a b/t5_train.py
1
from datasets import Dataset, DatasetDict
2
import torch
3
from random import randrange, sample
4
from transformers import DataCollatorForSeq2Seq
5
import pandas as pd
6
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
7
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training, TaskType
8
from transformers import DataCollatorForSeq2Seq
9
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
10
import argparse
11
import numpy as np
12
from transformers import T5Tokenizer, T5ForConditionalGeneration
13
import os
14
from collections import Counter
15
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
16
17
parser = argparse.ArgumentParser()
18
parser.add_argument('--model_path', type=str, help='path to save fine-tuned t5 model')
19
parser.add_argument('--model', type=str, help='pretrained t5', default='google/flan-t5-xl')
20
parser.add_argument('--synthetic_data', type=str, help='path to synthetic data file')
21
parser.add_argument('--adverse', action='store_true', help='only add adverse labels')
22
parser.add_argument('--prompt', type=str, help='prepend string to prompt T5 model', default='summarize: ')
23
parser.add_argument('--undersample', type=float, help='amount to keep', default=0.0)
24
parser.add_argument('--gold', type=float, help='amount fo REAL data to keep', default=0.0)
25
args = parser.parse_args()
26
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
27
28
if args.adverse:
29
    LABELS = {'TRANSPORTATION_distance', 'TRANSPORTATION_resource',
30
        'TRANSPORTATION_other', 'HOUSING_poor', 'HOUSING_undomiciled','HOUSING_other',
31
        'RELATIONSHIP_divorced', 'RELATIONSHIP_widowed', 'RELATIONSHIP_single',
32
        'PARENT','EMPLOYMENT_underemployed','EMPLOYMENT_unemployed', 'EMPLOYMENT_disability','SUPPORT_minus'}
33
else:
34
    LABELS = {'TRANSPORTATION_distance', 'TRANSPORTATION_resource',
35
        'TRANSPORTATION_other', 'HOUSING_poor', 'HOUSING_undomiciled',
36
        'HOUSING_other', 'RELATIONSHIP_married', 'RELATIONSHIP_partnered',
37
        'RELATIONSHIP_divorced', 'RELATIONSHIP_widowed', 'RELATIONSHIP_single',
38
        'PARENT','EMPLOYMENT_employed', 'EMPLOYMENT_underemployed',
39
        'EMPLOYMENT_unemployed', 'EMPLOYMENT_disability', 'EMPLOYMENT_retired',
40
        'EMPLOYMENT_student', 'SUPPORT_plus', 'SUPPORT_minus'}
41
42
BROAD_LABELS = {lab.split('_')[0] for lab in LABELS}
43
BROAD_LABELS.add('<NO_SDOH>')
44
45
LABEL_BROAD_NARROW = LABELS.union(BROAD_LABELS)
46
47
MODEL_ID= args.model
48
TOKENIZER = AutoTokenizer.from_pretrained(MODEL_ID)
49
50
MAX_S_LEN = 100
51
MAX_T_LEN = 40
52
53
54
def undersample(df, label, keep_percent):
55
    """
56
    Undersamples the majority class in a Pandas dataframe to balance the classes.
57
58
    Parameters:
59
    df (pandas.DataFrame): The dataframe to undersample.
60
    keep_percent (float): The percentage of the majority class to keep.
61
62
    Returns:
63
    pandas.DataFrame: The undersampled dataframe.
64
    """
65
    # Find the majority class based on the labels column
66
    counts = df[label].value_counts()
67
    majority_class = counts.idxmax()
68
69
    # Get the indices of rows in the majority class
70
    majority_indices = df[df[label] == majority_class].index
71
72
    # Calculate the number of majority class rows to keep
73
    num_majority_keep = int(keep_percent * counts[majority_class])
74
75
    # Get a random subset of the majority class rows to keep
76
    majority_keep_indices = np.random.choice(majority_indices, num_majority_keep, replace=False)
77
78
    # Get the indices of rows in the minority class
79
    minority_indices = df[df[label] != majority_class].index
80
81
    # Combine the majority class subset and the minority class rows
82
    undersampled_indices = np.concatenate([majority_keep_indices, minority_indices])
83
84
    # Return the undersampled dataframe
85
    return df.loc[undersampled_indices]
86
87
88
def filter_rows_by_label_percentage(df, percentage):
89
    # Calculate the number of rows to keep for '<NO_SDOH>' label
90
    no_sdoh_rows = int(len(df[df['LABEL'] == '<NO_SDOH>']) * percentage)
91
92
    # Calculate the number of rows to keep for other label values
93
    other_rows = int(len(df[df['LABEL'] != '<NO_SDOH>']) * percentage)
94
95
    # Filter rows with '<NO_SDOH>' label and sample
96
    no_sdoh_data = df[df['LABEL'] == '<NO_SDOH>'].sample(n=no_sdoh_rows)
97
98
    # Filter rows with other label values and sample
99
    other_data = df[df['LABEL'] != '<NO_SDOH>'].sample(n=other_rows)
100
101
    # Concatenate the two filtered DataFrames
102
    filtered_df = pd.concat([no_sdoh_data, other_data])
103
104
    filtered_df.reset_index(inplace=True, drop=True)
105
106
    return filtered_df
107
108
109
def generate_label_list(row: pd.DataFrame) -> str:
110
    """
111
    Generate a label list based on the given row from a Pandas DataFrame.
112
113
    Args:
114
        row (pd.DataFrame): A row from a Pandas DataFrame.
115
116
    Returns:
117
        str: A comma-separated string of labels extracted from the row.
118
119
    Examples:
120
        >>> df = pd.DataFrame({'label1_1': [1], 'label2_0': [0], 'label3_1': [1]})
121
        >>> generate_label_list(df.iloc[0])
122
        'label1,label3'
123
124
        >>> df = pd.DataFrame({'label2_0': [0], 'label3_0': [0]})
125
        >>> generate_label_list(df.iloc[0])
126
        '<NO_SDOH>'
127
    """
128
    labels = set()
129
    for col_name, value in row.items():
130
        if col_name in LABELS and value == 1:
131
            labels.add(col_name.split('_')[0])
132
    if len(labels) == 0:
133
        labels.add('<NO_SDOH>')
134
    return ','.join(list(labels))
135
136
137
def preprocess_function(sample,padding="max_length"):
138
    # add prefix to the input for t5
139
    inputs = [args.prompt + item for item in sample["text"]]
140
    # tokenize inputs
141
    model_inputs = TOKENIZER(inputs, max_length=MAX_S_LEN, padding=padding, truncation=True)
142
143
    # Tokenize targets with the `text_target` keyword argument
144
    labels = TOKENIZER(text_target=sample["SDOHlabels"], max_length=MAX_T_LEN, padding=padding, truncation=True)
145
146
    # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
147
    # padding in the loss.
148
    if padding == "max_length":
149
        labels["input_ids"] = [
150
            [(l if l != TOKENIZER.pad_token_id else -100) for l in label] for label in labels["input_ids"]
151
        ]
152
    model_inputs["labels"] = labels["input_ids"]
153
    return model_inputs
154
155
156
if __name__ == '__main__':
157
    train_data = pd.read_csv('../data/train_sents.csv')
158
    train_data.fillna(value={'text':''}, inplace=True)
159
    train_data['LABEL'] = train_data.apply(generate_label_list, axis=1).tolist()
160
161
    if args.undersample:
162
        train_data = undersample(train_data, label='LABEL', keep_percent=args.undersample)
163
    if args.gold:
164
        train_data = filter_rows_by_label_percentage(train_data, args.gold)
165
166
    train_text = train_data['text'].tolist()
167
    train_labels = train_data['LABEL'].tolist()
168
169
    if args.synthetic_data:
170
        synthetic_data = pd.read_csv(args.synthetic_data)
171
        synthetic_data = synthetic_data[synthetic_data['label'].isin(BROAD_LABELS)]
172
        if args.adverse:
173
            synthetic_data = synthetic_data[synthetic_data['adverse']=='adverse']
174
        synthetic_data.reset_index(inplace=True, drop=True)
175
        binary_synthetic = pd.get_dummies(synthetic_data['label'])
176
        binary_synthetic['text'] = synthetic_data['text']
177
        synth_labels = binary_synthetic.apply(generate_label_list, axis=1).tolist()
178
        synth_text = synthetic_data['text'].tolist()
179
180
        train_text.extend(synth_text)
181
        train_labels.extend(synth_labels)
182
183
    train_t5 = pd.DataFrame({'text':train_text, 'SDOHlabels':train_labels})
184
    train_dataset = Dataset.from_pandas(train_t5)
185
186
187
    dataset = DatasetDict()
188
    dataset['train'] = train_dataset
189
    print(f"Train dataset size: {len(dataset['train'])}")    
190
    tokenized_dataset = dataset.map(preprocess_function, batched=True, remove_columns=["text", "SDOHlabels"])
191
192
    model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID, load_in_8bit=True, device_map={"":0}) #{"":1}
193
194
    # Define LoRA Config
195
    lora_config = LoraConfig(
196
        r=16,
197
        lora_alpha=32,
198
        target_modules=["q", "v"],
199
        lora_dropout=0.05,
200
        bias="none",
201
        task_type=TaskType.SEQ_2_SEQ_LM
202
    )
203
    # prepare int-8 model for training
204
    model = prepare_model_for_int8_training(model)
205
206
    # add LoRA adaptor
207
    model = get_peft_model(model, lora_config)
208
    model.print_trainable_parameters()
209
210
    # we want to ignore tokenizer pad token in the loss
211
    label_pad_token_id = -100
212
    # Data collator
213
    data_collator = DataCollatorForSeq2Seq(
214
        TOKENIZER,
215
        model=model,
216
        label_pad_token_id=label_pad_token_id,
217
        pad_to_multiple_of=8
218
    )
219
220
    peft_model_id = args.model_path
221
    output_dir = peft_model_id
222
    training_args = Seq2SeqTrainingArguments(
223
        output_dir=output_dir, 
224
        per_device_train_batch_size=32,
225
        learning_rate=1e-3, # higher learning rate
226
        num_train_epochs=3,
227
        logging_dir=f"{output_dir}/logs",
228
        logging_strategy="steps",
229
        logging_steps=500,
230
        save_strategy="no",
231
        # report_to="tensorboard",
232
    )
233
234
    trainer = Seq2SeqTrainer(
235
        model=model,
236
        args=training_args,
237
        data_collator=data_collator,
238
        train_dataset=tokenized_dataset["train"],
239
    )
240
    model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
241
242
    # train model
243
    trainer.train()
244
    # Save our LoRA model & TOKENIZER results
245
    trainer.model.save_pretrained(output_dir)
246
    TOKENIZER.save_pretrained(output_dir)