[735bb5]: / src / experiments / bert.py

Download this file

164 lines (127 with data), 5.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Experiments on the BERT model and the different datasets (i.e. n2c2, DDI)
"""
# Base Dependencies
# -----------------
from copy import deepcopy
from pathlib import Path
from os.path import join as pjoin
# Package Dependencies
# --------------------
from .common import final_repetition
# Local Dependencies
# ------------------
from training.config import PLExperimentConfig, BaalExperimentConfig
from training.bert import BertTrainer
from utils import set_seed
# 3rd-Party Dependencies
# ----------------------
from datasets import load_from_disk
# Constants
# ----------
from constants import (
DDI_HF_TEST_PATH,
DDI_HF_TRAIN_PATH,
N2C2_HF_TRAIN_PATH,
N2C2_HF_TEST_PATH,
N2C2_REL_TYPES,
EXP_RANDOM_SEEDS,
BaalQueryStrategy
)
MODEL_NAME = "bert"
def bert_passive_learning_n2c2(init_repetition: int = 0, n_repetitions: int = 5, pairs: bool = False, logging: bool = True):
config = PLExperimentConfig(
max_epoch=25, batch_size=32, val_size=0.2, es_patience=3
)
for repetition in range(init_repetition, final_repetition(init_repetition, n_repetitions)):
# set random seed
random_seed: int = EXP_RANDOM_SEEDS[repetition]
set_seed(random_seed)
config.seed = random_seed
for rel_type in N2C2_REL_TYPES:
# load datasets
train_dataset = load_from_disk(
str(Path(pjoin(N2C2_HF_TRAIN_PATH, MODEL_NAME, rel_type)))
)
test_dataset = load_from_disk(
str(Path(pjoin(N2C2_HF_TEST_PATH, MODEL_NAME, rel_type)))
)
# create trainer
trainer = BertTrainer(
dataset="n2c2",
train_dataset=train_dataset,
test_dataset=test_dataset,
pairs=pairs,
relation_type=rel_type,
)
# train passive learning
trainer.train_passive_learning(config=config, logging=logging)
def bert_active_learning_n2c2(init_repetition: int = 0, n_repetitions: int = 5, pairs: bool = False, logging: bool = True):
config = BaalExperimentConfig(max_epoch=10, batch_size=32)
for repetition in range(init_repetition, final_repetition(init_repetition, n_repetitions)):
# set random seed
random_seed: int = EXP_RANDOM_SEEDS[repetition]
set_seed(random_seed)
config.seed = random_seed
for rel_type in N2C2_REL_TYPES:
# load datasets
train_dataset = load_from_disk(
str(Path(pjoin(N2C2_HF_TRAIN_PATH, MODEL_NAME, rel_type)))
)
test_dataset = load_from_disk(
str(Path(pjoin(N2C2_HF_TEST_PATH, MODEL_NAME, rel_type)))
)
# create trainer
trainer = BertTrainer(
dataset="n2c2",
train_dataset=train_dataset,
test_dataset=test_dataset,
pairs=pairs,
relation_type=rel_type,
)
for query_strategy in BaalQueryStrategy:
exp_config = deepcopy(config)
trainer.train_active_learning(query_strategy, exp_config, logging=logging)
def bert_passive_learning_ddi(init_repetition: int = 0, n_repetitions: int = 5, pairs: bool = False, logging: bool = True):
config = PLExperimentConfig(
max_epoch=25, batch_size=32, val_size=0.2, es_patience=3
)
for repetition in range(init_repetition, final_repetition(init_repetition, n_repetitions)):
# set random seed
random_seed: int = EXP_RANDOM_SEEDS[repetition]
set_seed(random_seed)
config.seed = random_seed
# load datasets
train_dataset = load_from_disk(str(Path(pjoin(DDI_HF_TRAIN_PATH, MODEL_NAME))))
test_dataset = load_from_disk(str(Path(pjoin(DDI_HF_TEST_PATH, MODEL_NAME))))
# create trainer
trainer = BertTrainer(
dataset="ddi",
train_dataset=train_dataset,
test_dataset=test_dataset,
pairs=pairs,
)
# train passive learning
trainer.train_passive_learning(config=config, logging=logging)
def bert_active_learning_ddi(init_repetition: int = 0, n_repetitions: int = 5, pairs: bool = False, logging: bool = True):
config = BaalExperimentConfig(max_epoch=15, batch_size=32,)
for repetition in range(init_repetition, final_repetition(init_repetition, n_repetitions)):
# set random seed
random_seed: int = EXP_RANDOM_SEEDS[repetition]
set_seed(random_seed)
config.seed = random_seed
# load datasets
train_dataset = load_from_disk(str(Path(pjoin(DDI_HF_TRAIN_PATH, MODEL_NAME))))
test_dataset = load_from_disk(str(Path(pjoin(DDI_HF_TEST_PATH, MODEL_NAME))))
# create trainer
trainer = BertTrainer(
dataset="ddi",
train_dataset=train_dataset,
test_dataset=test_dataset,
pairs=pairs,
)
for query_strategy in BaalQueryStrategy:
exp_config = deepcopy(config)
trainer.train_active_learning(query_strategy, exp_config, logging=logging)