Download this file

81 lines (59 with data), 2.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from tensorflow.keras.models import load_model
from flask import Flask, jsonify, request
from flask_cors import CORS
import pickle
import numpy as np
import nltk
from nltk import LancasterStemmer
import pandas as pd
stemmer = LancasterStemmer()
app = Flask(__name__)
CORS(app)
model = load_model("chatbot_model.hdf5")
with open('labels.pkl', 'rb') as f:
labels = pickle.load(f)
with open('words.pkl', 'rb') as f:
words = pickle.load(f)
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]
return sentence_words
def bow(sentence, words, show_details=True):
sentence_words = clean_up_sentence(sentence)
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
bag[i] = 1
if show_details:
print ("found in bag: %s" % w)
return(np.array(bag))
@app.route('/')
def home_endpoint():
return 'Hello there, welcome to Team Medic Minds'
@app.route('/api/predict', methods=['GET', 'POST'])
def classify():
ERROR_THRESHOLD = 0.25
sentence = request.json['sentence']
input_data = pd.DataFrame([bow(sentence, words)], dtype=float, index=['input']).to_numpy()
results = model.predict([input_data])[0]
results = [[i, r] for i, r in enumerate(results) if r > ERROR_THRESHOLD]
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": labels[r[0]], "probability": str(r[1])})
response = jsonify(return_list)
return response
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
'''
def get_prediction():
sentence = request.json['sentence']
if flask.request.method == 'POST':
data = flask.request.json # Get data posted as a json
if data == None:
data = flask.request.args
input = data.get('data')
prediction = predictStringInput(chatbot_model,input)
return prediction
'''