Diff of /utils.py [000000] .. [8d2107]

Switch to unified view

a b/utils.py
1
from sklearn.linear_model import LogisticRegression, LinearRegression
2
import random
3
import numpy as np
4
import matplotlib.colors as mcolors
5
import matplotlib.pyplot as plt
6
7
def plot_predictions(X, y, model = None, title = ""):
8
9
10
    h = .025
11
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
12
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
13
    plt.figure()
14
    if model != None:
15
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
16
17
        # Obtain labels for each point in mesh. Use last trained model.
18
        Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
19
20
21
        # Put the result into a color plot
22
        Z = Z.reshape(xx.shape)
23
        to_rgb = mcolors.ColorConverter().to_rgb
24
        
25
        plt.clf()
26
        plt.imshow(Z, interpolation='nearest',
27
                   extent=(xx.min(), xx.max(), yy.min(), yy.max()),
28
                   cmap=plt.cm.brg,
29
                   aspect='auto', origin='lower')
30
31
    # # Plot also the training points
32
    colors = ["blue", "red", "green", 'orange']
33
    if y.shape[1] == 2:
34
        colors = ['blue', 'green']
35
    # #print compress(y)
36
    y_c = compress(y)
37
    labs = np.unique(list(range(y.shape[1])))
38
39
    for i, color in zip(labs, colors):
40
        #print i
41
        idx = np.where(y_c == i)
42
        plt.scatter(X[idx, 0], X[idx, 1], c=color)
43
    plt.title(title)
44
    plt.axis('tight')
45
46
    # colors = [to_rgb(x) for x in ['red','blue', 'green']]
47
48
    # plt.plot(X[:, 0], X[:, 1], '.', markersize=4)
49
    plt.show()
50
51
def sparsify_data(X, sparsity = .5, noise = .01):
52
    d = X.shape[1]
53
    d_sparse = int(d / sparsity)
54
    new_X = np.random.rand(X.shape[0], d_sparse) * noise - noise / 2.
55
    new_X[:, :d] = X
56
    return new_X
57
58
def compress(array):
59
    return np.matrix([[i for i in range(len(x)) if x[i] == max(x)][0] for x in array]).transpose()
60
61
def prediction_accuracy(X, y, model):
62
    y_hat = model.predict(X)
63
    correct = sum([int(y[i,y_hat[i]] == 1) for i in range(len(y_hat))])
64
    return 1. * correct / len(y_hat)
65
66
def generate_data(means = [(0, 0), (5, 0), (2.5, 2.5)], stdev = 1., classes = 3, n = 50):
67
    #gaussian 1
68
    K = len(means)
69
    X = np.empty((n*K, max([len(x) for x in means])))
70
    y = np.zeros((n*K, classes))
71
    for k in range(K):
72
        for i in range(len(means[k])):
73
            X[k*n : (k+1)*n,i] = [random.gauss(means[k][i], stdev) for j in range(n)]
74
        y[k*n : (k+1)*n, k % classes] = 1
75
    return (X, y)
76
77
def make_synthetic_data(means = [(0, 0), (2.5, -2.5), (5, 0), (2.5, 2.5)], stdev = 1., classes = 2, n = 50):
78
    pass