|
a |
|
b/src/features/entity_embedding.py |
|
|
1 |
# Base Dependencies |
|
|
2 |
# ---------------- |
|
|
3 |
import numpy as np |
|
|
4 |
from typing import List, Tuple |
|
|
5 |
|
|
|
6 |
# Local Dependencies |
|
|
7 |
# ------------------ |
|
|
8 |
from models import RelationCollection |
|
|
9 |
|
|
|
10 |
# 3rd-Party Dependencies |
|
|
11 |
# ---------------------- |
|
|
12 |
from gensim.models import KeyedVectors |
|
|
13 |
from spacy.tokens import Doc |
|
|
14 |
from sklearn.base import BaseEstimator |
|
|
15 |
|
|
|
16 |
# Constants |
|
|
17 |
# --------- |
|
|
18 |
from constants import DATASETS |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
class EntityEmbedding(BaseEstimator): |
|
|
22 |
""" |
|
|
23 |
Entity Embedding |
|
|
24 |
|
|
|
25 |
Obtains the vectors indexes of the two entities in the relation. |
|
|
26 |
|
|
|
27 |
Source: |
|
|
28 |
Alimova and Tutubalina (2020) - Multiple features for clinical relation extraction: A machine learning approach |
|
|
29 |
""" |
|
|
30 |
|
|
|
31 |
def __init__(self, dataset: str, model: KeyedVectors): |
|
|
32 |
if dataset not in DATASETS: |
|
|
33 |
raise ValueError("unsupported dataset '{}'".format(dataset)) |
|
|
34 |
self.dataset = dataset |
|
|
35 |
self.model = model |
|
|
36 |
|
|
|
37 |
def get_feature_names(self, input_features=None): |
|
|
38 |
return ["ent_emb"] |
|
|
39 |
|
|
|
40 |
def create_entity_embedding( |
|
|
41 |
self, collection: RelationCollection |
|
|
42 |
) -> Tuple[np.array, np.array]: |
|
|
43 |
e1_embs = [] |
|
|
44 |
e2_embs = [] |
|
|
45 |
entities1: List[Doc] = collection.entities1_tokens |
|
|
46 |
entities2: List[Doc] = collection.entities2_tokens |
|
|
47 |
|
|
|
48 |
assert len(entities1) == len(entities2) |
|
|
49 |
|
|
|
50 |
for e1, e2 in zip(entities1, entities2): |
|
|
51 |
e1_tokens: List[str] = list(map(lambda t: t.text.lower(), e1)) |
|
|
52 |
e2_tokens: List[str] = list(map(lambda t: t.text.lower(), e2)) |
|
|
53 |
|
|
|
54 |
e1_embs.append(self.model.get_mean_vector(e1_tokens)) |
|
|
55 |
e2_embs.append(self.model.get_mean_vector(e2_tokens)) |
|
|
56 |
|
|
|
57 |
return np.array(e1_embs), np.array(e2_embs) |
|
|
58 |
|
|
|
59 |
def fit(self, x: RelationCollection, y=None): |
|
|
60 |
return self |
|
|
61 |
|
|
|
62 |
def transform(self, x: RelationCollection) -> Tuple[np.array, np.array]: |
|
|
63 |
return self.create_entity_embedding(x) |
|
|
64 |
|
|
|
65 |
def fit_transform(self, x: RelationCollection, y=None) -> Tuple[np.array, np.array]: |
|
|
66 |
return self.create_entity_embedding(x) |