# Base Dependencies
# ----------------
import numpy
# Local Dependencies
# ------------------
from models import RelationCollection
# 3rd-Party Dependencies
# ----------------------
from sklearn.base import BaseEstimator
class TokenDistanceFeature(BaseEstimator):
"""
TokenDistanceFeature
Computes the number of tokens between the two entities of a relation.
Source:
Alimova and Tutubalina (2020) - Multiple features for clinical relation extraction: A machine learning approach
"""
def __init__(self):
pass
def get_feature_names(self, input_features=None):
return ["token_dist"]
def create_token_distance_feature(
self, collection: RelationCollection
) -> numpy.array:
features = []
# max = 1
for doc in collection.middle_tokens:
features.append([len(doc)])
# if len(r.middle_context) > max:
# max = len(r.middle_context)
return numpy.array(features)
def fit(self, x: RelationCollection, y=None):
return self
def transform(self, x: RelationCollection, y=None) -> numpy.array:
return self.create_token_distance_feature(x)
def fit_transform(self, x: RelationCollection, y=None) -> numpy.array:
return self.create_token_distance_feature(x)