--- a +++ b/test_mixep.py @@ -0,0 +1,41 @@ +from neural_network import NeuralNetwork, NeuralLogistic +from mix_of_exp import MixtureOfExperts +from neural_network import NeuralNetwork, NeuralLogistic +from sklearn.linear_model import LogisticRegression, LinearRegression, SGDClassifier, SGDRegressor +import random +import numpy as np +import matplotlib.colors as mcolors +import matplotlib.pyplot as plt +from sklearn.ensemble import AdaBoostClassifier +from utils import generate_data, plot_predictions, prediction_accuracy, sparsify_data +from sklearn.pipeline import FeatureUnion, Pipeline +from model_builder import build_model, regex_baseline +from model_tester import execute_test +import sys +import profile + + +logistic = NeuralLogistic(restarts = 2, regularization = 0.00) + +nn = NeuralNetwork([(8, 'logistic'), (8, 'tanh'), (None, 'softmax')], 'maxent', regularization = 1e0, restarts = 30, max_iter = 10000, init_size = 1, step_size = 1e-2) + +#nn = NeuralNetwork([(None, 'softmax')], 'maxent', include_offset = True, max_iter = 5000) + +me = MixtureOfExperts([NeuralLogistic(regularization = 1e-1), NeuralLogistic(regularization = 1e-1), NeuralLogistic(regularization = 1e-1)], + NeuralLogistic(regularization = 1e-1), max_iter = 25) + #NeuralNetwork([(3, 'tanh'), (None, 'softmax')], 'maxent')) + +adaboost = AdaBoostClassifier(n_estimators = 500) + +mix_ex_args = {'experts' :[NeuralLogistic(regularization = 1e-1), NeuralLogistic(regularization = 1e-1), NeuralLogistic(regularization = 1e-1)], + 'gate' : NeuralLogistic(regularization = 1e-1), + 'max_iter': 15} + +model = build_model(regex_baseline, method = 'me', model_args = mix_ex_args) + +print execute_test(model, 25, 5) + + + + +