[8d2107]: / neural_network.py

Download this file

328 lines (264 with data), 11.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import sklearn as skl
import numpy as np
import random
import matplotlib.pyplot as plt
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.cross_validation import train_test_split
import math
class NeuralNetwork(BaseEstimator, ClassifierMixin):
def __init__(self, layers, obj_fun, regularization = 0., init_size = 1e-1, include_offset = True,
restarts = 10, step_size = 1e-1, learning_schedule = "bold driver", max_iter = 30000, criterion = 1e-6):
self.layers = layers
self.obj_fun = obj_fun
self.regularization = regularization
self.init_size = init_size
self.include_offset = include_offset
self.restarts = restarts
self.step_size = step_size
self.learning_schedule = learning_schedule
self.max_iter = max_iter
self.criterion = criterion
#layers: list of (size, transform_function_1, transform_function_2...) tuples
def fit(self, X_all, y_all, sample_weight = None, test_split = 1., val_split = .8):
show_plots = False
if test_split < 1:
if type(sample_weight) == type(None):
X, X_test, y, y_test = train_test_split(X_all, y_all, train_size = test_split)#, stratify = np.argmax(y_all, axis = 1))
sample_weight_test = None
else:
X, X_test, y, y_test, sample_weight, sample_weight_test = train_test_split(X_all, y_all, sample_weight, train_size = test_split)#, stratify = np.argmax(y_all, axis = 1))
else:
X, y, sample_weight = (X_all, y_all, sample_weight)
self.input_dim_ = X.shape[1]
self.output_dim_ = y.shape[1]
self.num_layers_ = len(self.layers)
self.layers[-1] = tuple([self.output_dim_] + list(self.layers[-1][1:]))
opt_weights = None
opt_value = -10e10
if show_plots:
plt.figure()
while opt_weights == None:
for i in range(self.restarts):
self.__init_weights()
obj_vals = []
val_scores = []
if val_split < 1:
if type(sample_weight) == type(None):
X_train, X_val, y_train, y_val = train_test_split(X, y, train_size = val_split)#, stratify = np.argmax(y, axis = 1))
sample_weight_train = None
sample_weight_val = None
else:
X_train, X_val, y_train, y_val, sample_weight_train, sample_weight_val = train_test_split(X, y, sample_weight, train_size = val_split)#, stratify = np.argmax(y, axis = 1))
else:
X_train, y_train, sample_weight_train = (X, y, sample_weight)
best_val_value = -1e100
best_val_weights = None
#print "Weights: ", [x.shape for x in self.weights_]
step_size = self.step_size
while len(obj_vals) <= 1 or (abs(obj_vals[-1] - obj_vals[-2]) > self.criterion and len(obj_vals) <= self.max_iter):
#forward prop
inputs, weighted_inputs, activations = self.__forward(X_train)
obj_val = self.__eval_obj_fun(y_train, activations[-1], regularization = self.regularization)
obj_vals += [obj_val]
#backward prop
gradients = self.__backward(inputs, weighted_inputs, activations, y_train, sample_weight_train)
if len(obj_vals) == 1:
step_size = self.__get_step_size(len(obj_vals), step_size, -1e100, obj_vals[-1])
else:
step_size = self.__get_step_size(len(obj_vals), step_size, obj_vals[-2], obj_vals[-1])
self.update_weights(gradients, step_size)
if val_split < 1: #early termination with validation holdout
val_score = self.score(X_val, y_val, sample_weight_val)
val_scores += [val_score]
if val_score > best_val_value:
best_val_weights = [w.copy() for w in self.weights_]
best_val_value = val_score
else:
best_val_value = obj_vals[-1]
if len(obj_vals) >= self.max_iter:
print "OVERFLOW"
#print i, "Obj val: ", obj_vals[-1]
if val_split < 1:
self.weights_ = best_val_weights
if test_split < 1:
test_score = self.score(X_test, y_test, sample_weight_test)
else:
test_score = best_val_value
if opt_value < test_score:
opt_value = test_score
opt_weights = self.weights_
if show_plots:
#print test_score
plt.plot([math.log10(-1.*x) for x in obj_vals], color = 'green', label = "log Train")
plt.plot([math.log10(-1.*x) for x in val_scores], color = 'red', label = "log Val")
#print opt_weights
if show_plots:
#plt.legend()
plt.show()
self.weights_ = opt_weights
return self
def predict(self, X):
return np.argmax(self.predict_proba(X), axis = 1)
def predict_proba(self, X):
return self.__forward(X)[2][-1]
#the dimension of the weights is (dim_before +1, dim_after, ), with +1 -> 0 if no offset
def __init_weights(self):
self.weights_ = []
offset_size = int(self.include_offset)
for layer_index in range(self.num_layers_):
if layer_index == 0:
before_dim = self.input_dim_
else:
before_dim = self.layers[layer_index - 1][0]
after_dim = self.layers[layer_index][0]
self.weights_ += [(np.random.rand(before_dim + offset_size, after_dim) - .5)*self.init_size]
def __forward(self, X):
inputs = []
activations = []
weighted_inputs = []
current_input = self.__add_offset(X)
if self.weights_ == None:
print self.weights_
for layer_index in range(self.num_layers_):
weighted_input = np.dot(current_input, self.weights_[layer_index])
current_activation = self.__transform_function(weighted_input, layer_index)
inputs += [current_input]
weighted_inputs += [weighted_input]
activations += [current_activation]
current_input = self.__add_offset(current_activation)
return (inputs, weighted_inputs, activations)
def __backward(self, inputs, weighted_inputs, activations, y, sample_weight = None, err_gradient = None):
gradients = []
if type(err_gradient) == type(None):
overall_gradient = self.__obj_fun_gradient(y, activations[-1], sample_weight) #N x categories
else:
overall_gradient = err_gradient
#NEED REMOVE OFFSET SOMEWHERE???
for layer_index in range(self.num_layers_ -1, -1, -1):
activations_gradient = self.__gradient_function(weighted_inputs[layer_index], activations[layer_index], layer_index)
layer_gradient = np.multiply(overall_gradient, activations_gradient)
gradients = [np.dot(inputs[layer_index].transpose(), layer_gradient) - self.regularization * self.weights_[layer_index]] + gradients
overall_gradient = self.__remove_offset(np.dot(overall_gradient, self.weights_[layer_index].transpose()))
return gradients
def update_weights(self, gradients, step_size):
for layer_index in range(self.num_layers_):
self.weights_[layer_index] += step_size * gradients[layer_index]
def score(self, X, y, sample_weight = None):
y_hat = self.predict_proba(X)
return self.__eval_obj_fun(y, y_hat, sample_weight)
def accuracy(self, X, y):
y_hat = self.predict(X)
return 1. * np.sum(int(np.argmax(y, axis = 1) == np.argmax(y_hat, axis = 1))) / y.shape[0]
def __eval_obj_fun(self, y, y_hat, sample_weight = None, regularization = 0.):
if self.obj_fun in ['maxent', 'logistic']:
eps = 1e-10
y_hat = np.clip(y_hat, eps, 1. - eps)
err_matrix = np.multiply(y, np.log(y_hat)) + np.multiply(1. - y, np.log(1. - y_hat))
elif self.obj_fun in ['lsq', 'least squares']:
err_matrix = -1. * np.square(y - y_hat)
elif self.obj_fun in ['mll']:
eps = 1e-10
y_hat = np.clip(y_hat, eps, 1.)
err_matrix = np.multiply(y, np.log(y_hat))
else:
raise ValueError("Objective function '" + self.obj_fun + "' is not supported.")
if type(sample_weight) != type(None):
err_matrix = np.dot(np.diag(sample_weight), err_matrix)
return np.sum(err_matrix) - regularization * np.sum([np.sum(np.square(self.__remove_offset(x))) for x in self.weights_])
def __obj_fun_gradient(self, y, y_hat, sample_weight = None):
if self.obj_fun in ['maxent', 'logistic']:
eps = 1e-10
y_hat = np.clip(y_hat, eps, 1. - eps)
grad = np.divide(y, y_hat) - np.divide(1. - y, 1. - y_hat)
if type(sample_weight) != type(None):
grad = np.dot(np.diag(sample_weight), grad)
return grad
elif self.obj_fun in ['lsq', 'least squares']:
grad = y_hat - y
if type(sample_weight) != type(None):
grad = np.multiply(sample_weight, grad)
return grad
elif self.obj_fun in ['mll']:
eps = 1e-10
y_hat = np.clip(y_hat, eps, 1. - eps)
grad = np.divide(y, y_hat)
if type(sample_weight) != type(None):
grad = np.dot(np.diag(sample_weight), grad)
return grad
else:
raise ValueError("Objective function '" + self.obj_fun + "' is not supported.")
def __transform_function(self, X, layer_index):
funct = self.layers[layer_index][1]
if funct in ['logistic']: #1/ (1 + exp(x))
X_transformed = 1. / (1. + np.exp(np.clip(-1.*X, -1e100, 50)))
elif funct in ['tanh']: #tanh(x)
X_transformed = np.tanh(X)
elif funct in ['rectifier', 'hinge']: #max(0, x)
X_transformed = np.clip(X, 0, 1e100)
elif funct in ['softmax', 'multinomial']:
exp_X = np.exp(np.clip(X, -1e100, 50))
X_transformed = np.divide(exp_X, np.sum(exp_X, axis = 1)[:, np.newaxis])
elif funct in ['linear', 'none', None]:
X_transformed = X
else:
raise ValueError("Transform function '" + funct + "' is not supported.")
return X_transformed
def __gradient_function(self, X_weighted, Z, layer_index):
funct = self.layers[layer_index][1]
if funct in ['logistic']: #1/ (1 + exp(-x))
Z_grad = np.multiply(np.square(Z), np.exp(np.clip(-1.*X_weighted, -1e100, 50)))
elif funct in ['tanh']: #tanh(x)
Z_grad = 1. - np.square(np.tanh(X_weighted))
elif funct in ['rectifier', 'hinge']: #max(0, x)
Z_grad = Z.copy()
Z_grad[np.nonzero(Z_grad)] = 1.
elif funct in ['softmax', 'multinomial']:
sig = 1. / (1 + np.exp(np.clip(-1. * X_weighted, -1e100, 50)))
Z_grad = np.multiply(Z, 1 - Z)
elif funct in ['linear', 'none', None]:
Z_grad = np.ones(Z.shape) * 1.
else:
raise ValueError("Transform function '" + funct + "' is not supported.")
return Z_grad
def __add_offset(self, X):
if self.include_offset:
results = np.empty((X.shape[0], X.shape[1] + 1))
results[:, 0] = 1
results[:, 1:] = X
return results
else:
return X.copy()
def __remove_offset(self, X):
if self.include_offset:
return X[:, 1:]
else:
return X.copy()
def __get_step_size(self, t = None, last_step = None, last_obj_val = None, obj_val = None):
if self.learning_schedule == 'fixed':
return self.step_size/(t + 1.)**.5
elif self.learning_schedule == 'bold driver':
growth_rate = 1.02
if last_obj_val < obj_val:
return last_step * growth_rate
else:
return last_step / growth_rate *.5
def get_params(self, deep = True):
return {'layers' : self.layers,
'obj_fun' : self.obj_fun,
'regularization' : self.regularization,
'init_size' : self.init_size,
'include_offset' : self.include_offset,
'restarts' : self.restarts,
'step_size' : self.step_size,
'learning_schedule' : self.learning_schedule,
'max_iter' : self.max_iter,
'criterion' : self.criterion}
def set_params(self, **parameters):
for parameter, value in parameters.items():
self.setattr(parameter, value)
return self
class NeuralLogistic(NeuralNetwork):
def __init__(self, **kwargs):
layers = [(None, 'softmax')]
obj_fun = 'maxent'
NeuralNetwork.__init__(self, layers, obj_fun, restarts = 10, step_size = 1e-1)