|
a |
|
b/examples/CVTMLE_example.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 3, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import sys\n", |
|
|
10 |
"import os\n", |
|
|
11 |
"sys.path.insert(0, '/home/rnshishir/deepmed/TBEHRT_pl/')\n", |
|
|
12 |
"\n", |
|
|
13 |
"import scipy\n", |
|
|
14 |
"import pandas as pd\n", |
|
|
15 |
"import numpy as np\n", |
|
|
16 |
"from src.CV_TMLE import *" |
|
|
17 |
] |
|
|
18 |
}, |
|
|
19 |
{ |
|
|
20 |
"cell_type": "markdown", |
|
|
21 |
"metadata": {}, |
|
|
22 |
"source": [ |
|
|
23 |
"# CV TMLE tutorial" |
|
|
24 |
] |
|
|
25 |
}, |
|
|
26 |
{ |
|
|
27 |
"cell_type": "code", |
|
|
28 |
"execution_count": 4, |
|
|
29 |
"metadata": {}, |
|
|
30 |
"outputs": [ |
|
|
31 |
{ |
|
|
32 |
"name": "stdout", |
|
|
33 |
"output_type": "stream", |
|
|
34 |
"text": [ |
|
|
35 |
"running CV-TMLE for binary outcomes...\n" |
|
|
36 |
] |
|
|
37 |
} |
|
|
38 |
], |
|
|
39 |
"source": [ |
|
|
40 |
"# folds in the npz format\n", |
|
|
41 |
"foldNPZ = ['TBEHRT_Test__CUT0.npz', 'TBEHRT_Test__CUT1.npz', 'TBEHRT_Test__CUT2.npz', 'TBEHRT_Test__CUT3.npz', 'TBEHRT_Test__CUT4.npz' ]\n", |
|
|
42 |
"\n", |
|
|
43 |
"# cvtmle runner \n", |
|
|
44 |
"TMLErun = CVTMLE(fromFolds=foldNPZ,truncate_level=0.03 )\n", |
|
|
45 |
"\n", |
|
|
46 |
"# estiamte the risk ratio for binary outcome\n", |
|
|
47 |
"est = TMLErun.run_tmle_binary()" |
|
|
48 |
] |
|
|
49 |
}, |
|
|
50 |
{ |
|
|
51 |
"cell_type": "code", |
|
|
52 |
"execution_count": 5, |
|
|
53 |
"metadata": {}, |
|
|
54 |
"outputs": [ |
|
|
55 |
{ |
|
|
56 |
"data": { |
|
|
57 |
"text/plain": [ |
|
|
58 |
"[0.10878099048487283, 5.2854239704810925e-08, 223885.61366048577]" |
|
|
59 |
] |
|
|
60 |
}, |
|
|
61 |
"execution_count": 5, |
|
|
62 |
"metadata": {}, |
|
|
63 |
"output_type": "execute_result" |
|
|
64 |
} |
|
|
65 |
], |
|
|
66 |
"source": [ |
|
|
67 |
"est\n", |
|
|
68 |
"# prints estimate and lower and upper conf interval bounds" |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "code", |
|
|
73 |
"execution_count": 7, |
|
|
74 |
"metadata": {}, |
|
|
75 |
"outputs": [], |
|
|
76 |
"source": [ |
|
|
77 |
"data = pd.read_parquet('test.parquet')" |
|
|
78 |
] |
|
|
79 |
}, |
|
|
80 |
{ |
|
|
81 |
"cell_type": "code", |
|
|
82 |
"execution_count": 11, |
|
|
83 |
"metadata": {}, |
|
|
84 |
"outputs": [], |
|
|
85 |
"source": [ |
|
|
86 |
"# raw\n", |
|
|
87 |
"# data[data.explabel ==1].label.mean()/data[data.explabel ==0].label.mean()" |
|
|
88 |
] |
|
|
89 |
}, |
|
|
90 |
{ |
|
|
91 |
"cell_type": "code", |
|
|
92 |
"execution_count": null, |
|
|
93 |
"metadata": {}, |
|
|
94 |
"outputs": [], |
|
|
95 |
"source": [] |
|
|
96 |
} |
|
|
97 |
], |
|
|
98 |
"metadata": { |
|
|
99 |
"kernelspec": { |
|
|
100 |
"display_name": "real3", |
|
|
101 |
"language": "python", |
|
|
102 |
"name": "py3" |
|
|
103 |
}, |
|
|
104 |
"language_info": { |
|
|
105 |
"codemirror_mode": { |
|
|
106 |
"name": "ipython", |
|
|
107 |
"version": 3 |
|
|
108 |
}, |
|
|
109 |
"file_extension": ".py", |
|
|
110 |
"mimetype": "text/x-python", |
|
|
111 |
"name": "python", |
|
|
112 |
"nbconvert_exporter": "python", |
|
|
113 |
"pygments_lexer": "ipython3", |
|
|
114 |
"version": "3.6.8" |
|
|
115 |
} |
|
|
116 |
}, |
|
|
117 |
"nbformat": 4, |
|
|
118 |
"nbformat_minor": 4 |
|
|
119 |
} |