# Base Dependencies
# ----------------
import numpy as np
# Local Dependencies
# ------------------
from models import RelationCollection
from nlp_pipeline import get_pipeline
# 3rd-Party Dependencies
# ----------------------
import networkx as nx
from sklearn.base import BaseEstimator
class DependencyTree(BaseEstimator):
"""
Dependency Tree
Computes the dependency tree of each relation
"""
def __init__(self):
pass
def get_feature_names(self, input_features=None):
return ["dependency_tree"]
def create_dependency_tree(
self,
collection: RelationCollection,
) -> list:
features = []
NLP = get_pipeline()
parser = NLP.get_pipe("parser")
for doc in parser.pipe(collection.tokens):
# build dependency tree
edges = []
for sent in doc.sents:
for token in sent:
for child in token.children:
edges.append(
(
"{0}-{1}".format(token.i, token.lower_),
"{0}-{1}".format(child.i, child.lower_),
)
)
edges.append(
(
"{0}-{1}".format(child.i, child.lower_),
"{0}-{1}".format(token.i, token.lower_),
)
)
T = nx.Graph(edges)
features.append(T)
return features
def fit(self, x: RelationCollection, y=None):
return self
def transform(self, x: RelationCollection, y=None) -> list:
return self.create_dependency_tree(x)
def fit_transform(self, x: RelationCollection, y=None) -> list:
return self.create_dependency_tree(x)