|
a |
|
b/src/re_datasets/bilstm_utils.py |
|
|
1 |
# Base Dependencies |
|
|
2 |
# ----------------- |
|
|
3 |
import numpy as np |
|
|
4 |
from typing import Dict, List |
|
|
5 |
|
|
|
6 |
# PyTorch Dependencies |
|
|
7 |
# --------------------- |
|
|
8 |
import torch |
|
|
9 |
from torch import Tensor |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
# Auxiliar Functions |
|
|
13 |
# ------------------- |
|
|
14 |
def sort_batch( |
|
|
15 |
batch: Dict[str, List[List[float]]], lengths: List[List[float]] |
|
|
16 |
) -> Dict[str, List[List[float]]]: |
|
|
17 |
""" |
|
|
18 |
Sort a minibatch by the length of the sequences with the longest sequences first |
|
|
19 |
return the sorted batch targes and sequence lengths. This way the output can be used by pack_padded_sequences(...) |
|
|
20 |
|
|
|
21 |
Args: |
|
|
22 |
batch (Dict[str, List[List[float]]]): batch of data |
|
|
23 |
|
|
|
24 |
Return: |
|
|
25 |
Dict[str, List[List[float]]]: batch of data ordered in descending order of sequence length. |
|
|
26 |
|
|
|
27 |
""" |
|
|
28 |
perm_idx = np.argsort(-lengths) |
|
|
29 |
|
|
|
30 |
for key in batch.keys(): |
|
|
31 |
batch[key] = batch[key][perm_idx] |
|
|
32 |
|
|
|
33 |
return batch |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
def pad_seqs( |
|
|
37 |
seqs: List[List[float]], lengths: List[int], padding_idx: int |
|
|
38 |
) -> List[List[float]]: |
|
|
39 |
"""Pads sequences |
|
|
40 |
|
|
|
41 |
Args: |
|
|
42 |
seqs (List[List[float]]): sequences of different lengths |
|
|
43 |
lengths (List[int]): length of each sequence |
|
|
44 |
padding_idx (int): value used for padding |
|
|
45 |
|
|
|
46 |
Returns: |
|
|
47 |
List[List[float]]: padded sequences |
|
|
48 |
""" |
|
|
49 |
batch_size = len(lengths) |
|
|
50 |
max_length = max(lengths) |
|
|
51 |
|
|
|
52 |
padded_seqs = np.full( |
|
|
53 |
shape=(batch_size, max_length), fill_value=padding_idx, dtype=np.int32 |
|
|
54 |
) |
|
|
55 |
|
|
|
56 |
for i, l in enumerate(lengths): |
|
|
57 |
padded_seqs[i, 0:l] = seqs[i] |
|
|
58 |
|
|
|
59 |
return padded_seqs |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
def pad_and_sort_batch(batch: Dict, padding_idx: int, rd_max: int) -> Dict[str, Tensor]: |
|
|
63 |
""" |
|
|
64 |
DataLoaderBatch should be a list of (sequence, target, length) tuples... |
|
|
65 |
Returns a padded tensor of sequences sorted from longest to shortest, |
|
|
66 |
""" |
|
|
67 |
|
|
|
68 |
for key in ["char_length", "seq_length", "label"]: |
|
|
69 |
batch[key] = np.array(batch[key]) |
|
|
70 |
|
|
|
71 |
for key in ["e1", "e2"]: |
|
|
72 |
seqs = batch[key] |
|
|
73 |
# pad entities apart to avoid unnecessary padding |
|
|
74 |
lengths = list(map(lambda x: len(x), seqs)) |
|
|
75 |
batch[key] = pad_seqs(seqs, lengths, padding_idx) |
|
|
76 |
|
|
|
77 |
for key in ["rd1", "rd2"]: |
|
|
78 |
seqs = batch[key] |
|
|
79 |
# pad relative distance with maximum value |
|
|
80 |
batch[key] = pad_seqs(seqs, batch["seq_length"], rd_max) |
|
|
81 |
|
|
|
82 |
for key in ["sent", "iob", "pos", "dep"]: |
|
|
83 |
seqs = batch[key] |
|
|
84 |
# pad other features with the common padding index |
|
|
85 |
batch[key] = pad_seqs(seqs, batch["seq_length"], padding_idx) |
|
|
86 |
|
|
|
87 |
return sort_batch(batch, batch["seq_length"]) |
|
|
88 |
|
|
|
89 |
|
|
|
90 |
def custom_collate(data: Dict[str, List[List[float]]]): |
|
|
91 |
"""Separates the inputs and the targets |
|
|
92 |
|
|
|
93 |
Args: |
|
|
94 |
data (Dict[str, List[List[float]]]): batch of data |
|
|
95 |
|
|
|
96 |
Returns: |
|
|
97 |
Tuple[Dict[str, Tensor], Tensor]: inputs and targets. |
|
|
98 |
|
|
|
99 |
""" |
|
|
100 |
inputs = {} |
|
|
101 |
targets = torch.from_numpy(data[0]["label"]).long() |
|
|
102 |
for key, value in data[0].items(): |
|
|
103 |
if key != "label": |
|
|
104 |
inputs[key] = torch.from_numpy(value).long() |
|
|
105 |
return inputs, targets |