a b/anonymizer.py
1
import csv
2
import json
3
import os 
4
import re
5
6
path = '/home/josh/code/healthanon/CRT MGH 950 cohort/'
7
file_template = 'cl491_092315161707361168_'
8
9
def anonymize_doc(patient, doc):
10
    replacements = []
11
    replacements.append((patient['First_Name'], 'First_Name'))
12
    replacements.append((patient['Last_Name'], 'Last_Name'))
13
    replacements.append((patient['Last_Name'], 'Last_Name'))
14
    replacements.append((patient['EMPI'], patient['NEW_EMPI']))
15
    for mrn in patient['MRNS']:
16
        replacements.append((mrn, 'MRN'))
17
18
    for (regex, sub) in replacements:
19
        pattern = re.compile(regex, re.IGNORECASE)
20
        doc = re.sub(pattern, sub, doc)
21
22
    return doc
23
    
24
25
def get_docs_empi_map(doc_type):
26
    doc_file = path + file_template + doc_type + '.txt'
27
    with open(doc_file, 'r') as f:
28
        doc_text = f.read()
29
        doc_array = doc_text.split('[report_end]')
30
    
31
    doc_map = {}
32
    for doc in doc_array:
33
        empi = doc.split('\n')[1].split('|')[0]
34
        if empi not in doc_map:
35
            doc_map[empi] = []
36
        doc_map[empi].append(doc)
37
38
    return doc_map
39
40
def get_struct_empi_map(doc_type):
41
    doc_file = path + file_template + doc_type + '.txt'
42
    with open(doc_file, 'r') as f:
43
        doc_text = f.read()
44
        doc_array = doc_text.split('\n')
45
    
46
    doc_map = {}
47
    keys = doc_array[0].split('|')
48
    for row in doc_array[1:]:
49
        cols = row.split('|')
50
        empi = cols[0]
51
        record = {}
52
        try:
53
            for i in range(3, len(keys)):
54
                key = keys[i]
55
                record[key] = cols[i]
56
        except:
57
            print 'Error for type:' + doc_type + ' column:' + str(i) + ' row:' + row
58
59
        if empi not in doc_map:
60
            doc_map[empi] = []
61
        doc_map[empi].append(record)
62
63
    return doc_map
64
65
def get_patient_dem_info():
66
    # Get demographic text
67
    dem_file = path + file_template + 'Dem.txt'
68
    with open(dem_file, 'r') as f:
69
        dem_text = f.read()
70
        dem_array = dem_text.split('\n')
71
72
    # Get contact text
73
    contact_file = path + file_template + 'Con.txt'
74
    with open(contact_file, 'r') as f:
75
        contact_text = f.read()
76
        contact_array = contact_text.split('\n')
77
78
    # Build dictionary
79
    patients = {}
80
    for (i, row) in enumerate(contact_array[1:]):
81
        cols = row.strip().split('|')
82
        patient = {}
83
        try:
84
            patient['NEW_EMPI'] = 'FAKE_EMPI_' + str(i)
85
            patient['EMPI'] = cols[0].strip()
86
            patient['MRNS'] = map(lambda x: x.strip(), cols[2].strip().split(','))
87
            patient['Last_Name'] = cols[3].strip()
88
            patient['First_Name'] = cols[4].strip()
89
            patient['Middle_Name'] = cols[5].strip()
90
            
91
            # store in dict
92
            patients[patient['EMPI']] = patient
93
        except:
94
            print('Error in contact dict build for row:')
95
            print row
96
97
    for row in dem_array[1:]:
98
        cols = row.strip().split('|')
99
        try:
100
            empi = cols[0].strip()
101
            patient = patients[empi]
102
            
103
            patient['Vital_status'] = cols[13].strip()
104
            patient['Date_Of_Death'] = cols[14].strip()
105
        except:
106
            print('Error in dem build for row:')
107
            print row
108
109
    return patients
110
111
def get_mrn_to_empi(patients):
112
    mrn_empi = {}
113
    for empi in patients.keys():
114
        patient = patients[empi]
115
        for mrn in patient['MRNS']:
116
            mrn_empi[mrn] = empi
117
    return mrn_empi
118
119
120
def parse_procedure_date_file(patients):
121
    proc_file = path + 'additional data/PATIENT_LIST_with_appointment_dates.csv'
122
123
    mrn_to_empi = get_mrn_to_empi(patients)
124
    patients_procs = {}
125
    with open(proc_file, 'r') as f:
126
        reader = csv.DictReader(f)
127
        for row in reader:
128
            mrn = row['MR#'].strip().replace('-','')
129
            if mrn != '':
130
                try:
131
                    empi = mrn_to_empi[mrn]
132
                    patient = patients[empi]
133
134
                    del row['Name']
135
                    del row['MR#']
136
                    patients[empi]['Procedure'] = row
137
                except KeyError:
138
                    print "Error parsing procedure date for MRN:" + mrn
139
140
    write_null_if_empty(patients, 'Procedure')
141
142
143
def write_null_if_empty(patients, key):
144
    for empi in patients.keys():
145
        if key not in patients[empi]:
146
            patients[empi][key] = None
147
            
148
149
def parse_response_file(patients):
150
    resp_file = path + 'additional data/9 24 14 CRT Database for Charlotta.csv'
151
152
    mrn_to_empi = get_mrn_to_empi(patients)
153
    patients_procs = {}
154
    with open(resp_file, 'r') as f:
155
        reader = csv.DictReader(f)
156
        for row in reader:
157
            mrn = row['Patient_ID'].strip()
158
            if mrn != '':
159
                try:
160
                    empi = mrn_to_empi[mrn]
161
                    patient = patients[empi]
162
163
                    del row['First_Name']
164
                    del row['Last_Name']
165
                    del row['Patient_ID']
166
                    del row['DOB']
167
                    patients[empi]['Supplemental'] = row
168
                except KeyError:
169
                    print "Error parsing supplemental data for MRN:" + mrn
170
171
    write_null_if_empty(patients, 'Supplemental')
172
        
173
174
if __name__ == "__main__":
175
    # Do the anonymization!
176
177
    patients = get_patient_dem_info()
178
    parse_procedure_date_file(patients)
179
    parse_response_file(patients)
180
181
    report_types = ['Car', 'Dis', 'End', 'Lno', 'Mic', 'Opn', 'Pat', 'Pul', 'Rad']
182
    for report_type in report_types:
183
        report_map = get_docs_empi_map(report_type)
184
        for key in patients.keys():
185
            try:
186
                docs = report_map[key]
187
                for doc in docs:
188
                    if report_type not in patients[key]:
189
                        patients[key][report_type] = []
190
                    patients[key][report_type].append(anonymize_doc(patients[key], doc))
191
            except:
192
                patients[key][report_type] = []
193
                print('Patient with empi:' + key + ' doesnt have report for report_type:' + report_type)
194
195
    struct_reports = ['Dia', 'Enc', 'Lab', 'Lhm', 'Lme', 'Lpr', 'Lvs', 'Med', 'Phy', 'Prc', 'Prv', 'Rdt', 'Rnd', 'Trn']
196
    for report_type in struct_reports:
197
        report_map = get_struct_empi_map(report_type)
198
        for key in patients.keys():
199
            try:
200
                patients[key][report_type] = report_map[key]
201
            except:
202
                patients[key][report_type] = []
203
                print('Patient with empi:' + key + ' doesnt have report for report_type:' + report_type)
204
205
    # Final delete of info
206
    anon_patients = {}
207
    old_mapping = {}
208
    for key in patients.keys():
209
        patient = patients[key]
210
        old_mapping[patient['EMPI']] = patient['NEW_EMPI']
211
        del patient['EMPI']
212
        del patient['MRNS']
213
        del patient['Last_Name']
214
        del patient['First_Name']
215
        del patient['Middle_Name']
216
        anon_patients[patient['NEW_EMPI']] = patient
217
     
218
    out_path = '/home/josh/code/healthanon/data/'
219
    if not os.path.exists(out_path):
220
        os.makedirs(out_path)
221
222
    with open(out_path + 'mapping.csv', 'w') as f:
223
        for key in old_mapping.keys():
224
            f.write(key + ',' + old_mapping[key] + '\n')
225
226
    for key in anon_patients.keys():
227
        with open(out_path + key + '.json','w') as f:
228
            json.dump(anon_patients[key], f)