--- a +++ b/pytorch_pretrained_bert/optimizer.py @@ -0,0 +1,68 @@ +import pytorch_pretrained_bert as Bert + +def VAEadam(params, config=None): + if config is None: + config = { + 'lr': 3e-5, + 'warmup_proportion': 0.1 + } + no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight', 'Eps'] + vae= ['VAE'] + no_decayfull = no_decay+vae +# print( {'params': [n for n, p in params if not any(nd in n for nd in no_decayfull)], 'weight_decay': 0.01, 'lr': config['lr']}, +# {'params': [n for n, p in params if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, 'lr': config['lr']}, +# {'params': [n for n, p in params if any(nd in n for nd in vae)], 'weight_decay': 0.0, 'lr':1e-3 } +# ) + optimizer_grouped_parameters = [ + {'params': [p for n, p in params if not any(nd in n for nd in no_decayfull)], 'weight_decay': 0.01, 'lr': config['lr']}, + {'params': [p for n, p in params if (any(nd in n for nd in no_decay) and 'VAE' not in n)], 'weight_decay': 0.0, 'lr': config['lr']}, + {'params': [p for n, p in params if any(nd in n for nd in vae)], 'weight_decay': 0.0, 'lr':1e-3 } + + ] + + optim = Bert.optimization.BertAdam(optimizer_grouped_parameters, + warmup=config['warmup_proportion']) + return optim + + +def adam(params, config=None): + if config is None: + config = { + 'lr': 3e-5, + 'warmup_proportion': 0.1 + } + no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight', 'Eps','VAE'] + optimizer_grouped_parameters = [ + {'params': [p for n, p in params if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, + {'params': [p for n, p in params if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} + ] + + optim = Bert.optimization.BertAdam(optimizer_grouped_parameters, + lr=config['lr'], + warmup=config['warmup_proportion']) + return optim + +def GPadam(params, gpLR, config=None): + if config is None: + config = { + 'lr': 3e-5, + 'warmup_proportion': 0.1 + } + no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight','Eps'] + gp = ['GP'] + + + + optimizer_grouped_parameters = [ + {'params': [p for n, p in params if not any(nd in n for nd in no_decay) and not any(nd in n for nd in gp)], 'weight_decay': 0.01 , 'lr': config['lr'], 'warmup_proportion': 0.1}, + {'params': [p for n, p in params if any(nd in n for nd in no_decay) and not any(nd in n for nd in gp)], 'weight_decay': 0.0, 'lr': config['lr'], 'warmup_proportion': 0.1}, + {'params': [p for n, p in params if any(nd in n for nd in gp)], 'lr': gpLR} + ] + + print([ + {'params': [n for n, p in params if not any(nd in n for nd in no_decay) and not any(nd in n for nd in gp)], 'weight_decay': 0.01 , 'lr': config['lr'], 'warmup_proportion': 0.1}, + {'params': [n for n, p in params if any(nd in n for nd in no_decay) and not any(nd in n for nd in gp)], 'weight_decay': 0.0, 'lr': config['lr'], 'warmup_proportion': 0.1}, + {'params': [n for n, p in params if any(nd in n for nd in gp)], 'lr': gpLR} + ]) + optim = Bert.optimization.BertAdam(optimizer_grouped_parameters) + return optim