import pandas as pd
from tqdm import tqdm
from ruamel import yaml
class nlu_generator():
def __init__(self, mode, med_dataset):
super().__init__()
df = pd.read_csv(med_dataset)
if mode == 'drug':
col = 'medicine'
else:
col = 'Lab test'
self.list = df[col].values
self.mode = mode
def __block_generator(self):
inp = f"""\
version: "2.0"
nlu:
- lookup: {self.mode}
examples: |
"""
code = yaml.load(inp, Loader=yaml.RoundTripLoader)
return code
def generate(self):
code = self.__block_generator()
for item in tqdm(self.list):
code['nlu'][0]['examples'] += f'- {item.lower()}\n'
return code
def write_data(self, code, nlu_file):
with open(nlu_file, 'w') as f:
yaml.dump(code, f, Dumper=yaml.RoundTripDumper)
def main():
mode = 'drug'
# mode = 'lab'
generator = nlu_generator(mode, '../drug_datasets/dataset_files/drugs_dataset.csv')
# generator = nlu_generator(mode, '../medlineplus_lab_dataset/dataset_files/medplus_labs.csv')
code = generator.generate()
generator.write_data(code, 'data/drug.yml')
# generator.write_data(code, 'data/lab.yml')
if __name__ == "__main__":
main()