|
a |
|
b/src/experiments/bert.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
# -*- coding: utf-8 -*- |
|
|
3 |
|
|
|
4 |
""" |
|
|
5 |
Experiments on the BERT model and the different datasets (i.e. n2c2, DDI) |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
# Base Dependencies |
|
|
9 |
# ----------------- |
|
|
10 |
from copy import deepcopy |
|
|
11 |
from pathlib import Path |
|
|
12 |
from os.path import join as pjoin |
|
|
13 |
|
|
|
14 |
# Package Dependencies |
|
|
15 |
# -------------------- |
|
|
16 |
from .common import final_repetition |
|
|
17 |
|
|
|
18 |
# Local Dependencies |
|
|
19 |
# ------------------ |
|
|
20 |
from training.config import PLExperimentConfig, BaalExperimentConfig |
|
|
21 |
from training.bert import BertTrainer |
|
|
22 |
from utils import set_seed |
|
|
23 |
|
|
|
24 |
# 3rd-Party Dependencies |
|
|
25 |
# ---------------------- |
|
|
26 |
from datasets import load_from_disk |
|
|
27 |
|
|
|
28 |
# Constants |
|
|
29 |
# ---------- |
|
|
30 |
from constants import ( |
|
|
31 |
DDI_HF_TEST_PATH, |
|
|
32 |
DDI_HF_TRAIN_PATH, |
|
|
33 |
N2C2_HF_TRAIN_PATH, |
|
|
34 |
N2C2_HF_TEST_PATH, |
|
|
35 |
N2C2_REL_TYPES, |
|
|
36 |
EXP_RANDOM_SEEDS, |
|
|
37 |
BaalQueryStrategy |
|
|
38 |
) |
|
|
39 |
|
|
|
40 |
MODEL_NAME = "bert" |
|
|
41 |
|
|
|
42 |
|
|
|
43 |
def bert_passive_learning_n2c2(init_repetition: int = 0, n_repetitions: int = 5, pairs: bool = False, logging: bool = True): |
|
|
44 |
|
|
|
45 |
config = PLExperimentConfig( |
|
|
46 |
max_epoch=25, batch_size=32, val_size=0.2, es_patience=3 |
|
|
47 |
) |
|
|
48 |
|
|
|
49 |
for repetition in range(init_repetition, final_repetition(init_repetition, n_repetitions)): |
|
|
50 |
# set random seed |
|
|
51 |
random_seed: int = EXP_RANDOM_SEEDS[repetition] |
|
|
52 |
set_seed(random_seed) |
|
|
53 |
config.seed = random_seed |
|
|
54 |
|
|
|
55 |
for rel_type in N2C2_REL_TYPES: |
|
|
56 |
# load datasets |
|
|
57 |
train_dataset = load_from_disk( |
|
|
58 |
str(Path(pjoin(N2C2_HF_TRAIN_PATH, MODEL_NAME, rel_type))) |
|
|
59 |
) |
|
|
60 |
test_dataset = load_from_disk( |
|
|
61 |
str(Path(pjoin(N2C2_HF_TEST_PATH, MODEL_NAME, rel_type))) |
|
|
62 |
) |
|
|
63 |
|
|
|
64 |
# create trainer |
|
|
65 |
trainer = BertTrainer( |
|
|
66 |
dataset="n2c2", |
|
|
67 |
train_dataset=train_dataset, |
|
|
68 |
test_dataset=test_dataset, |
|
|
69 |
pairs=pairs, |
|
|
70 |
relation_type=rel_type, |
|
|
71 |
) |
|
|
72 |
|
|
|
73 |
# train passive learning |
|
|
74 |
trainer.train_passive_learning(config=config, logging=logging) |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
def bert_active_learning_n2c2(init_repetition: int = 0, n_repetitions: int = 5, pairs: bool = False, logging: bool = True): |
|
|
78 |
|
|
|
79 |
config = BaalExperimentConfig(max_epoch=10, batch_size=32) |
|
|
80 |
|
|
|
81 |
for repetition in range(init_repetition, final_repetition(init_repetition, n_repetitions)): |
|
|
82 |
# set random seed |
|
|
83 |
random_seed: int = EXP_RANDOM_SEEDS[repetition] |
|
|
84 |
set_seed(random_seed) |
|
|
85 |
config.seed = random_seed |
|
|
86 |
|
|
|
87 |
for rel_type in N2C2_REL_TYPES: |
|
|
88 |
|
|
|
89 |
# load datasets |
|
|
90 |
train_dataset = load_from_disk( |
|
|
91 |
str(Path(pjoin(N2C2_HF_TRAIN_PATH, MODEL_NAME, rel_type))) |
|
|
92 |
) |
|
|
93 |
test_dataset = load_from_disk( |
|
|
94 |
str(Path(pjoin(N2C2_HF_TEST_PATH, MODEL_NAME, rel_type))) |
|
|
95 |
) |
|
|
96 |
|
|
|
97 |
# create trainer |
|
|
98 |
trainer = BertTrainer( |
|
|
99 |
dataset="n2c2", |
|
|
100 |
train_dataset=train_dataset, |
|
|
101 |
test_dataset=test_dataset, |
|
|
102 |
pairs=pairs, |
|
|
103 |
relation_type=rel_type, |
|
|
104 |
) |
|
|
105 |
|
|
|
106 |
for query_strategy in BaalQueryStrategy: |
|
|
107 |
exp_config = deepcopy(config) |
|
|
108 |
trainer.train_active_learning(query_strategy, exp_config, logging=logging) |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
def bert_passive_learning_ddi(init_repetition: int = 0, n_repetitions: int = 5, pairs: bool = False, logging: bool = True): |
|
|
112 |
|
|
|
113 |
config = PLExperimentConfig( |
|
|
114 |
max_epoch=25, batch_size=32, val_size=0.2, es_patience=3 |
|
|
115 |
) |
|
|
116 |
|
|
|
117 |
for repetition in range(init_repetition, final_repetition(init_repetition, n_repetitions)): |
|
|
118 |
# set random seed |
|
|
119 |
random_seed: int = EXP_RANDOM_SEEDS[repetition] |
|
|
120 |
set_seed(random_seed) |
|
|
121 |
config.seed = random_seed |
|
|
122 |
|
|
|
123 |
# load datasets |
|
|
124 |
train_dataset = load_from_disk(str(Path(pjoin(DDI_HF_TRAIN_PATH, MODEL_NAME)))) |
|
|
125 |
test_dataset = load_from_disk(str(Path(pjoin(DDI_HF_TEST_PATH, MODEL_NAME)))) |
|
|
126 |
|
|
|
127 |
# create trainer |
|
|
128 |
trainer = BertTrainer( |
|
|
129 |
dataset="ddi", |
|
|
130 |
train_dataset=train_dataset, |
|
|
131 |
test_dataset=test_dataset, |
|
|
132 |
pairs=pairs, |
|
|
133 |
) |
|
|
134 |
|
|
|
135 |
# train passive learning |
|
|
136 |
trainer.train_passive_learning(config=config, logging=logging) |
|
|
137 |
|
|
|
138 |
|
|
|
139 |
def bert_active_learning_ddi(init_repetition: int = 0, n_repetitions: int = 5, pairs: bool = False, logging: bool = True): |
|
|
140 |
|
|
|
141 |
config = BaalExperimentConfig(max_epoch=15, batch_size=32,) |
|
|
142 |
|
|
|
143 |
for repetition in range(init_repetition, final_repetition(init_repetition, n_repetitions)): |
|
|
144 |
# set random seed |
|
|
145 |
random_seed: int = EXP_RANDOM_SEEDS[repetition] |
|
|
146 |
set_seed(random_seed) |
|
|
147 |
config.seed = random_seed |
|
|
148 |
|
|
|
149 |
# load datasets |
|
|
150 |
train_dataset = load_from_disk(str(Path(pjoin(DDI_HF_TRAIN_PATH, MODEL_NAME)))) |
|
|
151 |
test_dataset = load_from_disk(str(Path(pjoin(DDI_HF_TEST_PATH, MODEL_NAME)))) |
|
|
152 |
|
|
|
153 |
# create trainer |
|
|
154 |
trainer = BertTrainer( |
|
|
155 |
dataset="ddi", |
|
|
156 |
train_dataset=train_dataset, |
|
|
157 |
test_dataset=test_dataset, |
|
|
158 |
pairs=pairs, |
|
|
159 |
) |
|
|
160 |
|
|
|
161 |
for query_strategy in BaalQueryStrategy: |
|
|
162 |
exp_config = deepcopy(config) |
|
|
163 |
trainer.train_active_learning(query_strategy, exp_config, logging=logging) |