Switch to side-by-side view

--- a
+++ b/pytorch_pretrained_bert/tokenization.py
@@ -0,0 +1,400 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes."""
+
+from __future__ import absolute_import, division, print_function, unicode_literals
+
+import collections
+import logging
+import os
+import unicodedata
+from io import open
+
+from .file_utils import cached_path
+
+logger = logging.getLogger(__name__)
+
+PRETRAINED_VOCAB_ARCHIVE_MAP = {
+    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
+    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
+    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
+    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
+    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
+    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
+    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
+}
+PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
+    'bert-base-uncased': 512,
+    'bert-large-uncased': 512,
+    'bert-base-cased': 512,
+    'bert-large-cased': 512,
+    'bert-base-multilingual-uncased': 512,
+    'bert-base-multilingual-cased': 512,
+    'bert-base-chinese': 512,
+}
+VOCAB_NAME = 'vocab.txt'
+
+
+def load_vocab(vocab_file):
+    """Loads a vocabulary file into a dictionary."""
+    vocab = collections.OrderedDict()
+    index = 0
+    with open(vocab_file, "r", encoding="utf-8") as reader:
+        while True:
+            token = reader.readline()
+            if not token:
+                break
+            token = token.strip()
+            vocab[token] = index
+            index += 1
+    return vocab
+
+
+def whitespace_tokenize(text):
+    """Runs basic whitespace cleaning and splitting on a piece of text."""
+    text = text.strip()
+    if not text:
+        return []
+    tokens = text.split()
+    return tokens
+
+
+class BertTokenizer(object):
+    """Runs end-to-end tokenization: punctuation splitting + wordpiece"""
+
+    def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True,
+                 never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
+        """Constructs a BertTokenizer.
+
+        Args:
+          vocab_file: Path to a one-wordpiece-per-line vocabulary file
+          do_lower_case: Whether to lower case the input
+                         Only has an effect when do_wordpiece_only=False
+          do_basic_tokenize: Whether to do basic tokenization before wordpiece.
+          max_len: An artificial maximum length to truncate tokenized sequences to;
+                         Effective maximum length is always the minimum of this
+                         value (if specified) and the underlying BERT model's
+                         sequence length.
+          never_split: List of tokens which will never be split during tokenization.
+                         Only has an effect when do_wordpiece_only=False
+        """
+        if not os.path.isfile(vocab_file):
+            raise ValueError(
+                "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
+                "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
+        self.vocab = load_vocab(vocab_file)
+        self.ids_to_tokens = collections.OrderedDict(
+            [(ids, tok) for tok, ids in self.vocab.items()])
+        self.do_basic_tokenize = do_basic_tokenize
+        if do_basic_tokenize:
+          self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
+                                                never_split=never_split)
+        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
+        self.max_len = max_len if max_len is not None else int(1e12)
+
+    def tokenize(self, text):
+        split_tokens = []
+        if self.do_basic_tokenize:
+            for token in self.basic_tokenizer.tokenize(text):
+                for sub_token in self.wordpiece_tokenizer.tokenize(token):
+                    split_tokens.append(sub_token)
+        else:
+            split_tokens = self.wordpiece_tokenizer.tokenize(text)
+        return split_tokens
+
+    def convert_tokens_to_ids(self, tokens):
+        """Converts a sequence of tokens into ids using the vocab."""
+        ids = []
+        for token in tokens:
+            ids.append(self.vocab[token])
+        if len(ids) > self.max_len:
+            logger.warning(
+                "Token indices sequence length is longer than the specified maximum "
+                " sequence length for this BERT model ({} > {}). Running this"
+                " sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
+            )
+        return ids
+
+    def convert_ids_to_tokens(self, ids):
+        """Converts a sequence of ids in wordpiece tokens using the vocab."""
+        tokens = []
+        for i in ids:
+            tokens.append(self.ids_to_tokens[i])
+        return tokens
+
+    @classmethod
+    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
+        """
+        Instantiate a PreTrainedBertModel from a pre-trained model file.
+        Download and cache the pre-trained model file if needed.
+        """
+        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
+            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
+            if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True):
+                logger.warning("The pre-trained model you are loading is a cased model but you have not set "
+                               "`do_lower_case` to False. We are setting `do_lower_case=False` for you but "
+                               "you may want to check this behavior.")
+                kwargs['do_lower_case'] = False
+            elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True):
+                logger.warning("The pre-trained model you are loading is an uncased model but you have set "
+                               "`do_lower_case` to False. We are setting `do_lower_case=True` for you "
+                               "but you may want to check this behavior.")
+                kwargs['do_lower_case'] = True
+        else:
+            vocab_file = pretrained_model_name_or_path
+        if os.path.isdir(vocab_file):
+            vocab_file = os.path.join(vocab_file, VOCAB_NAME)
+        # redirect to the cache, if necessary
+        try:
+            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
+        except EnvironmentError:
+            logger.error(
+                "Model name '{}' was not found in model name list ({}). "
+                "We assumed '{}' was a path or url but couldn't find any file "
+                "associated to this path or url.".format(
+                    pretrained_model_name_or_path,
+                    ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
+                    vocab_file))
+            return None
+        if resolved_vocab_file == vocab_file:
+            logger.info("loading vocabulary file {}".format(vocab_file))
+        else:
+            logger.info("loading vocabulary file {} from cache at {}".format(
+                vocab_file, resolved_vocab_file))
+        if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
+            # if we're using a pretrained model, ensure the tokenizer wont index sequences longer
+            # than the number of positional embeddings
+            max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
+            kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
+        # Instantiate tokenizer.
+        tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
+        return tokenizer
+
+
+class BasicTokenizer(object):
+    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
+
+    def __init__(self,
+                 do_lower_case=True,
+                 never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
+        """Constructs a BasicTokenizer.
+
+        Args:
+          do_lower_case: Whether to lower case the input.
+        """
+        self.do_lower_case = do_lower_case
+        self.never_split = never_split
+
+    def tokenize(self, text):
+        """Tokenizes a piece of text."""
+        text = self._clean_text(text)
+        # This was added on November 1st, 2018 for the multilingual and Chinese
+        # models. This is also applied to the English models now, but it doesn't
+        # matter since the English models were not trained on any Chinese data
+        # and generally don't have any Chinese data in them (there are Chinese
+        # characters in the vocabulary because Wikipedia does have some Chinese
+        # words in the English Wikipedia.).
+        text = self._tokenize_chinese_chars(text)
+        orig_tokens = whitespace_tokenize(text)
+        split_tokens = []
+        for token in orig_tokens:
+            if self.do_lower_case and token not in self.never_split:
+                token = token.lower()
+                token = self._run_strip_accents(token)
+            split_tokens.extend(self._run_split_on_punc(token))
+
+        output_tokens = whitespace_tokenize(" ".join(split_tokens))
+        return output_tokens
+
+    def _run_strip_accents(self, text):
+        """Strips accents from a piece of text."""
+        text = unicodedata.normalize("NFD", text)
+        output = []
+        for char in text:
+            cat = unicodedata.category(char)
+            if cat == "Mn":
+                continue
+            output.append(char)
+        return "".join(output)
+
+    def _run_split_on_punc(self, text):
+        """Splits punctuation on a piece of text."""
+        if text in self.never_split:
+            return [text]
+        chars = list(text)
+        i = 0
+        start_new_word = True
+        output = []
+        while i < len(chars):
+            char = chars[i]
+            if _is_punctuation(char):
+                output.append([char])
+                start_new_word = True
+            else:
+                if start_new_word:
+                    output.append([])
+                start_new_word = False
+                output[-1].append(char)
+            i += 1
+
+        return ["".join(x) for x in output]
+
+    def _tokenize_chinese_chars(self, text):
+        """Adds whitespace around any CJK character."""
+        output = []
+        for char in text:
+            cp = ord(char)
+            if self._is_chinese_char(cp):
+                output.append(" ")
+                output.append(char)
+                output.append(" ")
+            else:
+                output.append(char)
+        return "".join(output)
+
+    def _is_chinese_char(self, cp):
+        """Checks whether CP is the codepoint of a CJK character."""
+        # This defines a "chinese character" as anything in the CJK Unicode block:
+        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+        #
+        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+        # despite its name. The modern Korean Hangul alphabet is a different block,
+        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+        # space-separated words, so they are not treated specially and handled
+        # like the all of the other languages.
+        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
+                (cp >= 0x3400 and cp <= 0x4DBF) or  #
+                (cp >= 0x20000 and cp <= 0x2A6DF) or  #
+                (cp >= 0x2A700 and cp <= 0x2B73F) or  #
+                (cp >= 0x2B740 and cp <= 0x2B81F) or  #
+                (cp >= 0x2B820 and cp <= 0x2CEAF) or
+                (cp >= 0xF900 and cp <= 0xFAFF) or  #
+                (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
+            return True
+
+        return False
+
+    def _clean_text(self, text):
+        """Performs invalid character removal and whitespace cleanup on text."""
+        output = []
+        for char in text:
+            cp = ord(char)
+            if cp == 0 or cp == 0xfffd or _is_control(char):
+                continue
+            if _is_whitespace(char):
+                output.append(" ")
+            else:
+                output.append(char)
+        return "".join(output)
+
+
+class WordpieceTokenizer(object):
+    """Runs WordPiece tokenization."""
+
+    def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
+        self.vocab = vocab
+        self.unk_token = unk_token
+        self.max_input_chars_per_word = max_input_chars_per_word
+
+    def tokenize(self, text):
+        """Tokenizes a piece of text into its word pieces.
+
+        This uses a greedy longest-match-first algorithm to perform tokenization
+        using the given vocabulary.
+
+        For example:
+          input = "unaffable"
+          output = ["un", "##aff", "##able"]
+
+        Args:
+          text: A single token or whitespace separated tokens. This should have
+            already been passed through `BasicTokenizer`.
+
+        Returns:
+          A list of wordpiece tokens.
+        """
+
+        output_tokens = []
+        for token in whitespace_tokenize(text):
+            chars = list(token)
+            if len(chars) > self.max_input_chars_per_word:
+                output_tokens.append(self.unk_token)
+                continue
+
+            is_bad = False
+            start = 0
+            sub_tokens = []
+            while start < len(chars):
+                end = len(chars)
+                cur_substr = None
+                while start < end:
+                    substr = "".join(chars[start:end])
+                    if start > 0:
+                        substr = "##" + substr
+                    if substr in self.vocab:
+                        cur_substr = substr
+                        break
+                    end -= 1
+                if cur_substr is None:
+                    is_bad = True
+                    break
+                sub_tokens.append(cur_substr)
+                start = end
+
+            if is_bad:
+                output_tokens.append(self.unk_token)
+            else:
+                output_tokens.extend(sub_tokens)
+        return output_tokens
+
+
+def _is_whitespace(char):
+    """Checks whether `chars` is a whitespace character."""
+    # \t, \n, and \r are technically contorl characters but we treat them
+    # as whitespace since they are generally considered as such.
+    if char == " " or char == "\t" or char == "\n" or char == "\r":
+        return True
+    cat = unicodedata.category(char)
+    if cat == "Zs":
+        return True
+    return False
+
+
+def _is_control(char):
+    """Checks whether `chars` is a control character."""
+    # These are technically control characters but we count them as whitespace
+    # characters.
+    if char == "\t" or char == "\n" or char == "\r":
+        return False
+    cat = unicodedata.category(char)
+    if cat.startswith("C"):
+        return True
+    return False
+
+
+def _is_punctuation(char):
+    """Checks whether `chars` is a punctuation character."""
+    cp = ord(char)
+    # We treat all non-letter/number ASCII as punctuation.
+    # Characters such as "^", "$", and "`" are not in the Unicode
+    # Punctuation class but we treat them as punctuation anyways, for
+    # consistency.
+    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
+            (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
+        return True
+    cat = unicodedata.category(char)
+    if cat.startswith("P"):
+        return True
+    return False