120 lines (119 with data), 2.4 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.insert(0, '/home/rnshishir/deepmed/TBEHRT_pl/')\n",
"\n",
"import scipy\n",
"import pandas as pd\n",
"import numpy as np\n",
"from src.CV_TMLE import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CV TMLE tutorial"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"running CV-TMLE for binary outcomes...\n"
]
}
],
"source": [
"# folds in the npz format\n",
"foldNPZ = ['TBEHRT_Test__CUT0.npz', 'TBEHRT_Test__CUT1.npz', 'TBEHRT_Test__CUT2.npz', 'TBEHRT_Test__CUT3.npz', 'TBEHRT_Test__CUT4.npz' ]\n",
"\n",
"# cvtmle runner \n",
"TMLErun = CVTMLE(fromFolds=foldNPZ,truncate_level=0.03 )\n",
"\n",
"# estiamte the risk ratio for binary outcome\n",
"est = TMLErun.run_tmle_binary()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[0.10878099048487283, 5.2854239704810925e-08, 223885.61366048577]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"est\n",
"# prints estimate and lower and upper conf interval bounds"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_parquet('test.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# raw\n",
"# data[data.explabel ==1].label.mean()/data[data.explabel ==0].label.mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "real3",
"language": "python",
"name": "py3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}