|
a |
|
b/src/training/early_stopping.py |
|
|
1 |
"""Early Stopping |
|
|
2 |
Source: https://github.com/Bjarten/early-stopping-pytorch/blob/master/pytorchtools.py |
|
|
3 |
""" |
|
|
4 |
|
|
|
5 |
# Base Dependencies |
|
|
6 |
# ----------------- |
|
|
7 |
import numpy as np |
|
|
8 |
import torch |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
class EarlyStopping: |
|
|
12 |
"""Early stops the training if validation loss doesn't improve after a given patience.""" |
|
|
13 |
|
|
|
14 |
def __init__( |
|
|
15 |
self, patience=7, verbose=False, delta=0, path="checkpoint.pt", trace_func=print |
|
|
16 |
): |
|
|
17 |
""" |
|
|
18 |
Args: |
|
|
19 |
patience (int): How long to wait after last time validation loss improved. |
|
|
20 |
Default: 7 |
|
|
21 |
verbose (bool): If True, prints a message for each validation loss improvement. |
|
|
22 |
Default: False |
|
|
23 |
delta (float): Minimum change in the monitored quantity to qualify as an improvement. |
|
|
24 |
Default: 0 |
|
|
25 |
path (str): Path for the checkpoint to be saved to. |
|
|
26 |
Default: 'checkpoint.pt' |
|
|
27 |
trace_func (function): trace print function. |
|
|
28 |
Default: print |
|
|
29 |
""" |
|
|
30 |
self.patience = patience |
|
|
31 |
self.verbose = verbose |
|
|
32 |
self.counter = 0 |
|
|
33 |
self.best_score = None |
|
|
34 |
self.early_stop = False |
|
|
35 |
self.val_loss_min = np.Inf |
|
|
36 |
self.delta = delta |
|
|
37 |
self.path = path |
|
|
38 |
self.trace_func = trace_func |
|
|
39 |
|
|
|
40 |
def __call__(self, val_loss, model): |
|
|
41 |
|
|
|
42 |
score = -val_loss |
|
|
43 |
|
|
|
44 |
if self.best_score is None: |
|
|
45 |
self.best_score = score |
|
|
46 |
self.save_checkpoint(val_loss, model) |
|
|
47 |
elif score < self.best_score + self.delta: |
|
|
48 |
self.counter += 1 |
|
|
49 |
self.trace_func( |
|
|
50 |
f"EarlyStopping counter: {self.counter} out of {self.patience}" |
|
|
51 |
) |
|
|
52 |
if self.counter >= self.patience: |
|
|
53 |
self.early_stop = True |
|
|
54 |
else: |
|
|
55 |
self.best_score = score |
|
|
56 |
self.save_checkpoint(val_loss, model) |
|
|
57 |
self.counter = 0 |
|
|
58 |
|
|
|
59 |
def save_checkpoint(self, val_loss, model): |
|
|
60 |
"""Saves model when validation loss decrease.""" |
|
|
61 |
if self.verbose: |
|
|
62 |
self.trace_func( |
|
|
63 |
f"Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ..." |
|
|
64 |
) |
|
|
65 |
torch.save(model.state_dict(), self.path) |
|
|
66 |
self.val_loss_min = val_loss |