[a6870d]: / Patient2Vec.py

Download this file

158 lines (143 with data), 6.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
Patient2Vec: a self-attentive representation learning framework
author: Jinghe Zhang
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
class Patient2Vec(nn.Module):
"""
Self-attentive representation learning framework,
including convolutional embedding layer,
recurrent autoencoder with an encoder, recurrent module, and a decoder.
In addition, a linear layer is on top of each decode step and the weights are shared at these step.
"""
def __init__(self, input_size, hidden_size, n_layers, att_dim, initrange,
output_size, rnn_type, seq_len, pad_size, n_filters, bi, dropout_p=0.5):
"""
Initilize a recurrent model
:param input_size: int
:param hidden_size: int
:param n_layers: number of layers; int
:param att_dim: dimension of the attention; int
:param initrange: upper bound of the initial weights; symmetric
:param output_size: int
:param rnn_type: str, such as 'GRU'
:param seq_len: length of the sequence; int
:param pad_size: padding size; int
:param n_filters: number of hops; int
:param bi: bidirectional; bool
:param dropout_p: dropout rate; float
"""
super(Patient2Vec, self).__init__()
self.initrange = initrange
# convolution
self.b = 1
if bi:
self.b = 2
self.conv = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=input_size, stride=2)
self.conv2 = nn.Conv1d(in_channels=1, out_channels=n_filters, kernel_size=hidden_size * self.b, stride=2)
# Bidirectional RNN
self.rnn = getattr(nn, rnn_type)(input_size, hidden_size, n_layers, dropout=dropout_p,
batch_first=True, bias=True, bidirectional=bi)
# initialize 2-layer attention weight matrics
self.att_w1 = nn.Linear(hidden_size * self.b, att_dim, bias=False)
# final linear layer
self.linear = nn.Linear(hidden_size * self.b * n_filters + 3, output_size, bias=True)
self.func_softmax = nn.Softmax()
self.func_sigmoid = nn.Sigmoid()
self.func_tanh = nn.Hardtanh(0, 1)
# Add dropout
self.dropout_p = dropout_p
self.dropout = nn.Dropout(p=self.dropout_p)
self.init_weights()
self.pad_size = pad_size
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.seq_len = seq_len
self.n_filters = n_filters
def init_weights(self):
"""
weight initialization
"""
for param in self.parameters():
param.data.uniform_(-self.initrange, self.initrange)
def convolutional_layer(self, inputs):
convolution_all = []
conv_wts = []
for i in range(self.seq_len):
convolution_one_month = []
for j in range(self.pad_size):
convolution = self.conv(torch.unsqueeze(inputs[:, i, j], dim=1))
convolution_one_month.append(convolution)
convolution_one_month = torch.stack(convolution_one_month)
convolution_one_month = torch.squeeze(convolution_one_month, dim=3)
convolution_one_month = torch.transpose(convolution_one_month, 0, 1)
convolution_one_month = torch.transpose(convolution_one_month, 1, 2)
convolution_one_month = torch.squeeze(convolution_one_month, dim=1)
convolution_one_month = self.func_tanh(convolution_one_month)
convolution_one_month = torch.unsqueeze(convolution_one_month, dim=1)
vec = torch.bmm(convolution_one_month, inputs[:, i])
convolution_all.append(vec)
conv_wts.append(convolution_one_month)
convolution_all = torch.stack(convolution_all, dim=1)
convolution_all = torch.squeeze(convolution_all, dim=2)
conv_wts = torch.squeeze(torch.stack(conv_wts, dim=1), dim=2)
return convolution_all, conv_wts
def encode_rnn(self, embedding, batch_size):
self.weight = next(self.parameters()).data
init_state = (Variable(self.weight.new(self.n_layers * self.b, batch_size, self.hidden_size).zero_()))
embedding = self.dropout(embedding)
outputs_rnn, states_rnn = self.rnn(embedding, init_state)
return outputs_rnn
def add_beta_attention(self, states, batch_size):
# beta attention
att_wts = []
for i in range(self.seq_len):
m1 = self.conv2(torch.unsqueeze(states[:, i], dim=1))
att_wts.append(torch.squeeze(m1, dim=2))
att_wts = torch.stack(att_wts, dim=2)
att_beta = []
for i in range(self.n_filters):
a0 = self.func_softmax(att_wts[:, i])
att_beta.append(a0)
att_beta = torch.stack(att_beta, dim=1)
context = torch.bmm(att_beta, states)
context = context.view(batch_size, -1)
return att_beta, context
def forward(self, inputs, inputs_other, batch_size):
"""
the recurrent module
"""
# Convolutional
convolutions, alpha = self.convolutional_layer(inputs)
# RNN
states_rnn = self.encode_rnn(convolutions, batch_size)
# Add attentions and get context vector
beta, context = self.add_beta_attention(states_rnn, batch_size)
# Final linear layer with demographic info added as extra variables
context_v2 = torch.cat((context, inputs_other), 1)
linear_y = self.linear(context_v2)
out = self.func_softmax(linear_y)
return out, alpha, beta
def get_loss(pred, y, criterion, mtr, a=0.5):
"""
To calculate loss
:param pred: predicted value
:param y: actual value
:param criterion: nn.CrossEntropyLoss
:param mtr: beta matrix
"""
mtr_t = torch.transpose(mtr, 1, 2)
aa = torch.bmm(mtr, mtr_t)
loss_fn = 0
for i in range(aa.size()[0]):
aai = torch.add(aa[i, ], Variable(torch.neg(torch.eye(mtr.size()[1]))))
loss_fn += torch.trace(torch.mul(aai, aai).data)
loss_fn /= aa.size()[0]
loss = torch.add(criterion(pred, y), Variable(torch.FloatTensor([loss_fn * a])))
return loss