|
a |
|
b/src/config/README.md |
|
|
1 |
## config |
|
|
2 |
|
|
|
3 |
Contains hyper-parameter configurations for models. |
|
|
4 |
|
|
|
5 |
Hyper-parameter search-space is specificed in `/config/config.py`. Default values tuned during paper experiments are defined in `/config/<dataset>/<outcome>/<domain>/config_<model>_<strategy>.json`. |
|
|
6 |
|
|
|
7 |
## `main.py` arguments |
|
|
8 |
|
|
|
9 |
Individual experiments can be specified with a combination of `--domain_shift` and `--outcome` parameters. A subset of models and Continual learning strategies can be evaluated with `--models` and `--strategies` respectively. To re-run hyperparameter tuning pass the `--validate` flag. |
|
|
10 |
|
|
|
11 |
Example: |
|
|
12 |
|
|
|
13 |
```posh |
|
|
14 |
uv run main.py --domain_shift "hospital" --outcome "mortality_48h" --models "CNN" --strategies "EWC" "Replay" |
|
|
15 |
``` |
|
|
16 |
|
|
|
17 |
Flag | Arg(s) | Meaning |
|
|
18 |
-----------------|-------------|------------------------ |
|
|
19 |
`--domain_shift` | `region` `hospital` `age` `ethnicity` | Domain shift exhibited between tasks |
|
|
20 |
`--outcome` |`mortality_48h` `Shock_4h` `Shock_12h` `ARF_4h` `ARF_12h` | Outcome to predict |
|
|
21 |
`--models` |`MLP` `CNN` `RNN` `LSTM` `GRU` `Transformer` | Model(s) to evaluate |
|
|
22 |
`--strategies` |`Naive` `Cumulative` `EWC` `OnlineEWC` `LwF` `SI` `GEM` `AGEM` `Replay` `GDumb` | Continual learning strategy(s) to evaluate |
|
|
23 |
`--validate` | | Re-tune hyper-parameters |
|
|
24 |
`--num_samples` |`<int>` | Budget for hyper-parameter search |