"""Early Stopping
Source: https://github.com/Bjarten/early-stopping-pytorch/blob/master/pytorchtools.py
"""
# Base Dependencies
# -----------------
import numpy as np
import torch
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(
self, patience=7, verbose=False, delta=0, path="checkpoint.pt", trace_func=print
):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
path (str): Path for the checkpoint to be saved to.
Default: 'checkpoint.pt'
trace_func (function): trace print function.
Default: print
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.path = path
self.trace_func = trace_func
def __call__(self, val_loss, model):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model)
elif score < self.best_score + self.delta:
self.counter += 1
self.trace_func(
f"EarlyStopping counter: {self.counter} out of {self.patience}"
)
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model)
self.counter = 0
def save_checkpoint(self, val_loss, model):
"""Saves model when validation loss decrease."""
if self.verbose:
self.trace_func(
f"Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ..."
)
torch.save(model.state_dict(), self.path)
self.val_loss_min = val_loss