|
a |
|
b/rx_transformer.py |
|
|
1 |
import numpy as np |
|
|
2 |
from sklearn.base import TransformerMixin |
|
|
3 |
|
|
|
4 |
import extract_data |
|
|
5 |
import loader |
|
|
6 |
|
|
|
7 |
class RX_Transformer(TransformerMixin): |
|
|
8 |
""" |
|
|
9 |
|
|
|
10 |
""" |
|
|
11 |
def __init__(self): |
|
|
12 |
pass |
|
|
13 |
|
|
|
14 |
def fit(self, X, y=None, **fit_params): |
|
|
15 |
self.all_med_classes = {} |
|
|
16 |
self.dimensionality = 0 |
|
|
17 |
for empi in X: |
|
|
18 |
for med in self.get_med_classes(empi): |
|
|
19 |
if med not in self.all_med_classes: |
|
|
20 |
self.all_med_classes[med] = self.dimensionality |
|
|
21 |
self.dimensionality += 1 |
|
|
22 |
return self |
|
|
23 |
|
|
|
24 |
def get_feature_names(self): |
|
|
25 |
reverse_dict = {} |
|
|
26 |
for med in self.all_med_classes.keys(): |
|
|
27 |
reverse_dict[self.all_med_classes[med]] = med |
|
|
28 |
|
|
|
29 |
features = [] |
|
|
30 |
for i in range(self.dimensionality): |
|
|
31 |
features.append(reverse_dict[i]) |
|
|
32 |
return np.asarray(features) |
|
|
33 |
|
|
|
34 |
def transform(self, X, **transform_params): |
|
|
35 |
transformed_X = map(self.get_med_string, X) |
|
|
36 |
return np.array(transformed_X) |
|
|
37 |
|
|
|
38 |
def get_med_vector(self, empi): |
|
|
39 |
vector = np.zeros(self.dimensionality) |
|
|
40 |
for med in self.get_med_classes(empi): |
|
|
41 |
vector[self.all_med_classes[med]] = 1.0 |
|
|
42 |
return vector |
|
|
43 |
|
|
|
44 |
def get_med_classes(self, empi): |
|
|
45 |
patient = loader.get_patient_by_EMPI(empi) |
|
|
46 |
operation_date = extract_data.get_operation_date(patient) |
|
|
47 |
medications = [] |
|
|
48 |
for med in patient['Med']: |
|
|
49 |
try: |
|
|
50 |
date = parse_m_d_y(med['Medication_Date']) |
|
|
51 |
if date <= procedure_date: |
|
|
52 |
medications.extend(med['RXNORM_CLASSES']) |
|
|
53 |
except: |
|
|
54 |
pass |
|
|
55 |
return medications |