancedAccuracyPluginMetric): |
|
|
266 |
""" |
|
|
267 |
The average balancedaccuracy across all minibatches up to the current |
|
|
268 |
epoch iteration. |
|
|
269 |
This plugin metric only works at training time. |
|
|
270 |
|
|
|
271 |
At each iteration, this metric logs the balancedaccuracy averaged over all patterns |
|
|
272 |
seen so far in the current epoch. |
|
|
273 |
The metric resets its state after each training epoch. |
|
|
274 |
""" |
|
|
275 |
|
|
|
276 |
def __init__(self): |
|
|
277 |
""" |
|
|
278 |
Creates an instance of the RunningEpochBalancedAccuracy metric. |
|
|
279 |
""" |
|
|
280 |
|
|
|
281 |
super(RunningEpochBalancedAccuracy, self).__init__( |
|
|
282 |
reset_at="epoch", emit_at="iteration", mode="train" |
|
|
283 |
) |
|
|
284 |
|
|
|
285 |
def __str__(self): |
|
|
286 |
return "RunningBalAcc_Epoch" |
|
|
287 |
|
|
|
288 |
|
|
|
289 |
class ExperienceBalancedAccuracy(BalancedAccuracyPluginMetric): |
|
|
290 |
""" |
|
|
291 |
At the end of each experience, this plugin metric reports |
|
|
292 |
the average balancedaccuracy over all patterns seen in that experience. |
|
|
293 |
This metric only works at eval time. |
|
|
294 |
""" |
|
|
295 |
|
|
|
296 |
def __init__(self): |
|
|
297 |
""" |
|
|
298 |
Creates an instance of ExperienceBalancedAccuracy metric |
|
|
299 |
""" |
|
|
300 |
super(ExperienceBalancedAccuracy, self).__init__( |
|
|
301 |
reset_at="experience", emit_at="experience", mode="eval" |
|
|
302 |
) |
|
|
303 |
|
|
|
304 |
def __str__(self): |
|
|
305 |
return "BalAcc_Exp" |
|
|
306 |
|
|
|
307 |
|
|
|
308 |
class StreamBalancedAccuracy(BalancedAccuracyPluginMetric): |
|
|
309 |
""" |
|
|
310 |
At the end of the entire stream of experiences, this plugin metric |
|
|
311 |
reports the average balancedaccuracy over all patterns seen in all experiences. |
|
|
312 |
This metric only works at eval time. |
|
|
313 |
""" |
|
|
314 |
|
|
|
315 |
def __init__(self): |
|
|
316 |
""" |
|
|
317 |
Creates an instance of StreamBalancedAccuracy metric |
|
|
318 |
""" |
|
|
319 |
super(StreamBalancedAccuracy, self).__init__( |
|
|
320 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
321 |
) |
|
|
322 |
|
|
|
323 |
def __str__(self): |
|
|
324 |
return "BalAcc_Stream" |
|
|
325 |
|
|
|
326 |
|
|
|
327 |
class TrainedExperienceBalancedAccuracy(BalancedAccuracyPluginMetric): |
|
|
328 |
""" |
|
|
329 |
At the end of each experience, this plugin metric reports the average |
|
|
330 |
balancedaccuracy for only the experiences that the model has been trained on so far. |
|
|
331 |
|
|
|
332 |
This metric only works at eval time. |
|
|
333 |
""" |
|
|
334 |
|
|
|
335 |
def __init__(self): |
|
|
336 |
""" |
|
|
337 |
Creates an instance of TrainedExperienceBalancedAccuracy metric by first |
|
|
338 |
constructing BalancedAccuracyPluginMetric |
|
|
339 |
""" |
|
|
340 |
super(TrainedExperienceBalancedAccuracy, self).__init__( |
|
|
341 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
342 |
) |
|
|
343 |
self._current_experience = 0 |
|
|
344 |
|
|
|
345 |
def after_training_exp(self, strategy) -> None: |
|
|
346 |
self._current_experience = strategy.experience.current_experience |
|
|
347 |
# Reset average after learning from a new experience |
|
|
348 |
BalancedAccuracyPluginMetric.reset(self, strategy) |
|
|
349 |
return BalancedAccuracyPluginMetric.after_training_exp(self, strategy) |
|
|
350 |
|
|
|
351 |
def update(self, strategy): |
|
|
352 |
""" |
|
|
353 |
Only update the balancedaccuracy with results from experiences that have been |
|
|
354 |
trained on |
|
|
355 |
""" |
|
|
356 |
if strategy.experience.current_experience <= self._current_experience: |
|
|
357 |
BalancedAccuracyPluginMetric.update(self, strategy) |
|
|
358 |
|
|
|
359 |
def __str__(self): |
|
|
360 |
return "BalancedAccuracy_On_Trained_Experiences" |
|
|
361 |
|
|
|
362 |
|
|
|
363 |
def balancedaccuracy_metrics( |
|
|
364 |
*, |
|
|
365 |
minibatch=False, |
|
|
366 |
epoch=False, |
|
|
367 |
epoch_running=False, |
|
|
368 |
experience=False, |
|
|
369 |
stream=False, |
|
|
370 |
trained_experience=False, |
|
|
371 |
) -> List[PluginMetric]: |
|
|
372 |
""" |
|
|
373 |
Helper method that can be used to obtain the desired set of |
|
|
374 |
plugin metrics. |
|
|
375 |
|
|
|
376 |
:param minibatch: If True, will return a metric able to log |
|
|
377 |
the minibatch balancedaccuracy at training time. |
|
|
378 |
:param epoch: If True, will return a metric able to log |
|
|
379 |
the epoch balancedaccuracy at training time. |
|
|
380 |
:param epoch_running: If True, will return a metric able to log |
|
|
381 |
the running epoch balancedaccuracy at training time. |
|
|
382 |
:param experience: If True, will return a metric able to log |
|
|
383 |
the balancedaccuracy on each evaluation experience. |
|
|
384 |
:param stream: If True, will return a metric able to log |
|
|
385 |
the balancedaccuracy averaged over the entire evaluation stream of experiences. |
|
|
386 |
:param trained_experience: If True, will return a metric able to log |
|
|
387 |
the average evaluation balancedaccuracy only for experiences that the |
|
|
388 |
model has been trained on |
|
|
389 |
|
|
|
390 |
:return: A list of plugin metrics. |
|
|
391 |
""" |
|
|
392 |
|
|
|
393 |
metrics = [] |
|
|
394 |
if minibatch: |
|
|
395 |
metrics.append(MinibatchBalancedAccuracy()) |
|
|
396 |
|
|
|
397 |
if epoch: |
|
|
398 |
metrics.append(EpochBalancedAccuracy()) |
|
|
399 |
|
|
|
400 |
if epoch_running: |
|
|
401 |
metrics.append(RunningEpochBalancedAccuracy()) |
|
|
402 |
|
|
|
403 |
if experience: |
|
|
404 |
metrics.append(ExperienceBalancedAccuracy()) |
|
|
405 |
|
|
|
406 |
if stream: |
|
|
407 |
metrics.append(StreamBalancedAccuracy()) |
|
|
408 |
|
|
|
409 |
if trained_experience: |
|
|
410 |
metrics.append(TrainedExperienceBalancedAccuracy()) |
|
|
411 |
|
|
|
412 |
return metrics |
|
|
413 |
|
|
|
414 |
|
|
|
415 |
class Sensitivity(Metric[float]): |
|
|
416 |
""" |
|
|
417 |
The Sensitivity metric. This is a standalone metric. |
|
|
418 |
|
|
|
419 |
The metric keeps a dictionary of <task_label, Sensitivity value> pairs. |
|
|
420 |
and update the values through a running average over multiple |
|
|
421 |
<prediction, target> pairs of Tensors, provided incrementally. |
|
|
422 |
The "prediction" and "target" tensors may contain plain labels or |
|
|
423 |
one-hot/logit vectors. |
|
|
424 |
|
|
|
425 |
Each time `result` is called, this metric emits the average Sensitivity |
|
|
426 |
across all predictions made since the last `reset`. |
|
|
427 |
|
|
|
428 |
The reset method will bring the metric to its initial state. By default |
|
|
429 |
this metric in its initial state will return an Sensitivity value of 0. |
|
|
430 |
""" |
|
|
431 |
|
|
|
432 |
def __init__(self): |
|
|
433 |
""" |
|
|
434 |
Creates an instance of the standalone Sensitivity metric. |
|
|
435 |
|
|
|
436 |
By default this metric in its initial state will return an Sensitivity |
|
|
437 |
value of 0. The metric can be updated by using the `update` method |
|
|
438 |
while the running Sensitivity can be retrieved using the `result` method. |
|
|
439 |
""" |
|
|
440 |
super().__init__() |
|
|
441 |
self._mean_Sensitivity = defaultdict(Mean) |
|
|
442 |
""" |
|
|
443 |
The mean utility that will be used to store the running Sensitivity |
|
|
444 |
for each task label. |
|
|
445 |
""" |
|
|
446 |
|
|
|
447 |
@torch.no_grad() |
|
|
448 |
def update( |
|
|
449 |
self, predicted_y: Tensor, true_y: Tensor, task_labels: Union[float, Tensor] |
|
|
450 |
) -> None: |
|
|
451 |
""" |
|
|
452 |
Update the running Sensitivity given the true and predicted labels. |
|
|
453 |
Parameter `task_labels` is used to decide how to update the inner |
|
|
454 |
dictionary: if Float, only the dictionary value related to that task |
|
|
455 |
is updated. If Tensor, all the dictionary elements belonging to the |
|
|
456 |
task labels will be updated. |
|
|
457 |
|
|
|
458 |
:param predicted_y: The model prediction. Both labels and logit vectors |
|
|
459 |
are supported. |
|
|
460 |
:param true_y: The ground truth. Both labels and one-hot vectors |
|
|
461 |
are supported. |
|
|
462 |
:param task_labels: the int task label associated to the current |
|
|
463 |
experience or the task labels vector showing the task label |
|
|
464 |
for each pattern. |
|
|
465 |
|
|
|
466 |
:return: None. |
|
|
467 |
""" |
|
|
468 |
if len(true_y) != len(predicted_y): |
|
|
469 |
raise ValueError("Size mismatch for true_y and predicted_y tensors") |
|
|
470 |
|
|
|
471 |
if isinstance(task_labels, Tensor) and len(task_labels) != len(true_y): |
|
|
472 |
raise ValueError("Size mismatch for true_y and task_labels tensors") |
|
|
473 |
|
|
|
474 |
true_y = torch.as_tensor(true_y) |
|
|
475 |
predicted_y = torch.as_tensor(predicted_y) |
|
|
476 |
|
|
|
477 |
# Check if logits or labels |
|
|
478 |
if len(predicted_y.shape) > 1: |
|
|
479 |
# Logits -> transform to labels |
|
|
480 |
predicted_y = torch.max(predicted_y, 1)[1] |
|
|
481 |
|
|
|
482 |
if len(true_y.shape) > 1: |
|
|
483 |
# Logits -> transform to labels |
|
|
484 |
true_y = torch.max(true_y, 1)[1] |
|
|
485 |
|
|
|
486 |
if isinstance(task_labels, int): |
|
|
487 |
( |
|
|
488 |
true_positives, |
|
|
489 |
false_positives, |
|
|
490 |
true_negatives, |
|
|
491 |
false_negatives, |
|
|
492 |
) = confusion(predicted_y, true_y) |
|
|
493 |
|
|
|
494 |
try: |
|
|
495 |
tpr = true_positives / (true_positives + false_negatives) |
|
|
496 |
except ZeroDivisionError: |
|
|
497 |
tpr = 1 |
|
|
498 |
|
|
|
499 |
self._mean_Sensitivity[task_labels].update(tpr, len(predicted_y)) |
|
|
500 |
elif isinstance(task_labels, Tensor): |
|
|
501 |
raise NotImplementedError |
|
|
502 |
else: |
|
|
503 |
raise ValueError( |
|
|
504 |
f"Task label type: {type(task_labels)}, expected int/float or Tensor" |
|
|
505 |
) |
|
|
506 |
|
|
|
507 |
def result(self, task_label=None) -> Dict[int, float]: |
|
|
508 |
""" |
|
|
509 |
Retrieves the running Sensitivity. |
|
|
510 |
|
|
|
511 |
Calling this method will not change the internal state of the metric. |
|
|
512 |
|
|
|
513 |
:param task_label: if None, return the entire dictionary of sensitivities |
|
|
514 |
for each task. Otherwise return the dictionary |
|
|
515 |
`{task_label: Sensitivity}`. |
|
|
516 |
:return: A dict of running sensitivities for each task label, |
|
|
517 |
where each value is a float value between 0 and 1. |
|
|
518 |
""" |
|
|
519 |
assert task_label is None or isinstance(task_label, int) |
|
|
520 |
if task_label is None: |
|
|
521 |
return {k: v.result() for k, v in self._mean_Sensitivity.items()} |
|
|
522 |
else: |
|
|
523 |
return {task_label: self._mean_Sensitivity[task_label].result()} |
|
|
524 |
|
|
|
525 |
def reset(self, task_label=None) -> None: |
|
|
526 |
""" |
|
|
527 |
Resets the metric. |
|
|
528 |
:param task_label: if None, reset the entire dictionary. |
|
|
529 |
Otherwise, reset the value associated to `task_label`. |
|
|
530 |
|
|
|
531 |
:return: None. |
|
|
532 |
""" |
|
|
533 |
assert task_label is None or isinstance(task_label, int) |
|
|
534 |
if task_label is None: |
|
|
535 |
self._mean_Sensitivity = defaultdict(Mean) |
|
|
536 |
else: |
|
|
537 |
self._mean_Sensitivity[task_label].reset() |
|
|
538 |
|
|
|
539 |
|
|
|
540 |
class SensitivityPluginMetric(GenericPluginMetric[float]): |
|
|
541 |
""" |
|
|
542 |
Base class for all sensitivities plugin metrics |
|
|
543 |
""" |
|
|
544 |
|
|
|
545 |
def __init__(self, reset_at, emit_at, mode): |
|
|
546 |
self._Sensitivity = Sensitivity() |
|
|
547 |
super(SensitivityPluginMetric, self).__init__( |
|
|
548 |
self._Sensitivity, reset_at=reset_at, emit_at=emit_at, mode=mode |
|
|
549 |
) |
|
|
550 |
|
|
|
551 |
def reset(self, strategy=None) -> None: |
|
|
552 |
if self._reset_at == "stream" or strategy is None: |
|
|
553 |
self._metric.reset() |
|
|
554 |
else: |
|
|
555 |
self._metric.reset(phase_and_task(strategy)[1]) |
|
|
556 |
|
|
|
557 |
def result(self, strategy=None) -> float: |
|
|
558 |
if self._emit_at == "stream" or strategy is None: |
|
|
559 |
return self._metric.result() |
|
|
560 |
else: |
|
|
561 |
return self._metric.result(phase_and_task(strategy)[1]) |
|
|
562 |
|
|
|
563 |
def update(self, strategy): |
|
|
564 |
# task labels defined for each experience |
|
|
565 |
task_labels = strategy.experience.task_labels |
|
|
566 |
if len(task_labels) > 1: |
|
|
567 |
# task labels defined for each pattern |
|
|
568 |
task_labels = strategy.mb_task_id |
|
|
569 |
else: |
|
|
570 |
task_labels = task_labels[0] |
|
|
571 |
self._Sensitivity.update(strategy.mb_output, strategy.mb_y, task_labels) |
|
|
572 |
|
|
|
573 |
|
|
|
574 |
class MinibatchSensitivity(SensitivityPluginMetric): |
|
|
575 |
""" |
|
|
576 |
The minibatch plugin Sensitivity metric. |
|
|
577 |
This metric only works at training time. |
|
|
578 |
|
|
|
579 |
This metric computes the average Sensitivity over patterns |
|
|
580 |
from a single minibatch. |
|
|
581 |
It reports the result after each iteration. |
|
|
582 |
|
|
|
583 |
If a more coarse-grained logging is needed, consider using |
|
|
584 |
:class:`EpochSensitivity` instead. |
|
|
585 |
""" |
|
|
586 |
|
|
|
587 |
def __init__(self): |
|
|
588 |
""" |
|
|
589 |
Creates an instance of the MinibatchSensitivity metric. |
|
|
590 |
""" |
|
|
591 |
super(MinibatchSensitivity, self).__init__( |
|
|
592 |
reset_at="iteration", emit_at="iteration", mode="train" |
|
|
593 |
) |
|
|
594 |
|
|
|
595 |
def __str__(self): |
|
|
596 |
return "Sens_MB" |
|
|
597 |
|
|
|
598 |
|
|
|
599 |
class EpochSensitivity(SensitivityPluginMetric): |
|
|
600 |
""" |
|
|
601 |
The average Sensitivity over a single training epoch. |
|
|
602 |
This plugin metric only works at training time. |
|
|
603 |
|
|
|
604 |
The Sensitivity will be logged after each training epoch by computing |
|
|
605 |
the number of correctly predicted patterns during the epoch divided by |
|
|
606 |
the overall number of patterns encountered in that epoch. |
|
|
607 |
""" |
|
|
608 |
|
|
|
609 |
def __init__(self): |
|
|
610 |
""" |
|
|
611 |
Creates an instance of the EpochSensitivity metric. |
|
|
612 |
""" |
|
|
613 |
|
|
|
614 |
super(EpochSensitivity, self).__init__( |
|
|
615 |
reset_at="epoch", emit_at="epoch", mode="train" |
|
|
616 |
) |
|
|
617 |
|
|
|
618 |
def __str__(self): |
|
|
619 |
return "Sens_Epoch" |
|
|
620 |
|
|
|
621 |
|
|
|
622 |
class RunningEpochSensitivity(SensitivityPluginMetric): |
|
|
623 |
""" |
|
|
624 |
The average Sensitivity across all minibatches up to the current |
|
|
625 |
epoch iteration. |
|
|
626 |
This plugin metric only works at training time. |
|
|
627 |
|
|
|
628 |
At each iteration, this metric logs the Sensitivity averaged over all patterns |
|
|
629 |
seen so far in the current epoch. |
|
|
630 |
The metric resets its state after each training epoch. |
|
|
631 |
""" |
|
|
632 |
|
|
|
633 |
def __init__(self): |
|
|
634 |
""" |
|
|
635 |
Creates an instance of the RunningEpochSensitivity metric. |
|
|
636 |
""" |
|
|
637 |
|
|
|
638 |
super(RunningEpochSensitivity, self).__init__( |
|
|
639 |
reset_at="epoch", emit_at="iteration", mode="train" |
|
|
640 |
) |
|
|
641 |
|
|
|
642 |
def __str__(self): |
|
|
643 |
return "RunningSens_Epoch" |
|
|
644 |
|
|
|
645 |
|
|
|
646 |
class ExperienceSensitivity(SensitivityPluginMetric): |
|
|
647 |
""" |
|
|
648 |
At the end of each experience, this plugin metric reports |
|
|
649 |
the average Sensitivity over all patterns seen in that experience. |
|
|
650 |
This metric only works at eval time. |
|
|
651 |
""" |
|
|
652 |
|
|
|
653 |
def __init__(self): |
|
|
654 |
""" |
|
|
655 |
Creates an instance of ExperienceSensitivity metric |
|
|
656 |
""" |
|
|
657 |
super(ExperienceSensitivity, self).__init__( |
|
|
658 |
reset_at="experience", emit_at="experience", mode="eval" |
|
|
659 |
) |
|
|
660 |
|
|
|
661 |
def __str__(self): |
|
|
662 |
return "Sens_Exp" |
|
|
663 |
|
|
|
664 |
|
|
|
665 |
class StreamSensitivity(SensitivityPluginMetric): |
|
|
666 |
""" |
|
|
667 |
At the end of the entire stream of experiences, this plugin metric |
|
|
668 |
reports the average Sensitivity over all patterns seen in all experiences. |
|
|
669 |
This metric only works at eval time. |
|
|
670 |
""" |
|
|
671 |
|
|
|
672 |
def __init__(self): |
|
|
673 |
""" |
|
|
674 |
Creates an instance of StreamSensitivity metric |
|
|
675 |
""" |
|
|
676 |
super(StreamSensitivity, self).__init__( |
|
|
677 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
678 |
) |
|
|
679 |
|
|
|
680 |
def __str__(self): |
|
|
681 |
return "Sens_Stream" |
|
|
682 |
|
|
|
683 |
|
|
|
684 |
class TrainedExperienceSensitivity(SensitivityPluginMetric): |
|
|
685 |
""" |
|
|
686 |
At the end of each experience, this plugin metric reports the average |
|
|
687 |
Sensitivity for only the experiences that the model has been trained on so far. |
|
|
688 |
|
|
|
689 |
This metric only works at eval time. |
|
|
690 |
""" |
|
|
691 |
|
|
|
692 |
def __init__(self): |
|
|
693 |
""" |
|
|
694 |
Creates an instance of TrainedExperienceSensitivity metric by first |
|
|
695 |
constructing SensitivityPluginMetric |
|
|
696 |
""" |
|
|
697 |
super(TrainedExperienceSensitivity, self).__init__( |
|
|
698 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
699 |
) |
|
|
700 |
self._current_experience = 0 |
|
|
701 |
|
|
|
702 |
def after_training_exp(self, strategy) -> None: |
|
|
703 |
self._current_experience = strategy.experience.current_experience |
|
|
704 |
# Reset average after learning from a new experience |
|
|
705 |
SensitivityPluginMetric.reset(self, strategy) |
|
|
706 |
return SensitivityPluginMetric.after_training_exp(self, strategy) |
|
|
707 |
|
|
|
708 |
def update(self, strategy): |
|
|
709 |
""" |
|
|
710 |
Only update the Sensitivity with results from experiences that have been |
|
|
711 |
trained on |
|
|
712 |
""" |
|
|
713 |
if strategy.experience.current_experience <= self._current_experience: |
|
|
714 |
SensitivityPluginMetric.update(self, strategy) |
|
|
715 |
|
|
|
716 |
def __str__(self): |
|
|
717 |
return "Sensitivity_On_Trained_Experiences" |
|
|
718 |
|
|
|
719 |
|
|
|
720 |
def sensitivity_metrics( |
|
|
721 |
*, |
|
|
722 |
minibatch=False, |
|
|
723 |
epoch=False, |
|
|
724 |
epoch_running=False, |
|
|
725 |
experience=False, |
|
|
726 |
stream=False, |
|
|
727 |
trained_experience=False, |
|
|
728 |
) -> List[PluginMetric]: |
|
|
729 |
""" |
|
|
730 |
Helper method that can be used to obtain the desired set of |
|
|
731 |
plugin metrics. |
|
|
732 |
|
|
|
733 |
:param minibatch: If True, will return a metric able to log |
|
|
734 |
the minibatch Sensitivity at training time. |
|
|
735 |
:param epoch: If True, will return a metric able to log |
|
|
736 |
the epoch Sensitivity at training time. |
|
|
737 |
:param epoch_running: If True, will return a metric able to log |
|
|
738 |
the running epoch Sensitivity at training time. |
|
|
739 |
:param experience: If True, will return a metric able to log |
|
|
740 |
the Sensitivity on each evaluation experience. |
|
|
741 |
:param stream: If True, will return a metric able to log |
|
|
742 |
the Sensitivity averaged over the entire evaluation stream of experiences. |
|
|
743 |
:param trained_experience: If True, will return a metric able to log |
|
|
744 |
the average evaluation Sensitivity only for experiences that the |
|
|
745 |
model has been trained on |
|
|
746 |
|
|
|
747 |
:return: A list of plugin metrics. |
|
|
748 |
""" |
|
|
749 |
|
|
|
750 |
metrics = [] |
|
|
751 |
if minibatch: |
|
|
752 |
metrics.append(MinibatchSensitivity()) |
|
|
753 |
|
|
|
754 |
if epoch: |
|
|
755 |
metrics.append(EpochSensitivity()) |
|
|
756 |
|
|
|
757 |
if epoch_running: |
|
|
758 |
metrics.append(RunningEpochSensitivity()) |
|
|
759 |
|
|
|
760 |
if experience: |
|
|
761 |
metrics.append(ExperienceSensitivity()) |
|
|
762 |
|
|
|
763 |
if stream: |
|
|
764 |
metrics.append(StreamSensitivity()) |
|
|
765 |
|
|
|
766 |
if trained_experience: |
|
|
767 |
metrics.append(TrainedExperienceSensitivity()) |
|
|
768 |
|
|
|
769 |
return metrics |
|
|
770 |
|
|
|
771 |
|
|
|
772 |
class Specificity(Metric[float]): |
|
|
773 |
""" |
|
|
774 |
The Specificity metric. This is a standalone metric. |
|
|
775 |
|
|
|
776 |
The metric keeps a dictionary of <task_label, Specificity value> pairs. |
|
|
777 |
and update the values through a running average over multiple |
|
|
778 |
<prediction, target> pairs of Tensors, provided incrementally. |
|
|
779 |
The "prediction" and "target" tensors may contain plain labels or |
|
|
780 |
one-hot/logit vectors. |
|
|
781 |
|
|
|
782 |
Each time `result` is called, this metric emits the average Specificity |
|
|
783 |
across all predictions made since the last `reset`. |
|
|
784 |
|
|
|
785 |
The reset method will bring the metric to its initial state. By default |
|
|
786 |
this metric in its initial state will return an Specificity value of 0. |
|
|
787 |
""" |
|
|
788 |
|
|
|
789 |
def __init__(self): |
|
|
790 |
""" |
|
|
791 |
Creates an instance of the standalone Specificity metric. |
|
|
792 |
|
|
|
793 |
By default this metric in its initial state will return an Specificity |
|
|
794 |
value of 0. The metric can be updated by using the `update` method |
|
|
795 |
while the running Specificity can be retrieved using the `result` method. |
|
|
796 |
""" |
|
|
797 |
super().__init__() |
|
|
798 |
self._mean_Specificity = defaultdict(Mean) |
|
|
799 |
""" |
|
|
800 |
The mean utility that will be used to store the running Specificity |
|
|
801 |
for each task label. |
|
|
802 |
""" |
|
|
803 |
|
|
|
804 |
@torch.no_grad() |
|
|
805 |
def update( |
|
|
806 |
self, predicted_y: Tensor, true_y: Tensor, task_labels: Union[float, Tensor] |
|
|
807 |
) -> None: |
|
|
808 |
""" |
|
|
809 |
Update the running Specificity given the true and predicted labels. |
|
|
810 |
Parameter `task_labels` is used to decide how to update the inner |
|
|
811 |
dictionary: if Float, only the dictionary value related to that task |
|
|
812 |
is updated. If Tensor, all the dictionary elements belonging to the |
|
|
813 |
task labels will be updated. |
|
|
814 |
|
|
|
815 |
:param predicted_y: The model prediction. Both labels and logit vectors |
|
|
816 |
are supported. |
|
|
817 |
:param true_y: The ground truth. Both labels and one-hot vectors |
|
|
818 |
are supported. |
|
|
819 |
:param task_labels: the int task label associated to the current |
|
|
820 |
experience or the task labels vector showing the task label |
|
|
821 |
for each pattern. |
|
|
822 |
|
|
|
823 |
:return: None. |
|
|
824 |
""" |
|
|
825 |
if len(true_y) != len(predicted_y): |
|
|
826 |
raise ValueError("Size mismatch for true_y and predicted_y tensors") |
|
|
827 |
|
|
|
828 |
if isinstance(task_labels, Tensor) and len(task_labels) != len(true_y): |
|
|
829 |
raise ValueError("Size mismatch for true_y and task_labels tensors") |
|
|
830 |
|
|
|
831 |
true_y = torch.as_tensor(true_y) |
|
|
832 |
predicted_y = torch.as_tensor(predicted_y) |
|
|
833 |
|
|
|
834 |
# Check if logits or labels |
|
|
835 |
if len(predicted_y.shape) > 1: |
|
|
836 |
# Logits -> transform to labels |
|
|
837 |
predicted_y = torch.max(predicted_y, 1)[1] |
|
|
838 |
|
|
|
839 |
if len(true_y.shape) > 1: |
|
|
840 |
# Logits -> transform to labels |
|
|
841 |
true_y = torch.max(true_y, 1)[1] |
|
|
842 |
|
|
|
843 |
if isinstance(task_labels, int): |
|
|
844 |
( |
|
|
845 |
true_positives, |
|
|
846 |
false_positives, |
|
|
847 |
true_negatives, |
|
|
848 |
false_negatives, |
|
|
849 |
) = confusion(predicted_y, true_y) |
|
|
850 |
|
|
|
851 |
try: |
|
|
852 |
tnr = true_negatives / (true_negatives + false_positives) |
|
|
853 |
except ZeroDivisionError: |
|
|
854 |
tnr = 1 |
|
|
855 |
|
|
|
856 |
self._mean_Specificity[task_labels].update(tnr, len(predicted_y)) |
|
|
857 |
elif isinstance(task_labels, Tensor): |
|
|
858 |
raise NotImplementedError |
|
|
859 |
else: |
|
|
860 |
raise ValueError( |
|
|
861 |
f"Task label type: {type(task_labels)}, expected int/float or Tensor" |
|
|
862 |
) |
|
|
863 |
|
|
|
864 |
def result(self, task_label=None) -> Dict[int, float]: |
|
|
865 |
""" |
|
|
866 |
Retrieves the running Specificity. |
|
|
867 |
|
|
|
868 |
Calling this method will not change the internal state of the metric. |
|
|
869 |
|
|
|
870 |
:param task_label: if None, return the entire dictionary of specificities |
|
|
871 |
for each task. Otherwise return the dictionary |
|
|
872 |
`{task_label: Specificity}`. |
|
|
873 |
:return: A dict of running specificities for each task label, |
|
|
874 |
where each value is a float value between 0 and 1. |
|
|
875 |
""" |
|
|
876 |
assert task_label is None or isinstance(task_label, int) |
|
|
877 |
if task_label is None: |
|
|
878 |
return {k: v.result() for k, v in self._mean_Specificity.items()} |
|
|
879 |
else: |
|
|
880 |
return {task_label: self._mean_Specificity[task_label].result()} |
|
|
881 |
|
|
|
882 |
def reset(self, task_label=None) -> None: |
|
|
883 |
""" |
|
|
884 |
Resets the metric. |
|
|
885 |
:param task_label: if None, reset the entire dictionary. |
|
|
886 |
Otherwise, reset the value associated to `task_label`. |
|
|
887 |
|
|
|
888 |
:return: None. |
|
|
889 |
""" |
|
|
890 |
assert task_label is None or isinstance(task_label, int) |
|
|
891 |
if task_label is None: |
|
|
892 |
self._mean_Specificity = defaultdict(Mean) |
|
|
893 |
else: |
|
|
894 |
self._mean_Specificity[task_label].reset() |
|
|
895 |
|
|
|
896 |
|
|
|
897 |
class SpecificityPluginMetric(GenericPluginMetric[float]): |
|
|
898 |
""" |
|
|
899 |
Base class for all specificities plugin metrics |
|
|
900 |
""" |
|
|
901 |
|
|
|
902 |
def __init__(self, reset_at, emit_at, mode): |
|
|
903 |
self._Specificity = Specificity() |
|
|
904 |
super(SpecificityPluginMetric, self).__init__( |
|
|
905 |
self._Specificity, reset_at=reset_at, emit_at=emit_at, mode=mode |
|
|
906 |
) |
|
|
907 |
|
|
|
908 |
def reset(self, strategy=None) -> None: |
|
|
909 |
if self._reset_at == "stream" or strategy is None: |
|
|
910 |
self._metric.reset() |
|
|
911 |
else: |
|
|
912 |
self._metric.reset(phase_and_task(strategy)[1]) |
|
|
913 |
|
|
|
914 |
def result(self, strategy=None) -> float: |
|
|
915 |
if self._emit_at == "stream" or strategy is None: |
|
|
916 |
return self._metric.result() |
|
|
917 |
else: |
|
|
918 |
return self._metric.result(phase_and_task(strategy)[1]) |
|
|
919 |
|
|
|
920 |
def update(self, strategy): |
|
|
921 |
# task labels defined for each experience |
|
|
922 |
task_labels = strategy.experience.task_labels |
|
|
923 |
if len(task_labels) > 1: |
|
|
924 |
# task labels defined for each pattern |
|
|
925 |
task_labels = strategy.mb_task_id |
|
|
926 |
else: |
|
|
927 |
task_labels = task_labels[0] |
|
|
928 |
self._Specificity.update(strategy.mb_output, strategy.mb_y, task_labels) |
|
|
929 |
|
|
|
930 |
|
|
|
931 |
class MinibatchSpecificity(SpecificityPluginMetric): |
|
|
932 |
""" |
|
|
933 |
The minibatch plugin Specificity metric. |
|
|
934 |
This metric only works at training time. |
|
|
935 |
|
|
|
936 |
This metric computes the average Specificity over patterns |
|
|
937 |
from a single minibatch. |
|
|
938 |
It reports the result after each iteration. |
|
|
939 |
|
|
|
940 |
If a more coarse-grained logging is needed, consider using |
|
|
941 |
:class:`EpochSpecificity` instead. |
|
|
942 |
""" |
|
|
943 |
|
|
|
944 |
def __init__(self): |
|
|
945 |
""" |
|
|
946 |
Creates an instance of the MinibatchSpecificity metric. |
|
|
947 |
""" |
|
|
948 |
super(MinibatchSpecificity, self).__init__( |
|
|
949 |
reset_at="iteration", emit_at="iteration", mode="train" |
|
|
950 |
) |
|
|
951 |
|
|
|
952 |
def __str__(self): |
|
|
953 |
return "Spec_MB" |
|
|
954 |
|
|
|
955 |
|
|
|
956 |
class EpochSpecificity(SpecificityPluginMetric): |
|
|
957 |
""" |
|
|
958 |
The average Specificity over a single training epoch. |
|
|
959 |
This plugin metric only works at training time. |
|
|
960 |
|
|
|
961 |
The Specificity will be logged after each training epoch by computing |
|
|
962 |
the number of correctly predicted patterns during the epoch divided by |
|
|
963 |
the overall number of patterns encountered in that epoch. |
|
|
964 |
""" |
|
|
965 |
|
|
|
966 |
def __init__(self): |
|
|
967 |
""" |
|
|
968 |
Creates an instance of the EpochSpecificity metric. |
|
|
969 |
""" |
|
|
970 |
|
|
|
971 |
super(EpochSpecificity, self).__init__( |
|
|
972 |
reset_at="epoch", emit_at="epoch", mode="train" |
|
|
973 |
) |
|
|
974 |
|
|
|
975 |
def __str__(self): |
|
|
976 |
return "Spec_Epoch" |
|
|
977 |
|
|
|
978 |
|
|
|
979 |
class RunningEpochSpecificity(SpecificityPluginMetric): |
|
|
980 |
""" |
|
|
981 |
The average Specificity across all minibatches up to the current |
|
|
982 |
epoch iteration. |
|
|
983 |
This plugin metric only works at training time. |
|
|
984 |
|
|
|
985 |
At each iteration, this metric logs the Specificity averaged over all patterns |
|
|
986 |
seen so far in the current epoch. |
|
|
987 |
The metric resets its state after each training epoch. |
|
|
988 |
""" |
|
|
989 |
|
|
|
990 |
def __init__(self): |
|
|
991 |
""" |
|
|
992 |
Creates an instance of the RunningEpochSpecificity metric. |
|
|
993 |
""" |
|
|
994 |
|
|
|
995 |
super(RunningEpochSpecificity, self).__init__( |
|
|
996 |
reset_at="epoch", emit_at="iteration", mode="train" |
|
|
997 |
) |
|
|
998 |
|
|
|
999 |
def __str__(self): |
|
|
1000 |
return "RunningSpec_Epoch" |
|
|
1001 |
|
|
|
1002 |
|
|
|
1003 |
class ExperienceSpecificity(SpecificityPluginMetric): |
|
|
1004 |
""" |
|
|
1005 |
At the end of each experience, this plugin metric reports |
|
|
1006 |
the average Specificity over all patterns seen in that experience. |
|
|
1007 |
This metric only works at eval time. |
|
|
1008 |
""" |
|
|
1009 |
|
|
|
1010 |
def __init__(self): |
|
|
1011 |
""" |
|
|
1012 |
Creates an instance of ExperienceSpecificity metric |
|
|
1013 |
""" |
|
|
1014 |
super(ExperienceSpecificity, self).__init__( |
|
|
1015 |
reset_at="experience", emit_at="experience", mode="eval" |
|
|
1016 |
) |
|
|
1017 |
|
|
|
1018 |
def __str__(self): |
|
|
1019 |
return "Spec_Exp" |
|
|
1020 |
|
|
|
1021 |
|
|
|
1022 |
class StreamSpecificity(SpecificityPluginMetric): |
|
|
1023 |
""" |
|
|
1024 |
At the end of the entire stream of experiences, this plugin metric |
|
|
1025 |
reports the average Specificity over all patterns seen in all experiences. |
|
|
1026 |
This metric only works at eval time. |
|
|
1027 |
""" |
|
|
1028 |
|
|
|
1029 |
def __init__(self): |
|
|
1030 |
""" |
|
|
1031 |
Creates an instance of StreamSpecificity metric |
|
|
1032 |
""" |
|
|
1033 |
super(StreamSpecificity, self).__init__( |
|
|
1034 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
1035 |
) |
|
|
1036 |
|
|
|
1037 |
def __str__(self): |
|
|
1038 |
return "Spec_Stream" |
|
|
1039 |
|
|
|
1040 |
|
|
|
1041 |
class TrainedExperienceSpecificity(SpecificityPluginMetric): |
|
|
1042 |
""" |
|
|
1043 |
At the end of each experience, this plugin metric reports the average |
|
|
1044 |
Specificity for only the experiences that the model has been trained on so far. |
|
|
1045 |
|
|
|
1046 |
This metric only works at eval time. |
|
|
1047 |
""" |
|
|
1048 |
|
|
|
1049 |
def __init__(self): |
|
|
1050 |
""" |
|
|
1051 |
Creates an instance of TrainedExperienceSpecificity metric by first |
|
|
1052 |
constructing SpecificityPluginMetric |
|
|
1053 |
""" |
|
|
1054 |
super(TrainedExperienceSpecificity, self).__init__( |
|
|
1055 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
1056 |
) |
|
|
1057 |
self._current_experience = 0 |
|
|
1058 |
|
|
|
1059 |
def after_training_exp(self, strategy) -> None: |
|
|
1060 |
self._current_experience = strategy.experience.current_experience |
|
|
1061 |
# Reset average after learning from a new experience |
|
|
1062 |
SpecificityPluginMetric.reset(self, strategy) |
|
|
1063 |
return SpecificityPluginMetric.after_training_exp(self, strategy) |
|
|
1064 |
|
|
|
1065 |
def update(self, strategy): |
|
|
1066 |
""" |
|
|
1067 |
Only update the Specificity with results from experiences that have been |
|
|
1068 |
trained on |
|
|
1069 |
""" |
|
|
1070 |
if strategy.experience.current_experience <= self._current_experience: |
|
|
1071 |
SpecificityPluginMetric.update(self, strategy) |
|
|
1072 |
|
|
|
1073 |
def __str__(self): |
|
|
1074 |
return "Specificity_On_Trained_Experiences" |
|
|
1075 |
|
|
|
1076 |
|
|
|
1077 |
def specificity_metrics( |
|
|
1078 |
*, |
|
|
1079 |
minibatch=False, |
|
|
1080 |
epoch=False, |
|
|
1081 |
epoch_running=False, |
|
|
1082 |
experience=False, |
|
|
1083 |
stream=False, |
|
|
1084 |
trained_experience=False, |
|
|
1085 |
) -> List[PluginMetric]: |
|
|
1086 |
""" |
|
|
1087 |
Helper method that can be used to obtain the desired set of |
|
|
1088 |
plugin metrics. |
|
|
1089 |
|
|
|
1090 |
:param minibatch: If True, will return a metric able to log |
|
|
1091 |
the minibatch Specificity at training time. |
|
|
1092 |
:param epoch: If True, will return a metric able to log |
|
|
1093 |
the epoch Specificity at training time. |
|
|
1094 |
:param epoch_running: If True, will return a metric able to log |
|
|
1095 |
the running epoch Specificity at training time. |
|
|
1096 |
:param experience: If True, will return a metric able to log |
|
|
1097 |
the Specificity on each evaluation experience. |
|
|
1098 |
:param stream: If True, will return a metric able to log |
|
|
1099 |
the Specificity averaged over the entire evaluation stream of experiences. |
|
|
1100 |
:param trained_experience: If True, will return a metric able to log |
|
|
1101 |
the average evaluation Specificity only for experiences that the |
|
|
1102 |
model has been trained on |
|
|
1103 |
|
|
|
1104 |
:return: A list of plugin metrics. |
|
|
1105 |
""" |
|
|
1106 |
|
|
|
1107 |
metrics = [] |
|
|
1108 |
if minibatch: |
|
|
1109 |
metrics.append(MinibatchSpecificity()) |
|
|
1110 |
|
|
|
1111 |
if epoch: |
|
|
1112 |
metrics.append(EpochSpecificity()) |
|
|
1113 |
|
|
|
1114 |
if epoch_running: |
|
|
1115 |
metrics.append(RunningEpochSpecificity()) |
|
|
1116 |
|
|
|
1117 |
if experience: |
|
|
1118 |
metrics.append(ExperienceSpecificity()) |
|
|
1119 |
|
|
|
1120 |
if stream: |
|
|
1121 |
metrics.append(StreamSpecificity()) |
|
|
1122 |
|
|
|
1123 |
if trained_experience: |
|
|
1124 |
metrics.append(TrainedExperienceSpecificity()) |
|
|
1125 |
|
|
|
1126 |
return metrics |
|
|
1127 |
|
|
|
1128 |
|
|
|
1129 |
class Precision(Metric[float]): |
|
|
1130 |
""" |
|
|
1131 |
The Precision metric. This is a standalone metric. |
|
|
1132 |
|
|
|
1133 |
The metric keeps a dictionary of <task_label, Precision value> pairs. |
|
|
1134 |
and update the values through a running average over multiple |
|
|
1135 |
<prediction, target> pairs of Tensors, provided incrementally. |
|
|
1136 |
The "prediction" and "target" tensors may contain plain labels or |
|
|
1137 |
one-hot/logit vectors. |
|
|
1138 |
|
|
|
1139 |
Each time `result` is called, this metric emits the average Precision |
|
|
1140 |
across all predictions made since the last `reset`. |
|
|
1141 |
|
|
|
1142 |
The reset method will bring the metric to its initial state. By default |
|
|
1143 |
this metric in its initial state will return an Precision value of 0. |
|
|
1144 |
""" |
|
|
1145 |
|
|
|
1146 |
def __init__(self): |
|
|
1147 |
""" |
|
|
1148 |
Creates an instance of the standalone Precision metric. |
|
|
1149 |
|
|
|
1150 |
By default this metric in its initial state will return a Precision |
|
|
1151 |
value of 0. The metric can be updated by using the `update` method |
|
|
1152 |
while the running Precision can be retrieved using the `result` method. |
|
|
1153 |
""" |
|
|
1154 |
super().__init__() |
|
|
1155 |
self._mean_Precision = defaultdict(Mean) |
|
|
1156 |
""" |
|
|
1157 |
The mean utility that will be used to store the running Precision |
|
|
1158 |
for each task label. |
|
|
1159 |
""" |
|
|
1160 |
|
|
|
1161 |
@torch.no_grad() |
|
|
1162 |
def update( |
|
|
1163 |
self, predicted_y: Tensor, true_y: Tensor, task_labels: Union[float, Tensor] |
|
|
1164 |
) -> None: |
|
|
1165 |
""" |
|
|
1166 |
Update the running Precision given the true and predicted labels. |
|
|
1167 |
Parameter `task_labels` is used to decide how to update the inner |
|
|
1168 |
dictionary: if Float, only the dictionary value related to that task |
|
|
1169 |
is updated. If Tensor, all the dictionary elements belonging to the |
|
|
1170 |
task labels will be updated. |
|
|
1171 |
|
|
|
1172 |
:param predicted_y: The model prediction. Both labels and logit vectors |
|
|
1173 |
are supported. |
|
|
1174 |
:param true_y: The ground truth. Both labels and one-hot vectors |
|
|
1175 |
are supported. |
|
|
1176 |
:param task_labels: the int task label associated to the current |
|
|
1177 |
experience or the task labels vector showing the task label |
|
|
1178 |
for each pattern. |
|
|
1179 |
|
|
|
1180 |
:return: None. |
|
|
1181 |
""" |
|
|
1182 |
if len(true_y) != len(predicted_y): |
|
|
1183 |
raise ValueError("Size mismatch for true_y and predicted_y tensors") |
|
|
1184 |
|
|
|
1185 |
if isinstance(task_labels, Tensor) and len(task_labels) != len(true_y): |
|
|
1186 |
raise ValueError("Size mismatch for true_y and task_labels tensors") |
|
|
1187 |
|
|
|
1188 |
true_y = torch.as_tensor(true_y) |
|
|
1189 |
predicted_y = torch.as_tensor(predicted_y) |
|
|
1190 |
|
|
|
1191 |
# Check if logits or labels |
|
|
1192 |
if len(predicted_y.shape) > 1: |
|
|
1193 |
# Logits -> transform to labels |
|
|
1194 |
predicted_y = torch.max(predicted_y, 1)[1] |
|
|
1195 |
|
|
|
1196 |
if len(true_y.shape) > 1: |
|
|
1197 |
# Logits -> transform to labels |
|
|
1198 |
true_y = torch.max(true_y, 1)[1] |
|
|
1199 |
|
|
|
1200 |
if isinstance(task_labels, int): |
|
|
1201 |
( |
|
|
1202 |
true_positives, |
|
|
1203 |
false_positives, |
|
|
1204 |
true_negatives, |
|
|
1205 |
false_negatives, |
|
|
1206 |
) = confusion(predicted_y, true_y) |
|
|
1207 |
|
|
|
1208 |
try: |
|
|
1209 |
ppv = true_positives / (true_positives + false_positives) |
|
|
1210 |
except ZeroDivisionError: |
|
|
1211 |
ppv = 1 |
|
|
1212 |
|
|
|
1213 |
self._mean_Precision[task_labels].update(ppv, len(predicted_y)) |
|
|
1214 |
elif isinstance(task_labels, Tensor): |
|
|
1215 |
raise NotImplementedError |
|
|
1216 |
else: |
|
|
1217 |
raise ValueError( |
|
|
1218 |
f"Task label type: {type(task_labels)}, expected int/float or Tensor" |
|
|
1219 |
) |
|
|
1220 |
|
|
|
1221 |
def result(self, task_label=None) -> Dict[int, float]: |
|
|
1222 |
""" |
|
|
1223 |
Retrieves the running Precision. |
|
|
1224 |
|
|
|
1225 |
Calling this method will not change the internal state of the metric. |
|
|
1226 |
|
|
|
1227 |
:param task_label: if None, return the entire dictionary of precisions |
|
|
1228 |
for each task. Otherwise return the dictionary |
|
|
1229 |
`{task_label: Precision}`. |
|
|
1230 |
:return: A dict of running precisions for each task label, |
|
|
1231 |
where each value is a float value between 0 and 1. |
|
|
1232 |
""" |
|
|
1233 |
assert task_label is None or isinstance(task_label, int) |
|
|
1234 |
if task_label is None: |
|
|
1235 |
return {k: v.result() for k, v in self._mean_Precision.items()} |
|
|
1236 |
else: |
|
|
1237 |
return {task_label: self._mean_Precision[task_label].result()} |
|
|
1238 |
|
|
|
1239 |
def reset(self, task_label=None) -> None: |
|
|
1240 |
""" |
|
|
1241 |
Resets the metric. |
|
|
1242 |
:param task_label: if None, reset the entire dictionary. |
|
|
1243 |
Otherwise, reset the value associated to `task_label`. |
|
|
1244 |
|
|
|
1245 |
:return: None. |
|
|
1246 |
""" |
|
|
1247 |
assert task_label is None or isinstance(task_label, int) |
|
|
1248 |
if task_label is None: |
|
|
1249 |
self._mean_Precision = defaultdict(Mean) |
|
|
1250 |
else: |
|
|
1251 |
self._mean_Precision[task_label].reset() |
|
|
1252 |
|
|
|
1253 |
|
|
|
1254 |
class PrecisionPluginMetric(GenericPluginMetric[float]): |
|
|
1255 |
""" |
|
|
1256 |
Base class for all precisions plugin metrics |
|
|
1257 |
""" |
|
|
1258 |
|
|
|
1259 |
def __init__(self, reset_at, emit_at, mode): |
|
|
1260 |
self._Precision = Precision() |
|
|
1261 |
super(PrecisionPluginMetric, self).__init__( |
|
|
1262 |
self._Precision, reset_at=reset_at, emit_at=emit_at, mode=mode |
|
|
1263 |
) |
|
|
1264 |
|
|
|
1265 |
def reset(self, strategy=None) -> None: |
|
|
1266 |
if self._reset_at == "stream" or strategy is None: |
|
|
1267 |
self._metric.reset() |
|
|
1268 |
else: |
|
|
1269 |
self._metric.reset(phase_and_task(strategy)[1]) |
|
|
1270 |
|
|
|
1271 |
def result(self, strategy=None) -> float: |
|
|
1272 |
if self._emit_at == "stream" or strategy is None: |
|
|
1273 |
return self._metric.result() |
|
|
1274 |
else: |
|
|
1275 |
return self._metric.result(phase_and_task(strategy)[1]) |
|
|
1276 |
|
|
|
1277 |
def update(self, strategy): |
|
|
1278 |
# task labels defined for each experience |
|
|
1279 |
task_labels = strategy.experience.task_labels |
|
|
1280 |
if len(task_labels) > 1: |
|
|
1281 |
# task labels defined for each pattern |
|
|
1282 |
task_labels = strategy.mb_task_id |
|
|
1283 |
else: |
|
|
1284 |
task_labels = task_labels[0] |
|
|
1285 |
self._Precision.update(strategy.mb_output, strategy.mb_y, task_labels) |
|
|
1286 |
|
|
|
1287 |
|
|
|
1288 |
class MinibatchPrecision(PrecisionPluginMetric): |
|
|
1289 |
""" |
|
|
1290 |
The minibatch plugin Precision metric. |
|
|
1291 |
This metric only works at training time. |
|
|
1292 |
|
|
|
1293 |
This metric computes the average Precision over patterns |
|
|
1294 |
from a single minibatch. |
|
|
1295 |
It reports the result after each iteration. |
|
|
1296 |
|
|
|
1297 |
If a more coarse-grained logging is needed, consider using |
|
|
1298 |
:class:`EpochPrecision` instead. |
|
|
1299 |
""" |
|
|
1300 |
|
|
|
1301 |
def __init__(self): |
|
|
1302 |
""" |
|
|
1303 |
Creates an instance of the MinibatchPrecision metric. |
|
|
1304 |
""" |
|
|
1305 |
super(MinibatchPrecision, self).__init__( |
|
|
1306 |
reset_at="iteration", emit_at="iteration", mode="train" |
|
|
1307 |
) |
|
|
1308 |
|
|
|
1309 |
def __str__(self): |
|
|
1310 |
return "Prec_MB" |
|
|
1311 |
|
|
|
1312 |
|
|
|
1313 |
class EpochPrecision(PrecisionPluginMetric): |
|
|
1314 |
""" |
|
|
1315 |
The average Precision over a single training epoch. |
|
|
1316 |
This plugin metric only works at training time. |
|
|
1317 |
|
|
|
1318 |
The Precision will be logged after each training epoch by computing |
|
|
1319 |
the number of correctly predicted patterns during the epoch divided by |
|
|
1320 |
the overall number of patterns encountered in that epoch. |
|
|
1321 |
""" |
|
|
1322 |
|
|
|
1323 |
def __init__(self): |
|
|
1324 |
""" |
|
|
1325 |
Creates an instance of the EpochPrecision metric. |
|
|
1326 |
""" |
|
|
1327 |
|
|
|
1328 |
super(EpochPrecision, self).__init__( |
|
|
1329 |
reset_at="epoch", emit_at="epoch", mode="train" |
|
|
1330 |
) |
|
|
1331 |
|
|
|
1332 |
def __str__(self): |
|
|
1333 |
return "Prec_Epoch" |
|
|
1334 |
|
|
|
1335 |
|
|
|
1336 |
class RunningEpochPrecision(PrecisionPluginMetric): |
|
|
1337 |
""" |
|
|
1338 |
The average Precision across all minibatches up to the current |
|
|
1339 |
epoch iteration. |
|
|
1340 |
This plugin metric only works at training time. |
|
|
1341 |
|
|
|
1342 |
At each iteration, this metric logs the Precision averaged over all patterns |
|
|
1343 |
seen so far in the current epoch. |
|
|
1344 |
The metric resets its state after each training epoch. |
|
|
1345 |
""" |
|
|
1346 |
|
|
|
1347 |
def __init__(self): |
|
|
1348 |
""" |
|
|
1349 |
Creates an instance of the RunningEpochPrecision metric. |
|
|
1350 |
""" |
|
|
1351 |
|
|
|
1352 |
super(RunningEpochPrecision, self).__init__( |
|
|
1353 |
reset_at="epoch", emit_at="iteration", mode="train" |
|
|
1354 |
) |
|
|
1355 |
|
|
|
1356 |
def __str__(self): |
|
|
1357 |
return "RunningPrec_Epoch" |
|
|
1358 |
|
|
|
1359 |
|
|
|
1360 |
class ExperiencePrecision(PrecisionPluginMetric): |
|
|
1361 |
""" |
|
|
1362 |
At the end of each experience, this plugin metric reports |
|
|
1363 |
the average Precision over all patterns seen in that experience. |
|
|
1364 |
This metric only works at eval time. |
|
|
1365 |
""" |
|
|
1366 |
|
|
|
1367 |
def __init__(self): |
|
|
1368 |
""" |
|
|
1369 |
Creates an instance of ExperiencePrecision metric |
|
|
1370 |
""" |
|
|
1371 |
super(ExperiencePrecision, self).__init__( |
|
|
1372 |
reset_at="experience", emit_at="experience", mode="eval" |
|
|
1373 |
) |
|
|
1374 |
|
|
|
1375 |
def __str__(self): |
|
|
1376 |
return "Prec_Exp" |
|
|
1377 |
|
|
|
1378 |
|
|
|
1379 |
class StreamPrecision(PrecisionPluginMetric): |
|
|
1380 |
""" |
|
|
1381 |
At the end of the entire stream of experiences, this plugin metric |
|
|
1382 |
reports the average Precision over all patterns seen in all experiences. |
|
|
1383 |
This metric only works at eval time. |
|
|
1384 |
""" |
|
|
1385 |
|
|
|
1386 |
def __init__(self): |
|
|
1387 |
""" |
|
|
1388 |
Creates an instance of StreamPrecision metric |
|
|
1389 |
""" |
|
|
1390 |
super(StreamPrecision, self).__init__( |
|
|
1391 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
1392 |
) |
|
|
1393 |
|
|
|
1394 |
def __str__(self): |
|
|
1395 |
return "Prec_Stream" |
|
|
1396 |
|
|
|
1397 |
|
|
|
1398 |
class TrainedExperiencePrecision(PrecisionPluginMetric): |
|
|
1399 |
""" |
|
|
1400 |
At the end of each experience, this plugin metric reports the average |
|
|
1401 |
Precision for only the experiences that the model has been trained on so far. |
|
|
1402 |
|
|
|
1403 |
This metric only works at eval time. |
|
|
1404 |
""" |
|
|
1405 |
|
|
|
1406 |
def __init__(self): |
|
|
1407 |
""" |
|
|
1408 |
Creates an instance of TrainedExperiencePrecision metric by first |
|
|
1409 |
constructing PrecisionPluginMetric |
|
|
1410 |
""" |
|
|
1411 |
super(TrainedExperiencePrecision, self).__init__( |
|
|
1412 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
1413 |
) |
|
|
1414 |
self._current_experience = 0 |
|
|
1415 |
|
|
|
1416 |
def after_training_exp(self, strategy) -> None: |
|
|
1417 |
self._current_experience = strategy.experience.current_experience |
|
|
1418 |
# Reset average after learning from a new experience |
|
|
1419 |
PrecisionPluginMetric.reset(self, strategy) |
|
|
1420 |
return PrecisionPluginMetric.after_training_exp(self, strategy) |
|
|
1421 |
|
|
|
1422 |
def update(self, strategy): |
|
|
1423 |
""" |
|
|
1424 |
Only update the Precision with results from experiences that have been |
|
|
1425 |
trained on |
|
|
1426 |
""" |
|
|
1427 |
if strategy.experience.current_experience <= self._current_experience: |
|
|
1428 |
PrecisionPluginMetric.update(self, strategy) |
|
|
1429 |
|
|
|
1430 |
def __str__(self): |
|
|
1431 |
return "Precision_On_Trained_Experiences" |
|
|
1432 |
|
|
|
1433 |
|
|
|
1434 |
def precision_metrics( |
|
|
1435 |
*, |
|
|
1436 |
minibatch=False, |
|
|
1437 |
epoch=False, |
|
|
1438 |
epoch_running=False, |
|
|
1439 |
experience=False, |
|
|
1440 |
stream=False, |
|
|
1441 |
trained_experience=False, |
|
|
1442 |
) -> List[PluginMetric]: |
|
|
1443 |
""" |
|
|
1444 |
Helper method that can be used to obtain the desired set of |
|
|
1445 |
plugin metrics. |
|
|
1446 |
|
|
|
1447 |
:param minibatch: If True, will return a metric able to log |
|
|
1448 |
the minibatch Precision at training time. |
|
|
1449 |
:param epoch: If True, will return a metric able to log |
|
|
1450 |
the epoch Precision at training time. |
|
|
1451 |
:param epoch_running: If True, will return a metric able to log |
|
|
1452 |
the running epoch Precision at training time. |
|
|
1453 |
:param experience: If True, will return a metric able to log |
|
|
1454 |
the Precision on each evaluation experience. |
|
|
1455 |
:param stream: If True, will return a metric able to log |
|
|
1456 |
the Precision averaged over the entire evaluation stream of experiences. |
|
|
1457 |
:param trained_experience: If True, will return a metric able to log |
|
|
1458 |
the average evaluation Precision only for experiences that the |
|
|
1459 |
model has been trained on |
|
|
1460 |
|
|
|
1461 |
:return: A list of plugin metrics. |
|
|
1462 |
""" |
|
|
1463 |
|
|
|
1464 |
metrics = [] |
|
|
1465 |
if minibatch: |
|
|
1466 |
metrics.append(MinibatchPrecision()) |
|
|
1467 |
|
|
|
1468 |
if epoch: |
|
|
1469 |
metrics.append(EpochPrecision()) |
|
|
1470 |
|
|
|
1471 |
if epoch_running: |
|
|
1472 |
metrics.append(RunningEpochPrecision()) |
|
|
1473 |
|
|
|
1474 |
if experience: |
|
|
1475 |
metrics.append(ExperiencePrecision()) |
|
|
1476 |
|
|
|
1477 |
if stream: |
|
|
1478 |
metrics.append(StreamPrecision()) |
|
|
1479 |
|
|
|
1480 |
if trained_experience: |
|
|
1481 |
metrics.append(TrainedExperiencePrecision()) |
|
|
1482 |
|
|
|
1483 |
return metrics |
|
|
1484 |
|
|
|
1485 |
|
|
|
1486 |
class AUPRC(Metric[float]): |
|
|
1487 |
""" |
|
|
1488 |
The AUPRC metric. This is a standalone metric. |
|
|
1489 |
|
|
|
1490 |
The metric keeps a dictionary of <task_label, AUPRC value> pairs. |
|
|
1491 |
and update the values through a running average over multiple |
|
|
1492 |
<prediction, target> pairs of Tensors, provided incrementally. |
|
|
1493 |
The "prediction" and "target" tensors may contain plain labels or |
|
|
1494 |
one-hot/logit vectors. |
|
|
1495 |
|
|
|
1496 |
Each time `result` is called, this metric emits the average AUPRC |
|
|
1497 |
across all predictions made since the last `reset`. |
|
|
1498 |
|
|
|
1499 |
The reset method will bring the metric to its initial state. By default |
|
|
1500 |
this metric in its initial state will return an AUPRC value of 0. |
|
|
1501 |
""" |
|
|
1502 |
|
|
|
1503 |
def __init__(self): |
|
|
1504 |
""" |
|
|
1505 |
Creates an instance of the standalone AUPRC metric. |
|
|
1506 |
|
|
|
1507 |
By default this metric in its initial state will return a AUPRC |
|
|
1508 |
value of 0. The metric can be updated by using the `update` method |
|
|
1509 |
while the running AUPRC can be retrieved using the `result` method. |
|
|
1510 |
""" |
|
|
1511 |
super().__init__() |
|
|
1512 |
self._mean_AUPRC = defaultdict(Mean) |
|
|
1513 |
""" |
|
|
1514 |
The mean utility that will be used to store the running AUPRC |
|
|
1515 |
for each task label. |
|
|
1516 |
""" |
|
|
1517 |
|
|
|
1518 |
@torch.no_grad() |
|
|
1519 |
def update( |
|
|
1520 |
self, predicted_y: Tensor, true_y: Tensor, task_labels: Union[float, Tensor] |
|
|
1521 |
) -> None: |
|
|
1522 |
""" |
|
|
1523 |
Update the running AUPRC given the true and predicted labels. |
|
|
1524 |
Parameter `task_labels` is used to decide how to update the inner |
|
|
1525 |
dictionary: if Float, only the dictionary value related to that task |
|
|
1526 |
is updated. If Tensor, all the dictionary elements belonging to the |
|
|
1527 |
task labels will be updated. |
|
|
1528 |
|
|
|
1529 |
:param predicted_y: The model prediction. Both labels and logit vectors |
|
|
1530 |
are supported. |
|
|
1531 |
:param true_y: The ground truth. Both labels and one-hot vectors |
|
|
1532 |
are supported. |
|
|
1533 |
:param task_labels: the int task label associated to the current |
|
|
1534 |
experience or the task labels vector showing the task label |
|
|
1535 |
for each pattern. |
|
|
1536 |
|
|
|
1537 |
:return: None. |
|
|
1538 |
""" |
|
|
1539 |
if len(true_y) != len(predicted_y): |
|
|
1540 |
raise ValueError("Size mismatch for true_y and predicted_y tensors") |
|
|
1541 |
|
|
|
1542 |
if isinstance(task_labels, Tensor) and len(task_labels) != len(true_y): |
|
|
1543 |
raise ValueError("Size mismatch for true_y and task_labels tensors") |
|
|
1544 |
|
|
|
1545 |
true_y = torch.as_tensor(true_y) |
|
|
1546 |
predicted_y = torch.as_tensor(predicted_y) |
|
|
1547 |
|
|
|
1548 |
assert len(predicted_y.size()) == 2, ( |
|
|
1549 |
"Predictions need to be logits or scores, not labels" |
|
|
1550 |
) |
|
|
1551 |
|
|
|
1552 |
if len(true_y.shape) > 1: |
|
|
1553 |
# Logits -> transform to labels |
|
|
1554 |
true_y = torch.max(true_y, 1)[1] |
|
|
1555 |
|
|
|
1556 |
scores = predicted_y[arange(len(true_y)), true_y] |
|
|
1557 |
|
|
|
1558 |
with np.errstate(divide="ignore", invalid="ignore"): |
|
|
1559 |
average_precision_score_val = average_precision_score( |
|
|
1560 |
true_y.cpu(), scores.cpu() |
|
|
1561 |
) |
|
|
1562 |
|
|
|
1563 |
if np.isnan(average_precision_score_val): |
|
|
1564 |
average_precision_score_val = 0 |
|
|
1565 |
|
|
|
1566 |
if isinstance(task_labels, int): |
|
|
1567 |
self._mean_AUPRC[task_labels].update( |
|
|
1568 |
average_precision_score_val, len(predicted_y) |
|
|
1569 |
) |
|
|
1570 |
elif isinstance(task_labels, Tensor): |
|
|
1571 |
raise NotImplementedError |
|
|
1572 |
else: |
|
|
1573 |
raise ValueError( |
|
|
1574 |
f"Task label type: {type(task_labels)}, expected int/float or Tensor" |
|
|
1575 |
) |
|
|
1576 |
|
|
|
1577 |
def result(self, task_label=None) -> Dict[int, float]: |
|
|
1578 |
""" |
|
|
1579 |
Retrieves the running AUPRC. |
|
|
1580 |
|
|
|
1581 |
Calling this method will not change the internal state of the metric. |
|
|
1582 |
|
|
|
1583 |
:param task_label: if None, return the entire dictionary of AUPRCs |
|
|
1584 |
for each task. Otherwise return the dictionary |
|
|
1585 |
`{task_label: AUPRC}`. |
|
|
1586 |
:return: A dict of running AUPRCs for each task label, |
|
|
1587 |
where each value is a float value between 0 and 1. |
|
|
1588 |
""" |
|
|
1589 |
assert task_label is None or isinstance(task_label, int) |
|
|
1590 |
if task_label is None: |
|
|
1591 |
return {k: v.result() for k, v in self._mean_AUPRC.items()} |
|
|
1592 |
else: |
|
|
1593 |
return {task_label: self._mean_AUPRC[task_label].result()} |
|
|
1594 |
|
|
|
1595 |
def reset(self, task_label=None) -> None: |
|
|
1596 |
""" |
|
|
1597 |
Resets the metric. |
|
|
1598 |
:param task_label: if None, reset the entire dictionary. |
|
|
1599 |
Otherwise, reset the value associated to `task_label`. |
|
|
1600 |
|
|
|
1601 |
:return: None. |
|
|
1602 |
""" |
|
|
1603 |
assert task_label is None or isinstance(task_label, int) |
|
|
1604 |
if task_label is None: |
|
|
1605 |
self._mean_AUPRC = defaultdict(Mean) |
|
|
1606 |
else: |
|
|
1607 |
self._mean_AUPRC[task_label].reset() |
|
|
1608 |
|
|
|
1609 |
|
|
|
1610 |
class AUPRCPluginMetric(GenericPluginMetric[float]): |
|
|
1611 |
""" |
|
|
1612 |
Base class for all AUPRCs plugin metrics |
|
|
1613 |
""" |
|
|
1614 |
|
|
|
1615 |
def __init__(self, reset_at, emit_at, mode): |
|
|
1616 |
self._AUPRC = AUPRC() |
|
|
1617 |
super(AUPRCPluginMetric, self).__init__( |
|
|
1618 |
self._AUPRC, reset_at=reset_at, emit_at=emit_at, mode=mode |
|
|
1619 |
) |
|
|
1620 |
|
|
|
1621 |
def reset(self, strategy=None) -> None: |
|
|
1622 |
if self._reset_at == "stream" or strategy is None: |
|
|
1623 |
self._metric.reset() |
|
|
1624 |
else: |
|
|
1625 |
self._metric.reset(phase_and_task(strategy)[1]) |
|
|
1626 |
|
|
|
1627 |
def result(self, strategy=None) -> float: |
|
|
1628 |
if self._emit_at == "stream" or strategy is None: |
|
|
1629 |
return self._metric.result() |
|
|
1630 |
else: |
|
|
1631 |
return self._metric.result(phase_and_task(strategy)[1]) |
|
|
1632 |
|
|
|
1633 |
def update(self, strategy): |
|
|
1634 |
# task labels defined for each experience |
|
|
1635 |
task_labels = strategy.experience.task_labels |
|
|
1636 |
if len(task_labels) > 1: |
|
|
1637 |
# task labels defined for each pattern |
|
|
1638 |
task_labels = strategy.mb_task_id |
|
|
1639 |
else: |
|
|
1640 |
task_labels = task_labels[0] |
|
|
1641 |
self._AUPRC.update(strategy.mb_output, strategy.mb_y, task_labels) |
|
|
1642 |
|
|
|
1643 |
|
|
|
1644 |
class MinibatchAUPRC(AUPRCPluginMetric): |
|
|
1645 |
""" |
|
|
1646 |
The minibatch plugin AUPRC metric. |
|
|
1647 |
This metric only works at training time. |
|
|
1648 |
|
|
|
1649 |
This metric computes the average AUPRC over patterns |
|
|
1650 |
from a single minibatch. |
|
|
1651 |
It reports the result after each iteration. |
|
|
1652 |
|
|
|
1653 |
If a more coarse-grained logging is needed, consider using |
|
|
1654 |
:class:`EpochAUPRC` instead. |
|
|
1655 |
""" |
|
|
1656 |
|
|
|
1657 |
def __init__(self): |
|
|
1658 |
""" |
|
|
1659 |
Creates an instance of the MinibatchAUPRC metric. |
|
|
1660 |
""" |
|
|
1661 |
super(MinibatchAUPRC, self).__init__( |
|
|
1662 |
reset_at="iteration", emit_at="iteration", mode="train" |
|
|
1663 |
) |
|
|
1664 |
|
|
|
1665 |
def __str__(self): |
|
|
1666 |
return "AUPRC_MB" |
|
|
1667 |
|
|
|
1668 |
|
|
|
1669 |
class EpochAUPRC(AUPRCPluginMetric): |
|
|
1670 |
""" |
|
|
1671 |
The average AUPRC over a single training epoch. |
|
|
1672 |
This plugin metric only works at training time. |
|
|
1673 |
|
|
|
1674 |
The AUPRC will be logged after each training epoch by computing |
|
|
1675 |
the number of correctly predicted patterns during the epoch divided by |
|
|
1676 |
the overall number of patterns encountered in that epoch. |
|
|
1677 |
""" |
|
|
1678 |
|
|
|
1679 |
def __init__(self): |
|
|
1680 |
""" |
|
|
1681 |
Creates an instance of the EpochAUPRC metric. |
|
|
1682 |
""" |
|
|
1683 |
|
|
|
1684 |
super(EpochAUPRC, self).__init__( |
|
|
1685 |
reset_at="epoch", emit_at="epoch", mode="train" |
|
|
1686 |
) |
|
|
1687 |
|
|
|
1688 |
def __str__(self): |
|
|
1689 |
return "AUPRC_Epoch" |
|
|
1690 |
|
|
|
1691 |
|
|
|
1692 |
class RunningEpochAUPRC(AUPRCPluginMetric): |
|
|
1693 |
""" |
|
|
1694 |
The average AUPRC across all minibatches up to the current |
|
|
1695 |
epoch iteration. |
|
|
1696 |
This plugin metric only works at training time. |
|
|
1697 |
|
|
|
1698 |
At each iteration, this metric logs the AUPRC averaged over all patterns |
|
|
1699 |
seen so far in the current epoch. |
|
|
1700 |
The metric resets its state after each training epoch. |
|
|
1701 |
""" |
|
|
1702 |
|
|
|
1703 |
def __init__(self): |
|
|
1704 |
""" |
|
|
1705 |
Creates an instance of the RunningEpochAUPRC metric. |
|
|
1706 |
""" |
|
|
1707 |
|
|
|
1708 |
super(RunningEpochAUPRC, self).__init__( |
|
|
1709 |
reset_at="epoch", emit_at="iteration", mode="train" |
|
|
1710 |
) |
|
|
1711 |
|
|
|
1712 |
def __str__(self): |
|
|
1713 |
return "RunningAUPRC_Epoch" |
|
|
1714 |
|
|
|
1715 |
|
|
|
1716 |
class ExperienceAUPRC(AUPRCPluginMetric): |
|
|
1717 |
""" |
|
|
1718 |
At the end of each experience, this plugin metric reports |
|
|
1719 |
the average AUPRC over all patterns seen in that experience. |
|
|
1720 |
This metric only works at eval time. |
|
|
1721 |
""" |
|
|
1722 |
|
|
|
1723 |
def __init__(self): |
|
|
1724 |
""" |
|
|
1725 |
Creates an instance of ExperienceAUPRC metric |
|
|
1726 |
""" |
|
|
1727 |
super(ExperienceAUPRC, self).__init__( |
|
|
1728 |
reset_at="experience", emit_at="experience", mode="eval" |
|
|
1729 |
) |
|
|
1730 |
|
|
|
1731 |
def __str__(self): |
|
|
1732 |
return "AUPRC_Exp" |
|
|
1733 |
|
|
|
1734 |
|
|
|
1735 |
class StreamAUPRC(AUPRCPluginMetric): |
|
|
1736 |
""" |
|
|
1737 |
At the end of the entire stream of experiences, this plugin metric |
|
|
1738 |
reports the average AUPRC over all patterns seen in all experiences. |
|
|
1739 |
This metric only works at eval time. |
|
|
1740 |
""" |
|
|
1741 |
|
|
|
1742 |
def __init__(self): |
|
|
1743 |
""" |
|
|
1744 |
Creates an instance of StreamAUPRC metric |
|
|
1745 |
""" |
|
|
1746 |
super(StreamAUPRC, self).__init__( |
|
|
1747 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
1748 |
) |
|
|
1749 |
|
|
|
1750 |
def __str__(self): |
|
|
1751 |
return "AUPRC_Stream" |
|
|
1752 |
|
|
|
1753 |
|
|
|
1754 |
class TrainedExperienceAUPRC(AUPRCPluginMetric): |
|
|
1755 |
""" |
|
|
1756 |
At the end of each experience, this plugin metric reports the average |
|
|
1757 |
AUPRC for only the experiences that the model has been trained on so far. |
|
|
1758 |
|
|
|
1759 |
This metric only works at eval time. |
|
|
1760 |
""" |
|
|
1761 |
|
|
|
1762 |
def __init__(self): |
|
|
1763 |
""" |
|
|
1764 |
Creates an instance of TrainedExperienceAUPRC metric by first |
|
|
1765 |
constructing AUPRCPluginMetric |
|
|
1766 |
""" |
|
|
1767 |
super(TrainedExperienceAUPRC, self).__init__( |
|
|
1768 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
1769 |
) |
|
|
1770 |
self._current_experience = 0 |
|
|
1771 |
|
|
|
1772 |
def after_training_exp(self, strategy) -> None: |
|
|
1773 |
self._current_experience = strategy.experience.current_experience |
|
|
1774 |
# Reset average after learning from a new experience |
|
|
1775 |
AUPRCPluginMetric.reset(self, strategy) |
|
|
1776 |
return AUPRCPluginMetric.after_training_exp(self, strategy) |
|
|
1777 |
|
|
|
1778 |
def update(self, strategy): |
|
|
1779 |
""" |
|
|
1780 |
Only update the AUPRC with results from experiences that have been |
|
|
1781 |
trained on |
|
|
1782 |
""" |
|
|
1783 |
if strategy.experience.current_experience <= self._current_experience: |
|
|
1784 |
AUPRCPluginMetric.update(self, strategy) |
|
|
1785 |
|
|
|
1786 |
def __str__(self): |
|
|
1787 |
return "AUPRC_On_Trained_Experiences" |
|
|
1788 |
|
|
|
1789 |
|
|
|
1790 |
def auprc_metrics( |
|
|
1791 |
*, |
|
|
1792 |
minibatch=False, |
|
|
1793 |
epoch=False, |
|
|
1794 |
epoch_running=False, |
|
|
1795 |
experience=False, |
|
|
1796 |
stream=False, |
|
|
1797 |
trained_experience=False, |
|
|
1798 |
) -> List[PluginMetric]: |
|
|
1799 |
""" |
|
|
1800 |
Helper method that can be used to obtain the desired set of |
|
|
1801 |
plugin metrics. |
|
|
1802 |
|
|
|
1803 |
:param minibatch: If True, will return a metric able to log |
|
|
1804 |
the minibatch AUPRC at training time. |
|
|
1805 |
:param epoch: If True, will return a metric able to log |
|
|
1806 |
the epoch AUPRC at training time. |
|
|
1807 |
:param epoch_running: If True, will return a metric able to log |
|
|
1808 |
the running epoch AUPRC at training time. |
|
|
1809 |
:param experience: If True, will return a metric able to log |
|
|
1810 |
the AUPRC on each evaluation experience. |
|
|
1811 |
:param stream: If True, will return a metric able to logAUPRCperiences. |
|
|
1812 |
:param trained_experience: If True, will return a metric able to log |
|
|
1813 |
the average evaluation AUPRC only for experiences that the |
|
|
1814 |
model has been trained on |
|
|
1815 |
|
|
|
1816 |
:return: A list of plugin metrics. |
|
|
1817 |
""" |
|
|
1818 |
|
|
|
1819 |
metrics = [] |
|
|
1820 |
if minibatch: |
|
|
1821 |
metrics.append(MinibatchAUPRC()) |
|
|
1822 |
|
|
|
1823 |
if epoch: |
|
|
1824 |
metrics.append(EpochAUPRC()) |
|
|
1825 |
|
|
|
1826 |
if epoch_running: |
|
|
1827 |
metrics.append(RunningEpochAUPRC()) |
|
|
1828 |
|
|
|
1829 |
if experience: |
|
|
1830 |
metrics.append(ExperienceAUPRC()) |
|
|
1831 |
|
|
|
1832 |
if stream: |
|
|
1833 |
metrics.append(StreamAUPRC()) |
|
|
1834 |
|
|
|
1835 |
if trained_experience: |
|
|
1836 |
metrics.append(TrainedExperienceAUPRC()) |
|
|
1837 |
|
|
|
1838 |
return metrics |
|
|
1839 |
|
|
|
1840 |
|
|
|
1841 |
class ROCAUC(Metric[float]): |
|
|
1842 |
""" |
|
|
1843 |
The ROCAUC metric. This is a standalone metric. |
|
|
1844 |
|
|
|
1845 |
The metric keeps a dictionary of <task_label, ROCAUC value> pairs. |
|
|
1846 |
and update the values through a running average over multiple |
|
|
1847 |
<prediction, target> pairs of Tensors, provided incrementally. |
|
|
1848 |
The "prediction" and "target" tensors may contain plain labels or |
|
|
1849 |
one-hot/logit vectors. |
|
|
1850 |
|
|
|
1851 |
Each time `result` is called, this metric emits the average ROCAUC |
|
|
1852 |
across all predictions made since the last `reset`. |
|
|
1853 |
|
|
|
1854 |
The reset method will bring the metric to its initial state. By default |
|
|
1855 |
this metric in its initial state will return an ROCAUC value of 0. |
|
|
1856 |
""" |
|
|
1857 |
|
|
|
1858 |
def __init__(self): |
|
|
1859 |
""" |
|
|
1860 |
Creates an instance of the standalone ROCAUC metric. |
|
|
1861 |
|
|
|
1862 |
By default this metric in its initial state will return a ROCAUC |
|
|
1863 |
value of 0. The metric can be updated by using the `update` method |
|
|
1864 |
while the running ROCAUC can be retrieved using the `result` method. |
|
|
1865 |
""" |
|
|
1866 |
super().__init__() |
|
|
1867 |
self._mean_ROCAUC = defaultdict(Mean) |
|
|
1868 |
""" |
|
|
1869 |
The mean utility that will be used to store the running ROCAUC |
|
|
1870 |
for each task label. |
|
|
1871 |
""" |
|
|
1872 |
|
|
|
1873 |
@torch.no_grad() |
|
|
1874 |
def update( |
|
|
1875 |
self, predicted_y: Tensor, true_y: Tensor, task_labels: Union[float, Tensor] |
|
|
1876 |
) -> None: |
|
|
1877 |
""" |
|
|
1878 |
Update the running ROCAUC given the true and predicted labels. |
|
|
1879 |
Parameter `task_labels` is used to decide how to update the inner |
|
|
1880 |
dictionary: if Float, only the dictionary value related to that task |
|
|
1881 |
is updated. If Tensor, all the dictionary elements belonging to the |
|
|
1882 |
task labels will be updated. |
|
|
1883 |
|
|
|
1884 |
:param predicted_y: The model prediction. Both labels and logit vectors |
|
|
1885 |
are supported. |
|
|
1886 |
:param true_y: The ground truth. Both labels and one-hot vectors |
|
|
1887 |
are supported. |
|
|
1888 |
:param task_labels: the int task label associated to the current |
|
|
1889 |
experience or the task labels vector showing the task label |
|
|
1890 |
for each pattern. |
|
|
1891 |
|
|
|
1892 |
:return: None. |
|
|
1893 |
""" |
|
|
1894 |
if len(true_y) != len(predicted_y): |
|
|
1895 |
raise ValueError("Size mismatch for true_y and predicted_y tensors") |
|
|
1896 |
|
|
|
1897 |
if isinstance(task_labels, Tensor) and len(task_labels) != len(true_y): |
|
|
1898 |
raise ValueError("Size mismatch for true_y and task_labels tensors") |
|
|
1899 |
|
|
|
1900 |
true_y = torch.as_tensor(true_y) |
|
|
1901 |
predicted_y = torch.as_tensor(predicted_y) |
|
|
1902 |
|
|
|
1903 |
assert len(predicted_y.size()) == 2, ( |
|
|
1904 |
"Predictions need to be logits or scores, not labels" |
|
|
1905 |
) |
|
|
1906 |
|
|
|
1907 |
if len(true_y.shape) > 1: |
|
|
1908 |
# Logits -> transform to labels |
|
|
1909 |
true_y = torch.max(true_y, 1)[1] |
|
|
1910 |
|
|
|
1911 |
scores = predicted_y[arange(len(true_y)), true_y] |
|
|
1912 |
|
|
|
1913 |
try: |
|
|
1914 |
roc_auc_score_val = roc_auc_score(true_y.cpu(), scores.cpu()) |
|
|
1915 |
except ValueError: |
|
|
1916 |
roc_auc_score_val = 1 |
|
|
1917 |
|
|
|
1918 |
if isinstance(task_labels, int): |
|
|
1919 |
self._mean_ROCAUC[task_labels].update(roc_auc_score_val, len(predicted_y)) |
|
|
1920 |
elif isinstance(task_labels, Tensor): |
|
|
1921 |
raise NotImplementedError |
|
|
1922 |
else: |
|
|
1923 |
raise ValueError( |
|
|
1924 |
f"Task label type: {type(task_labels)}, expected int/float or Tensor" |
|
|
1925 |
) |
|
|
1926 |
|
|
|
1927 |
def result(self, task_label=None) -> Dict[int, float]: |
|
|
1928 |
""" |
|
|
1929 |
Retrieves the running ROCAUC. |
|
|
1930 |
|
|
|
1931 |
Calling this method will not change the internal state of the metric. |
|
|
1932 |
|
|
|
1933 |
:param task_label: if None, return the entire dictionary of ROCAUCs |
|
|
1934 |
for each task. Otherwise return the dictionary |
|
|
1935 |
`{task_label: ROCAUC}`. |
|
|
1936 |
:return: A dict of running ROCAUCs for each task label, |
|
|
1937 |
where each value is a float value between 0 and 1. |
|
|
1938 |
""" |
|
|
1939 |
assert task_label is None or isinstance(task_label, int) |
|
|
1940 |
if task_label is None: |
|
|
1941 |
return {k: v.result() for k, v in self._mean_ROCAUC.items()} |
|
|
1942 |
else: |
|
|
1943 |
return {task_label: self._mean_ROCAUC[task_label].result()} |
|
|
1944 |
|
|
|
1945 |
def reset(self, task_label=None) -> None: |
|
|
1946 |
""" |
|
|
1947 |
Resets the metric. |
|
|
1948 |
:param task_label: if None, reset the entire dictionary. |
|
|
1949 |
Otherwise, reset the value associated to `task_label`. |
|
|
1950 |
|
|
|
1951 |
:return: None. |
|
|
1952 |
""" |
|
|
1953 |
assert task_label is None or isinstance(task_label, int) |
|
|
1954 |
if task_label is None: |
|
|
1955 |
self._mean_ROCAUC = defaultdict(Mean) |
|
|
1956 |
else: |
|
|
1957 |
self._mean_ROCAUC[task_label].reset() |
|
|
1958 |
|
|
|
1959 |
|
|
|
1960 |
class ROCAUCPluginMetric(GenericPluginMetric[float]): |
|
|
1961 |
""" |
|
|
1962 |
Base class for all ROCAUCs plugin metrics |
|
|
1963 |
""" |
|
|
1964 |
|
|
|
1965 |
def __init__(self, reset_at, emit_at, mode): |
|
|
1966 |
self._ROCAUC = ROCAUC() |
|
|
1967 |
super(ROCAUCPluginMetric, self).__init__( |
|
|
1968 |
self._ROCAUC, reset_at=reset_at, emit_at=emit_at, mode=mode |
|
|
1969 |
) |
|
|
1970 |
|
|
|
1971 |
def reset(self, strategy=None) -> None: |
|
|
1972 |
if self._reset_at == "stream" or strategy is None: |
|
|
1973 |
self._metric.reset() |
|
|
1974 |
else: |
|
|
1975 |
self._metric.reset(phase_and_task(strategy)[1]) |
|
|
1976 |
|
|
|
1977 |
def result(self, strategy=None) -> float: |
|
|
1978 |
if self._emit_at == "stream" or strategy is None: |
|
|
1979 |
return self._metric.result() |
|
|
1980 |
else: |
|
|
1981 |
return self._metric.result(phase_and_task(strategy)[1]) |
|
|
1982 |
|
|
|
1983 |
def update(self, strategy): |
|
|
1984 |
# task labels defined for each experience |
|
|
1985 |
task_labels = strategy.experience.task_labels |
|
|
1986 |
if len(task_labels) > 1: |
|
|
1987 |
# task labels defined for each pattern |
|
|
1988 |
task_labels = strategy.mb_task_id |
|
|
1989 |
else: |
|
|
1990 |
task_labels = task_labels[0] |
|
|
1991 |
self._ROCAUC.update(strategy.mb_output, strategy.mb_y, task_labels) |
|
|
1992 |
|
|
|
1993 |
|
|
|
1994 |
class MinibatchROCAUC(ROCAUCPluginMetric): |
|
|
1995 |
""" |
|
|
1996 |
The minibatch plugin ROCAUC metric. |
|
|
1997 |
This metric only works at training time. |
|
|
1998 |
|
|
|
1999 |
This metric computes the average ROCAUC over patterns |
|
|
2000 |
from a single minibatch. |
|
|
2001 |
It reports the result after each iteration. |
|
|
2002 |
|
|
|
2003 |
If a more coarse-grained logging is needed, consider using |
|
|
2004 |
:class:`EpochROCAUC` instead. |
|
|
2005 |
""" |
|
|
2006 |
|
|
|
2007 |
def __init__(self): |
|
|
2008 |
""" |
|
|
2009 |
Creates an instance of the MinibatchROCAUC metric. |
|
|
2010 |
""" |
|
|
2011 |
super(MinibatchROCAUC, self).__init__( |
|
|
2012 |
reset_at="iteration", emit_at="iteration", mode="train" |
|
|
2013 |
) |
|
|
2014 |
|
|
|
2015 |
def __str__(self): |
|
|
2016 |
return "ROCAUC_MB" |
|
|
2017 |
|
|
|
2018 |
|
|
|
2019 |
class EpochROCAUC(ROCAUCPluginMetric): |
|
|
2020 |
""" |
|
|
2021 |
The average ROCAUC over a single training epoch. |
|
|
2022 |
This plugin metric only works at training time. |
|
|
2023 |
|
|
|
2024 |
The ROCAUC will be logged after each training epoch by computing |
|
|
2025 |
the number of correctly predicted patterns during the epoch divided by |
|
|
2026 |
the overall number of patterns encountered in that epoch. |
|
|
2027 |
""" |
|
|
2028 |
|
|
|
2029 |
def __init__(self): |
|
|
2030 |
""" |
|
|
2031 |
Creates an instance of the EpochROCAUC metric. |
|
|
2032 |
""" |
|
|
2033 |
|
|
|
2034 |
super(EpochROCAUC, self).__init__( |
|
|
2035 |
reset_at="epoch", emit_at="epoch", mode="train" |
|
|
2036 |
) |
|
|
2037 |
|
|
|
2038 |
def __str__(self): |
|
|
2039 |
return "ROCAUC_Epoch" |
|
|
2040 |
|
|
|
2041 |
|
|
|
2042 |
class RunningEpochROCAUC(ROCAUCPluginMetric): |
|
|
2043 |
""" |
|
|
2044 |
The average ROCAUC across all minibatches up to the current |
|
|
2045 |
epoch iteration. |
|
|
2046 |
This plugin metric only works at training time. |
|
|
2047 |
|
|
|
2048 |
At each iteration, this metric logs the ROCAUC averaged over all patterns |
|
|
2049 |
seen so far in the current epoch. |
|
|
2050 |
The metric resets its state after each training epoch. |
|
|
2051 |
""" |
|
|
2052 |
|
|
|
2053 |
def __init__(self): |
|
|
2054 |
""" |
|
|
2055 |
Creates an instance of the RunningEpochROCAUC metric. |
|
|
2056 |
""" |
|
|
2057 |
|
|
|
2058 |
super(RunningEpochROCAUC, self).__init__( |
|
|
2059 |
reset_at="epoch", emit_at="iteration", mode="train" |
|
|
2060 |
) |
|
|
2061 |
|
|
|
2062 |
def __str__(self): |
|
|
2063 |
return "RunningROCAUC_Epoch" |
|
|
2064 |
|
|
|
2065 |
|
|
|
2066 |
class ExperienceROCAUC(ROCAUCPluginMetric): |
|
|
2067 |
""" |
|
|
2068 |
At the end of each experience, this plugin metric reports |
|
|
2069 |
the average ROCAUC over all patterns seen in that experience. |
|
|
2070 |
This metric only works at eval time. |
|
|
2071 |
""" |
|
|
2072 |
|
|
|
2073 |
def __init__(self): |
|
|
2074 |
""" |
|
|
2075 |
Creates an instance of ExperienceROCAUC metric |
|
|
2076 |
""" |
|
|
2077 |
super(ExperienceROCAUC, self).__init__( |
|
|
2078 |
reset_at="experience", emit_at="experience", mode="eval" |
|
|
2079 |
) |
|
|
2080 |
|
|
|
2081 |
def __str__(self): |
|
|
2082 |
return "ROCAUC_Exp" |
|
|
2083 |
|
|
|
2084 |
|
|
|
2085 |
class StreamROCAUC(ROCAUCPluginMetric): |
|
|
2086 |
""" |
|
|
2087 |
At the end of the entire stream of experiences, this plugin metric |
|
|
2088 |
reports the average ROCAUC over all patterns seen in all experiences. |
|
|
2089 |
This metric only works at eval time. |
|
|
2090 |
""" |
|
|
2091 |
|
|
|
2092 |
def __init__(self): |
|
|
2093 |
""" |
|
|
2094 |
Creates an instance of StreamROCAUC metric |
|
|
2095 |
""" |
|
|
2096 |
super(StreamROCAUC, self).__init__( |
|
|
2097 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
2098 |
) |
|
|
2099 |
|
|
|
2100 |
def __str__(self): |
|
|
2101 |
return "ROCAUC_Stream" |
|
|
2102 |
|
|
|
2103 |
|
|
|
2104 |
class TrainedExperienceROCAUC(ROCAUCPluginMetric): |
|
|
2105 |
""" |
|
|
2106 |
At the end of each experience, this plugin metric reports the average |
|
|
2107 |
ROCAUC for only the experiences that the model has been trained on so far. |
|
|
2108 |
|
|
|
2109 |
This metric only works at eval time. |
|
|
2110 |
""" |
|
|
2111 |
|
|
|
2112 |
def __init__(self): |
|
|
2113 |
""" |
|
|
2114 |
Creates an instance of TrainedExperienceROCAUC metric by first |
|
|
2115 |
constructing ROCAUCPluginMetric |
|
|
2116 |
""" |
|
|
2117 |
super(TrainedExperienceROCAUC, self).__init__( |
|
|
2118 |
reset_at="stream", emit_at="stream", mode="eval" |
|
|
2119 |
) |
|
|
2120 |
self._current_experience = 0 |
|
|
2121 |
|
|
|
2122 |
def after_training_exp(self, strategy) -> None: |
|
|
2123 |
self._current_experience = strategy.experience.current_experience |
|
|
2124 |
# Reset average after learning from a new experience |
|
|
2125 |
ROCAUCPluginMetric.reset(self, strategy) |
|
|
2126 |
return ROCAUCPluginMetric.after_training_exp(self, strategy) |
|
|
2127 |
|
|
|
2128 |
def update(self, strategy): |
|
|
2129 |
""" |
|
|
2130 |
Only update the ROCAUC with results from experiences that have been |
|
|
2131 |
trained on |
|
|
2132 |
""" |
|
|
2133 |
if strategy.experience.current_experience <= self._current_experience: |
|
|
2134 |
ROCAUCPluginMetric.update(self, strategy) |
|
|
2135 |
|
|
|
2136 |
def __str__(self): |
|
|
2137 |
return "ROCAUC_On_Trained_Experiences" |
|
|
2138 |
|
|
|
2139 |
|
|
|
2140 |
def rocauc_metrics( |
|
|
2141 |
*, |
|
|
2142 |
minibatch=False, |
|
|
2143 |
epoch=False, |
|
|
2144 |
epoch_running=False, |
|
|
2145 |
experience=False, |
|
|
2146 |
stream=False, |
|
|
2147 |
trained_experience=False, |
|
|
2148 |
) -> List[PluginMetric]: |
|
|
2149 |
""" |
|
|
2150 |
Helper method that can be used to obtain the desired set of |
|
|
2151 |
plugin metrics. |
|
|
2152 |
|
|
|
2153 |
:param minibatch: If True, will return a metric able to log |
|
|
2154 |
the minibatch ROCAUC at training time. |
|
|
2155 |
:param epoch: If True, will return a metric able to log |
|
|
2156 |
the epoch ROCAUC at training time. |
|
|
2157 |
:param epoch_running: If True, will return a metric able to log |
|
|
2158 |
the running epoch ROCAUC at training time. |
|
|
2159 |
:param experience: If True, will return a metric able to log |
|
|
2160 |
the ROCAUC on each evaluation experience. |
|
|
2161 |
:param stream: If True, will return a metric able to logROCAUCperiences. |
|
|
2162 |
:param trained_experience: If True, will return a metric able to log |
|
|
2163 |
the average evaluation ROCAUC only for experiences that the |
|
|
2164 |
model has been trained on |
|
|
2165 |
|
|
|
2166 |
:return: A list of plugin metrics. |
|
|
2167 |
""" |
|
|
2168 |
|
|
|
2169 |
metrics = [] |
|
|
2170 |
if minibatch: |
|
|
2171 |
metrics.append(MinibatchROCAUC()) |
|
|
2172 |
|
|
|
2173 |
if epoch: |
|
|
2174 |
metrics.append(EpochROCAUC()) |
|
|
2175 |
|
|
|
2176 |
if epoch_running: |
|
|
2177 |
metrics.append(RunningEpochROCAUC()) |
|
|
2178 |
|
|
|
2179 |
if experience: |
|
|
2180 |
metrics.append(ExperienceROCAUC()) |
|
|
2181 |
|
|
|
2182 |
if stream: |
|
|
2183 |
metrics.append(StreamROCAUC()) |
|
|
2184 |
|
|
|
2185 |
if trained_experience: |
|
|
2186 |
metrics.append(TrainedExperienceROCAUC()) |
|
|
2187 |
|
|
|
2188 |
return metrics |
|
|
2189 |
|
|
|
2190 |
|
|
|
2191 |
__all__ = [ |
|
|
2192 |
"BalancedAccuracy", |
|
|
2193 |
"MinibatchBalancedAccuracy", |
|
|
2194 |
"EpochBalancedAccuracy", |
|
|
2195 |
"RunningEpochBalancedAccuracy", |
|
|
2196 |
"ExperienceBalancedAccuracy", |
|
|
2197 |
"StreamBalancedAccuracy", |
|
|
2198 |
"TrainedExperienceBalancedAccuracy", |
|
|
2199 |
"balancedaccuracy_metrics", |
|
|
2200 |
"Sensitivity", |
|
|
2201 |
"MinibatchSensitivity", |
|
|
2202 |
"EpochSensitivity", |
|
|
2203 |
"RunningEpochSensitivity", |
|
|
2204 |
"ExperienceSensitivity", |
|
|
2205 |
"StreamSensitivity", |
|
|
2206 |
"TrainedExperienceSensitivity", |
|
|
2207 |
"sensitivity_metrics", |
|
|
2208 |
"Specificity", |
|
|
2209 |
"MinibatchSpecificity", |
|
|
2210 |
"EpochSpecificity", |
|
|
2211 |
"RunningEpochSpecificity", |
|
|
2212 |
"ExperienceSpecificity", |
|
|
2213 |
"StreamSpecificity", |
|
|
2214 |
"TrainedExperienceSpecificity", |
|
|
2215 |
"specificity_metrics", |
|
|
2216 |
"Precision", |
|
|
2217 |
"MinibatchPrecision", |
|
|
2218 |
"EpochPrecision", |
|
|
2219 |
"RunningEpochPrecision", |
|
|
2220 |
"ExperiencePrecision", |
|
|
2221 |
"StreamPrecision", |
|
|
2222 |
"TrainedExperiencePrecision", |
|
|
2223 |
"precision_metrics", |
|
|
2224 |
"AUPRC", |
|
|
2225 |
"MinibatchAUPRC", |
|
|
2226 |
"EpochAUPRC", |
|
|
2227 |
"RunningEpochAUPRC", |
|
|
2228 |
"ExperienceAUPRC", |
|
|
2229 |
"StreamAUPRC", |
|
|
2230 |
"TrainedExperienceAUPRC", |
|
|
2231 |
"auprc_metrics", |
|
|
2232 |
"ROCAUC", |
|
|
2233 |
"MinibatchROCAUC", |
|
|
2234 |
"EpochROCAUC", |
|
|
2235 |
"RunningEpochROCAUC", |
|
|
2236 |
"ExperienceROCAUC", |
|
|
2237 |
"StreamROCAUC", |
|
|
2238 |
"TrainedExperienceROCAUC", |
|
|
2239 |
"rocauc_metrics", |
|
|
2240 |
] |