--- a +++ b/EAST_text_recognition.py @@ -0,0 +1,186 @@ +# USAGE +# python text_recognition.py --east frozen_east_text_detection.pb --image images/example_01.jpg +# python text_recognition.py --east frozen_east_text_detection.pb --image images/example_04.jpg --padding 0.05 + +# import the necessary packages +from imutils.object_detection import non_max_suppression +import numpy as np +import pytesseract +import argparse +import cv2 + +def decode_predictions(scores, geometry): + # grab the number of rows and columns from the scores volume, then + # initialize our set of bounding box rectangles and corresponding + # confidence scores + (numRows, numCols) = scores.shape[2:4] + rects = [] + confidences = [] + + # loop over the number of rows + for y in range(0, numRows): + # extract the scores (probabilities), followed by the + # geometrical data used to derive potential bounding box + # coordinates that surround text + scoresData = scores[0, 0, y] + xData0 = geometry[0, 0, y] + xData1 = geometry[0, 1, y] + xData2 = geometry[0, 2, y] + xData3 = geometry[0, 3, y] + anglesData = geometry[0, 4, y] + + # loop over the number of columns + for x in range(0, numCols): + # if our score does not have sufficient probability, + # ignore it + if scoresData[x] < args["min_confidence"]: + continue + + # compute the offset factor as our resulting feature + # maps will be 4x smaller than the input image + (offsetX, offsetY) = (x * 4.0, y * 4.0) + + # extract the rotation angle for the prediction and + # then compute the sin and cosine + angle = anglesData[x] + cos = np.cos(angle) + sin = np.sin(angle) + + # use the geometry volume to derive the width and height + # of the bounding box + h = xData0[x] + xData2[x] + w = xData1[x] + xData3[x] + + # compute both the starting and ending (x, y)-coordinates + # for the text prediction bounding box + endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x])) + endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x])) + startX = int(endX - w) + startY = int(endY - h) + + # add the bounding box coordinates and probability score + # to our respective lists + rects.append((startX, startY, endX, endY)) + confidences.append(scoresData[x]) + + # return a tuple of the bounding boxes and associated confidences + return (rects, confidences) + +# construct the argument parser and parse the arguments +ap = argparse.ArgumentParser() +#ap.add_argument("-i", "--image", type=str, +# help="path to input image") +#ap.add_argument("-east", "--east", type=str, +# help="path to input EAST text detector") +ap.add_argument("-east", "--east", type=str,default=r'\EAST-Text-Detection-and-Extraction\frozen_east_text_detection.pb' + ,help="path to input EAST text detector") +ap.add_argument("-c", "--min-confidence", type=float, default=0.5, + help="minimum probability required to inspect a region") +ap.add_argument("-w", "--width", type=int, default=320, + help="nearest multiple of 32 for resized width") +ap.add_argument("-e", "--height", type=int, default=320, + help="nearest multiple of 32 for resized height") +ap.add_argument("-p", "--padding", type=float, default=0.0, + help="amount of padding to add to each border of ROI") +args = vars(ap.parse_args()) + +# load the input image and grab the image dimensions +image = cv2.imread(r"PATH TO INPUT IMAGE") +orig = image.copy() +(origH, origW) = image.shape[:2] + +# set the new width and height and then determine the ratio in change +# for both the width and height +(newW, newH) = (args["width"], args["height"]) +rW = origW / float(newW) +rH = origH / float(newH) + +# resize the image and grab the new image dimensions +image = cv2.resize(image, (newW, newH)) +(H, W) = image.shape[:2] + +# define the two output layer names for the EAST detector model that +# we are interested -- the first is the output probabilities and the +# second can be used to derive the bounding box coordinates of text +layerNames = [ + "feature_fusion/Conv_7/Sigmoid", + "feature_fusion/concat_3"] + +# load the pre-trained EAST text detector +print("[INFO] loading EAST text detector...") +net = cv2.dnn.readNet(args["east"]) + +# construct a blob from the image and then perform a forward pass of +# the model to obtain the two output layer sets +blob = cv2.dnn.blobFromImage(image, 1.0, (W, H), + (123.68, 116.78, 103.94), swapRB=True, crop=False) +net.setInput(blob) +(scores, geometry) = net.forward(layerNames) + +# decode the predictions, then apply non-maxima suppression to +# suppress weak, overlapping bounding boxes +(rects, confidences) = decode_predictions(scores, geometry) +boxes = non_max_suppression(np.array(rects), probs=confidences) + +# initialize the list of results +results = [] + +# loop over the bounding boxes +for (startX, startY, endX, endY) in boxes: + # scale the bounding box coordinates based on the respective + # ratios + startX = int(startX * rW) + startY = int(startY * rH) + endX = int(endX * rW) + endY = int(endY * rH) + + # in order to obtain a better OCR of the text we can potentially + # apply a bit of padding surrounding the bounding box -- here we + # are computing the deltas in both the x and y directions + dX = int((endX - startX) * args["padding"]) + dY = int((endY - startY) * args["padding"]) + + # apply padding to each side of the bounding box, respectively + startX = max(0, startX - dX) + startY = max(0, startY - dY) + endX = min(origW, endX + (dX * 2)) + endY = min(origH, endY + (dY * 2)) + + # extract the actual padded ROI + roi = orig[startY:endY, startX:endX] + + # in order to apply Tesseract v4 to OCR text we must supply + # (1) a language, (2) an OEM flag of 4, indicating that the we + # wish to use the LSTM neural net model for OCR, and finally + # (3) an OEM value, in this case, 7 which implies that we are + # treating the ROI as a single line of text + config = ("-l eng --oem 1 --psm 7") + text = pytesseract.image_to_string(roi, config=config) + + # add the bounding box coordinates and OCR'd text to the list + # of results + results.append(((startX, startY, endX, endY), text)) + +# sort the results bounding box coordinates from top to bottom +results = sorted(results, key=lambda r:r[0][1]) + +# loop over the results +for ((startX, startY, endX, endY), text) in results: + # display the text OCR'd by Tesseract + print("OCR TEXT") + print("========") + print("{}\n".format(text)) + + # strip out non-ASCII text so we can draw the text on the image + # using OpenCV, then draw the text and a bounding box surrounding + # the text region of the input image + text = "".join([c if ord(c) < 128 else "" for c in text]).strip() + output = orig.copy() + cv2.rectangle(output, (startX, startY), (endX, endY), + (0, 0, 255), 2) + cv2.putText(output, text, (startX, startY - 20), + cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 3) + + # show the output image + cv2.imshow("Text Detection", output) + cv2.waitKey(0) \ No newline at end of file