|
a |
|
b/baseline_transformer.py |
|
|
1 |
import datetime |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
from sklearn.base import TransformerMixin |
|
|
5 |
from sklearn.feature_extraction.text import TfidfVectorizer |
|
|
6 |
|
|
|
7 |
import structured_data_extractor |
|
|
8 |
import build_graphs |
|
|
9 |
import loader |
|
|
10 |
import extract_data |
|
|
11 |
import language_processing |
|
|
12 |
|
|
|
13 |
class SexTransformer(TransformerMixin): |
|
|
14 |
""" |
|
|
15 |
transforms EMPI into 'male', 'female' column |
|
|
16 |
""" |
|
|
17 |
def fit(self, X, y = None, **fit_params): |
|
|
18 |
return self |
|
|
19 |
|
|
|
20 |
def transform(self, X, **transform_params): |
|
|
21 |
transformed_X = map(self.get_sex, X) |
|
|
22 |
return np.matrix(transformed_X).transpose() |
|
|
23 |
|
|
|
24 |
def get_sex(self, empi): |
|
|
25 |
person = loader.get_patient_by_EMPI(empi) |
|
|
26 |
if 'Sex' in person: |
|
|
27 |
sex = person['Gender'] |
|
|
28 |
return int(sex == 'Female\r\n') |
|
|
29 |
else: |
|
|
30 |
return 0 |
|
|
31 |
|
|
|
32 |
def get_feature_names(self): |
|
|
33 |
return ["sex_female"] |
|
|
34 |
|
|
|
35 |
class GetConcatenatedNotesTransformer(TransformerMixin): |
|
|
36 |
"""Takes as input the type of note (i.e. 'Car' or 'Lno'). |
|
|
37 |
For each empi x in the input vector X, it returns a concatentation of |
|
|
38 |
all the pre-procedure notes of the type specified for the patient with that empi.""" |
|
|
39 |
def __init__(self, note_type, look_back_months=None): |
|
|
40 |
self.type = note_type |
|
|
41 |
self.look_back_months = look_back_months |
|
|
42 |
|
|
|
43 |
def fit(self, X, y=None, **fit_params): |
|
|
44 |
return self |
|
|
45 |
|
|
|
46 |
def transform(self, X, **transform_params): |
|
|
47 |
transformed_X = map(self.get_concatenated_notes, X) |
|
|
48 |
return transformed_X |
|
|
49 |
|
|
|
50 |
def get_concatenated_notes(self, empi): |
|
|
51 |
person = loader.get_patient_by_EMPI(empi) |
|
|
52 |
operation_date = build_graphs.get_operation_date(person) |
|
|
53 |
date_key = extract_data.get_date_key(self.type) |
|
|
54 |
notes = [] |
|
|
55 |
sec_per_month = 24 * 60 * 60 * (365.0 / 12) |
|
|
56 |
if self.type in person.keys() and date_key != None: |
|
|
57 |
for i in range(len(person[self.type])): |
|
|
58 |
doc = person[self.type][i] |
|
|
59 |
date = extract_data.parse_date(doc[date_key]) |
|
|
60 |
if date != None and date < operation_date: |
|
|
61 |
if self.look_back_months and (operation_date - date).total_seconds() > (self.look_back_months * sec_per_month): |
|
|
62 |
continue |
|
|
63 |
notes.append(doc['free_text']) |
|
|
64 |
return '\n\n'.join(notes) |
|
|
65 |
|
|
|
66 |
class GetLatestNotesTransformer(TransformerMixin): |
|
|
67 |
"""Similar to the transformer above, but takes in an extra parameter max_notes |
|
|
68 |
that limits the number of notes to incorporate, indexed from the procedure |
|
|
69 |
date going back in time, and returns an array of notes instead of a concatentation. |
|
|
70 |
For example, if you put max_notes to be 1, then it would return a single-element |
|
|
71 |
array with the text of the note closest to, but not including, the procedure date |
|
|
72 |
(for each empi in the input vector).""" |
|
|
73 |
def __init__(self, note_type, max_notes): |
|
|
74 |
self.type = note_type |
|
|
75 |
self.max_notes = max_notes |
|
|
76 |
|
|
|
77 |
def fit(self, X, y=None, **fit_params): |
|
|
78 |
return self |
|
|
79 |
|
|
|
80 |
def transform(self, X, **transform_params): |
|
|
81 |
transformed_X = map(self.get_latest_concatenated_notes, X) |
|
|
82 |
return transformed_X |
|
|
83 |
|
|
|
84 |
def get_feature_names(self): |
|
|
85 |
names = ['latest_note_' + str(i) for i in range(self.max_notes)] |
|
|
86 |
return np.array(names) |
|
|
87 |
|
|
|
88 |
def get_latest_concatenated_notes(self, empi): |
|
|
89 |
person = loader.get_patient_by_EMPI(empi) |
|
|
90 |
operation_date = build_graphs.get_operation_date(person) |
|
|
91 |
date_key = extract_data.get_date_key(self.type) |
|
|
92 |
notes = [] |
|
|
93 |
if self.type in person.keys() and date_key != None: |
|
|
94 |
time_key_pairs = [] |
|
|
95 |
for i in range(len(person[self.type])): |
|
|
96 |
doc = person[self.type][i] |
|
|
97 |
date = extract_data.parse_date(doc[date_key]) |
|
|
98 |
if date != None and date < operation_date: |
|
|
99 |
time_key_pairs.append((operation_date - date, i)) |
|
|
100 |
time_key_pairs.sort() |
|
|
101 |
for time,key in time_key_pairs[:self.max_notes]: |
|
|
102 |
doc = person[self.type][key] |
|
|
103 |
notes.append(doc['free_text']) |
|
|
104 |
# ensure that notes vector length is equal to max_notes |
|
|
105 |
if len(notes) < self.max_notes: |
|
|
106 |
delta = self.max_notes - len(notes) |
|
|
107 |
for i in range(delta): |
|
|
108 |
notes.append('') |
|
|
109 |
return np.array(notes) |
|
|
110 |
|
|
|
111 |
class DocumentConcatenatorTransformer(TransformerMixin): |
|
|
112 |
def fit(self, X, y=None, **fit_params): |
|
|
113 |
return self |
|
|
114 |
|
|
|
115 |
def transform(self, X, **transform_params): |
|
|
116 |
transformed_X = map(self.concatenate_notes, X) |
|
|
117 |
return transformed_X |
|
|
118 |
|
|
|
119 |
def concatenate_notes(self, docs): |
|
|
120 |
return '\n\n'.join(docs) |
|
|
121 |
|
|
|
122 |
class MultiDocTfidfTransformer(TransformerMixin): |
|
|
123 |
""" |
|
|
124 |
Returns a vector of TFIDF vectors for each string in a vector. TFIDF |
|
|
125 |
weightings are global across all elements of the document. |
|
|
126 |
""" |
|
|
127 |
def __init__(self):#, ngram_range=(1,1)): |
|
|
128 |
self.tfidf = TfidfVectorizer()#ngram_range=ngram_range) |
|
|
129 |
self.vec_size = 0 |
|
|
130 |
|
|
|
131 |
def fit(self, X, y=None, **fit_params): |
|
|
132 |
self.vec_size = len(X[0]) |
|
|
133 |
self.tfidf.fit(map(lambda x: '\n\n'.join(x), X)) |
|
|
134 |
return self |
|
|
135 |
|
|
|
136 |
def transform(self, X, **transform_params): |
|
|
137 |
tX = map(lambda x: self.tfidf.transform(x).toarray().flatten(), X) |
|
|
138 |
return tX |
|
|
139 |
|
|
|
140 |
def get_feature_names(self): |
|
|
141 |
feature_arr = map(lambda i: self.tfidf.get_feature_names(), range(self.vec_size)) |
|
|
142 |
return np.array(feature_arr).flatten() |
|
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
|
146 |
class GetEncountersFeaturesTransformer(TransformerMixin): |
|
|
147 |
"""Returns a feature vector for each empi from the encounters history |
|
|
148 |
of that patient. Check below for details as it may change, but in general |
|
|
149 |
the feature vector will have two parts: (a) small feature vector for each |
|
|
150 |
of the encounters before the operation (with max_encounters as the max); |
|
|
151 |
(b) a series of features derived from the overall encounter history for the |
|
|
152 |
given patient (such as averages, sums, counts, maximums, etc.). |
|
|
153 |
Setting only_general flag to True returns only features in (b).""" |
|
|
154 |
def __init__(self, max_encounters, only_general=False): |
|
|
155 |
self.max_encounters = max_encounters |
|
|
156 |
self.only_general = only_general |
|
|
157 |
|
|
|
158 |
def fit(self, X, y=None, **fit_params): |
|
|
159 |
return self |
|
|
160 |
|
|
|
161 |
def transform(self, X, **transform_params): |
|
|
162 |
transformed_X = map(self.get_encounters_features, X) |
|
|
163 |
return transformed_X |
|
|
164 |
|
|
|
165 |
def get_feature_names(self): |
|
|
166 |
names = [] |
|
|
167 |
for i in range(self.max_encounters): |
|
|
168 |
names.append('Inpatient_Outpatient_Enc_' + str(i)) |
|
|
169 |
names.append('LOS_Enc_' + str(i)) |
|
|
170 |
names.append('Num_Extra_Diagnoses_Enc_' + str(i)) |
|
|
171 |
names.append('Enc_Inpatient_Ratio') |
|
|
172 |
names.append('Enc_Average_LOS') |
|
|
173 |
names.append('Enc_Average_Extra_Diagnoses') |
|
|
174 |
return np.array(names) |
|
|
175 |
|
|
|
176 |
def get_encounters_features(self, empi): |
|
|
177 |
encounters = structured_data_extractor.get_encounters(empi) |
|
|
178 |
person = loader.get_patient_by_EMPI(empi) |
|
|
179 |
operation_date = build_graphs.get_operation_date(person) |
|
|
180 |
operation_index = 0 |
|
|
181 |
for enc in encounters: |
|
|
182 |
if enc[0] < operation_date: |
|
|
183 |
operation_index += 1 |
|
|
184 |
else: |
|
|
185 |
break |
|
|
186 |
# only look at encounters before the operation |
|
|
187 |
encounters = encounters[:operation_index] |
|
|
188 |
features = [] |
|
|
189 |
# INDIVIDUAL ENCOUNTER FEATURES (3 x max_encounters) |
|
|
190 |
num_tracked_encounters = min(self.max_encounters, len(encounters)) |
|
|
191 |
# tracked_encounters below is sorted by increasing absolute time delta with operation date |
|
|
192 |
tracked_encounters = encounters[::-1][:num_tracked_encounters] |
|
|
193 |
inpatients = 0 |
|
|
194 |
total_LOS = 0 |
|
|
195 |
total_extra_diagnoses = 0 |
|
|
196 |
for enc in tracked_encounters: |
|
|
197 |
# INDIVIDUAL FEATURE 1 - Inpatient vs. Outpatient |
|
|
198 |
if enc[1] == 'Inpatient': |
|
|
199 |
features.append(1) |
|
|
200 |
inpatients += 1 |
|
|
201 |
else: |
|
|
202 |
features.append(0) |
|
|
203 |
# INDIVIDUAL FEATURE 2 - Length of Stay |
|
|
204 |
if enc[3] > 1: |
|
|
205 |
features.append(enc[3]) |
|
|
206 |
total_LOS += enc[3] |
|
|
207 |
else: |
|
|
208 |
features.append(0) |
|
|
209 |
# INDIVIDUAL FEATURE 3 - Number of Extra Diagnoses |
|
|
210 |
features.append(enc[4]) |
|
|
211 |
total_extra_diagnoses += enc[4] |
|
|
212 |
# fill in remaining vector space with zeros to make vector size = 3 x max_encounters |
|
|
213 |
if num_tracked_encounters < self.max_encounters: |
|
|
214 |
delta = self.max_encounters - num_tracked_encounters |
|
|
215 |
for i in range(delta): |
|
|
216 |
for j in range(3): |
|
|
217 |
features.append(0) |
|
|
218 |
# OVERALL ENCOUNTERS FEATURES (3) |
|
|
219 |
# OVERALL FEATURE 1 - Inpatient Ratio |
|
|
220 |
if len(tracked_encounters) > 0: |
|
|
221 |
features.append(inpatients / len(tracked_encounters)) |
|
|
222 |
else: |
|
|
223 |
features.append(0) |
|
|
224 |
# OVERALL FEATURE 2 - Average LOS |
|
|
225 |
if inpatients > 0: |
|
|
226 |
features.append(total_LOS / inpatients) |
|
|
227 |
else: |
|
|
228 |
features.append(0) |
|
|
229 |
# OVERALL FEATURE 3 - Average Extra Diagnoses |
|
|
230 |
if len(tracked_encounters) > 0: |
|
|
231 |
features.append(total_extra_diagnoses / len(tracked_encounters)) |
|
|
232 |
else: |
|
|
233 |
features.append(0) |
|
|
234 |
if self.only_general: |
|
|
235 |
features = features[-3:] |
|
|
236 |
return np.array(features) |
|
|
237 |
|
|
|
238 |
class GetLabsCountsDictTransformer(TransformerMixin): |
|
|
239 |
"""For each empi, will return a dictionary of lab test names to a count |
|
|
240 |
of the amount of times that patient has received that test before the |
|
|
241 |
operation. Output should then be fed into DictVectorizer.""" |
|
|
242 |
def fit(self, X, y=None, **fit_params): |
|
|
243 |
return self |
|
|
244 |
|
|
|
245 |
def transform(self, X, **transform_params): |
|
|
246 |
transformed_X = map(self.get_labs_counts, X) |
|
|
247 |
return transformed_X |
|
|
248 |
|
|
|
249 |
def get_labs_counts(self, empi): |
|
|
250 |
person = loader.get_patient_by_EMPI(empi) |
|
|
251 |
operation_date = build_graphs.get_operation_date(person) |
|
|
252 |
return structured_data_extractor.get_labs_before_date(empi, operation_date)[0] |
|
|
253 |
|
|
|
254 |
class GetLabsLowCountsDictTransformer(TransformerMixin): |
|
|
255 |
"""For each empi, will return a dictionary of lab test names to a count |
|
|
256 |
of the amount of times that patient has received that test before the |
|
|
257 |
operation and the test value was low. Output should then be fed into DictVectorizer.""" |
|
|
258 |
def fit(self, X, y=None, **fit_params): |
|
|
259 |
return self |
|
|
260 |
|
|
|
261 |
def transform(self, X, **transform_params): |
|
|
262 |
transformed_X = map(self.get_low_counts, X) |
|
|
263 |
return transformed_X |
|
|
264 |
|
|
|
265 |
def get_low_counts(self, empi): |
|
|
266 |
person = loader.get_patient_by_EMPI(empi) |
|
|
267 |
operation_date = build_graphs.get_operation_date(person) |
|
|
268 |
return structured_data_extractor.get_labs_before_date(empi, operation_date)[1] |
|
|
269 |
|
|
|
270 |
class GetLabsHighCountsDictTransformer(TransformerMixin): |
|
|
271 |
"""For each empi, will return a dictionary of lab test names to a count |
|
|
272 |
of the amount of times that patient has received that test before the |
|
|
273 |
operation and the test value was high. Output should then be fed into DictVectorizer.""" |
|
|
274 |
def fit(self, X, y=None, **fit_params): |
|
|
275 |
return self |
|
|
276 |
|
|
|
277 |
def transform(self, X, **transform_params): |
|
|
278 |
transformed_X = map(self.get_high_counts, X) |
|
|
279 |
return transformed_X |
|
|
280 |
|
|
|
281 |
def get_high_counts(self, empi): |
|
|
282 |
person = loader.get_patient_by_EMPI(empi) |
|
|
283 |
operation_date = build_graphs.get_operation_date(person) |
|
|
284 |
return structured_data_extractor.get_labs_before_date(empi, operation_date)[2] |
|
|
285 |
|
|
|
286 |
class GetLabsLatestHighDictTransformer(TransformerMixin): |
|
|
287 |
"""For each empi, will return a dictionary of lab test names to a boolean |
|
|
288 |
indicating if the test value was high the last time the patient received |
|
|
289 |
that test (before the procedue). Output should then be fed into DictVectorizer.""" |
|
|
290 |
def fit(self, X, y=None, **fit_params): |
|
|
291 |
return self |
|
|
292 |
|
|
|
293 |
def transform(self, X, **transform_params): |
|
|
294 |
transformed_X = map(self.get_labs_latest_high, X) |
|
|
295 |
return transformed_X |
|
|
296 |
|
|
|
297 |
def get_labs_latest_high(self, empi): |
|
|
298 |
person = loader.get_patient_by_EMPI(empi) |
|
|
299 |
operation_date = build_graphs.get_operation_date(person) |
|
|
300 |
labs_latest = structured_data_extractor.get_labs_before_date(empi, operation_date)[3] |
|
|
301 |
labs_latest_high = {} |
|
|
302 |
for lab in labs_latest: |
|
|
303 |
if labs_latest[lab][1] == 'H': |
|
|
304 |
labs_latest_high[lab] = 1 |
|
|
305 |
else: |
|
|
306 |
labs_latest_high[lab] = 0 |
|
|
307 |
return labs_latest_high |
|
|
308 |
|
|
|
309 |
class GetLabsLatestLowDictTransformer(TransformerMixin): |
|
|
310 |
"""For each empi, will return a dictionary of lab test names to a boolean |
|
|
311 |
indicating if the test value was low the last time the patient received |
|
|
312 |
that test (before the procedue). Output should then be fed into DictVectorizer.""" |
|
|
313 |
def fit(self, X, y=None, **fit_params): |
|
|
314 |
return self |
|
|
315 |
|
|
|
316 |
def transform(self, X, **transform_params): |
|
|
317 |
transformed_X = map(self.get_labs_latest_low, X) |
|
|
318 |
return transformed_X |
|
|
319 |
|
|
|
320 |
def get_labs_latest_low(self, empi): |
|
|
321 |
person = loader.get_patient_by_EMPI(empi) |
|
|
322 |
operation_date = build_graphs.get_operation_date(person) |
|
|
323 |
labs_latest = structured_data_extractor.get_labs_before_date(empi, operation_date)[3] |
|
|
324 |
labs_latest_low = {} |
|
|
325 |
for lab in labs_latest: |
|
|
326 |
if labs_latest[lab][1] == 'L': |
|
|
327 |
labs_latest_low[lab] = 1 |
|
|
328 |
else: |
|
|
329 |
labs_latest_low[lab] = 0 |
|
|
330 |
return labs_latest_low |
|
|
331 |
|
|
|
332 |
class GetLabsHistoryDictTransformer(TransformerMixin): |
|
|
333 |
"""For each empi, will return a dictionary where keys are a concatenation of |
|
|
334 |
the lab test name, H(igh) or L(ow), and the time threshold looking back (i.e. "NA_H_6" |
|
|
335 |
would be testing for High results on the NA test around 6 months before prcedure). |
|
|
336 |
The value is just a boolean indicating if this result was high (for H) or low (for L). |
|
|
337 |
Output should then be fed into DictVectorizer.""" |
|
|
338 |
def __init__(self, time_thresholds_months): |
|
|
339 |
self.time_thresholds_months = time_thresholds_months |
|
|
340 |
|
|
|
341 |
def fit(self, X, y=None, **fit_params): |
|
|
342 |
return self |
|
|
343 |
|
|
|
344 |
def transform(self, X, **transform_params): |
|
|
345 |
transformed_X = map(self.get_labs_history, X) |
|
|
346 |
return transformed_X |
|
|
347 |
|
|
|
348 |
def get_labs_history(self, empi): |
|
|
349 |
person = loader.get_patient_by_EMPI(empi) |
|
|
350 |
operation_date = build_graphs.get_operation_date(person) |
|
|
351 |
lab_history = structured_data_extractor.get_lab_history_before_date(empi, operation_date, self.time_thresholds_months) |
|
|
352 |
lab_history_transformed = {} |
|
|
353 |
for lab in lab_history: |
|
|
354 |
for i in range(len(self.time_thresholds_months)): |
|
|
355 |
lab_history_transformed[lab + '_H_' + str(self.time_thresholds_months[i])] = 1 if lab_history[lab][i] == 'H' else 0 |
|
|
356 |
lab_history_transformed[lab + '_L_' + str(self.time_thresholds_months[i])] = 1 if lab_history[lab][i] == 'L' else 0 |
|
|
357 |
return lab_history_transformed |
|
|
358 |
|
|
|
359 |
class GetLatestLabValuesTransformer(TransformerMixin): |
|
|
360 |
def fit(self, X, y=None, **fit_params): |
|
|
361 |
return self |
|
|
362 |
|
|
|
363 |
def transform(self, X, **transform_params): |
|
|
364 |
transformed_X = map(self.get_latest_lab_values, X) |
|
|
365 |
return transformed_X |
|
|
366 |
|
|
|
367 |
def get_latest_lab_values(self, empi): |
|
|
368 |
person = loader.get_patient_by_EMPI(empi) |
|
|
369 |
operation_date = build_graphs.get_operation_date(person) |
|
|
370 |
latest_labs = structured_data_extractor.get_recent_lab_values(empi, operation_date) |
|
|
371 |
latest_lab_values = {} |
|
|
372 |
for lab in latest_labs: |
|
|
373 |
if latest_labs[lab][1]: |
|
|
374 |
try: |
|
|
375 |
latest_lab_values[lab] = float(latest_labs[lab][1]) |
|
|
376 |
except: |
|
|
377 |
latest_lab_values[lab] = latest_labs[lab][1] |
|
|
378 |
return latest_lab_values |
|
|
379 |
|
|
|
380 |
if __name__ == '__main__': |
|
|
381 |
labsTransformer = GetLatestLabValuesTransformer() |
|
|
382 |
labs = labsTransformer.get_latest_lab_values("FAKE_EMPI_648") |
|
|
383 |
for lab in labs: |
|
|
384 |
print(lab + ": " + str(labs[lab])) |