--- a +++ b/examples/CVTMLE_example.ipynb @@ -0,0 +1,119 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import os\n", + "sys.path.insert(0, '/home/rnshishir/deepmed/TBEHRT_pl/')\n", + "\n", + "import scipy\n", + "import pandas as pd\n", + "import numpy as np\n", + "from src.CV_TMLE import *" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CV TMLE tutorial" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "running CV-TMLE for binary outcomes...\n" + ] + } + ], + "source": [ + "# folds in the npz format\n", + "foldNPZ = ['TBEHRT_Test__CUT0.npz', 'TBEHRT_Test__CUT1.npz', 'TBEHRT_Test__CUT2.npz', 'TBEHRT_Test__CUT3.npz', 'TBEHRT_Test__CUT4.npz' ]\n", + "\n", + "# cvtmle runner \n", + "TMLErun = CVTMLE(fromFolds=foldNPZ,truncate_level=0.03 )\n", + "\n", + "# estiamte the risk ratio for binary outcome\n", + "est = TMLErun.run_tmle_binary()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[0.10878099048487283, 5.2854239704810925e-08, 223885.61366048577]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "est\n", + "# prints estimate and lower and upper conf interval bounds" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "data = pd.read_parquet('test.parquet')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# raw\n", + "# data[data.explabel ==1].label.mean()/data[data.explabel ==0].label.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "real3", + "language": "python", + "name": "py3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}