import datetime
import numpy as np
from sklearn.base import TransformerMixin
from sklearn.feature_extraction.text import TfidfVectorizer
import structured_data_extractor
import build_graphs
import loader
import extract_data
import language_processing
class SexTransformer(TransformerMixin):
"""
transforms EMPI into 'male', 'female' column
"""
def fit(self, X, y = None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_sex, X)
return np.matrix(transformed_X).transpose()
def get_sex(self, empi):
person = loader.get_patient_by_EMPI(empi)
if 'Sex' in person:
sex = person['Gender']
return int(sex == 'Female\r\n')
else:
return 0
def get_feature_names(self):
return ["sex_female"]
class GetConcatenatedNotesTransformer(TransformerMixin):
"""Takes as input the type of note (i.e. 'Car' or 'Lno').
For each empi x in the input vector X, it returns a concatentation of
all the pre-procedure notes of the type specified for the patient with that empi."""
def __init__(self, note_type, look_back_months=None):
self.type = note_type
self.look_back_months = look_back_months
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_concatenated_notes, X)
return transformed_X
def get_concatenated_notes(self, empi):
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
date_key = extract_data.get_date_key(self.type)
notes = []
sec_per_month = 24 * 60 * 60 * (365.0 / 12)
if self.type in person.keys() and date_key != None:
for i in range(len(person[self.type])):
doc = person[self.type][i]
date = extract_data.parse_date(doc[date_key])
if date != None and date < operation_date:
if self.look_back_months and (operation_date - date).total_seconds() > (self.look_back_months * sec_per_month):
continue
notes.append(doc['free_text'])
return '\n\n'.join(notes)
class GetLatestNotesTransformer(TransformerMixin):
"""Similar to the transformer above, but takes in an extra parameter max_notes
that limits the number of notes to incorporate, indexed from the procedure
date going back in time, and returns an array of notes instead of a concatentation.
For example, if you put max_notes to be 1, then it would return a single-element
array with the text of the note closest to, but not including, the procedure date
(for each empi in the input vector)."""
def __init__(self, note_type, max_notes):
self.type = note_type
self.max_notes = max_notes
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_latest_concatenated_notes, X)
return transformed_X
def get_feature_names(self):
names = ['latest_note_' + str(i) for i in range(self.max_notes)]
return np.array(names)
def get_latest_concatenated_notes(self, empi):
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
date_key = extract_data.get_date_key(self.type)
notes = []
if self.type in person.keys() and date_key != None:
time_key_pairs = []
for i in range(len(person[self.type])):
doc = person[self.type][i]
date = extract_data.parse_date(doc[date_key])
if date != None and date < operation_date:
time_key_pairs.append((operation_date - date, i))
time_key_pairs.sort()
for time,key in time_key_pairs[:self.max_notes]:
doc = person[self.type][key]
notes.append(doc['free_text'])
# ensure that notes vector length is equal to max_notes
if len(notes) < self.max_notes:
delta = self.max_notes - len(notes)
for i in range(delta):
notes.append('')
return np.array(notes)
class DocumentConcatenatorTransformer(TransformerMixin):
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.concatenate_notes, X)
return transformed_X
def concatenate_notes(self, docs):
return '\n\n'.join(docs)
class MultiDocTfidfTransformer(TransformerMixin):
"""
Returns a vector of TFIDF vectors for each string in a vector. TFIDF
weightings are global across all elements of the document.
"""
def __init__(self):#, ngram_range=(1,1)):
self.tfidf = TfidfVectorizer()#ngram_range=ngram_range)
self.vec_size = 0
def fit(self, X, y=None, **fit_params):
self.vec_size = len(X[0])
self.tfidf.fit(map(lambda x: '\n\n'.join(x), X))
return self
def transform(self, X, **transform_params):
tX = map(lambda x: self.tfidf.transform(x).toarray().flatten(), X)
return tX
def get_feature_names(self):
feature_arr = map(lambda i: self.tfidf.get_feature_names(), range(self.vec_size))
return np.array(feature_arr).flatten()
class GetEncountersFeaturesTransformer(TransformerMixin):
"""Returns a feature vector for each empi from the encounters history
of that patient. Check below for details as it may change, but in general
the feature vector will have two parts: (a) small feature vector for each
of the encounters before the operation (with max_encounters as the max);
(b) a series of features derived from the overall encounter history for the
given patient (such as averages, sums, counts, maximums, etc.).
Setting only_general flag to True returns only features in (b)."""
def __init__(self, max_encounters, only_general=False):
self.max_encounters = max_encounters
self.only_general = only_general
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_encounters_features, X)
return transformed_X
def get_feature_names(self):
names = []
for i in range(self.max_encounters):
names.append('Inpatient_Outpatient_Enc_' + str(i))
names.append('LOS_Enc_' + str(i))
names.append('Num_Extra_Diagnoses_Enc_' + str(i))
names.append('Enc_Inpatient_Ratio')
names.append('Enc_Average_LOS')
names.append('Enc_Average_Extra_Diagnoses')
return np.array(names)
def get_encounters_features(self, empi):
encounters = structured_data_extractor.get_encounters(empi)
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
operation_index = 0
for enc in encounters:
if enc[0] < operation_date:
operation_index += 1
else:
break
# only look at encounters before the operation
encounters = encounters[:operation_index]
features = []
# INDIVIDUAL ENCOUNTER FEATURES (3 x max_encounters)
num_tracked_encounters = min(self.max_encounters, len(encounters))
# tracked_encounters below is sorted by increasing absolute time delta with operation date
tracked_encounters = encounters[::-1][:num_tracked_encounters]
inpatients = 0
total_LOS = 0
total_extra_diagnoses = 0
for enc in tracked_encounters:
# INDIVIDUAL FEATURE 1 - Inpatient vs. Outpatient
if enc[1] == 'Inpatient':
features.append(1)
inpatients += 1
else:
features.append(0)
# INDIVIDUAL FEATURE 2 - Length of Stay
if enc[3] > 1:
features.append(enc[3])
total_LOS += enc[3]
else:
features.append(0)
# INDIVIDUAL FEATURE 3 - Number of Extra Diagnoses
features.append(enc[4])
total_extra_diagnoses += enc[4]
# fill in remaining vector space with zeros to make vector size = 3 x max_encounters
if num_tracked_encounters < self.max_encounters:
delta = self.max_encounters - num_tracked_encounters
for i in range(delta):
for j in range(3):
features.append(0)
# OVERALL ENCOUNTERS FEATURES (3)
# OVERALL FEATURE 1 - Inpatient Ratio
if len(tracked_encounters) > 0:
features.append(inpatients / len(tracked_encounters))
else:
features.append(0)
# OVERALL FEATURE 2 - Average LOS
if inpatients > 0:
features.append(total_LOS / inpatients)
else:
features.append(0)
# OVERALL FEATURE 3 - Average Extra Diagnoses
if len(tracked_encounters) > 0:
features.append(total_extra_diagnoses / len(tracked_encounters))
else:
features.append(0)
if self.only_general:
features = features[-3:]
return np.array(features)
class GetLabsCountsDictTransformer(TransformerMixin):
"""For each empi, will return a dictionary of lab test names to a count
of the amount of times that patient has received that test before the
operation. Output should then be fed into DictVectorizer."""
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_labs_counts, X)
return transformed_X
def get_labs_counts(self, empi):
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
return structured_data_extractor.get_labs_before_date(empi, operation_date)[0]
class GetLabsLowCountsDictTransformer(TransformerMixin):
"""For each empi, will return a dictionary of lab test names to a count
of the amount of times that patient has received that test before the
operation and the test value was low. Output should then be fed into DictVectorizer."""
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_low_counts, X)
return transformed_X
def get_low_counts(self, empi):
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
return structured_data_extractor.get_labs_before_date(empi, operation_date)[1]
class GetLabsHighCountsDictTransformer(TransformerMixin):
"""For each empi, will return a dictionary of lab test names to a count
of the amount of times that patient has received that test before the
operation and the test value was high. Output should then be fed into DictVectorizer."""
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_high_counts, X)
return transformed_X
def get_high_counts(self, empi):
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
return structured_data_extractor.get_labs_before_date(empi, operation_date)[2]
class GetLabsLatestHighDictTransformer(TransformerMixin):
"""For each empi, will return a dictionary of lab test names to a boolean
indicating if the test value was high the last time the patient received
that test (before the procedue). Output should then be fed into DictVectorizer."""
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_labs_latest_high, X)
return transformed_X
def get_labs_latest_high(self, empi):
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
labs_latest = structured_data_extractor.get_labs_before_date(empi, operation_date)[3]
labs_latest_high = {}
for lab in labs_latest:
if labs_latest[lab][1] == 'H':
labs_latest_high[lab] = 1
else:
labs_latest_high[lab] = 0
return labs_latest_high
class GetLabsLatestLowDictTransformer(TransformerMixin):
"""For each empi, will return a dictionary of lab test names to a boolean
indicating if the test value was low the last time the patient received
that test (before the procedue). Output should then be fed into DictVectorizer."""
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_labs_latest_low, X)
return transformed_X
def get_labs_latest_low(self, empi):
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
labs_latest = structured_data_extractor.get_labs_before_date(empi, operation_date)[3]
labs_latest_low = {}
for lab in labs_latest:
if labs_latest[lab][1] == 'L':
labs_latest_low[lab] = 1
else:
labs_latest_low[lab] = 0
return labs_latest_low
class GetLabsHistoryDictTransformer(TransformerMixin):
"""For each empi, will return a dictionary where keys are a concatenation of
the lab test name, H(igh) or L(ow), and the time threshold looking back (i.e. "NA_H_6"
would be testing for High results on the NA test around 6 months before prcedure).
The value is just a boolean indicating if this result was high (for H) or low (for L).
Output should then be fed into DictVectorizer."""
def __init__(self, time_thresholds_months):
self.time_thresholds_months = time_thresholds_months
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_labs_history, X)
return transformed_X
def get_labs_history(self, empi):
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
lab_history = structured_data_extractor.get_lab_history_before_date(empi, operation_date, self.time_thresholds_months)
lab_history_transformed = {}
for lab in lab_history:
for i in range(len(self.time_thresholds_months)):
lab_history_transformed[lab + '_H_' + str(self.time_thresholds_months[i])] = 1 if lab_history[lab][i] == 'H' else 0
lab_history_transformed[lab + '_L_' + str(self.time_thresholds_months[i])] = 1 if lab_history[lab][i] == 'L' else 0
return lab_history_transformed
class GetLatestLabValuesTransformer(TransformerMixin):
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, **transform_params):
transformed_X = map(self.get_latest_lab_values, X)
return transformed_X
def get_latest_lab_values(self, empi):
person = loader.get_patient_by_EMPI(empi)
operation_date = build_graphs.get_operation_date(person)
latest_labs = structured_data_extractor.get_recent_lab_values(empi, operation_date)
latest_lab_values = {}
for lab in latest_labs:
if latest_labs[lab][1]:
try:
latest_lab_values[lab] = float(latest_labs[lab][1])
except:
latest_lab_values[lab] = latest_labs[lab][1]
return latest_lab_values
if __name__ == '__main__':
labsTransformer = GetLatestLabValuesTransformer()
labs = labsTransformer.get_latest_lab_values("FAKE_EMPI_648")
for lab in labs:
print(lab + ": " + str(labs[lab]))