[735bb5]: / src / ml_models / bilstm / encoders.py

Download this file

169 lines (138 with data), 5.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding: utf-8
"""
RNN encoders
Source: https://github.com/joeynmt/joeynmt/blob/main/joeynmt/encoders.py
"""
# Base Dependencies
# -----------------
from typing import Tuple
# Local Dependencies
# -------------------
from utils import freeze_params
# PyTorch Dependencies
# --------------------
import torch
from torch import Tensor, nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
class Encoder(nn.Module):
"""
Base encoder class
"""
# pylint: disable=abstract-method
@property
def output_size(self):
"""
Returns the output size
"""
return self._output_size
class RecurrentEncoder(Encoder):
"""Encodes a sequence of word embeddings"""
# pylint: disable=unused-argument
def __init__(
self,
rnn_type: str = "gru",
hidden_size: int = 1,
emb_size: int = 1,
num_layers: int = 1,
dropout: float = 0.0,
emb_dropout: float = 0.0,
bidirectional: bool = True,
freeze: bool = False,
**kwargs,
) -> None:
"""Create a new recurrent encoder.
Args:
rnn_type (str): RNN type: `gru` or `lstm`.
hidden_size (int): Size of each RNN.
emb_size (int): Size of the word embeddings.
num_layers (int): Number of encoder RNN layers.
dropout (float): Is applied between RNN layers.
emb_dropout (float): Is applied to the RNN input (word embeddings).
bidirectional (bool): Use a bi-directional RNN.
freeze (bool): freeze the parameters of the encoder during training
kwargs:
"""
super().__init__()
self.emb_dropout = torch.nn.Dropout(p=emb_dropout, inplace=False)
self.type = rnn_type
self.emb_size = emb_size
rnn = nn.GRU if rnn_type == "gru" else nn.LSTM
self.rnn = rnn(
emb_size,
hidden_size,
num_layers,
batch_first=True,
bidirectional=bidirectional,
dropout=dropout if num_layers > 1 else 0.0,
)
self._output_size = 2 * hidden_size if bidirectional else hidden_size
if freeze:
freeze_params(self)
def _check_shapes_input_forward(
self, embed_src: Tensor, src_length: Tensor
) -> None:
"""
Make sure the shape of the inputs to `self.forward` are correct.
Same input semantics as `self.forward`.
Args:
embed_src (Tensor): embedded source tokens
src_length (Tensor): source length
"""
# pylint: disable=unused-argument
assert embed_src.shape[0] == src_length.shape[0]
assert embed_src.shape[2] == self.emb_size
assert len(src_length.shape) == 1
def forward(
self, embed_src: Tensor, src_length: Tensor, **kwargs
) -> Tuple[Tensor, Tensor]:
"""
Applies a bidirectional RNN to sequence of embeddings x.
The input mini-batch x needs to be sorted by src length.
Args:
embed_src: embedded src inputs, shape (batch_size, src_len, embed_size)
src_length: length of src inputs
(counting tokens before padding), shape (batch_size)
kwargs:
Returns:
output: hidden states with shape (batch_size, max_length, directions*hidden),
hidden_concat: last hidden state with shape (batch_size, directions*hidden)
"""
self._check_shapes_input_forward(embed_src=embed_src, src_length=src_length)
total_length = embed_src.size(1)
# apply dropout to the rnn input
embed_src = self.emb_dropout(embed_src)
packed = pack_padded_sequence(
embed_src, src_length.cpu(), batch_first=True, enforce_sorted=True
)
output, hidden = self.rnn(packed)
if isinstance(hidden, tuple):
hidden, memory_cell = hidden # pylint: disable=unused-variable
output, _ = pad_packed_sequence(
output, batch_first=True, total_length=total_length
)
# hidden: dir*layers x batch x hidden
# output: batch x max_length x directions*hidden
batch_size = hidden.size()[1]
# separate final hidden states by layer and direction
hidden_layerwise = hidden.view(
self.rnn.num_layers,
2 if self.rnn.bidirectional else 1,
batch_size,
self.rnn.hidden_size,
)
# final_layers: layers x directions x batch x hidden
# concatenate the final states of the last layer for each directions
# thanks to pack_padded_sequence final states don't include padding
fwd_hidden_last = hidden_layerwise[-1:, 0]
bwd_hidden_last = hidden_layerwise[-1:, 1]
# only feed the final state of the top-most layer to the decoder
# pylint: disable=no-member
hidden_concat = torch.cat([fwd_hidden_last, bwd_hidden_last], dim=2).squeeze(0)
# final: batch x directions*hidden
assert hidden_concat.size(0) == output.size(0), (
hidden_concat.size(),
output.size(),
)
return output, hidden_concat
def __repr__(self):
return f"{self.__class__.__name__}(rnn={self.rnn})"