--- a +++ b/README.md @@ -0,0 +1,59 @@ +# Continual Learning of Longitudinal Health Records + +[](https://arxiv.org/abs/2112.11944) [](https://pytorch.org/) [](https://opensource.org/licenses/gpl-3-0) [](https://www.python.org/)  + +Repo for reproducing the experiments in [*Continual Learning of Longitudinal Health Records*](https://arxiv.org/abs/2112.11944) (2021). Release [v0.1](releases/v0.1) of the project corresponds to published results. + +Experiments evaluate various continual learning strategies on standard ICU predictive tasks exhibiting covariate shift. Task outcomes are binary, and input data are multi-modal time-series from patient ICU admissions. + +## Setup + +1. Clone this repo locally. +2. Request access to [MIMIC-III](https://www.physionet.org/content/mimiciii/1.4/) and [eICU-CRD](https://www.physionet.org/content/eicu-crd/2.0/).<sup>1</sup> +3. Download the [preprocessed datasets](https://physionet.org/files/mimic-eicu-fiddle-feature/1.0.0/) to the `/data` directory. + +## Results + +To reproduce main results: + +```zsh +uv run main.py --train +``` + +Figures will be saved to `/results/figs`. Instructions to reproduce supplementary experiments can be found [here](/results/README.md). Bespoke experiments can be specified with appropriate flags e.g: + +```posh +uv run main.py --domain_shift "hospital" --outcome "mortality_48h" --models "CNN" --strategies "EWC" "Replay" --validate --train +``` + +A complete list of available options can be found [here](/config/README.md) or with `uv run main.py --help`. + +## Citation + +If you use any of this code in your work, please reference us: + +```latex +@misc{armstrong2021continual, + title={Continual learning of longitudinal health records}, + author={J. Armstrong and D. Clifton}, + year={2021}, + eprint={2112.11944}, + archivePrefix={arXiv}, + primaryClass={cs.LG} +} +``` + +--- + +### Stack + +For standardisation of ICU predictive task definitions, feature pre-processing, and Continual Learning method implementations, we use the following tools: + +| Tool | Source | +|-----------------------------|----------------------| +|ICU Data | [MIMIC-III](https://www.physionet.org/content/mimiciii/1.4/)<br> [eICU-CRD](https://www.physionet.org/content/eicu-crd/2.0/) | +|Data preprocessing / task definition | [FIDDLE](https://www.physionet.org/content/mimic-eicu-fiddle-feature/1.0.0/) | +|Continual Learning strategies| [Avalanche](https://avalanche.continualai.org/) + +> [!NOTE] +> Temporal Domain Incremental learning experiments require linkage with original MIMIC-III dataset. Requires downloading `ADMISSIONS.csv` from [MIMIC-III](https://physionet.org/content/mimiciii/1.4/) to the `/data/mimic3/` folder.