# Base Dependencies
# ----------------
import numpy as np
from typing import Optional
# Local Dependencies
# ------------------
from models import RelationCollection
from nlp_pipeline import get_pipeline, set_spacy_entities
# 3rd-Party Dependencies
# ----------------------
from sklearn.base import BaseEstimator
class NegatedEntitiesFeature(BaseEstimator):
"""
Negated Entities Feature
Determines if each of the target entities of a relation is negated or not.
"""
def __init__(self, padding_idx: Optional[int] = None):
self.padding_idx = padding_idx
def get_feature_names(self, input_features=None):
return ["e1_negated", "e2_negated"]
def create_negated_entities_feature(self, collection: RelationCollection) -> list:
features = []
NLP = get_pipeline()
parser = NLP.get_pipe("parser")
negex = NLP.get_pipe("negex")
docs = collection.tokens
for i, doc in enumerate(parser.pipe(docs)):
set_spacy_entities(
doc,
collection.left_tokens[i],
collection.entities1_tokens[i],
collection.relations[i].entity1.type,
collection.middle_tokens[i],
collection.entities2_tokens[i],
collection.relations[i].entity2.type,
collection.right_tokens[i],
)
assert len(doc.ents) == 2
doc = negex(doc)
e1_negated = int(doc.ents[0]._.negex)
e2_negated = int(doc.ents[1]._.negex)
features.append([e1_negated, e2_negated])
return np.array(features)
def fit(self, x: RelationCollection, y=None):
return self
def transform(self, x: RelationCollection) -> list:
return self.create_negated_entities_feature(x)
def fit_transform(self, x: RelationCollection, y=None) -> list:
return self.create_negated_entities_feature(x)