|
a |
|
b/test_mixep.py |
|
|
1 |
from neural_network import NeuralNetwork, NeuralLogistic |
|
|
2 |
from mix_of_exp import MixtureOfExperts |
|
|
3 |
from neural_network import NeuralNetwork, NeuralLogistic |
|
|
4 |
from sklearn.linear_model import LogisticRegression, LinearRegression, SGDClassifier, SGDRegressor |
|
|
5 |
import random |
|
|
6 |
import numpy as np |
|
|
7 |
import matplotlib.colors as mcolors |
|
|
8 |
import matplotlib.pyplot as plt |
|
|
9 |
from sklearn.ensemble import AdaBoostClassifier |
|
|
10 |
from utils import generate_data, plot_predictions, prediction_accuracy, sparsify_data |
|
|
11 |
from sklearn.pipeline import FeatureUnion, Pipeline |
|
|
12 |
from model_builder import build_model, regex_baseline |
|
|
13 |
from model_tester import execute_test |
|
|
14 |
import sys |
|
|
15 |
import profile |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
logistic = NeuralLogistic(restarts = 2, regularization = 0.00) |
|
|
19 |
|
|
|
20 |
nn = NeuralNetwork([(8, 'logistic'), (8, 'tanh'), (None, 'softmax')], 'maxent', regularization = 1e0, restarts = 30, max_iter = 10000, init_size = 1, step_size = 1e-2) |
|
|
21 |
|
|
|
22 |
#nn = NeuralNetwork([(None, 'softmax')], 'maxent', include_offset = True, max_iter = 5000) |
|
|
23 |
|
|
|
24 |
me = MixtureOfExperts([NeuralLogistic(regularization = 1e-1), NeuralLogistic(regularization = 1e-1), NeuralLogistic(regularization = 1e-1)], |
|
|
25 |
NeuralLogistic(regularization = 1e-1), max_iter = 25) |
|
|
26 |
#NeuralNetwork([(3, 'tanh'), (None, 'softmax')], 'maxent')) |
|
|
27 |
|
|
|
28 |
adaboost = AdaBoostClassifier(n_estimators = 500) |
|
|
29 |
|
|
|
30 |
mix_ex_args = {'experts' :[NeuralLogistic(regularization = 1e-1), NeuralLogistic(regularization = 1e-1), NeuralLogistic(regularization = 1e-1)], |
|
|
31 |
'gate' : NeuralLogistic(regularization = 1e-1), |
|
|
32 |
'max_iter': 15} |
|
|
33 |
|
|
|
34 |
model = build_model(regex_baseline, method = 'me', model_args = mix_ex_args) |
|
|
35 |
|
|
|
36 |
print execute_test(model, 25, 5) |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
|
41 |
|