|
a |
|
b/src/preprocessing/generate_relations.py |
|
|
1 |
# coding: utf-8 |
|
|
2 |
|
|
|
3 |
# Base Dependencies |
|
|
4 |
# ------------------ |
|
|
5 |
import json |
|
|
6 |
import xml.etree.ElementTree as ET |
|
|
7 |
|
|
|
8 |
from os.path import join as pjoin |
|
|
9 |
from pathlib import Path |
|
|
10 |
from tqdm import tqdm |
|
|
11 |
from typing import List, Tuple, Set, Dict |
|
|
12 |
|
|
|
13 |
# Local Dependencies |
|
|
14 |
# -------------------- |
|
|
15 |
from models import Document, Entity, RelationN2C2, RelationDDI, RelationCollection |
|
|
16 |
from utils import files_ddi, files_n2c2, doc_id_n2c2, make_dir |
|
|
17 |
|
|
|
18 |
# 3rd-Party Dependencies |
|
|
19 |
# ---------------------- |
|
|
20 |
from PyRuSH import PyRuSHSentencizer |
|
|
21 |
|
|
|
22 |
# Constants |
|
|
23 |
# --------- |
|
|
24 |
from constants import N2C2_PATH, DDI_PATH |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
# Auxiliar Functions |
|
|
28 |
# ------------------ |
|
|
29 |
def read_txt(file: Path) -> str: |
|
|
30 |
"""Reads a .txt file |
|
|
31 |
|
|
|
32 |
Args: |
|
|
33 |
file (Path): path to the .txt file |
|
|
34 |
""" |
|
|
35 |
# read text file |
|
|
36 |
with open(file, "r", encoding="utf-8") as fin: |
|
|
37 |
text = fin.read() |
|
|
38 |
|
|
|
39 |
return text |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
def read_json(file: Path) -> str: |
|
|
43 |
"""Reads a .json file |
|
|
44 |
|
|
|
45 |
Args: |
|
|
46 |
file (Path): path to the .json file |
|
|
47 |
""" |
|
|
48 |
return json.loads(read_txt(file)) |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
def read_annotations_n2c2(file: Path) -> Tuple[List[Entity], Set[str]]: |
|
|
52 |
"""Reads a n2c2 .ann file and extracts the entities and the relations |
|
|
53 |
|
|
|
54 |
Args: |
|
|
55 |
file (Path): path to the n2c2 annotation file |
|
|
56 |
""" |
|
|
57 |
|
|
|
58 |
# read file |
|
|
59 |
with open(file, "r", encoding="utf-8") as fin: |
|
|
60 |
annotations: List[str] = fin.readlines() |
|
|
61 |
|
|
|
62 |
# process file |
|
|
63 |
doc_id: str = doc_id_n2c2(file) |
|
|
64 |
entities: List[Entity] = list() |
|
|
65 |
gt_relations: Set[str] = set() # ground-truth relations |
|
|
66 |
|
|
|
67 |
for line in annotations: |
|
|
68 |
if line.startswith("T"): # process entity |
|
|
69 |
entities.append(Entity.from_n2c2_annotation(doc_id, line)) |
|
|
70 |
|
|
|
71 |
elif line.startswith("R"): # process relation |
|
|
72 |
id, definition = line.strip().split("\t") |
|
|
73 |
type, entity1_id, entity2_id = definition.split() |
|
|
74 |
entity1_id = entity1_id.split(":")[1] |
|
|
75 |
entity2_id = entity2_id.split(":")[1] |
|
|
76 |
gt_relations.add("{}-{}".format(entity1_id, entity2_id)) |
|
|
77 |
|
|
|
78 |
else: # ignore annotator's note |
|
|
79 |
continue |
|
|
80 |
|
|
|
81 |
# sort entities by their end character |
|
|
82 |
entities.sort(key=lambda ent: ent.end) |
|
|
83 |
|
|
|
84 |
return entities, gt_relations |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
# Main Functions |
|
|
88 |
# --------------- |
|
|
89 |
def generate_relations( |
|
|
90 |
dataset: str, save_to_disk: bool = True |
|
|
91 |
) -> Dict[str, RelationCollection]: |
|
|
92 |
"""Generates relations of a given dataset and saves them to disk |
|
|
93 |
|
|
|
94 |
Args: |
|
|
95 |
dataset (str): dataset's name |
|
|
96 |
save_to_disk (bool, optional): the relation collections are saved to disk in a datading or not. Defaults to True. |
|
|
97 |
|
|
|
98 |
Raises: |
|
|
99 |
ValueError: unsupported dataset |
|
|
100 |
|
|
|
101 |
Returns: |
|
|
102 |
Dict[str, RelationCollection]: train and test relation collections |
|
|
103 |
""" |
|
|
104 |
if dataset == "n2c2": |
|
|
105 |
return generate_relations_n2c2(save_to_disk=save_to_disk) |
|
|
106 |
elif dataset == "ddi": |
|
|
107 |
return generate_relations_ddi(save_to_disk=save_to_disk) |
|
|
108 |
else: |
|
|
109 |
raise ValueError("unsupported dataset '{}'".format(dataset)) |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
def generate_relations_n2c2(save_to_disk: bool = True) -> Dict[str, RelationCollection]: |
|
|
113 |
"""Generates relations of the n2c2 dataset |
|
|
114 |
1. Per document |
|
|
115 |
2. Read all entities, all true relations |
|
|
116 |
3. Separate in to drugs and per attribute |
|
|
117 |
4. For each relation type, combine each drug with each attribute within the same sentence |
|
|
118 |
|
|
|
119 |
Args: |
|
|
120 |
save_to_disk (bool): the relation collections are saved to disk in a datading or not. Default to True. |
|
|
121 |
|
|
|
122 |
Returns: |
|
|
123 |
Dict[str, RelationCollection]: train and test relation collections |
|
|
124 |
""" |
|
|
125 |
print("Generating relations for the n2c2 dataset...\n") |
|
|
126 |
|
|
|
127 |
dataset = files_n2c2() |
|
|
128 |
collections = {} |
|
|
129 |
|
|
|
130 |
for split, files in dataset.items(): |
|
|
131 |
|
|
|
132 |
print(split, ": ") |
|
|
133 |
split_entities = [] |
|
|
134 |
split_relations = [] |
|
|
135 |
|
|
|
136 |
for basepath in tqdm(files): |
|
|
137 |
# process clinical text, split in sentences |
|
|
138 |
document: Document = Document.from_json(read_txt(basepath + ".json")) |
|
|
139 |
|
|
|
140 |
# read annotation file |
|
|
141 |
entities, gt_relations = read_annotations_n2c2(basepath + ".ann") |
|
|
142 |
|
|
|
143 |
# generate relations |
|
|
144 |
relations = RelationN2C2.generate_relations_n2c2( |
|
|
145 |
document, entities, gt_relations, (split == "test") |
|
|
146 |
) |
|
|
147 |
|
|
|
148 |
split_entities.extend(entities) |
|
|
149 |
split_relations.extend(relations) |
|
|
150 |
|
|
|
151 |
# create collection |
|
|
152 |
collection = RelationCollection(split_relations) |
|
|
153 |
|
|
|
154 |
# remove invalid relations |
|
|
155 |
collection = collection[collection.valid_indexes()] |
|
|
156 |
|
|
|
157 |
# write to databing |
|
|
158 |
if save_to_disk: |
|
|
159 |
make_dir(pjoin(N2C2_PATH, "{}_datading".format(split))) |
|
|
160 |
collection.to_datading( |
|
|
161 |
pjoin(N2C2_PATH, "{}_datading".format(split), "relations.msgpack") |
|
|
162 |
) |
|
|
163 |
|
|
|
164 |
collections[split] = collection |
|
|
165 |
|
|
|
166 |
return collections |
|
|
167 |
|
|
|
168 |
|
|
|
169 |
def generate_relations_ddi(save_to_disk: bool = True) -> Dict[str, RelationCollection]: |
|
|
170 |
"""Generates relations of the ddi dataset |
|
|
171 |
|
|
|
172 |
Args: |
|
|
173 |
save_to_disk (bool): the relation collections are saved to disk in a datading or not. Default to True. |
|
|
174 |
|
|
|
175 |
Returns: |
|
|
176 |
Dict[str, RelationCollection]: train and test relation collections |
|
|
177 |
""" |
|
|
178 |
print("Generating relations for the DDI Extraction corpus...") |
|
|
179 |
|
|
|
180 |
dataset = files_ddi() |
|
|
181 |
collections = {} |
|
|
182 |
|
|
|
183 |
for split, files in dataset.items(): |
|
|
184 |
print(split, ": ") |
|
|
185 |
split_relations = [] |
|
|
186 |
|
|
|
187 |
for file in tqdm(files): |
|
|
188 |
xml_tree = ET.parse(file) |
|
|
189 |
relations = RelationDDI.generate_relations_ddi(xml_tree) |
|
|
190 |
split_relations.extend(relations) |
|
|
191 |
|
|
|
192 |
# create collection |
|
|
193 |
collection = RelationCollection(split_relations) |
|
|
194 |
|
|
|
195 |
# remove invalid relations |
|
|
196 |
collection = collection[collection.valid_indexes()] |
|
|
197 |
|
|
|
198 |
# write to databing |
|
|
199 |
if save_to_disk: |
|
|
200 |
make_dir(pjoin(DDI_PATH, "{}_datading".format(split))) |
|
|
201 |
collection.to_datading( |
|
|
202 |
pjoin(DDI_PATH, "{}_datading".format(split), "relations.msgpack") |
|
|
203 |
) |
|
|
204 |
|
|
|
205 |
collections[split] = collection |
|
|
206 |
|
|
|
207 |
return collections |