|
a |
|
b/src/models/entity.py |
|
|
1 |
# Base Dependencies |
|
|
2 |
# ----------------- |
|
|
3 |
from typing import List |
|
|
4 |
|
|
|
5 |
# Local Dependencies |
|
|
6 |
# ------------------ |
|
|
7 |
from nlp_pipeline import get_pipeline |
|
|
8 |
|
|
|
9 |
# 3rd-Party Dependencies |
|
|
10 |
# ---------------------- |
|
|
11 |
from spacy.language import Language |
|
|
12 |
from spacy.tokens import Doc |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
class Entity: |
|
|
16 |
""" |
|
|
17 |
Entity |
|
|
18 |
|
|
|
19 |
Representation of a biomedical entity. |
|
|
20 |
""" |
|
|
21 |
|
|
|
22 |
# Spacy's pipeline |
|
|
23 |
NLP: Language = None |
|
|
24 |
|
|
|
25 |
def __init__( |
|
|
26 |
self, id: str, text: str, type: str, doc_id: str, start: int, end: int |
|
|
27 |
): |
|
|
28 |
""" |
|
|
29 |
Args: |
|
|
30 |
id (str): identifier |
|
|
31 |
text (str): text |
|
|
32 |
type (str): entity type |
|
|
33 |
doc_id (str): the identifier of the document the entity belongs to |
|
|
34 |
start (int): start character in the sentence |
|
|
35 |
end (int): end character in the sentence |
|
|
36 |
""" |
|
|
37 |
self.id = id |
|
|
38 |
self.type = type.strip() |
|
|
39 |
self.text = text.strip() |
|
|
40 |
self.doc_id = doc_id |
|
|
41 |
self.start = start |
|
|
42 |
self.end = end |
|
|
43 |
self._tokens = None |
|
|
44 |
|
|
|
45 |
def __len__(self) -> int: |
|
|
46 |
return len(self.text) |
|
|
47 |
|
|
|
48 |
def __str__(self) -> str: |
|
|
49 |
return "Entity(id: {}, type: {}, text: {}, start: {}, end: {})".format( |
|
|
50 |
self.id, self.type, self.text, self.start, self.end |
|
|
51 |
) |
|
|
52 |
|
|
|
53 |
@property |
|
|
54 |
def uid(self) -> str: |
|
|
55 |
"""Unique idenfitifer""" |
|
|
56 |
return "{}-{}".format(self.doc_id, self.id) |
|
|
57 |
|
|
|
58 |
@property |
|
|
59 |
def tokens(self) -> Doc: |
|
|
60 |
"""Obtains the tokenized text of the entity's text |
|
|
61 |
|
|
|
62 |
Returns: |
|
|
63 |
Doc: processed text through Spacy's pipeline |
|
|
64 |
""" |
|
|
65 |
if self._tokens is None: |
|
|
66 |
self._tokens = Entity.tokenize(self.text) |
|
|
67 |
return self._tokens |
|
|
68 |
|
|
|
69 |
# Class Methods |
|
|
70 |
# ------------- |
|
|
71 |
@classmethod |
|
|
72 |
def set_nlp(cls, nlp: Language): |
|
|
73 |
"""Sets the Entity Class' Spacy's pipeline |
|
|
74 |
|
|
|
75 |
Args: |
|
|
76 |
nlp (Language): pipeline |
|
|
77 |
""" |
|
|
78 |
cls.NLP = nlp |
|
|
79 |
|
|
|
80 |
@classmethod |
|
|
81 |
def tokenize(cls, text: str, disable: List[str] = ["parser", "negex"]) -> Doc: |
|
|
82 |
"""Tokenizes a text fragment with the configured Spacy's pipeline |
|
|
83 |
|
|
|
84 |
Args: |
|
|
85 |
text (str): text fragment |
|
|
86 |
disable (List[str], optional): pipes of the Spacy's pipeline to be disabled. Defaults to ["parser"]. |
|
|
87 |
|
|
|
88 |
Returns: |
|
|
89 |
Doc: tokenized text |
|
|
90 |
""" |
|
|
91 |
if cls.NLP is None: |
|
|
92 |
cls.NLP = get_pipeline() |
|
|
93 |
|
|
|
94 |
with cls.NLP.select_pipes(disable=disable): |
|
|
95 |
doc = cls.NLP(text) |
|
|
96 |
return doc |
|
|
97 |
|
|
|
98 |
@classmethod |
|
|
99 |
def from_n2c2_annotation(cls, doc_id: str, annotation: str) -> "Entity": |
|
|
100 |
"""Creates an Entity instance from an n2c2 annotation line |
|
|
101 |
|
|
|
102 |
Args: |
|
|
103 |
doc_id (str): the identifier of the document the entity belongs to |
|
|
104 |
annotation (str): the entity description in the n2c2 corpus' format |
|
|
105 |
|
|
|
106 |
Returns: |
|
|
107 |
Entity: the annotated entity |
|
|
108 |
|
|
|
109 |
""" |
|
|
110 |
id, definition, text = annotation.strip().split("\t") |
|
|
111 |
definition = definition.split() # definition: entity type and location in text |
|
|
112 |
type = definition[0] |
|
|
113 |
start = int(definition[1]) |
|
|
114 |
end = int(definition[-1]) |
|
|
115 |
|
|
|
116 |
return cls(id, text, type, doc_id, start, end) |
|
|
117 |
|
|
|
118 |
@classmethod |
|
|
119 |
def from_ddi_annotation(cls, doc_id: str, annotation: dict) -> "Entity": |
|
|
120 |
"""Creates an Entity instance from an ddi xml annotation |
|
|
121 |
|
|
|
122 |
Args: |
|
|
123 |
doc_id (str): the identifier of the document the entity belongs to |
|
|
124 |
annotation (dict): the entity description in the DDi Extraction Corpus' format |
|
|
125 |
|
|
|
126 |
Returns: |
|
|
127 |
Entity: the annotated entity |
|
|
128 |
""" |
|
|
129 |
id = annotation["id"] |
|
|
130 |
type = annotation["type"].upper() |
|
|
131 |
text = annotation["text"] |
|
|
132 |
char_offset = annotation["charOffset"].split("-") |
|
|
133 |
start = int(char_offset[0]) |
|
|
134 |
end = int(char_offset[-1]) + 1 |
|
|
135 |
|
|
|
136 |
return cls(id, text, type, doc_id, start, end) |
|
|
137 |
|
|
|
138 |
# Instance methods |
|
|
139 |
# ---------------- |
|
|
140 |
def todict(self) -> dict: |
|
|
141 |
"""Dict representation of an entity |
|
|
142 |
|
|
|
143 |
Returns: |
|
|
144 |
dict: representation of the Entity |
|
|
145 |
""" |
|
|
146 |
return { |
|
|
147 |
"id": self.id, |
|
|
148 |
"type": self.type, |
|
|
149 |
"text": self.text, |
|
|
150 |
"doc_id": self.doc_id, |
|
|
151 |
"start": self.start, |
|
|
152 |
"end": self.end, |
|
|
153 |
} |