--- a +++ b/src/config/README.md @@ -0,0 +1,24 @@ +## config + +Contains hyper-parameter configurations for models. + +Hyper-parameter search-space is specificed in `/config/config.py`. Default values tuned during paper experiments are defined in `/config/<dataset>/<outcome>/<domain>/config_<model>_<strategy>.json`. + +## `main.py` arguments + +Individual experiments can be specified with a combination of `--domain_shift` and `--outcome` parameters. A subset of models and Continual learning strategies can be evaluated with `--models` and `--strategies` respectively. To re-run hyperparameter tuning pass the `--validate` flag. + +Example: + +```posh +uv run main.py --domain_shift "hospital" --outcome "mortality_48h" --models "CNN" --strategies "EWC" "Replay" +``` + +Flag | Arg(s) | Meaning +-----------------|-------------|------------------------ +`--domain_shift` | `region` `hospital` `age` `ethnicity` | Domain shift exhibited between tasks +`--outcome` |`mortality_48h` `Shock_4h` `Shock_12h` `ARF_4h` `ARF_12h` | Outcome to predict +`--models` |`MLP` `CNN` `RNN` `LSTM` `GRU` `Transformer` | Model(s) to evaluate +`--strategies` |`Naive` `Cumulative` `EWC` `OnlineEWC` `LwF` `SI` `GEM` `AGEM` `Replay` `GDumb` | Continual learning strategy(s) to evaluate +`--validate` | | Re-tune hyper-parameters +`--num_samples` |`<int>` | Budget for hyper-parameter search