1545 lines (1544 with data), 407.1 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "f8302cf8",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import re\n",
"import pickle\n",
"\n",
"import numpy as np\n",
"\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6851f1a6",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[nltk_data] Error loading punkt: <urlopen error [SSL:\n",
"[nltk_data] CERTIFICATE_VERIFY_FAILED] certificate verify failed:\n",
"[nltk_data] unable to get local issuer certificate (_ssl.c:1131)>\n",
"[nltk_data] Error loading stopwords: <urlopen error [SSL:\n",
"[nltk_data] CERTIFICATE_VERIFY_FAILED] certificate verify failed:\n",
"[nltk_data] unable to get local issuer certificate (_ssl.c:1131)>\n"
]
}
],
"source": [
"import sys\n",
"sys.path.append('../scripts')\n",
"from utils import predict, predict_multi_line_text, load_data\n",
"\n",
"sys.path.append('../')\n",
"from config import entity_to_acronyms, acronyms_to_entities"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "89395fb0",
"metadata": {},
"outputs": [],
"source": [
"# from importlib import reload\n",
"\n",
"# import utils\n",
"# reload(utils)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "55b67971",
"metadata": {},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
"from tensorflow.keras.utils import to_categorical\n",
"from tensorflow.keras.layers import Input, Embedding, Bidirectional, LSTM, Dense"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e73cc064",
"metadata": {},
"outputs": [],
"source": [
"from config import entity_to_acronyms, acronyms_to_entities"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "5d959f70",
"metadata": {},
"outputs": [],
"source": [
"data_dir = '../data'\n",
"model_dir = '../models'"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f86da10e",
"metadata": {},
"outputs": [],
"source": [
"(train_sequences_padded, train_labels), (val_sequences_padded, val_labels), (test_sequences_padded, test_labels), label_to_index, index_to_label = load_data(data_dir)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "c7ad2170",
"metadata": {},
"outputs": [],
"source": [
"if train_sequences_padded.shape[1] != train_labels.shape[1]:\n",
" print('Sequence length mismatch')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "36c1529c",
"metadata": {},
"outputs": [],
"source": [
"# Load the tokenizer from file\n",
"with open('../data/tokenizer.pickle', 'rb') as handle:\n",
" tokenizer = pickle.load(handle)"
]
},
{
"cell_type": "markdown",
"id": "3f666677",
"metadata": {},
"source": [
"## Model parameters"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "335a945b",
"metadata": {},
"outputs": [],
"source": [
"INPUT_DIM = len(tokenizer.word_index)+1\n",
"EMBEDDING_DIM = 64\n",
"NUM_CLASSES = len(label_to_index)\n",
"MAX_LENGTH = train_sequences_padded.shape[1]\n",
"\n",
"LSTM1_UNITS = 64\n",
"LSTM2_UNITS = 32\n",
"DENSE_DIM = 64\n",
"\n",
"DROPOUT = 0.2\n",
"BATCH_SIZE = 32\n",
"EPOCHS = 20"
]
},
{
"cell_type": "markdown",
"id": "47692a34",
"metadata": {},
"source": [
"## Building Model"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "770388cb",
"metadata": {},
"outputs": [],
"source": [
"from keras import backend as K\n",
"\n",
"def precision(y_true, y_pred):\n",
" true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n",
" predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))\n",
" _precision = true_positives / (predicted_positives + K.epsilon())\n",
" return _precision\n",
"\n",
"def recall(y_true, y_pred):\n",
" \"\"\"Compute recall metric\"\"\"\n",
" true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n",
" possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))\n",
" return true_positives / (possible_positives + K.epsilon())\n",
"\n",
"def f1_score(y_true, y_pred):\n",
" \"\"\"Compute f1-score metric\"\"\"\n",
" _precision = precision(y_true, y_pred)\n",
" _recall = recall(y_true, y_pred)\n",
" f1_score = 2 * ((_precision * _recall) / (_precision + _recall + K.epsilon()))\n",
" return f1_score"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d662fe53",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential\"\n",
"_________________________________________________________________\n",
" Layer (type) Output Shape Param # \n",
"=================================================================\n",
" embedding (Embedding) (None, 100, 64) 446016 \n",
" \n",
" bidirectional (Bidirectiona (None, 100, 128) 66048 \n",
" l) \n",
" \n",
" bidirectional_1 (Bidirectio (None, 100, 64) 41216 \n",
" nal) \n",
" \n",
" dense (Dense) (None, 100, 64) 4160 \n",
" \n",
" dense_1 (Dense) (None, 100, 79) 5135 \n",
" \n",
"=================================================================\n",
"Total params: 562,575\n",
"Trainable params: 562,575\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"# Define the model architecture\n",
"model = tf.keras.models.Sequential([\n",
" Embedding(INPUT_DIM, EMBEDDING_DIM, input_length=MAX_LENGTH),\n",
" Bidirectional(LSTM(units=LSTM1_UNITS, return_sequences=True)),\n",
" Bidirectional(LSTM(units=LSTM2_UNITS, return_sequences=True)),\n",
" Dense(DENSE_DIM, activation='relu'),\n",
" Dense(NUM_CLASSES, activation='softmax')\n",
"])\n",
"\n",
"\n",
"model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy', precision, recall, f1_score])\n",
"\n",
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b8db2244",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/20\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-04-09 12:36:29.315905: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"95/95 [==============================] - 9s 60ms/step - loss: 1.0527 - accuracy: 0.8896 - precision: 0.7680 - recall: 0.7164 - f1_score: 0.7407 - val_loss: 0.3995 - val_accuracy: 0.9129 - val_precision: 0.9827 - val_recall: 0.8837 - val_f1_score: 0.9305\n",
"Epoch 2/20\n",
"95/95 [==============================] - 5s 52ms/step - loss: 0.4036 - accuracy: 0.9065 - precision: 0.9900 - recall: 0.8747 - f1_score: 0.9287 - val_loss: 0.3741 - val_accuracy: 0.9129 - val_precision: 0.9839 - val_recall: 0.8887 - val_f1_score: 0.9339\n",
"Epoch 3/20\n",
"95/95 [==============================] - 5s 51ms/step - loss: 0.3806 - accuracy: 0.9064 - precision: 0.9948 - recall: 0.8789 - f1_score: 0.9332 - val_loss: 0.3704 - val_accuracy: 0.9129 - val_precision: 0.9880 - val_recall: 0.8883 - val_f1_score: 0.9354\n",
"Epoch 4/20\n",
"95/95 [==============================] - 5s 51ms/step - loss: 0.3675 - accuracy: 0.9071 - precision: 0.9957 - recall: 0.8826 - f1_score: 0.9357 - val_loss: 0.3721 - val_accuracy: 0.9128 - val_precision: 0.9812 - val_recall: 0.8965 - val_f1_score: 0.9369\n",
"Epoch 5/20\n",
"95/95 [==============================] - 5s 51ms/step - loss: 0.3518 - accuracy: 0.9102 - precision: 0.9947 - recall: 0.8911 - f1_score: 0.9400 - val_loss: 0.3688 - val_accuracy: 0.9149 - val_precision: 0.9835 - val_recall: 0.8998 - val_f1_score: 0.9398\n",
"Epoch 6/20\n",
"95/95 [==============================] - 5s 51ms/step - loss: 0.3366 - accuracy: 0.9134 - precision: 0.9945 - recall: 0.8971 - f1_score: 0.9432 - val_loss: 0.3715 - val_accuracy: 0.9154 - val_precision: 0.9831 - val_recall: 0.9011 - val_f1_score: 0.9403\n",
"Epoch 7/20\n",
"95/95 [==============================] - 5s 51ms/step - loss: 0.3254 - accuracy: 0.9157 - precision: 0.9948 - recall: 0.8985 - f1_score: 0.9442 - val_loss: 0.3756 - val_accuracy: 0.9177 - val_precision: 0.9807 - val_recall: 0.9031 - val_f1_score: 0.9403\n",
"Epoch 8/20\n",
"95/95 [==============================] - 5s 51ms/step - loss: 0.3138 - accuracy: 0.9185 - precision: 0.9950 - recall: 0.8994 - f1_score: 0.9447 - val_loss: 0.3765 - val_accuracy: 0.9186 - val_precision: 0.9804 - val_recall: 0.9033 - val_f1_score: 0.9402\n",
"Epoch 9/20\n",
"95/95 [==============================] - 5s 52ms/step - loss: 0.2996 - accuracy: 0.9220 - precision: 0.9952 - recall: 0.8998 - f1_score: 0.9450 - val_loss: 0.3751 - val_accuracy: 0.9206 - val_precision: 0.9805 - val_recall: 0.9040 - val_f1_score: 0.9407\n",
"Epoch 10/20\n",
"95/95 [==============================] - 5s 52ms/step - loss: 0.2816 - accuracy: 0.9264 - precision: 0.9950 - recall: 0.9010 - f1_score: 0.9456 - val_loss: 0.3696 - val_accuracy: 0.9218 - val_precision: 0.9796 - val_recall: 0.9052 - val_f1_score: 0.9409\n",
"Epoch 11/20\n",
"95/95 [==============================] - 5s 52ms/step - loss: 0.2543 - accuracy: 0.9320 - precision: 0.9938 - recall: 0.9072 - f1_score: 0.9485 - val_loss: 0.3650 - val_accuracy: 0.9254 - val_precision: 0.9790 - val_recall: 0.9081 - val_f1_score: 0.9422\n",
"Epoch 12/20\n",
"95/95 [==============================] - 5s 51ms/step - loss: 0.2274 - accuracy: 0.9383 - precision: 0.9922 - recall: 0.9136 - f1_score: 0.9512 - val_loss: 0.3568 - val_accuracy: 0.9286 - val_precision: 0.9781 - val_recall: 0.9106 - val_f1_score: 0.9431\n",
"Epoch 13/20\n",
"95/95 [==============================] - 5s 53ms/step - loss: 0.2056 - accuracy: 0.9436 - precision: 0.9914 - recall: 0.9191 - f1_score: 0.9539 - val_loss: 0.3602 - val_accuracy: 0.9294 - val_precision: 0.9731 - val_recall: 0.9144 - val_f1_score: 0.9428\n",
"Epoch 14/20\n",
"95/95 [==============================] - 5s 53ms/step - loss: 0.1881 - accuracy: 0.9487 - precision: 0.9905 - recall: 0.9249 - f1_score: 0.9566 - val_loss: 0.3658 - val_accuracy: 0.9299 - val_precision: 0.9715 - val_recall: 0.9157 - val_f1_score: 0.9428\n",
"Epoch 15/20\n",
"95/95 [==============================] - 5s 54ms/step - loss: 0.1729 - accuracy: 0.9527 - precision: 0.9905 - recall: 0.9291 - f1_score: 0.9588 - val_loss: 0.3732 - val_accuracy: 0.9312 - val_precision: 0.9694 - val_recall: 0.9182 - val_f1_score: 0.9431\n",
"Epoch 16/20\n",
"95/95 [==============================] - 5s 53ms/step - loss: 0.1584 - accuracy: 0.9566 - precision: 0.9904 - recall: 0.9342 - f1_score: 0.9615 - val_loss: 0.3923 - val_accuracy: 0.9324 - val_precision: 0.9650 - val_recall: 0.9210 - val_f1_score: 0.9425\n",
"Epoch 17/20\n",
"95/95 [==============================] - 5s 52ms/step - loss: 0.1457 - accuracy: 0.9602 - precision: 0.9894 - recall: 0.9395 - f1_score: 0.9638 - val_loss: 0.3939 - val_accuracy: 0.9330 - val_precision: 0.9648 - val_recall: 0.9224 - val_f1_score: 0.9431\n",
"Epoch 18/20\n",
"95/95 [==============================] - 5s 53ms/step - loss: 0.1336 - accuracy: 0.9635 - precision: 0.9898 - recall: 0.9449 - f1_score: 0.9668 - val_loss: 0.4057 - val_accuracy: 0.9330 - val_precision: 0.9625 - val_recall: 0.9236 - val_f1_score: 0.9426\n",
"Epoch 19/20\n",
"95/95 [==============================] - 5s 54ms/step - loss: 0.1226 - accuracy: 0.9661 - precision: 0.9892 - recall: 0.9505 - f1_score: 0.9695 - val_loss: 0.4244 - val_accuracy: 0.9341 - val_precision: 0.9586 - val_recall: 0.9261 - val_f1_score: 0.9421\n",
"Epoch 20/20\n",
"95/95 [==============================] - 5s 52ms/step - loss: 0.1111 - accuracy: 0.9692 - precision: 0.9891 - recall: 0.9558 - f1_score: 0.9722 - val_loss: 0.4360 - val_accuracy: 0.9348 - val_precision: 0.9579 - val_recall: 0.9272 - val_f1_score: 0.9423\n"
]
}
],
"source": [
"# Train the model\n",
"history = model.fit(\n",
" train_sequences_padded, \n",
" train_labels, \n",
" epochs=EPOCHS, \n",
" validation_data=(val_sequences_padded, val_labels)\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c744592c",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"def plot_graphs(history):\n",
" fig, axs = plt.subplots(2, 2, figsize=(12, 8))\n",
" \n",
" axs[0, 0].plot(history.history['accuracy'])\n",
" axs[0, 0].plot(history.history['val_accuracy'])\n",
" axs[0, 0].set_title('Model Accuracy')\n",
" axs[0, 0].set_ylabel('Accuracy')\n",
" axs[0, 0].legend(['train', 'val'], loc='best')\n",
" \n",
" axs[0, 1].plot(history.history['loss'])\n",
" axs[0, 1].plot(history.history['val_loss'])\n",
" axs[0, 1].set_title('Model Loss')\n",
" axs[0, 1].set_ylabel('Loss')\n",
" axs[0, 1].legend(['train', 'val'], loc='best')\n",
" \n",
" axs[1, 0].plot(history.history['recall'])\n",
" axs[1, 0].plot(history.history['val_recall'])\n",
" axs[1, 0].set_title('Model Recall')\n",
" axs[1, 0].set_ylabel('Recall')\n",
" axs[1, 0].legend(['train', 'val'], loc='best')\n",
" \n",
" axs[1, 1].plot(history.history['f1_score'])\n",
" axs[1, 1].plot(history.history['val_f1_score'])\n",
" axs[1, 1].set_title('Model F1 Score')\n",
" axs[1, 1].set_ylabel('F1 Score')\n",
" axs[1, 1].legend(['train', 'val'], loc='best')\n",
" \n",
" plt.tight_layout()\n",
" plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "4e14092b",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZd7G8e/MpPeENBJCL6FI6BHsiiIoInYsICq+KthY1wVlEd1dsawIKoqiqAuoqCB2EGIDQUAQFemEEEhIQgLpfea8f0wyEJJgAkkm5f5c11wzc+Y5M78z7pJz7nmKyTAMAxERERERERERkQZkdnYBIiIiIiIiIiLS8iiUEhERERERERGRBqdQSkREREREREREGpxCKRERERERERERaXAKpUREREREREREpMEplBIRERERERERkQanUEpERERERERERBqcQikREREREREREWlwCqVERERERERERKTBKZQSkUbJZDIxY8aMWu+XkJCAyWTinXfeqfOaRERERFoSnY+JSH1TKCUi1XrnnXcwmUyYTCbWrl1b6XXDMIiKisJkMnHllVc6ocK68dVXX2EymYiIiMBmszm7HBERERGH5nw+9v3332Mymfj444+dXYqIOIlCKRH5Sx4eHrz33nuVtv/www8cOnQId3d3J1RVdxYvXkz79u05fPgw3377rbPLEREREamkuZ+PiUjLpFBKRP7SiBEj+OijjygtLa2w/b333qN///6Eh4c7qbIzl5eXx6effsrkyZPp27cvixcvdnZJ1crLy3N2CSIiIuIkzfl8TERaLoVSIvKXxowZQ0ZGBqtWrXJsKy4u5uOPP+bmm2+ucp+8vDz+9re/ERUVhbu7O926deO///0vhmFUaFdUVMTDDz9MSEgIvr6+XHXVVRw6dKjK90xKSuKOO+4gLCwMd3d3evbsyYIFC87o2D755BMKCgq4/vrruemmm1i2bBmFhYWV2hUWFjJjxgy6du2Kh4cHrVu35pprrmHfvn2ONjabjTlz5nDWWWfh4eFBSEgIl19+Ob/88gtw6vkVTp6zYcaMGZhMJrZv387NN99MYGAg5557LgC///47t99+Ox07dsTDw4Pw8HDuuOMOMjIyqvzO7rzzTiIiInB3d6dDhw7ce++9FBcXEx8fj8lk4sUXX6y037p16zCZTLz//vu1/UpFRESkHjTn87G/Eh8fz/XXX09QUBBeXl6cffbZfPnll5Xavfzyy/Ts2RMvLy8CAwMZMGBAhd5lOTk5PPTQQ7Rv3x53d3dCQ0O59NJL2bJlS73WLyLVc3F2ASLS+LVv357Bgwfz/vvvM3z4cAC+/vprsrKyuOmmm3jppZcqtDcMg6uuuorvvvuOO++8kz59+rBy5Ur+/ve/k5SUVCEEueuuu1i0aBE333wzQ4YM4dtvv+WKK66oVENqaipnn302JpOJSZMmERISwtdff82dd95JdnY2Dz300Gkd2+LFi7nooosIDw/npptuYsqUKXz++edcf/31jjZWq5Urr7ySuLg4brrpJh588EFycnJYtWoV27Zto1OnTgDceeedvPPOOwwfPpy77rqL0tJS1qxZw88//8yAAQNOq77rr7+eLl268PTTTztOIFetWkV8fDzjx48nPDycP//8kzfeeIM///yTn3/+GZPJBEBycjKDBg0iMzOTu+++m+joaJKSkvj444/Jz8+nY8eOnHPOOSxevJiHH3640vfi6+vLqFGjTqtuERERqVvN+XzsVFJTUxkyZAj5+fk88MADtGrVinfffZerrrqKjz/+mNGjRwMwf/58HnjgAa677joefPBBCgsL+f3339mwYYMjtLvnnnv4+OOPmTRpEj169CAjI4O1a9eyY8cO+vXrV+e1i0gNGCIi1Xj77bcNwNi0aZPxyiuvGL6+vkZ+fr5hGIZx/fXXGxdddJFhGIbRrl0744orrnDst3z5cgMw/v3vf1d4v+uuu84wmUzG3r17DcMwjK1btxqAcd9991Vod/PNNxuA8cQTTzi23XnnnUbr1q2N9PT0Cm1vuukmw9/f31HX/v37DcB4++23//L4UlNTDRcXF2P+/PmObUOGDDFGjRpVod2CBQsMwJg1a1al97DZbIZhGMa3335rAMYDDzxQbZtT1Xby8T7xxBMGYIwZM6ZS2/JjPdH7779vAMaPP/7o2DZ27FjDbDYbmzZtqram119/3QCMHTt2OF4rLi42goODjXHjxlXaT0RERBpWcz4f++677wzA+Oijj6pt89BDDxmAsWbNGse2nJwco0OHDkb79u0Nq9VqGIZhjBo1yujZs+cpP8/f39+YOHHiKduISMPS8D0RqZEbbriBgoICvvjiC3Jycvjiiy+q7Sr+1VdfYbFYeOCBByps/9vf/oZhGHz99deOdkCldif/ymYYBkuXLmXkyJEYhkF6errjNmzYMLKysk6r2/UHH3yA2Wzm2muvdWwbM2YMX3/9NceOHXNsW7p0KcHBwdx///2V3qO8V9LSpUsxmUw88cQT1bY5Hffcc0+lbZ6eno7HhYWFpKenc/bZZwM4vgebzcby5csZOXJklb20ymu64YYb8PDwqDCX1sqVK0lPT+fWW2897bpFRESk7jXH87G/8tVXXzFo0CDHNAYAPj4+3H333SQkJLB9+3YAAgICOHToEJs2bar2vQICAtiwYQPJycl1XqeInB6FUiJSIyEhIQwdOpT33nuPZcuWYbVaue6666pse+DAASIiIvD19a2wvXv37o7Xy+/NZrNj+Fu5bt26VXh+5MgRMjMzeeONNwgJCalwGz9+PABpaWm1PqZFixYxaNAgMjIy2Lt3L3v37qVv374UFxfz0UcfOdrt27ePbt264eJS/Yjnffv2ERERQVBQUK3rOJUOHTpU2nb06FEefPBBwsLC8PT0JCQkxNEuKysLsH9n2dnZ9OrV65TvHxAQwMiRIyvMt7B48WIiIyO5+OKL6/BIRERE5Ew1x/Oxv3LgwIFKtVR1HP/4xz/w8fFh0KBBdOnShYkTJ/LTTz9V2Oe5555j27ZtREVFMWjQIGbMmEF8fHyd1ywiNac5pUSkxm6++WYmTJhASkoKw4cPJyAgoEE+12azAXDrrbcybty4Ktv07t27Vu+5Z88exy9pXbp0qfT64sWLufvuu2tZ6alV12PKarVWu8+JvaLK3XDDDaxbt46///3v9OnTBx8fH2w2G5dffrnju6qNsWPH8tFHH7Fu3TrOOussPvvsM+677z7MZv1uISIi0tg0p/OxutS9e3d27drFF198wYoVK1i6dCmvvvoq06dP58knnwTs51DnnXcen3zyCd988w3PP/88zz77LMuWLXPM0yUiDUuhlIjU2OjRo/m///s/fv75Z5YsWVJtu3bt2rF69WpycnIq/Dq3c+dOx+vl9zabzdETqdyuXbsqvF/5SjBWq5WhQ4fWybEsXrwYV1dXFi5ciMViqfDa2rVreemll0hMTKRt27Z06tSJDRs2UFJSgqura5Xv16lTJ1auXMnRo0er7S0VGBgIQGZmZoXt5b/w1cSxY8eIi4vjySefZPr06Y7te/bsqdAuJCQEPz8/tm3b9pfvefnllxMSEsLixYuJjY0lPz+f2267rcY1iYiISMNpTudjNdGuXbtKtUDl4wDw9vbmxhtv5MYbb6S4uJhrrrmG//znP0ydOhUPDw8AWrduzX333cd9991HWloa/fr14z//+Y9CKREn0c/gIlJjPj4+vPbaa8yYMYORI0dW227EiBFYrVZeeeWVCttffPFFTCaT449++f3Jq8XMnj27wnOLxcK1117L0qVLqwxZjhw5UutjWbx4Meeddx433ngj1113XYXb3//+dwDef/99AK699lrS09MrHQ/gWBHv2muvxTAMxy9xVbXx8/MjODiYH3/8scLrr776ao3rLg/QjJOWcj75OzObzVx99dV8/vnn/PLLL9XWBODi4sKYMWP48MMPeeeddzjrrLOc+kuniIiIVK85nY/VxIgRI9i4cSPr1693bMvLy+ONN96gffv29OjRA4CMjIwK+7m5udGjRw8Mw6CkpASr1eqY5qBcaGgoERERFBUV1UvtIvLX1FNKRGqluu7aJxo5ciQXXXQRjz/+OAkJCcTExPDNN9/w6aef8tBDDznmLOjTpw9jxozh1VdfJSsriyFDhhAXF8fevXsrveczzzzDd999R2xsLBMmTKBHjx4cPXqULVu2sHr1ao4ePVrjY9iwYQN79+5l0qRJVb4eGRlJv379WLx4Mf/4xz8YO3Ys//vf/5g8eTIbN27kvPPOIy8vj9WrV3PfffcxatQoLrroIm677TZeeukl9uzZ4xhKt2bNGi666CLHZ911110888wz3HXXXQwYMIAff/yR3bt317h2Pz8/zj//fJ577jlKSkqIjIzkm2++Yf/+/ZXaPv3003zzzTdccMEF3H333XTv3p3Dhw/z0UcfsXbt2grd/ceOHctLL73Ed999x7PPPlvjekRERKThNYfzsRMtXbrU0fPp5OOcMmUK77//PsOHD+eBBx4gKCiId999l/3797N06VLHdAOXXXYZ4eHhnHPOOYSFhbFjxw5eeeUVrrjiCnx9fcnMzKRNmzZcd911xMTE4OPjw+rVq9m0aRMvvPDCadUtInXAOYv+iUhTcOISxKdy8hLEhmFfqvfhhx82IiIiDFdXV6NLly7G888/b9hstgrtCgoKjAceeMBo1aqV4e3tbYwcOdI4ePBgpSWIDcMwUlNTjYkTJxpRUVGGq6urER4eblxyySXGG2+84WhTkyWI77//fgMw9u3bV22bGTNmGIDx22+/GYZhGPn5+cbjjz9udOjQwfHZ1113XYX3KC0tNZ5//nkjOjracHNzM0JCQozhw4cbmzdvdrTJz8837rzzTsPf39/w9fU1brjhBiMtLa3S8T7xxBMGYBw5cqRSbYcOHTJGjx5tBAQEGP7+/sb1119vJCcnV/mdHThwwBg7dqwREhJiuLu7Gx07djQmTpxoFBUVVXrfnj17Gmaz2Th06FC134uIiIg0rOZ6PmYYhvHdd98ZQLW3NWvWGIZhGPv27TOuu+46IyAgwPDw8DAGDRpkfPHFFxXe6/XXXzfOP/98o1WrVoa7u7vRqVMn4+9//7uRlZVlGIZhFBUVGX//+9+NmJgYw9fX1/D29jZiYmKMV1999ZQ1ikj9MhnGSWNARESkRerbty9BQUHExcU5uxQREREREWkBNKeUiIjwyy+/sHXrVsaOHevsUkREREREpIVQTykRkRZs27ZtbN68mRdeeIH09HTi4+Mdq9OIiIiIiIjUJ/WUEhFpwT7++GPGjx9PSUkJ77//vgIpERERERFpMOopJSIiIiIiIiIiDU49pUREREREREREpMEplBIRERERERERkQbn4uwCGiObzUZycjK+vr6YTCZnlyMiIiJOZBgGOTk5REREYDbr97xT0TmUiIiIQM3PnxRKVSE5OZmoqChnlyEiIiKNyMGDB2nTpo2zy2jUdA4lIiIiJ/qr8yeFUlXw9fUF7F+en5+fk6sRERERZ8rOziYqKspxfiDV0zmUiIiIQM3PnxRKVaG8u7mfn59OqERERARAw9FqQOdQIiIicqK/On/SxAgiIiIiIiIiItLgFEqJiIiIiIiIiEiDUyglIiIiIiIiIiINTnNKnQGr1UpJSYmzy2iSXF1dsVgszi5DREREREREWiibzUZxcbGzy2iS6uqaXqHUaTAMg5SUFDIzM51dSpMWEBBAeHi4Jo4VERERERGRBlVcXMz+/fux2WzOLqXJqotr+kYRSs2dO5fnn3+elJQUYmJiePnllxk0aFCVbUtKSpg5cybvvvsuSUlJdOvWjWeffZbLL7/c0aZ9+/YcOHCg0r733Xcfc+fOPeN6ywOp0NBQvLy8FKrUkmEY5Ofnk5aWBkDr1q2dXJGIiIiIiIi0FIZhcPjwYSwWC1FRUZjNmtmoNurymt7podSSJUuYPHky8+bNIzY2ltmzZzNs2DB27dpFaGhopfbTpk1j0aJFzJ8/n+joaFauXMno0aNZt24dffv2BWDTpk1YrVbHPtu2bePSSy/l+uuvP+N6rVarI5Bq1arVGb9fS+Xp6QlAWloaoaGhGsonIiIiIiIiDaK0tJT8/HwiIiLw8vJydjlNUl1d0zs9Dpw1axYTJkxg/Pjx9OjRg3nz5uHl5cWCBQuqbL9w4UIee+wxRowYQceOHbn33nsZMWIEL7zwgqNNSEgI4eHhjtsXX3xBp06duOCCC8643vI5pPQ/3DNX/h1qXi4RERERERFpKOWdWNzc3JxcSdNWF9f0Tg2liouL2bx5M0OHDnVsM5vNDB06lPXr11e5T1FRER4eHhW2eXp6snbt2mo/Y9GiRdxxxx3VDrMrKioiOzu7wu2vaMjemdN3KCIiIiIiIs6ia9IzUxffn1NDqfT0dKxWK2FhYRW2h4WFkZKSUuU+w4YNY9asWezZswebzcaqVatYtmwZhw8frrL98uXLyczM5Pbbb6+2jpkzZ+Lv7++4RUVFnfYxiYiIiIiIiIjIX3P68L3amjNnDl26dCE6Oho3NzcmTZrE+PHjq52Y7K233mL48OFERERU+55Tp04lKyvLcTt48GB9ld9stG/fntmzZzu7DBERERERERGppcZyTe/Uic6Dg4OxWCykpqZW2J6amkp4eHiV+4SEhLB8+XIKCwvJyMggIiKCKVOm0LFjx0ptDxw4wOrVq1m2bNkp63B3d8fd3f30D6SJuPDCC+nTp0+d/A9v06ZNeHt7n3lRIiIiZ+BYXjHvrEtgW1IWb44boG74zZTVZvDk53+SdKyAOWP64uPu9LV6REREGlxzvKZ3ak8pNzc3+vfvT1xcnGObzWYjLi6OwYMHn3JfDw8PIiMjKS0tZenSpYwaNapSm7fffpvQ0FCuuOKKOq+9OTIMg9LS0hq1DQkJ0WTvIiLiNMmZBTz1+XaGPPMtc+L2ELczjc0Hjjm7LKknFrOJT7cmE7czjeTMAmeXIyIi0ig1xWt6pw/fmzx5MvPnz+fdd99lx44d3HvvveTl5TF+/HgAxo4dy9SpUx3tN2zYwLJly4iPj2fNmjVcfvnl2Gw2Hn300Qrva7PZePvttxk3bhwuLvo17fbbb+eHH35gzpw5mEwmTCYT77zzDiaTia+//pr+/fvj7u7O2rVr2bdvH6NGjSIsLAwfHx8GDhzI6tWrK7zfyV39TCYTb775JqNHj8bLy4suXbrw2WefNfBRiohIc7c3LZe/f/QbFzz/HQt+2k9BiZWeEX7MvbkffdsGOrs8qUeRAfalp5OOKZQSEZGWp7le0zs9rbnxxhs5cuQI06dPJyUlhT59+rBixQrH5OeJiYkV5osqLCxk2rRpxMfH4+Pjw4gRI1i4cCEBAQEV3nf16tUkJiZyxx131PsxGIZBQYm13j/nZJ6ulhoPU5gzZw67d++mV69ePPXUUwD8+eefAEyZMoX//ve/dOzYkcDAQA4ePMiIESP4z3/+g7u7O//73/8YOXIku3btom3bttV+xpNPPslzzz3H888/z8svv8wtt9zCgQMHCAoKOvODFRGRFu23g5m89v0+Vm5PwTDs287uGMR9F3bmvC7BGrbXAkQEeLL9cDZJ6iklIiJ1zFnX9FDz6/rmek3v9FAKYNKkSUyaNKnK177//vsKzy+44AK2b9/+l+952WWXYZSftdazghIrPaavbJDPOtH2p4bh5Vaz/4T+/v64ubnh5eXlmK9r586dADz11FNceumljrZBQUHExMQ4nv/rX//ik08+4bPPPqv2vxPYk9sxY8YA8PTTT/PSSy+xceNGLr/88lofm4iIiGEY/LQ3g1e/38u6fRmO7Zf2COPeCzvRTz2jWpQ2gWU9pRRKiYhIHXPWNT3U/Lq+uV7TN4pQSpxrwIABFZ7n5uYyY8YMvvzySw4fPkxpaSkFBQUkJiae8n169+7teOzt7Y2fnx9paWn1UrOIiDRfVpvByj9TeO37ffyRlAWAi9nEqD6R3HNBR7qE+Tq5QnGGiAAPAM0pJSIicpKmfE2vUKoOeLpa2P7UMKd8bl04ecb9Rx55hFWrVvHf//6Xzp074+npyXXXXUdxcfEp38fV1bXCc5PJhM1mq5MaRUSk+SsutfHJr4d4/Yd44tPzAPBwNXPTwLbcdV4H2gQ6fzJOcZ7IAPt/f80pJSIidc1Z1/Tln32mmvI1vUKpOmAymWo8jM6Z3NzcsFr/epzsTz/9xO23387o0aMBe8qakJBQz9WJiEhLlVdUyvsbE3lzzX5SsgsB8PNw4fYh7Rk3pD2tfNydXKE0BuopJSIi9UXX9M7T+L91qTPt27dnw4YNJCQk4OPjU23i2aVLF5YtW8bIkSMxmUz885//VI8nERGpc0fzinlnXQLvrksgq6AEgDA/d+46tyNjYtvi467TFDkusmxOqZTsQkqsNlwtTl9EWkREpEE1x2t6/TVvQR555BEsFgs9evQgJCSk2vGks2bNIjAwkCFDhjBy5EiGDRtGv379GrhaERFprpIzC3jy8z8555lveSluD1kFJXQI9uaZa87ix0cvYsL5HRVISSXB3u64WczYDEgt61EnIiLSkjTHa3qT0VBL1DUh2dnZ+Pv7k5WVhZ+fX4XXCgsL2b9/Px06dMDDw8NJFTYP+i5FRFqWvWm5zPthH8t/TaLUZj/96BXpx30XdmZYz3As5r9eDtkZTnVeIBXV93d14fPfkZCRz5K7zya2Y6s6f38REWkZdC1aN071Pdb0nEA/Q4qIiEi92nowk9e+38s321Mp/ylscMdW3HdRJ87tHIzJ1DjDKGl8IgI8ScjIJzlL80qJiIg0BwqlREREpM4Vllj56o/DvLchkV8OHHNsv6xHGPde2Im+bQOdWJ00VZEB9nmltAKfiIhI86BQSkREROrM3rRc3t+YyMebDzkmL3cxmxjVJ5J7L+xI51BfJ1coTVlEeSiVqTmlREREmgNNdC4iIiJnpKjUyqdbk7jx9fUMnfUDb63dT1ZBCZEBnvzt0q78NOViXrghRoFUA/rxxx8ZOXIkERERmEwmli9f/pf7fP/99/Tr1w93d3c6d+7MO++8U+911lb5CnxJmeopJSIi0hyop5SIiIicloT0PN7fmMhHmw9xNK8YALMJLo4O45bYtpzfNaTRTl7e3OXl5RETE8Mdd9zBNddc85ft9+/fzxVXXME999zD4sWLiYuL46677qJ169YMGzasASqumfLhe8kKpURERJoFhVIiIiJSY8WlNlZtT+W9jQf4aW+GY3u4nwc3DozixoFRjiFW4jzDhw9n+PDhNW4/b948OnTowAsvvABA9+7dWbt2LS+++GKjDKWSjhVgGIYmyRcREWniFEqJiIjIX0rMyOf9TYl89Msh0nOLADCZ4MKuIdwc246LuoXgYtGsAE3V+vXrGTp0aIVtw4YN46GHHjrlfkVFRRQVFTmeZ2dn10d5DuH+9uWmC0qsZOaXEOjtVq+fJyIiIvVLoZSIiIhUqcRqI25HGu9tTGTNniMYhn17iK87Nw6w94qKCvJybpFSJ1JSUggLC6uwLSwsjOzsbAoKCvD0rLr328yZM3nyyScbokQAPFwthPi6cySniKTMAoVSIiIiTZxCKREREakgKbOADzYmsmTTQdJyjveCOa9LMLfEtuWS7mG4qleUAFOnTmXy5MmO59nZ2URFRdXrZ0YEeDpCqV6R/vX6WSIiIlK/FEpJjbVv356HHnroL7vyi4hI02O1GXy3094r6rtdaY5eUa283bh+QBRjBkXRrpW3c4uUehMeHk5qamqFbampqfj5+VXbSwrA3d0dd3f3+i6vgjYBnvx2MJOkY5rsXEREpDYa4zW9QikREZEWLCWrkA822XtFHc4qdGwf0qkVN8e25bIe4bi5qFdUczd48GC++uqrCttWrVrF4MGDnVRR9SIC7PNKaQU+ERGRpk+hlIiISAt0ICOPl+L2snxrElabvVtUoJcr1w+I4qaBUXQM8XFyhXImcnNz2bt3r+P5/v372bp1K0FBQbRt25apU6eSlJTE//73PwDuueceXnnlFR599FHuuOMOvv32Wz788EO+/PJLZx1CtRwr8CmUEhERafL002cL8cYbbxAREYHNZquwfdSoUdxxxx3s27ePUaNGERYWho+PDwMHDmT16tVOqlZEROrLwaP5/OPj37n4hR9YuuUQVpvBoA5BzLmpD+unXsJjI7orkGoGfvnlF/r27Uvfvn0BmDx5Mn379mX69OkAHD58mMTEREf7Dh068OWXX7Jq1SpiYmJ44YUXePPNNxk2bJhT6j+VCIVSIiLSAjXXa3r1lKoLhgEl+Q3/ua5e9vW4a+D666/n/vvv57vvvuOSSy4B4OjRo6xYsYKvvvqK3NxcRowYwX/+8x/c3d353//+x8iRI9m1axdt27atz6MQEZEGkJxZwNzv9vLhLwcpsdp7Rl3YLYSHhnalT1SAc4uTOnfhhRdilE8MVoV33nmnyn1+/fXXeqyqbkQG2kMpDd8TEZE646xreqjxdX1zvaZXKFUXSvLh6YiG/9zHksGtZpPOBgYGMnz4cN577z3H/4A//vhjgoODueiiizCbzcTExDja/+tf/+KTTz7hs88+Y9KkSfVSvoiI1L/U7EJe/W4v7288SLHV/svaeV2CeWhoV/q3C3RydSK1Vz58Lz23mMISKx6uFidXJCIiTZ6zrumhxtf1zfWaXsP3WpBbbrmFpUuXUlRkX9578eLF3HTTTZjNZnJzc3nkkUfo3r07AQEB+Pj4sGPHjgpd+0VEpOlIyynkqc+3c/5z3/Hu+gMUW23Edghiyd1ns/DOWAVS0mT5e7ri7WYPotRbSkREWpLmeE2vnlJ1wdXLnm4643NrYeTIkRiGwZdffsnAgQNZs2YNL774IgCPPPIIq1at4r///S+dO3fG09OT6667juLi4vqoXERE6klGbhGv/xjP/9YnUFhi7xk1oF0gky/rypBOwU6uTuTMmUwmIgI82ZOWS1JmgeZAExGRM+esa/ryz66h5nhNr1CqLphMNR5G50weHh5cc801LF68mL1799KtWzf69esHwE8//cTtt9/O6NGjAfuqPQkJCU6sVkREauNYXjHz18TzzroE8outAPSJCuBvl3Xl3M7BmGo4B6FIUxAZaA+l1FNKRETqhK7pnUahVAtzyy23cOWVV/Lnn39y6623OrZ36dKFZcuWMXLkSEwmE//85z8rzeovIiKNT1Z+CW+tjWfBTwnkFpUC0LuNPw9f2pULu4YojJJmybEC3zGFUiIi0rI0t2t6hVItzMUXX0xQUBC7du3i5ptvdmyfNWsWd9xxB0OGDCE4OJh//OMfZGdnO7FSERE5lezCEt5em8Cba+PJKbSHUd1b+zH50q4M7R6qMEqatfLJzpMyC51ciYiISMNqbtf0CqVaGLPZTHJy5bGy7du359tvv62wbeLEiRWeN4WufyIizV1uUSnvrkvgjR/jySooAaBbmC8PX9qFy3qEYzYrjJLmr01geSjlpOW7RUREnKS5XdM7ffW9uXPn0r59ezw8PIiNjWXjxo3Vti0pKeGpp56iU6dOeHh4EBMTw4oVKyq1S0pK4tZbb6VVq1Z4enpy1lln8csvv9TnYYiIiNSr/OJSXv9hH+c/9x3Pr9xFVkEJnUN9eOXmvnz94Hlc3qu1AilpMcqH7yWrp5SIiEiT5tSeUkuWLGHy5MnMmzeP2NhYZs+ezbBhw9i1axehoaGV2k+bNo1FixYxf/58oqOjWblyJaNHj2bdunX07dsXgGPHjnHOOedw0UUX8fXXXxMSEsKePXsIDNTS1yIi0vQUllhZ9PMB5v2wj/Rc++opHYK9eWhoF67sHYFFQZS0QOXD9w5nFWCzGQpkRUREmiinhlKzZs1iwoQJjB8/HoB58+bx5ZdfsmDBAqZMmVKp/cKFC3n88ccZMWIEAPfeey+rV6/mhRdeYNGiRQA8++yzREVF8fbbbzv269ChQwMcjYiISN0pKrXy/oZEXv1+H2k5RQC0DfLigUu6cHWfCFwsTu/sLOI0ob7uWMwmSqwGR3KLCPPzcHZJIiIichqcdkZbXFzM5s2bGTp06PFizGaGDh3K+vXrq9ynqKgID4+KJx2enp6sXbvW8fyzzz5jwIABXH/99YSGhtK3b1/mz59/ylqKiorIzs6ucBMREXEGm81g+a9JDJ31AzM+305aThGRAZ48e+1ZxP3tAq7r30aBlLR4LhYz4WVB1CGtwCciItJkOe2sNj09HavVSlhYWIXtYWFhpKSkVLnPsGHDmDVrFnv27MFms7Fq1SqWLVvG4cOHHW3i4+N57bXX6NKlCytXruTee+/lgQce4N133622lpkzZ+Lv7++4RUVF1c1BioiI1JBhGPyw+whXvryWh5Zs5eDRAkJ93fn31b347pELuXFgW1wVRok4RDrmlVIoJSIi0lQ1qdX35syZw4QJE4iOjsZkMtGpUyfGjx/PggULHG1sNhsDBgzg6aefBqBv375s27aNefPmMW7cuCrfd+rUqUyePNnxPDs7+y+DKZvNVgdH1LLpOxQRsfv9UCbPfL2TdfsyAPB1d+GeCztxxzkd8HSzOLk6kcYpMtATEiBJoZSIiJwmwzCcXUKTVhfX9E4LpYKDg7FYLKSmplbYnpqaSnh4eJX7hISEsHz5cgoLC8nIyCAiIoIpU6bQsWNHR5vWrVvTo0ePCvt1796dpUuXVluLu7s77u7uNarbzc3NsQRjSEgIbm5umEyaXLM2DMOguLiYI0eOYDabcXNzc3ZJIiJOkZCex/Pf7OLL3+09ft0sZsYObsfEizoT6K1/G0VOJSLAPnxPPaVERKS2XF1dMZlMHDlyhJCQEF3T11JdXtM7LZRyc3Ojf//+xMXFcfXVVwP2lC0uLo5Jkyadcl8PDw8iIyMpKSlh6dKl3HDDDY7XzjnnHHbt2lWh/e7du2nXrl2d1G02m+nQoQOHDx8mOTm5Tt6zpfLy8qJt27aYzRqOIiItS1pOIS/H7eX9jYmU2gxMJhjdN5LJl3alTaCXs8sTaRIiA+z/X0nSnFIiIlJLFouFNm3acOjQIRISEpxdTpNVF9f0Th2+N3nyZMaNG8eAAQMYNGgQs2fPJi8vz7Ea39ixY4mMjGTmzJkAbNiwgaSkJPr06UNSUhIzZszAZrPx6KOPOt7z4YcfZsiQITz99NPccMMNbNy4kTfeeIM33nijzup2c3Ojbdu2lJaWYrVa6+x9WxKLxYKLi4sSaRFpUXIKS5i/Zj9vroknv9j+9+OibiE8enk03Vv7Obk6kaalvKeUhu+JiMjp8PHxoUuXLpSUlDi7lCaprq7pnRpK3XjjjRw5coTp06eTkpJCnz59WLFihWPy88TExAqJW2FhIdOmTSM+Ph4fHx9GjBjBwoULCQgIcLQZOHAgn3zyCVOnTuWpp56iQ4cOzJ49m1tuuaVOazeZTLi6uuLq6lqn7ysiIs1PcamN9zYc4OVv95KRVwxATFQAUy6PZnCnVk6uTqRpahNon+hcoZSIiJwui8WCxaL5O53JZGhmr0qys7Px9/cnKysLPz/9ci0iIqfHZjP4/Pdk/vvNLg4etV84dwz25u/DunF5r3D1Fm0idF5Qcw35XeUXl9Jj+koAfp9xGX4e+qFQRESksajpOUGTWn1PRESkqViz5wjPfL2TP5OzAQjxdefhoV25fkAbXC2aS0/kTHm5uRDo5cqx/BKSMwvwC1coJSIi0tQolBIREalDfxzK4pkVO/hpbwYAvu4u3HNhJ8af0x4vN/3ZFalLEQGejlAqOly92ERERJoanR2LiIjUgYT0PP77zS6++P0wAG4WM7cNbsfEizoT5H36y+SKSPUiAzz5MzlbK/CJiIg0UQqlREREzsCRnCJe/nYP721IpNRmYDLB6D6RPHxpV6KCvJxdnkizFhFQPtl5oZMrERERkdOhUEpEROQ05BaVMv/HeOaviSe/2ArAhd1CeHRYND0iNIxIpCFoBT4REZGmTaGUiIhILRiGwfKtSfzny52k5xYBENPGn38Mj2ZIp2AnVyfSspT3lEpWKCUiItIkKZQSERGpoZ0p2Uxf/icbE44C0L6VF49eHs3wXuGYTCYnVyfS8kSWD9/TnFIiIiJNkkIpERGRv5BTWMLs1Xt4Z10CVpuBh6uZ+y/uwl3ndcDdxeLs8kRarPKeUqk5hZRYbbhazE6uSERERGpDoZSIiEg1DMPgs9+S+c+XO0jLsQ/Vu7xnOP8c2cPRQ0NEnCfYxw03FzPFpTZSsgq1uICIiEgTo1BKRESkCntSc/jnp9v4Of74UL0ZV/Xkwm6hTq5MRMqZTCYiAzzZn55HUmaBQikREZEmRqGUiIjICXKLSnkpbg8L1u6n1Gbg7mJm0kWdmXB+RzxcNVRPpLFxhFKaV0pERKTJUSglIiKCfajeF78f5t9fbic12z5U79IeYUy/sod6X4g0YhEBHgAkaQU+ERGRJkehlIiItHh703J54rNt/LQ3A4C2QV7MuKoHF0eHObkyEfkrkQH20DhZoZSIiEiTo1BKRERarLyiUl7+di9vrY2nxGrg5mLmvgs7cc8FnTRUT6SJUE8pERGRpkuhlIiItDiGYfD1thT+9cV2DmcVAnBxdCgzRvakbSsN1RNpSiID7SthKpQSERFpehRKiYhIixJ/JJcnPvuTNXvSAWgT6MmMkT0Z2kND9USaosgAeyiVnFmAYRiYTCYnVyQiIiI1pVBKRERahPziUuZ+t5c3fiwbqmcxc88FHbn3ws54ummonkhTFe7vgckEhSU2juYV08rH3dkliYiISA0plBIRkWbNMAxW/pnKv77Y7hjec0HXEJ68qiftg72dXJ2InCl3FwshPu6k5RSRlFmgUEpERKQJUSglIiLNVkJ6HjM+/5Pvdx0B7MN8po/swWU9wjTER6QZiQz0JC2niOTMAnq3CXB2OSIiIlJDCqVERKTZKSyx8up3e5n3QzzFVhuuFhN3n9+RiRd1xstNf/pEmpuIAE9+Tczk0DFNdi4iItKU6MxcRESale92pjH9s20cPGq/OD2vSzBPXtWTjiE+Tq5MROpLG8dk54VOrkRERERqQ6GUiIg0C4ezCnjq8+18vS0FgNb+Hky/sgeX9wrXUD2RZi6iLJRKysx3ciUiIiJSGwqlRESkSSu12nhnXQIvrtpNXrEVi9nEHee056GhXfF21585kZYgUj2lREREmiSdrYuISJO1JfEYj3+yjR2HswHo1zaA/4w+i+6t/ZxcmYg0pOM9pTSnlIiISFOiUEpERJqczPxinl2xiw82JWIY4O/pypTh0dw4IAqzWUP1RFqayEB7KHU0r5iCYiuebhYnVyQiIiI1oVBKRESaDMMwWLYliae/2kFGXjEA1/Zrw2Mjomnl4+7k6kTEWfw8XPBxdyG3qJSkzAI6h2phAxERkaZAoZSIiDQJe9NymLZ8Gz/HHwWgc6gP/766F2d3bOXkykTE2UwmE5EBnuxKzSFZoZSIiEiTYXZ2AQBz586lffv2eHh4EBsby8aNG6ttW1JSwlNPPUWnTp3w8PAgJiaGFStWVGgzY8YMTCZThVt0dHR9H4aIiNSDgmIrz6/cyfA5a/g5/igermYevbwbXz1wngIpEXEoH8KneaVERESaDqf3lFqyZAmTJ09m3rx5xMbGMnv2bIYNG8auXbsIDQ2t1H7atGksWrSI+fPnEx0dzcqVKxk9ejTr1q2jb9++jnY9e/Zk9erVjucuLk4/VBERqaXvdqYx/bNtHDxqv8i8ODqUJ6/qSVSQl5MrE5HGJiLAA4BkhVIiIiJNhtN7Ss2aNYsJEyYwfvx4evTowbx58/Dy8mLBggVVtl+4cCGPPfYYI0aMoGPHjtx7772MGDGCF154oUI7FxcXwsPDHbfg4OCGOBwREakDh7MKuHfRZsa/s4mDRwto7e/BvFv789a4AQqkRKRKkQH2fxuSjimUEhERaSqc2n2ouLiYzZs3M3XqVMc2s9nM0KFDWb9+fZX7FBUV4eHhUWGbp6cna9eurbBtz549RERE4OHhweDBg5k5cyZt27at9j2Lioocz7Ozs0/3kERE5AyUWm28sy6BF1ftJq/YisVs4o5z2vPQ0K54u6vHq4hUr7ynlIbviYiINB1O7SmVnp6O1WolLCyswvawsDBSUlKq3GfYsGHMmjWLPXv2YLPZWLVqFcuWLePw4cOONrGxsbzzzjusWLGC1157jf3793PeeeeRk5NT5XvOnDkTf39/xy0qKqruDlJERGpkS+IxRr7yE//+cgd5xVb6tQ3gi/vP5fEreiiQEpG/1EZzSomIiDQ5Te4sf86cOUyYMIHo6GhMJhOdOnVi/PjxFYb7DR8+3PG4d+/exMbG0q5dOz788EPuvPPOSu85depUJk+e7HienZ2tYEpEpIFk5Zfw7MqdvL8xEcMAf09XpgyP5sYBUZjNJmeXJyJNRESAPZRKySrEajOw6N8PERGRRs+poVRwcDAWi4XU1NQK21NTUwkPD69yn5CQEJYvX05hYSEZGRlEREQwZcoUOnbsWO3nBAQE0LVrV/bu3Vvl6+7u7ri7u5/+gYiISK0ZhsEnvybxny93kJFXDMC1/drw2IhoWvno32QRqZ1QXw9czCZKbQZpOYW09vd0dkkiIiLyF5w6fM/NzY3+/fsTFxfn2Gaz2YiLi2Pw4MGn3NfDw4PIyEhKS0tZunQpo0aNqrZtbm4u+/bto3Xr1nVWu4iInL69abmMmf8zkz/8jYy8YrqE+rDk7rN54YYYBVIiclosZhPh/lqBT0REpClx+up7kydPZv78+bz77rvs2LGDe++9l7y8PMaPHw/A2LFjK0yEvmHDBpYtW0Z8fDxr1qzh8ssvx2az8eijjzraPPLII/zwww8kJCSwbt06Ro8ejcViYcyYMQ1+fCIicpxhGLzx4z6Gz/mRn+OP4uFq5tHLu/HlA+cR27GVs8sTaXbmzp1L+/bt8fDwIDY2lo0bN56y/ezZs+nWrRuenp5ERUXx8MMPU1hY2EDVnrnIsiF8h7QCn4iISJPg9DmlbrzxRo4cOcL06dNJSUmhT58+rFixwjH5eWJiImbz8eyssLCQadOmER8fj4+PDyNGjGDhwoUEBAQ42hw6dIgxY8aQkZFBSEgI5557Lj///DMhISENfXgiIlImu7CERz78jW+224dsXxwdypNX9SQqyMvJlYk0T0uWLGHy5MnMmzeP2NhYZs+ezbBhw9i1axehoaGV2r/33ntMmTKFBQsWMGTIEHbv3s3tt9+OyWRi1qxZTjiC2isPpZIzm06QJiIi0pKZDMMwnF1EY5OdnY2/vz9ZWVn4+fk5uxwRkSZve3I29y3eTEJGPm4WM9NH9uCW2LaYTJqIWBq/pnpeEBsby8CBA3nllVcA+xQJUVFR3H///UyZMqVS+0mTJrFjx44K0yr87W9/Y8OGDaxdu7ZGn+ns7+qFb3bx8rd7ufXstvz76rMa/PNFRETErqbnBE4fviciIs3bR78cZPSrP5GQkU9kgCcf3TOYW89up0BKpB4VFxezefNmhg4d6thmNpsZOnQo69evr3KfIUOGsHnzZscQv/j4eL766itGjBhR7ecUFRWRnZ1d4eZMEeopJSIi0qQ4ffieiIg0T4UlVmZ89icfbDoIwIXdQnjxhj4Eers5uTKR5i89PR2r1eqYDqFcWFgYO3furHKfm2++mfT0dM4991wMw6C0tJR77rmHxx57rNrPmTlzJk8++WSd1n4myofvJWlOKRERkSZBPaVERKTOJWbkc+1r6/hg00FMJvjbpV1ZMG6gAimRRuz777/n6aef5tVXX2XLli0sW7aML7/8kn/961/V7jN16lSysrIct4MHDzZgxZWV95RKyixAM1SIiIg0fuopJSIidWrV9lQmf7iVnMJSgrzdeOmmvpzbJdjZZYm0KMHBwVgsFlJTUytsT01NJTw8vMp9/vnPf3Lbbbdx1113AXDWWWeRl5fH3XffzeOPP15h4Zly7u7uuLu71/0BnKbynlK5RaVkF5bi7+nq5IpERETkVNRTSkRE6kSp1cYzX+9kwv9+IaewlH5tA/jygXMVSIk4gZubG/37968wabnNZiMuLo7BgwdXuU9+fn6l4MlisQA0mV5Hnm4Wgsp6ZGoIn4iISOOnnlIiInLG0nIKeeD9X/k5/igA489pz9Th3XFz0W8fIs4yefJkxo0bx4ABAxg0aBCzZ88mLy+P8ePHAzB27FgiIyOZOXMmACNHjmTWrFn07duX2NhY9u7dyz//+U9GjhzpCKeagsgAT47mFZOcWUCPiKazWqKIiEhLpFBKRETOyMb9R5n03hbScorwdrPw3HUxXNG7tbPLEmnxbrzxRo4cOcL06dNJSUmhT58+rFixwjH5eWJiYoWeUdOmTcNkMjFt2jSSkpIICQlh5MiR/Oc//3HWIZyWiAAP/kjKIilTPaVEREQaO5PRVPpjN6Ds7Gz8/f3JysrCz0+/sImIVMUwDOaviefZFbuw2gy6hvnw2q396RTi4+zSROqUzgtqrjF8V099vp0FP+3n/87vyNQR3Z1Sg4iISEtX03MC9ZQSEZFayy4s4e8f/cbKP+2TKF/dJ4KnrzkLLzf9WRER54oI8ADgkHpKiYiINHq6ehARkVrZnpzNfYs3k5CRj5vFzPSRPbglti0mk8nZpYmI0CbQvgJfskIpERGRRk+hlIiI1NhHvxxk2vJtFJXaiAzw5NVb+hETFeDsskREHCIC7KGUVt8TERFp/BRKiYjIXyossTLjsz/5YNNBAC7sFsKLN/QhsGzpdRGRxiKyLJRKyymiqNSKu0vTWTlQRESkpVEoJSIip5SYkc+9izfzZ3I2JhNMHtqViRd1xmzWcD0RaXyCvN3wcDVTWGIjJauQdq28nV2SiIiIVEOhlIiIVGvV9lQmf7iVnMJSgrzdeOmmvpzbJdjZZYmIVMtkMhER4En8kTySMgsUSomIiDRiCqVERKSSUquNF1bt5rXv9wHQr20Ac2/pR2t/TydXJiLy1yLLQynNKyUiItKoKZQSEZEK0nIKeeD9X/k5/igA489pz9Th3XFzMTu5MhGRmimfVyo5s9DJlYiIiMipKJQSERGHLYnHuGfhZtJyivB2s/Dsdb25sneEs8sSEakVxwp8mflOrkRERERORaGUiIgA8NEvB3n8k20UW210CfXhtVv70znUx9lliYjUmnpKiYiINA0KpUREWrhSq42ZX+/krbX7ARjWM4xZN/TB211/IkSkaTreU0pzSomIiDRmuuIQEWnBsvJLmPT+FtbsSQfgwUu68OAlXTCbTU6uTETk9LUJPB5KGYaByaR/00RERBojhVIiIi3U3rQc7nr3FxIy8vF0tTDrhhiGn9Xa2WWJiJyxMD8PTCYoLrWRnltMiK+7s0sSERGRKiiUEhFpgeJ2pPLgB1vJLSolMsCT+WMH0CPCz9lliYjUCTcXM2G+HqRkF5KcWaBQSkREpJHS+t4iIi2IYRi8+v1e7vrfL+QWlTKoQxCfTTpHgZSINDsRAR6A5pUSERFpzNRTSkSkhSgotvKPpb/z2W/JANwS25YnRvbEzUW/T4hI8xMZ6MWWxEySFUqJiIg0WgqlRERagMNZBdz9v838kZSFi9nEjKt6cuvZ7ZxdlohIvSnvKXXomEIpERGRxkqhlIhIM7f5wFH+b+EW0nOLCPJ249Vb+nF2x1bOLktEpF61CbCvwKeeUiIiIo1XoxizMXfuXNq3b4+HhwexsbFs3Lix2rYlJSU89dRTdOrUCQ8PD2JiYlixYkW17Z955hlMJhMPPfRQPVQuItK4fbjpIGPe2EB6bhHR4b58OvEcBVIi0iJElIVSmlNKRESk8XJ6KLVkyRImT57ME088wZYtW4iJiWHYsGGkpaVV2X7atGm8/vrrvPzyy2zfvp177rmH0aNH8+uvv1Zqu2nTJl5//XV69+5d34chItKolFptPPn5nzy69HeKrTaG9wpn6b1DiArycnZpIiINIjJQPaVEREQaO6eHUrNmzWLChAmMHz+eHj16MG/ePLy8vFiwYEGV7RcuXMhjjz3GiBEj6NixI/feey8jRozghRdeqNAuNzeXW265hfnz5xMYGNgQhyIi0ihk5hdz+9ubePunBAAeGtqFuTf3w9tdI7ZFpOWILOspdSy/hPziUidXIyIiIlVxaihVXFzM5s2bGTp0qGOb2Wxm6NChrF+/vsp9ioqK8PDwqLDN09OTtWvXVtg2ceJErrjiigrvLSLS3O1JzWHU3J9YuzcdLzcL827tx0NDu2I2m5xdmohIg/L1cMXXwx7Gq7eUiIhI4+TUn83T09OxWq2EhYVV2B4WFsbOnTur3GfYsGHMmjWL888/n06dOhEXF8eyZcuwWq2ONh988AFbtmxh06ZNNaqjqKiIoqIix/Ps7OzTOBoREedavT2Vh5ZsJbeolDaBnswfO4Durf2cXZaIiNNEBniyMyWHQ8cK6Bzq6+xyRERE5CROH75XW3PmzKFLly5ER0fj5ubGpEmTGD9+PGaz/VAOHjzIgw8+yOLFiyv1qKrOzJkz8ff3d9yioqLq8xBEROqUYRjM/W4vExb+Qm5RKbEdgvhs0rkKpESkxYt0rMBX6ORKREREpCpODaWCg4OxWCykpqZW2J6amkp4eHiV+4SEhLB8+XLy8vI4cOAAO3fuxMfHh44dOwKwefNm0tLS6NevHy4uLri4uPDDDz/w0ksv4eLiUqFHVbmpU6eSlZXluB08eLDuD1ZEpB4UFFt54IOtPL9yF4YBt53djkV3xRLk7ebs0kREnK58svOkzHwnVyIiIiJVcerwPTc3N/r3709cXBxXX301ADabjbi4OCZNmnTKfT08PIiMjKSkpISlS5dyww03AHDJJZfwxx9/VGg7fvx4oqOj+cc//oHFYqn0Xu7u7ri7u9fNQYmINJDkzALuXvgL25KycTGbeHJUT26JbefsskREGo2Isp5SScc0p5SIiEhj5PSlmCZPnsy4ceMYMGAAgwYNYvbs2eTl5TF+/HgAxo4dS2RkJDNnzgRgw4YNJCUl0adPH5KSkpgxYwY2m41HH30UAF9fX3r16lXhM7y9vWnVqlWl7SIiTdXmA0f5v4VbSM8tIsjbjddu6Udsx1bOLktEpFHR8D0REZHGzemh1I033siRI0eYPn06KSkp9OnThxUrVjgmP09MTHTMFwVQWFjItGnTiI+Px8fHhxEjRrBw4UICAgKcdAQiIg3rw00HeXz5H5RYDaLDfZk/dgBRQV7OLktEpNFx9JTS6nsiIiKNkskwDMPZRTQ22dnZ+Pv7k5WVhZ+fJgoWkcbBZjP495c7WPDTfgCG9wrnhRti8HJz+u8LIs2azgtqrrF9V6nZhcQ+HYfFbGLXvy7HxdLk1vgRERFpkmp6TqArGRGRJsBqM/jH0t/5ePMhAB4e2pX7L+6M2WxycmUiIo1XiI87rhYTJVaD1Jwix3A+ERERaRz0c5GISCNXYrXx0JKtfLz5EBaziTk39eHBoV0USImI/AWz2URr//J5pTSET0REpLFRKCUi0ogVlVqZ9N4WPv8tGVeLibk392VUn0hnlyUi0mREBHgAWoFPRESkMdLwPRGRRqqwxMq9izbz3a4juLmYmXdrPy6ODnN2WSIiTUpkgBdwVJOdi4iINEIKpUREGqH84lIm/O8XftqbgYermTfHDuTcLsHOLktEpMmJLO8ppVBKRESk0an18L327dvz1FNPkZiYWB/1iIi0eDmFJdy+YBM/7c3A283Cu+MHKZASETlNkYGaU0pERKSxqnUo9dBDD7Fs2TI6duzIpZdeygcffEBRUVF91CYi0uJkFZRw21sb2ZhwFF8PFxbeFUtsx1bOLktEpMmKKFtxT3NKiYiIND6nFUpt3bqVjRs30r17d+6//35at27NpEmT2LJlS33UKCLSIhzNK+bm+T+z9WAmAV6uvD/hbPq1DXR2WSIiTVpkwPGeUoZhOLkaEREROdFpr77Xr18/XnrpJZKTk3niiSd48803GThwIH369GHBggX6oy8iUgtHcooY88bP/JmcTbCPGx/cfTa9Iv2dXZaISJNX3lMqr9hKVkGJk6sRERGRE512KFVSUsKHH37IVVddxd/+9jcGDBjAm2++ybXXXstjjz3GLbfcUpd1iog0WylZhdz4xnp2peYQ5ufOB3cPJjrcz9lliYg0Cx6uFoJ93ABNdi4iItLY1Hr1vS1btvD222/z/vvvYzabGTt2LC+++CLR0dGONqNHj2bgwIF1WqiISHN06Fg+N8/fQOLRfCIDPHlvQiztWnk7uywRkWYlIsCT9Nxiko4V0DNCvVBFREQai1qHUgMHDuTSSy/ltdde4+qrr8bV1bVSmw4dOnDTTTfVSYEiIs1VQnoeN8//meSsQtq18mLxXbG0CfRydlkiIs1OZIAnvx/K0gp8IiIijUytQ6n4+HjatWt3yjbe3t68/fbbp12UiEhztzcth5vnbyAtp4hOId4svutswv09nF2WSNNgGJCfAdnJkHO47D4FLpwCJpOzq5NGyLECn0IpERGRRqXWoVRaWhopKSnExsZW2L5hwwYsFgsDBgyos+JERJqj7cnZ3PbWBjLyiokO92XhnbGE+Lo7uyyRxqG0qCxoOgzZSccf5yQfv89JAWtx5X0H3Q3erRq+Zmn0jq/AV+jkSkREROREtQ6lJk6cyKOPPloplEpKSuLZZ59lw4YNdVaciEhz8/uhTG57ayNZBSX0ivRj4R2xBHq7ObsskfpnGFBw7KTeTSfelwVO+Rk1f0+vYPBrDb4R9nvDVn/1S5NW3lPqkHpKiYiINCq1DqW2b99Ov379Km3v27cv27dvr5OiRESao80HjnL7gk3kFJXSt20A74wfhL9n5Xn5RJq0wiw4shuO7Dx+y9hnD55Ka9hLxeJeMWzybQ1+ERXvfcPBRT0MpWbaBJb3lFIoJSIi0pjUOpRyd3cnNTWVjh07Vth++PBhXFxq/XYiIi3C+n0Z3PnuJvKLrQzqEMSC2wfi465/M6UJK8iEI7sqhk9HdtmH3J2KV6tTh01+EeAZqLmhpE6V95Q6klNEYYkVD1eLkysSEREROI1Q6rLLLmPq1Kl8+umn+Pvbl9TNzMzkscce49JLL63zAkVEmrofdx9hwv9+oajUxrmdg5k/dgCebrogkiai4Jg9bErbURZCld3nHK5+H98ICOkGod3t9626gH+kPXRS7yZxgkAvVzxdLRSUWEnJKqR9sLezSxIRERFOI5T673//y/nnn0+7du3o27cvAFu3biUsLIyFCxfWeYEiIk3Z6u2p3Ld4C8VWGxdHh/LqLf30C700TvlH7b2dHOFTWe+n3NTq9/FrUzF8Com233v4N1zdIjVgMpmICPBg35E8kjILFEqJiIg0ErUOpSIjI/n9999ZvHgxv/32G56enowfP54xY8bg6qq5UUREyn31x2EeeP9XSm0Gl/cM56UxfXFzMTu7LGlMrCWQmwa5KZCTau99lJtqX12u/N5aUjaUzQSOEW2mE7bV8B5O2lb23FoKGXsg70j1dfpHHQ+cQrvbHwd3BQ+/+vhWROpFZKCXI5QSERGRxuG0JjTx9vbm7rvvrutaRESajeW/JjH5w63YDLgqJoJZN8TgYlEg1WKUFh0PlU4MmHJSjgdQuSmQlw4Yzq72uIC2ZeFT2S20LHxy93V2ZSJnLDLAA4CkYwqlREREGovTnmV3+/btJCYmUlxcXGH7VVdddcZFiYg0ZUs2JTJl2R8YBlzfvw3PXNsbi1mTNjcbhmGfzDvlDziWUHXoVHCs5u9ndgGfMPvNN7zsvjX4lm0rn4PJMACjLMMyTnhedl+hTTX3ldpg7y0V2MHeC8pNQ5qk+YoM0Ap8IiIijU2tQ6n4+HhGjx7NH3/8gclkwig7qTWVDQWwWq11W6GISBPyv/UJTP/0TwBuPbstT13VC7MCqaartBjSd9sDqJQ/IOV3SN1Ws9DJ4gY+4fagyTes7HFZ4ORzwjavVmBWLzo57uDBg5hMJtq0aQPAxo0bee+99+jRo4d6qp+B8hX4NHxPRESk8ah1KPXggw/SoUMH4uLi6NChAxs3biQjI4O//e1v/Pe//62PGkVEGj3DMHj9x3ie+XonAHee24FpV3R3BPbSBBRk2gOnEwOotJ1gK6nc1uxiH97WqvMJvZrKA6iy3k6egcfnbhKphZtvvpm7776b2267jZSUFC699FJ69uzJ4sWLSUlJYfr06c4usUlSTykREZHGp9ah1Pr16/n2228JDg7GbDZjNps599xzmTlzJg888AC//vprfdQpItJolVhtPPHZn7y3IRGAiRd14pHLuimQaqwMAzIPlAVPJ4RQWYlVt3f3h/Czym697Pch0ceH1YnUsW3btjFo0CAAPvzwQ3r16sVPP/3EN998wz333FOrUGru3Lk8//zzpKSkEBMTw8svv+x476pkZmby+OOPs2zZMo4ePUq7du2YPXs2I0aMOOPjcrYIRyhViM1mqBeriIhII1DrUMpqteLra5/wNDg4mOTkZLp160a7du3YtWtXnRcoItKYZReWMHHxFtbsScdkgsdHdOfOczsokGosSosgbYc9dHL0gtoGRVlVtw9oC+G9IazX8SAqoK16PEmDKikpwd3dHnquXr3aMV9ndHQ0hw8frvH7LFmyhMmTJzNv3jxiY2OZPXs2w4YNY9euXYSGhlZqX1xczKWXXkpoaCgff/wxkZGRHDhwgICAgDo5LmcL9/fAbIJiq430vCJCfT2cXZKIiEiLV+tQqlevXvz222906NCB2NhYnnvuOdzc3HjjjTfo2LFjfdQoItIoHTqWzx3vbGJ3ai6erhZeGtOXS3uEObuslqsw2x46Hf7Nfkv5A9J3ga20cluzK4R2twdQ5b2fwnqBZ0CDly1ysp49ezJv3jyuuOIKVq1axb/+9S8AkpOTadWqVY3fZ9asWUyYMIHx48cDMG/ePL788ksWLFjAlClTKrVfsGABR48eZd26dbi6ugLQvn37Mz+gRsLVYibMz4PDWYUkHStQKCUiItII1Hpm1WnTpmGz2QB46qmn2L9/P+eddx5fffUVL7300mkVMXfuXNq3b4+HhwexsbFs3Lix2rYlJSU89dRTdOrUCQ8PD2JiYlixYkWFNq+99hq9e/fGz88PPz8/Bg8ezNdff31atYmIVGXrwUyunruO3am5hPq68+H/DVYg1ZDy0mFvHKyZBR+Og5f6wjNR8M4IWDkVfv8A0v60B1KegdDhfBg8Ca6eB/f8BI8lwz1r4Oq5cPa90P5cBVLSaDz77LO8/vrrXHjhhYwZM4aYmBgAPvvss1MOvTtRcXExmzdvZujQoY5tZrOZoUOHsn79+ir3+eyzzxg8eDATJ04kLCyMXr168fTTT59yEZuioiKys7Mr3BqzSE12LiIi0qjUuqfUsGHDHI87d+7Mzp07OXr0KIGBgac1XKW2XcunTZvGokWLmD9/PtHR0axcuZLRo0ezbt06+vbtC0CbNm145pln6NKlC4Zh8O677zJq1Ch+/fVXevbsWesaRURO9PUfh3n4w60UltiIDvdlwe0DHXOVSB0zDMhOKuv99HtZD6jf7duq4h9l7/3UOgZa97b3gPKL1PA7aVIuvPBC0tPTyc7OJjAw0LH97rvvxsvLq0bvkZ6ejtVqJSysYlgeFhbGzp07q9wnPj6eb7/9lltuuYWvvvqKvXv3ct9991FSUsITTzxR5T4zZ87kySefrOGROV9koCe/HDimyc5FREQaCZNhGEZNG5eUlODp6cnWrVvp1atXnRQQGxvLwIEDeeWVVwCw2WxERUVx//33V9m1PCIigscff5yJEyc6tl177bV4enqyaNGiaj8nKCiI559/njvvvPMva8rOzsbf35+srCz8/PxO46hEpDkyDIM3foxnZtkKexd2C+GVm/vh417rfF+qYrPBsf1weGvFACo/o+r2rTqfEEDF2B9713xok0hNNfR5QUFBAYZhOAKoAwcO8Mknn9C9e/cKPw6eSnJyMpGRkaxbt47Bgwc7tj/66KP88MMPbNiwodI+Xbt2pbCwkP3792OxWAD7EMDnn3++2rmsioqKKCoqcjzPzs4mKiqq0Z5DPbtiJ699v49xg9vx5Ki6OZcVERGRymp6/lSrKylXV1fatm17ym7ctVHetXzq1KmObX/VtbyoqAgPj4pzAHh6erJ27doq21utVj766CPy8vIqnJSJiNRGidXG9E+38f7GgwCMHdyO6Vf2wMVS61HQAmAttc/3VKEH1B9QnFO5rclyfP6n8h5QYb3Ao/Fd8IrUhVGjRnHNNddwzz33kJmZSWxsLK6urqSnpzNr1izuvffev3yP4OBgLBYLqampFbanpqYSHh5e5T6tW7fG1dXVEUgBdO/enZSUFIqLi3Fzc6u0j7u7u2NS9qbg+PC9QidXIiIiInAaw/cef/xxHnvsMRYuXEhQUNAZffjpdC0fNmwYs2bN4vzzz6dTp07ExcWxbNmySkHZH3/8weDBgyksLMTHx4dPPvmEHj16VPmeVf3KJyJS7uQV9v55RQ/Gn9NeK+ydqKTA3qPJcTtadsuoeCso2553BKzFld/H4l428fgJAVRoT3DVhMTScmzZsoUXX3wRgI8//piwsDB+/fVXli5dyvTp02sUSrm5udG/f3/i4uK4+uqrAXtv9Li4OCZNmlTlPueccw7vvfceNpsNs9keuO/evZvWrVtXGUg1RZpTSkREpHGpdSj1yiuvsHfvXiIiImjXrh3e3t4VXt+yZUudFVeVOXPmMGHCBKKjozGZTHTq1Inx48ezYMGCCu26devG1q1bycrK4uOPP2bcuHH88MMPVQZTTW0+BBFpOAeP2lfY25PWglbYKy2G/PQqQqWjJ4VLJ2wrya/957j5ls37dEIAFdwVLK51f0wiTUh+fj6+vr4AfPPNN1xzzTWYzWbOPvtsDhw4UOP3mTx5MuPGjWPAgAEMGjSI2bNnk5eX51iNb+zYsURGRjJz5kwA7r33Xl555RUefPBB7r//fvbs2cPTTz/NAw88UPcH6SSRgfZQSnNKiYiINA61DqXKf22rC6fTtTwkJITly5dTWFhIRkYGERERTJkyhY4dO1Zo5+bmRufOnQHo378/mzZtYs6cObz++uuV3nPq1KlMnjzZ8bx8PgQRadm2Hszkrnc3kZ5bTJifO2+NG0ivSH9nl3XmrCWQdQgyEyHzgP3+2IHjz3OqnjvmL5ldwasVeAWddN8KPE947BUE3sHg1wbMGv4ocrLOnTuzfPlyRo8ezcqVK3n44YcBSEtLq9U8TTfeeCNHjhxh+vTppKSk0KdPH1asWOHooZ6YmOjoEQUQFRXl+LzevXsTGRnJgw8+yD/+8Y+6PUAnKl+UIqughNyiUs0JKCIi4mS1/ktc3eorp+N0upaX8/DwIDIykpKSEpYuXcoNN9xwyvY2m63CEL0TNbX5EESk/n39x2EeWrKVolIb3Vv7seD2AbT2byIr7Nms9tXpMhMrB06ZifbXDNup38NkOSFEagVegSc9PzFsKguc3H21yp1IHZg+fTo333wzDz/8MBdffLFjTsxvvvnGsdJwTU2aNKnac6rvv/++0rbBgwfz888/17rmpsLH3QV/T1eyCkpIziyga5ivs0sSERFp0Zz+81Btu5Zv2LCBpKQk+vTpQ1JSEjNmzMBms/Hoo4863nPq1KkMHz6ctm3bkpOTw3vvvcf333/PypUrnXKMItJ0GIbB6z/G80zZCnsXR4fy0pi+jevXdJsNclNOCpwSjj/PTgJb6anfw8UDAtqW3drZ7wPbHX/u1UoBk4iTXHfddZx77rkcPnyYmJgYx/ZLLrmE0aNHO7Gy5iEiwJOsghKSjimUEhERcbZaX2WZzeZTTu5b25X5atu1vLCwkGnTphEfH4+Pjw8jRoxg4cKFBAQEONqkpaUxduxYDh8+jL+/P71792blypVceumltTtYEWlRSqw2/rl8Gx9ssq+wd/uQ9ky7onvjWGHPMGD3CvhpDiRtrnqS8BOZXSEg6qTQqf3x5z6hCp1EGrHw8HDCw8M5dOgQAG3atGHQoEFOrqp5iAzwZMfhbE12LiIi0gjUOpT65JNPKjwvKSnh119/5d133z3tycJr07X8ggsuYPv27ad8v7feeuu06hCRliurwL7C3tq96ZhN8M8rezD+nA7OLss+FG/7clgzC1K3Hd9usoB/ZFngVEVPJ99wMFuqfVsRabxsNhv//ve/eeGFF8jNzQXA19eXv/3tbzz++OMVfqyT2osMsK/mqVBKRETE+WodSo0aNarStuuuu46ePXuyZMkS7rzzzjopTESkoZy4wp6Xm4WXx/Tlku5OXmHPWgK/fwhrZ0HGXvs2Nx8YeCf0G2cPniyNaEihiNSZxx9/nLfeeotnnnmGc845B4C1a9cyY8YMCgsL+c9//uPkCps2rcAnIiLSeNTZFc3ZZ5/N3XffXVdvJyLSIH5NPMaE//3SeFbYKymErYtg7RzISrRv8wiA2Hsg9v/sk4qLSLP27rvv8uabb3LVVVc5tpWvhnffffcplDpD5SvwJR1TKCUiIuJsdRJKFRQU8NJLLxEZGVkXbyci0iC++uMwD5etsNejtR9vOXOFveI8+OVtWPeyfRJzAO8QGDzJ3jvKXZPxirQUR48eJTo6utL26Ohojh496oSKmpfIAPWUEhERaSxqHUoFBgZWmOjcMAxycnLw8vJi0aJFdVqciEh9MAyD137Yx3MrdgH2FfZeHtMXb2essFeYBRvnw8+vQn6GfZtfJJzzIPS9Ddy8Gr4mEXGqmJgYXnnlFV566aUK21955RV69+7tpKqaj/JQKiW7kBKrDdfGsJiFiIhIC1XrK7AXX3yxQihlNpsJCQkhNjaWwMDAOi1ORKSulVhtTPtkG0t+Ob7C3j+v7IHF3MAr0eVlwIbXYMMbUJRl3xbYHs59GGLGgIt7w9YjIo3Gc889xxVXXMHq1asZPHgwAOvXr+fgwYN89dVXTq6u6Qv2ccfNYqbYaiM1u5A2gQr/RUREnKXWodTtt99eD2WIiNS/rIIS7l20mXX7MjCbYPqVPbi9oVfYy0mxD9H7ZQGU5Nu3BXeD8x+Bntdo8nIR4YILLmD37t3MnTuXnTt3AnDNNddw99138+9//5vzzjvPyRU2bWazidYBHhzIyCfpWIFCKRERESeq9dXP22+/jY+PD9dff32F7R999BH5+fmMGzeuzooTEakr8UdyuXvhZvaWrbD3ys19uTi6AVfYy0yEn+bAloVgLbJvC+9tD6OiR4KWeBeRE0RERFSa0Py3337jrbfe4o033nBSVc1HZIAnBzLySc7SvFIiIiLOVOtQaubMmbz++uuVtoeGhnL33XcrlBKRRsVqM3j7p/08v3IXRaU2wv08eOv2AfSMaKAV9tL3wtoX4fcPwFZq3xYVC+c9Al0uBVMDDxsUERGtwCciItJI1DqUSkxMpEOHysNd2rVrR2JiYp0UJSJSF/an5/H3j37jlwPHADi3czD/vT6GcH+P+v/w1D9hzQvw5ydg2OzbOlwA5/8d2p+rMEpExInKJztPyix0ciUiIiItW61DqdDQUH7//Xfat29fYftvv/1Gq1at6qouEZHTdnLvKG83C49d0Z2bB7WtsFBDvUjaDD++ALu+PL6t6+X2nlFRA+v3s0VEpEaOh1LqKSUiIuJMtQ6lxowZwwMPPICvry/nn38+AD/88AMPPvggN910U50XKCJSG/vT83j049/YlGDvHXVO51Y8c01vooLqeSLb1O2wegbsWVm2wQQ9RsF5f4PWWsJdRP7aNddcc8rXMzMzG6aQFiAy0B5KJSuUEhERcapah1L/+te/SEhI4JJLLsHFxb67zWZj7NixPP3003VeoIhITdhsBm+vS+D5lTspLGnA3lFZSfD907D1PfswPZMFet8A506GkK7197ki0uz4+596rjt/f3/Gjh3bQNU0byfOKWUYRv33ohUREZEq1TqUcnNzY8mSJfz73/9m69ateHp6ctZZZ9GuXbv6qE9E5C8lpOfx94buHVWYBWtnw8+vQmnZnCTdr4JLnoDgzvX3uSLSbL399tvOLqHFaF02t2BBiZXM/BICvd2cXJGIiEjLVOtQqlyXLl3o0qVLXdYiIlIrNpvBO+sSeO6E3lFTR3Tnlth67B1VWgy/LIAfnoWCo/ZtbQfDpU9B1KD6+UwREalTHq4Wgn3cSc8tIimzQKGUiIiIk9Q6lLr22msZNGgQ//jHPypsf+6559i0aRMfffRRnRUnIlKdk3tHDenUimevrcfeUYYBfy6DuKfgWIJ9W6sucOmT0G2EVtMTEWliIgM9HaFUr8hTD50UERGR+lHrUOrHH39kxowZlbYPHz6cF154oS5qEhGp1sm9o7zcLDxW372jEtbCN/+E5C32596hcNFU6DsWLKfd4VRERJwoMsCD3w7a55USERER56j11VRubi5ubpW7OLu6upKdnV0nRYmIVCUhPY9HP/6djQn2YXP13jsqbYd9Rb3dK+zPXb3hnAdh8ERw96mfzxQRkQYRGaAV+ERERJyt1qHUWWedxZIlS5g+fXqF7R988AE9evSos8JERMrZbAbvrk/g2RXHe0dNHdGdWwa1xWyuh95R2cnw3dOwdfHxFfX63w4XTgGf0Lr/PBERaXCOFfgUSomIiDhNrUOpf/7zn1xzzTXs27ePiy++GIC4uDjee+89Pv744zovUERatgbtHVWYDT/NgfVzobTsIqX7yLIV9bSwg4hIcxKpUEpERMTpah1KjRw5kuXLl/P000/z8ccf4+npSUxMDN9++y1BQUH1UaOItEAN2juqtBg2v21fUS8/w74tKhYu/Re0ja3bzxIRkUYhQsP3REREnO60Zui94ooruOKKKwDIzs7m/fff55FHHmHz5s1YrdY6LVBEWp4DGXn8/ePf2bjf3jtqcMdWPHddPfSOMgzYvhxWPwnH9tu3teoMQ5+E6Cu0op6ISDPWJtAeSqXnFlNYYsXD1eLkikRERFqe01426scff+Stt95i6dKlREREcM011zB37ty6rE1EWhibzeB/6xN4dsUuCkqs9t5Rw6O5JbZd3feOSvgJVv0Tkjbbn3uHwIVTod9YsLjW7WeJiEij4+/pipebhfxiK8mZBXQM0QIWIiIiDa1WoVRKSgrvvPMOb731FtnZ2dxwww0UFRWxfPlyTXIuImfkQIZ97qgNZb2jzu4YxPPXxdR976i0nWUr6n1tf+7qDUPuhyGTwN23bj9LREQaLZPJRGSAJ3vScklSKCUiIuIUNQ6lRo4cyY8//sgVV1zB7Nmzufzyy7FYLMybN68+6xORZi6nsIQ3foxn/pr443NH1XXvqNw0SPkdtn8Kvy46YUW9cXDBFPANq5vPERGRJiWiLJTSvFIiIiLOUeNQ6uuvv+aBBx7g3nvvpUsXrUIlImemqNTK4p8TeeW7vRzNKwbqYO4omw0yE+Dw7/YQKuUP++PclIrtoq+0r6gX0vXMDkJERJq0yLJ5pZKOKZQSERFxhhqHUmvXruWtt96if//+dO/endtuu42bbrqpPmsTkWbIZjP49LckXvhmN4fKLgI6hXjz6OXRXNYjDFNNJxcvLYYjOyuGT6nboCi7isYmaNUJWveBgXdBu8F1djwiItJ0RZatwJeUWejkSkRERFqmGodSZ599NmeffTazZ89myZIlLFiwgMmTJ2Oz2Vi1ahVRUVH4+mo+FhGpmmEY/LD7CM+u2MWOw/bgKMzPnYeHduW6/m1wsZir37koB1K22QOo8l5QaTvAVlK5rcUNQntA694QXnYL6wnumitEREQqOh5K5Tu5EhERkZap1qvveXt7c8cdd3DHHXewa9cu3nrrLZ555hmmTJnCpZdeymeffVbrIubOncvzzz9PSkoKMTExvPzyywwaNKjKtiUlJcycOZN3332XpKQkunXrxrPPPsvll1/uaDNz5kyWLVvGzp078fT0ZMiQITz77LN069at1rWJyJnbejCTZ77ewc/x9knMfT1cuO/Cztw+pD2ebictwZ2TWtb76YQA6mh81W/s7l8WPp1lD59a94bgrlo9T0REaiSiLJRKVk8pERERp6h1KHWibt268dxzzzFz5kw+//xzFixYUOv3WLJkCZMnT2bevHnExsYye/Zshg0bxq5duwgNDa3Uftq0aSxatIj58+cTHR3NypUrGT16NOvWraNv374A/PDDD0ycOJGBAwdSWlrKY489xmWXXcb27dvx9vY+k0MWkVqIP5LLf7/ZxVd/2Od0cnMxc/uQ9tx3YScCvNzsjTITYfdK2Lsakn+F3NSq38wvsmL4FH4WBLSDmg73ExEROUn5nFKHswqw2Yy6W2BDREREasRkGIbhzAJiY2MZOHAgr7zyCgA2m42oqCjuv/9+pkyZUql9REQEjz/+OBMnTnRsu/baa/H09GTRokVVfsaRI0cIDQ3lhx9+4Pzzz//LmrKzs/H39ycrKws/P7/TPDKRlistu5A5cXv4YNNBrDYDkwmu7deGhy/tSqSfGyRtht0rYNcKSPvzpL1NENylYvgU3hu8g51yLCIiOi+ouab2XZVabXT75wqsNoMNj11CmJ+Hs0sSERFpFmp6TnBGPaXOVHFxMZs3b2bq1KmObWazmaFDh7J+/foq9ykqKsLDo+IJg6enJ2vXrq32c7KysgAICgqqg6pFpDo5hSW88WM8b67ZT0GJFYCh3UN59KI2dM3dCN+/bu8VlZ9+fCeTGaLOhq7DoN05ENYD3NSjUURE6p+LxUy4nwdJmQUcOlagUEpERKSBOTWUSk9Px2q1EhYWVmF7WFgYO3furHKfYcOGMWvWLM4//3w6depEXFwcy5Ytw2q1VtneZrPx0EMPcc4559CrV68q2xQVFVFUVOR4np1d1epdIlKdolIri35O5JVv93As3z75+LDIIh7rlEC7jDfh3bVgLT6+g7s/dL4Eul4OXS4FLwXGIiLiHJEBniRlFpCcWUD/doHOLkdERKRFcWoodTrmzJnDhAkTiI6OxmQy0alTJ8aPH1/tfFYTJ05k27Ztp+xJNXPmTJ588sn6Klmk2bLZDD79LYn/rtzN4cw8+pj28ne/Pxjp8Qe+Gbsh44TGQR2h6/CyHlFDNBm5iIg0ChEB9t5RSZkFTq5ERESk5XFqKBUcHIzFYiE1teLExqmpqYSHh1e5T0hICMuXL6ewsJCMjAwiIiKYMmUKHTt2rNR20qRJfPHFF/z444+0adOm2jqmTp3K5MmTHc+zs7OJioo6zaMSaf4Mw+D73Ud45etfCU37icmWLVzs8RuBZEMx9pvJAm3PtveG6nq5fZ4oTUouIiKNTPlk58kKpURERBqcU0MpNzc3+vfvT1xcHFdffTVgH24XFxfHpEmTTrmvh4cHkZGRlJSUsHTpUm644QbHa4ZhcP/99/PJJ5/w/fff06FDh1O+l7u7O+7u7md8PCItwfY/f2fjysV0OraW9807cHM7Yeisuz90GWrvEdX5Eg3LExGRRi8iwB5KJR1TKCUiItLQnD58b/LkyYwbN44BAwYwaNAgZs+eTV5eHuPHjwdg7NixREZGMnPmTAA2bNhAUlISffr0ISkpiRkzZmCz2Xj00Ucd7zlx4kTee+89Pv30U3x9fUlJsS9H7+/vj6enZ8MfpEhTZbNB9iFI30Pm9jjyt31Bj+ID9ACw2JtYAztiiR5h7w3V9mwNyxMRkSYlsjyUUk8pERGRBuf0UOrGG2/kyJEjTJ8+nZSUFPr06cOKFSsck58nJiZiNpsd7QsLC5k2bRrx8fH4+PgwYsQIFi5cSEBAgKPNa6+9BsCFF15Y4bPefvttbr/99vo+JJGmxTAgLx2O7oOMvSfc9sHReCgtBCCg7FZqmDng3Zvg/qPwj7kKS3BnJxYvIiJyZhRKiYiIOI/JMAzD2UU0NtnZ2fj7+5OVlYWfn5+zyxGpG0U59qCpPHA6MXwqyqp2t2LDQqIRxjajPalhF3LRyDF0bde2AQsXEXEunRfUXFP8rvKKSun5xEoAfp9xGX4e6vErIiJypmp6TuD0nlIiUodKi+BYQuUeTxn7IDflFDuawD+KooAO7CgKZXWaL9sKg4k3WpNiCmFozwjuOKcDV7fXHFEiItK8eLu7EODlSmZ+CcmZBfiFK5QSERFpKAqlRJqyo/GwbRkkrrcHUJmJYNiqb+8dAq06Q6tOENQJWnXGaNWJjVkB/G9TKiv/TKHUZu88GeLrzphBbbl5UFvC/T0a6IBEREQaXmSApyOUig5vGj28REREmgOFUiJNTXYy/PkJbFsKSZsrv+7maw+dysOnE0MozwBHs7yiUpb9msSilQfYlZrg2D6ofRC3DW7HsJ7huLmYK7+/iIhIMxMR4MmfydlagU9ERKSBKZQSaQry0mH7p/ZeUQd+AsqmgjOZocMFEH0FhPawB1A+oWAyVftWe9NyWfTzAT7efIjcolIAPF0tXN03krGD29G9tX4hFhGRluX4ZOeFTq5ERESkAZQU2EfdpO+BkG4Q2t1ppSiUEmmsCrNg55f2HlH7vgPDevy1toOh17XQY5Q9hPoLpVYbq3eksfDnBH7am+HY3jHYm1vPbse1/dvg76k5NEREpGXSCnwiItLs2GyQfcgePGXsg4w99ilf0vdC1kEcHR0umKJQSkTKFOfD7hX2IGrPKrAWHX+tdQz0ug56joaAqBq9XXpuEUs2HWTxzwdIzrL/+ms2wSXdwxg7uB3ndArGbK6+V5WIiEhLEBloD6WSFUqJiEhTU3DMHjRl7K0YPB3dB6Wn6AHs4Q+tuoBPSMPVWgWFUiLOVloM++LsQdTOr6Ak7/hrwd3grOug5zUQ3LlGb2cYBlsSM1m4PoGv/kih2Gqf+DzI240bB0ZxS2xb2gR61ceRiIiINEkR5T2lNKeUiIg0RuWrrKfvqRg8ZeyF/PTq9zO7QlBH+zQvwZ3tIVSrzhDcBbxanXLal4aiUErEGaylkLDGHkTt+Mw+VK9cQFt7j6he10JYzxr/Q1FQbOXz35J5d30CfyZnO7b3iQpg7OB2jDirNR6ulro+EhERkSavfPheak4hJVYbrhYt9CEiIk6Sl2FfXT1xPRzZVbbK+oFTr7LuG2Ff3Cq4LHRq1cUeQvm3BUvjjn0ad3UizYnNBoc22oOoPz+BvCPHX/MJtw/LO+s6iOxfq8R635FcPtiYyIe/HCKroAQANxczV8VEMHZwO3q3CajjAxEREWleWnm74eZiprjURkpWIVFB6lEsIiINJDsZDqyzL2h1YD0c2VF1Ozef472cWnWueHP3adia65BCKZH6YhhQnAfpu+0h1J+flE0oV8Yz0D5Rea/roN0QMNe8F9PhrAI+/y2Zz35LZlvS8V5RUUGe3BrbjhsGRBHo7VaXRyMiItJsmc0mIgM82Z+eR1JmgUIpERGpH4YBx/aXhVBlQdSxhMrtQqLti1u17l3W66kL+IQ1iuF2dU2hlEhNFedDfgYUHLXf55ffn3w7dvzxiROVA7j5QvQV9h5RHS8ES81XvDuWV8xX2w7z6dZkNiUcxShbLMHFbOL8riHcenZbLugaikUTl4uIiNRaRICHPZTSvFIiIlJXbDZI31XWC6osiMo5XLGNyQzhvaHdOfbOCm0Hg3cr59TrBAqlpOUyDPtEcTnJVYRMVTwuPc2TVFdv6DLUPkdUl8vA1bPGu+YVlbJqeyqf/ZbMj7uPUGozHK8N6hDEVTERjDirNUHqFSUiInJGyueVStIKfCIicrqspZDyuz18Slxvvy84WrGNxQ0i+tkDqHbnQNQg8PBzTr2NgEIpaVlsVji4AXZ8ATs/h8zE2u1vdgXvYPAMAq8g+4oFlW6BFZ+7etWqm2VxqY0fdh/h061JrN6RSmHJ8Qntekb4cVVMBCNjIhwrBYmIiFRn7ty5PP/886SkpBATE8PLL7/MoEGD/nK/Dz74gDFjxjBq1CiWL19e/4U2AuV/V5MVSomISE2VFkHSluM9oQ5ugOLcim1cvezBU3lPqMj+teqo0NwplJLmr7QI4n+wh1C7vq44wbiLBwR2KAuQTg6Zgipvd/Opl3G8VpvBhv0ZfLY1ma+3pTgmLAdo38qLq/pEclVMBJ1Dm+4EdiIi0rCWLFnC5MmTmTdvHrGxscyePZthw4axa9cuQkNDq90vISGBRx55hPPOO68Bq3U+9ZQSEZFTysuAjD320TYZe+DQZji0qfKULR7+9iF45T2hWsfUatqWlkahlDRPRTmwZxXs/AJ2fwPFOcdf8/CHrsOh+5XQ6WJw83ZKiYZh8PuhLD77LZnPf0smLef4P2Zhfu5c2TuCUX0iOCvSH1MznNBORETq16xZs5gwYQLjx48HYN68eXz55ZcsWLCAKVOmVLmP1Wrllltu4cknn2TNmjVkZmY2YMXOVR5KbU3MZNY3u7i4exi9I/0xa65GEZGWo7QIjsYfD57S99rvM/ZCwbGq9/EOPR5AtRsCoT3AbG7YupswhVLSfOSlw66v7EPz4r+vmFj7hNsnGO9+JbQ/z6lJ9d60XD77LZnPtiaRkJHv2O7v6cqIs8K5KiaSQR2CNGG5iIictuLiYjZv3szUqVMd28xmM0OHDmX9+vXV7vfUU08RGhrKnXfeyZo1a/7yc4qKiigqOv73Njs7+xStz9CXf7P3cO4xCiIH1PkJf/fWfvh6uJBTWMpL3+7lpW/3EuzjzsXRIVwcHca5XYLxcdeps4hIk2cY9snGTw6e0vfYV0s3bNXv6x8FrTrbV8ML62UPolp1apar4jUU/WWVpi0zsWx+qC/sE8md+A9IUEfoPhKiR9rH7ToxrU7OLODz35L57Ldk/kw+fsLu6WphaI8wRsVEcH7XENxclKiLiMiZS09Px2q1EhYWVmF7WFgYO3furHKftWvX8tZbb7F169Yaf87MmTN58sknz6TUminMhi0L7T84rX8FfCOgx1X2gCoqFsyWM/6IQG83fvz7RcTtTOPbnan8uDud9NwiPvzlEB/+cgg3i5nYjkFcEh3KJd3DiAryqoMDExGRelOUa+/hlLH3hABqD2Tsg5K86vdz9zsePLXqAsGd7fetOmkuqHqgUEqaFsOAIzuPT1R++LeKr4f3LguiroTQ7k5NrG02g5V/pvD2TwlsTDi+4oKL2cQFXUO4qk8EQ7uH4a1fXUVExMlycnK47bbbmD9/PsHBwTXeb+rUqUyePNnxPDs7m6ioqLov0MUDrlsA2z+1zw+Zkwwb5tlvPmH2v/09RkHbIWA5/b+rgd5uXNe/Ddf1b0NxqY1NCUeJ25FG3M5UDmTks2ZPOmv2pDPj8+10CfXhku5hXNI9lL5RAbhY9MOSiMgpGQYcS7CvTldSCNZisJXYV6yzlYC15PjzKl8rtd9bi48/ru61gmP23lDVMVkgsH1Z8HRiANUFvEPU86kBmQzDMP66WcuSnZ2Nv78/WVlZ+Pm13KUZGw2bDZK3wI7P7GHU0X0nvGiyj9uNvtI+PC+wndPKLGezGXyzPYXZq/ewM8U+l5XJBIPaBzGqTyTDe4UT6O3m5CpFRKSmmuJ5QXFxMV5eXnz88cdcffXVju3jxo0jMzOTTz/9tEL7rVu30rdvXyyW4z2ObDZ772Oz2cyuXbvo1KnTX35ug3xXpUWw77uygOpLKMw6/ppXsH2ofo9RdTpc3zAM4tPziNuRStyONH45cAyr7fgpdICXKxd2DeHi7mFc0CUEfy9NaCsigmHY52dKWGu/HfgJspMatgav4MrBU6vO9kDKRddk9amm5wQKpapQrydUu1fCD8/W7XtWywQm80k3U9ntpO0V2ppOuq+urcneXd5ktifNjsfmKraXPTebT3j8F9sBkn6BnV9WTLktbtDxQnsQ1W0E+IQ00Pd5aoZhsPLPVObE7WHHYfsQPV93F8af054xsW1p7a+uniIiTVFTDKUAYmNjGTRoEC+//DJgD5natm3LpEmTKk10XlhYyN69eytsmzZtGjk5OcyZM4euXbvi5vbXJ+8N/l2VFsP+H2H7cvtQ/hMnofUMtP9g1eNq6HBBnV58ZOWX8MOeI3y7I5Xvdh2psGquxWxiQLtALukeysXRYXQK8daCJSLSMhiGfXjcgbIQKuEnyE2p2MbsCuFn2Refsrjan1tcyu7dTnjsCmaXE9pU85rF7aR2Za+5+9qH23kGOue7EIVSZ6JeT6i2vgfL763b92wJ3Hygy2X2Xz87XwoejeeiwDAMvtmeypzVe9heFkb5uLtwxzntufPcjvq1VESkiWuqodSSJUsYN24cr7/+OoMGDWL27Nl8+OGH7Ny5k7CwMMaOHUtkZCQzZ86scv/bb7+dzMxMli9fXuPPdOp3ZS2xXwRt/xR2fA756cdfc/eH6BH2HlQdLwJXjzr72FKrjS2JmcTtTOXbHWnsScut8Hr7Vl5cHG0f5jewfZDmjxSR5qN8apXyXlAJP0FeWsU2Fjf74hTtz4X250CbQeCmOflagpqeE2gym4bW4XwY80H9f45hAIb93rAdv1W1rco2J2+voo3NWrbdWvbYan/NZj3erny7Y5vVPhzP8fjk7daK+wW0tfeI6nBBnZ5A1gXDMFi9I43Zq3c7Ji/3drMw/pwO3HVeBwK81B1URESc58Ybb+TIkSNMnz6dlJQU+vTpw4oVKxyTnycmJmJuTktWW1yh00X22xUvwIF1ZQHVZ5CbCr+9b7+5+UK3y+0BVeehZzxprYvFzKAOQQzqEMTU4d1JzMjn252pxO1MY0P8URIy8lnw034W/LQfH3cXzu8aTJ+oALqE+dItzJfW/h7qSSUiTYPNBmnbywKosiAqP6NiGxcPaDPQHkK1OwfaDNDk4HJK6ilVhab6i6g0DMMwiNuRxuy43WxLOh5G3X5Oe+46t6PmixIRaWZ0XlBzjfK7slnh4EZ7QLX9U/sk6eVcvaHrZfaAqstl4OZdpx+dW1TK2j3pxO1I5btdaaTnFldq4+vuQucwH7qF+dIlzJeuYT50DfMl1NddYVVDMoyTfkw94cfTWm2v4gdbc9mQI7Pl+BAjs0vZUKQThyNZTnjNVRMti/PZrJC6zd4D6kDZ7cRh0gAunhA1yD6PX/tz7Kueu7g7p15pVDR87ww0yhMqcTrDMPh2ZxqzV+/hjyT7pKpebhbGDWnPhPM6EqQwSkSkWdJ5Qc01+u/KZoOkzfY5qLZ/BlmJx19z8YQuQyGir33aADfvsvvyx97gfsJzV69ahQY2m8HvSVms2X2Enak57E7JYX96HqW2qk/F/T1d6Rrm4+hR1aUsrAr20cUe1hIoyrHfinPty74X5UBx2bZqn+dCUfYJz/PsK3UZVmcfUdVMlhPmyrFUnC+n/GZxtfdM8Qys+uYVVPG5R8AZrVApzZi1BHLT7BORH9xgD6IS11VcTALsYX7bWHsvqPbn2f/N1IThUgWFUmeg0Z9QSYMyDIPvdx1h9urd/HboeBg1dnB77j5fYZSISHOn84Kaa1LflWFA8q9lPaiW25cprxVTxcDKzds+se6JzyuEWuX3XvbeM9ZSSkuKyMjOIy0zh4zsXI5l55GZm0dufgGuWHGhFFdKccVqvzeV4uViEOgO/m7g62rg7WLgZbHhYpQviV5sf38XT/tnuXodD9HcvOwXlKfcXsXrrp41D+CsJVBSAKWFUJJvX/a9tKCG94Un7FtgD40qBUm59tcb2skL+JhPWqDHcW+uvAiQrbTsv03Z0vaVHpcADXhJ5u4HngFlQVVQ9YHWiaGWh796vzRFhmH//01uqv2Wk2IPnnLL7k98fvIwvHJuvtD2bHsvqPbnQeuYOlvZVJo3zSklcoYMw+D73UeYvXoPvx3MBMDT1cLYIe24+7yOtNIvlSIiIk2XyQSR/ey3oTMg5Q/7ir/Zh+xhSFHu8VDk5HsADHtPnOKc0y7BBQgru1V6oToGUFh2azCmE8KrsrDKbKk6SGrIXkcuHmVBoI/9vvzmeO5jD2BOfO7me8Jjn7JhcqcKmcpXlK7noXQ2mz2kspYcD7HKAytbiX0YleNxeahVFmwV50Nhpn1Y1Ym3/KMnPM+EorIeL0XZ9ltm4qkqqszibl9syN3Pfu/hf/yxu/8pXjvhuXrU1A1rKeQdOR42OUKnKp6XFtT8fc0u4B0KrXuX9YQ6B8Jj1LtO6pX+1yVyEsMw+HFPOi+u2s3WsjDKw9Xs6BmlbvMiIiLNjMlkvwhr3fuv29ps9ou8otwTgqry0OqE5+XDwyq9lm8POSyux5czP3nJc4vb8aFa5a9bXCkxLBzJN0jJtZKcZyUpq5RD2aWk5lkpwYUSXCjFgs0w4WEqxs9SQucAEx0DTLTzgUhvgyC3Uswl+fZeTMV5Zff5UFJW24nbHT2SDPvrJXm1+15dPO0L1VR5f6rXyu7Lh0y6+1YMk8qDp+bUW8NsBrN7/fZGspbah2IVHIOCo5VDrEpBVtmtMAswwFpkD0Lyjpx+DS4ex0Oqk0Ms71Dwi7DffFuDXyR4tbJ/N82ZteSE7/5o9Y/zy/575KVBXjq16l3n7gc+oeATbr/3Da/ieZi951xz/76l0XF6KDV37lyef/55UlJSiImJ4eWXX2bQoEFVti0pKWHmzJm8++67JCUl0a1bN5599lkuv/xyR5sff/yR559/ns2bN3P48GE++eQTrr766gY6GmnKDMNgzZ50Zq/ezZbETMAeRt12djvuPr8TIb4Ko0RERFo8s/n48LzKfZzqlSsQUXbrd8L23KJS9qTmsCc1l92pOexIyWbroSyyC0vhCPZbGU9XC70i/TgrMoDeXfw5q40/HVp5YzZX0RPIZq0+tLJZ7eGRq2fVgZKLuybqbmwsLuDdyn6rDZvV3rOqMLua+6zj99W1Ke9hWFrWuy4vrWafbXYtC6giwK81+EZUfuzbunH0wLKW2o+1QsB3ipCp4Jg9aDrd3pYmsz3I8w2zB0rlN0fgdMI2N6+6PVaROuTUUGrJkiVMnjyZefPmERsby+zZsxk2bBi7du0iNDS0Uvtp06axaNEi5s+fT3R0NCtXrmT06NGsW7eOvn37ApCXl0dMTAx33HEH11xzTUMfkjRBhmGwdm86s1fvYfMB+2oS7i5mbj27Hf93QUdCfT2cXKGIiIhI9XzcXejbNpC+bQMd2wzD4EBGPr8nZfHHoUx+P5TFtqQs8oqtbEo4xqaE4yto+bq70CvSn95t7CFVTJsA2gR6YjJbjg+Jk5bLbDk+x9TpqjbYKguyCrPs8xplH7ZPtJ1z2D7Xka3EviBB1l8MNfQKrtzLyq91xcfufvY5lk7sKejoLXjS40rb8u3BWoWQNq/iY2vl1TVrzlRxni+voOPzfZ04Wb1XkP1YfcPLepFZzuAzRRoHp050Hhsby8CBA3nllVcAsNlsREVFcf/99zNlypRK7SMiInj88ceZOHGiY9u1116Lp6cnixYtqtTeZDKdVk+pJjVJp5w2wzBYty+DF1ft5pcTwqhbYttxz4UKo0RExE7nBTWn76pxs9oM9qfn8vuhrLJbJn8mZ1NUaqvUNsDLlbPKgqrebQLo3cafcD8PTOr9JA3FWmKfiDunLKjKPgw5yZCdXPFxTcMgi9sZBkc15OZz0kTxQdU/PnEieQVM0sw0+onOi4uL2bx5M1OnTnVsM5vNDB06lPXr11e5T1FRER4eFYMCT09P1q5de0a1FBUVUVRU5HienZ19Ru8njZvNZrBqRyqvfr/PMYG5m4uZW2Lbcu8FnQj1UxglIiIizY/FbKJzqC+dQ325pl8bAEqtNvak5fLHoSx+O5TJH0lZ7DicTWZ+CWv2pLNmT7pj/2Af97KQyp+zIu03nTdJvbG4QkCU/VYdw7APh3OEVWW3nLLgqvxxYVblQKrCCpTeFR9X2uZlD5sqrFZ50oqV5StsapVCkVpxWiiVnp6O1WolLKziWPywsDB27txZ5T7Dhg1j1qxZnH/++XTq1Im4uDiWLVuG1Xpmq3zMnDmTJ5988ozeQxq/4lIbn25NYt4P+9h3xD5Rp7uLmTGD2nLvhZ0I00mViIiItDAuFjPdW/vRvbUfNwy0X/wXlVrZnZJrD6kOZfF7Uha7U3NIzy3i251pfLvz+HxAIb7u9Irw46xIf3pG+tMr0p8If/WokgZiMh2fJyv8rOrbFedBfkbZBPpe9ntN6C3SKDh9ovPamDNnDhMmTCA6OhqTyUSnTp0YP348CxYsOKP3nTp1KpMnT3Y8z87OJirqFIm8NCl5RaV8sOkgb66J53CWfRUZXw8Xxg5ux+1DOmgCcxEREZETuLtYOKtsfqlyBcVWth/OPj4/VXIWe9NyOZJTxHe7jvDdruOzqQd5u9Ezwo9eZb2pekX4ExXkqaBKnMexOIGINDZOC6WCg4OxWCykpqZW2J6amkp4eHiV+4SEhLB8+XIKCwvJyMggIiKCKVOm0LFjxzOqxd3dHXd3BRPNzbG8Yt5dn8A76xLIzC8B7L/m3XVuB26ObYuvRzNaRlhERESkHnm6WejfLpD+7Y5Pdp1fXMqOwzn8mZzFH4ey2JaczZ7UHI7mFVca+ufnYZ9MvVekvyOwqnbVPxERaTGcFkq5ubnRv39/4uLiHBOR22w24uLimDRp0in39fDwIDIykpKSEpYuXcoNN9zQABVLU5GcWcCba/bz/sZECkrsQzvbtfLi/87vxDX9IvFw1SSCIiIiImfKy82lUlBVWGJlV0oO25Kz2JaUzbakLHal5JBdWMq6fRms25fhaOvtZqFnhD89I+3D/3pF+tMx2BsXi4ZViYi0FE4dvjd58mTGjRvHgAEDGDRoELNnzyYvL4/x48cDMHbsWCIjI5k5cyYAGzZsICkpiT59+pCUlMSMGTOw2Ww8+uijjvfMzc1l7969juf79+9n69atBAUF0bZt24Y9QGlQe9Nyef2HfSzfmkSJ1b6oZM8IP+69sBPDe7XGol/iREREROqVh6uFmKgAYqICHNuKS23sScvhz6Rs/kiyD/3bcTibvGIrGxOOsjHh6An7m+nR2t6TqmuYLx2CvWkf7E1rPw/1qhIRaYacGkrdeOONHDlyhOnTp5OSkkKfPn1YsWKFY/LzxMREzCdMQFdYWMi0adOIj4/Hx8eHESNGsHDhQgICAhxtfvnlFy666CLH8/K5osaNG8c777zTIMclDWvrwUxe+34v32xPxbBnUZzdMYh7L+zM+V2CNX+BiIiIiBO5uZjtPaIi/B2TqZdabew7kse2spBqW1IWfyZnk19sZUtiJlsSMyu8h7uLmXatvGjXytseVLXypn2wFx2CvQnzVWAlItJUmQyj/DJeymVnZ+Pv709WVhZ+fn7OLkeqYBgGa/ak89r3+1gff7wb+GU9wrjnwk70axt4ir1FRERqTucFNafvSs6E1WaQkFEWVCVlse9IHgnpeSQezafUVv0li4er2R5StfKmXbAXHVrZe1d1CPYm1NddP1CKiDhBTc8JmtTqeyJWm8GKbSm89sNetiVlA+BiNnF130juuaAjnUN9nVyhiIiIiJwOi9lEpxAfOoX4MKpPpGN7qdVGcmYh+zPsIdX+9DwSyh4fPFZAYYmNnSk57EzJqfSeXm6Wst5VXo7gqn2wvZdViI8CKxERZ1MoJU1CUamVZVuSeP2HfSRk5APg6WrhpkFR3HVeRyIDPJ1coYiIiIjUBxeLmbatvGjbyosLuoZUeK3EaiPpWIEjsEpIz2N/Rj4J6XkcOpZPfrGVHYez2XE4u9L7+ri70D7Yi47BPnQI9qZjiLf9cYg3Pu66TBIRaQj611YatZzCEt7fmMiba/aTllMEgL+nK7cPac+4Ie0J8nZzcoUiIiIi4iyuFnNZzydv6FbxteJSG4eO5ZOQkcf+dHtQlZBhvyUdKyC3qLRshcDKgVWor3tZUOVDx7LAqkOwN1FBXrhqdUARkTqjUEoahfziUlKyCknJLiQ1u5CUrCIOHsvni9+SyS4sBSDcz4O7zuvAmEFt8davVyIiIiJyCm4uZnuoFOJT6bWiUisHj+azPz2f+CO57E/PI/5IHvHpeaTnFpGWY79t2H+0wn4uZhNtg7wcIVXHkOO9rDQcUESk9nRlL/XKMAyO5hU7wqbDWYWkloVPKdlFpGQVkJJV6AieqtIxxJt7LujE1X0icXPRL1MiIiIicmbcXSx0DvUtm480rMJrWQUlJKTnEZ+ey/4jeexLz2P/EftcVgUlVuLT7eHVyXzdXehQHlaVDQPsGOxN51AfPFwtDXRkIiJNi0KpZshqM9idmkOp1cBksk8aaTaZsJjBZCp7bDJVeM1sxn5f/poZLKbKr5lNOH4BKi61kZZzPGxKyToheMou7/VURHGprUZ1e7tZCPP3oLW/B2F+HoT7edC3bSCXRIdqmV8RERERaRD+nq7ERAUQExVQYbvNZpCaU+joUXViD6tDx/LJKSrl90NZ/H4oq8J+9gncvene2u+Emy+hvh4NeFQiIo2TQqlmaNaqXcz9bl+9vb/JZA+sTrU078mCfdwI86sYOIX7l93KHvt6uNZbzSIiIiIiZ8JsNtHa35PW/p6c0zm4wmtFpVYSM/LLwqo89qfbA6s9ablk5pewOzWX3am5fLo12bFPsI8b0eH2gKo8rOoc6qM5q0SkRVEo1cwUlVpZvCERgBBfd8wmsNrsw+hshoHVZmAYYC17brNh327Yt9eEYUBpWWM3i5lQP/dThk2hvh4adiciIiIizZa7i4UuYb50CfOtsN0wDFKyC9l5OIftZasA7jiczf70PNJzi1m7N521e9Md7V0tJjqH+tK9tS89TuhZpcV9RKS5UijVzHzzZyqZ+SW09vdg7T8uxlKLYW/24MoeUlUKrGwnBln2dq4WE0HebprQUURERESkCibT8d5VF0WHOrYXFFvZnZrjCKl2HLY/zikqdWxbRpKjfZife4Xhfz1a+9Ih2KdW5/oiIo2RQqlm5sNfDgJwff82tf4jZTKZsJjAgv64iYiIiIjUF083S6V5qwzD4NCxggoh1Y6UbA5k5JOaXURq9hG+33XE0d7dxUy3cF96/j97dx4eVXXwD/w7+5Jtkkx2QkIChJ1ggBQQcaGyWNwrgq8gWvzVitZSq1CRpa1Gqy8vVqloW0SlKta9LqBEQJFVBJQ9CVnIvmeSmcx+f3/cySRDFpKQZCaT7+d55pm7nHvn3BkSTr5zzrmxIZiYEIqJiaEYHKblF8ZE1K8wlPIjhTUmd/ffX06M93JtiIiIiIiosyQSCeLDtIgP0+L60dHu7Q0WO86WGnCqpLln1dnSepisDvfE6m8fap6+Y1JiKNISwjApMRSjYoIh5xxVROTDGEr5kf98XwhBAKYNDUd8mNbb1SEiIiIiossUqJIjLSEMaQlh7m1Op4D8ahNOlxhw/EItvs+vwY+Ftaiot+Dzn0rx+U+lAACtUobUeB0mJooh1YTBoQhU8U9AIvId/I3kJxxOAe8dKQQA3MFeUkREREREfksqlWCIPgBD9AGYOzYGAGC2iT2nvs+vxvd5Nfg+rxoGsx37cqqwL6dKPE4CjIwJdg33C8OkxDBEh6i9eSlENMAxlPITe7MrUVTbiBCNArNadPclIiIiIiL/p1bIMHlIGCYPEXtUOZ0CsisacDjPFVLlV+NCdSNOFhtwstiA1/fnAwDidBpMShRDqomJoRgeGQQpJ1Anoj7CUMpPvHtYnOD8lglxUCtkXq4NERERERF5k1QqwfCoIAyPCsJd6QkAgDKDGd/n1YhBVX41ThUbUFTbiKJjjfjoWDEAIFgtR5qrJ9XEhFCMj9fx7wsi6jUMpfxAtdGKL0+J48Y5dI+IiIiIiNoSFazGDeNicMM4cchfg8WOYwW1OJxXjSP5NfihoAYGsx27zlZgl+tOfwqZBBMTwnBTaizmjIlBiFbhzUsgIj/DUMoPfHi0CDaHgLFxIRgVG+zt6hARERERUT8QqJLjymF6XDlMDwCwO5w4XVLvnpfqcF41yust2H++CvvPV2H1xydxdUoEbkqNw3UjI9mDioguG0Opfk4QBPfQvTsmsZcUERERERF1j1wmxdhBIRg7KARLpg2BIAjIrzLh8xMl+ORYMc6U1uPLU2X48lQZAlVyzBodjZtSYzE1ORxymdTb1SeifoihVD937EItzpbVQyWX4sbxsd6uDhERERER+QmJRIJEfQB+c/VQ/ObqoThTasAnx4rx8bFiFNU24v0fCvH+D4XQByrxi3GxuDE1FhPidZBIOFE6EXUOQ6l+7t3vxV5SN4yNQYiG47uJiIiIiKh3jIgOxojZwXj0+hT8UFCDj48V47OfSlDZYMWWfXnYsi8Pg8O0uCk1FjelxmJoZJC3q0xEPo6hVD9mstrx3+MlADh0j4iIiIiI+oZUKhHvzpcYhtXzRmFvViU+PlaEL0+VoaDahBe/zsaLX2djVEwwbp4Qi3njYxETovF2tYnIBzGU6sc++7EEDRY7EsO1SB8S5u3qEBERERHRAKOQSXHNiEhcMyISJqsdO0+X45NjRdh9tgKnSgw4VWJAxhdnMDkxDDdPiMOcMdHQaZXerjYR+QiGUv3YNtcE57+cGM9x20RERERE5FVapRw3jo/FjeNjUWO04vMTJfj4WDEO5VbjoOux+uMTmDE8EjelxmLmyCholLyDH9FAxlCqn8oub8D3+TWQSSW4PW2Qt6tDRERERETkFhqgxF3pCbgrPQFFtY3473FxgvTTJQbsPF2GnafLEKCUYdboaNyYGosrh+p5Bz+iAYihVD/1H9cE59ekRCAqWO3l2hAREREREbUtTqfBr2ck49czknGurF68g9/xIlyobsQHR4vwwdEihAUoMXdsNG4cH4eJCaGQSjkShGggYCjVD9kcTrz/QyEA4I6JnOCciIiIiIj6h+FRQXh0Vgp+f/1w/FBQi0+OFeHTH0tQZbRi64ECbD1QgNgQNX4xPhbzxsViTFwwpyoh8mMMpfqhr8+Uo7LBCn2gCteMiPR2dYiIiIiIiLpEIpEgLSEUaQmhePIXo7AvpwqfHC/GjhOlKK4z49VvzuPVb84jSR+AX7jmqRoaGejtahNRD/OJQbsbN25EYmIi1Go10tPTcejQoXbL2mw2/OlPf0JycjLUajXGjx+P7du3X9Y5+5umCc5vS4uDguOuiYiIiIioH5PLpLhqeASe/+V4HF41E5v+Jw03jI2BSi7F+Uoj/paZhZnr92DuC99i054cFNaYvF1lIuohXk80tm3bhuXLl2PNmjX44YcfMH78eMyaNQvl5eVtll+1ahVeeeUVvPjiizh16hR+/etf45ZbbsHRo0e7fc7+pLTOjN1nxeuYz6F7RERERETkR9QKGWaPicbGu67AkSd/jg3zU3HtiEjIpRKcKjHgmS/O4Mpnd+G2l/fh9X15qKi3eLvKRHQZJIIgCN6sQHp6OiZNmoSXXnoJAOB0OhEfH4+HHnoIK1asaFU+NjYWTzzxBB588EH3tttuuw0ajQZbt27t1jkvZjAYEBISgrq6OgQHB/fEZfaYjbuy8dyOs5icGIZ3fz3F29UhIiLye77cLvA1fK+IqLfUGK344kQp/nu8GAdyq9D0V6xUAkwbqse8cbGYNSYaIRqFdytKRAA63ybw6pxSVqsVR44cwcqVK93bpFIpZs6cif3797d5jMVigVrtebc5jUaDvXv3XtY5LZbmhN1gMHT7mnqT0yngXddd9+6YxF5SREREREQ0MIQGKLEwfTAWpg9GmcGMT38swSfHi3H8Qi2+zarEt1mVWPXRCcxIicCN42Mxc2QUNEqZt6tNRJfg1VCqsrISDocDUVFRHtujoqJw5syZNo+ZNWsW1q9fj6uuugrJycnIzMzEBx98AIfD0e1zZmRkYN26dT1wRb3rYG418qtMCFTJMXdstLerQ0RERERE1OeigtW478ohuO/KIcivMuK/x4vxyfFinCtrwFenyvDVqTJolTLMHBmFG8fH4qrhEVDKvT5zDRG1od/9ZL7wwgsYNmwYRowYAaVSiWXLlmHJkiWQSrt/KStXrkRdXZ37ceHChR6scc/ZdrgAADBvfCy0St44kYiIiIiIBraE8AAsu3YYvvzdDOx45Co8eE0y4sM0MFkd+OR4MX71xveY9NROPP7ej/jyZCkaLHZvV5mIWvBqsqHX6yGTyVBWVuaxvaysDNHRbfcEioiIwEcffQSz2YyqqirExsZixYoVSEpK6vY5VSoVVCpVD1xR76lrtOGLE6UAgDs5dI+IiIiIiMhDSnQQ/hA9Ao9en4JjF2rxyfFifPZjCcrrLdj2/QVs+/4CFDIJJiaEYUZKBK5OiUBKVBAkEom3q040YHm1p5RSqURaWhoyMzPd25xOJzIzMzFlSseTeKvVasTFxcFut+P999/HTTfddNnn9GWfHCuCxe7EiOggjBsU4u3qEBERERER+SSJRIIJg0OxZt5o7F95Hd5amo5FUxIwOEwLm0PA/vNVeOaLM5i94VtMyfgaj7/3Iz7/qQR1jTZvV51owPH6GLDly5dj8eLFmDhxIiZPnowNGzbAaDRiyZIlAIBFixYhLi4OGRkZAICDBw+iqKgIqampKCoqwtq1a+F0OvHYY491+pz90bamCc4nxjPJJyIiIiIi6gSZVIKpyXpMTdYDAPIqjdh9thx7zlVg//kqlBrM7l5UMqkEVwzWYcbwCFydEolRMcGQSvm3F1Fv8nooNX/+fFRUVGD16tUoLS1Famoqtm/f7p6ovKCgwGO+KLPZjFWrVuH8+fMIDAzE3Llz8eabb0Kn03X6nP3NiaI6nCgyQCmT4pYJcd6uDhERERERUb+UqA/APfohuGfaEJhtDhzKrcaecxXYfbYcORVGHM6rweG8Gjz/5TnoA5W4algEZqREYPqwCIQFKL1dfSK/IxEEQfB2JXyNwWBASEgI6urqEBwc7O3qYPXHJ/DG/nzcMC4GGxde4e3qEBERDSi+1i7wZXyviKg/u1BtwjdZFdh9tgL7sithtDrc+yQSYPwgsRfVjJQIjB+kg4y9qIja1dk2Qb+7+95AY7Y58NHRIgCc4JyIiIi6ZuPGjUhMTIRarUZ6ejoOHTrUbtl//OMfmD59OkJDQxEaGoqZM2d2WJ6IyN/Eh2lxV3oC/rFoIo6uvh5vL/0Z/t+MJIyIDoIgAMcu1OKFzCzc+vd9SPvLV3jo7aN4/0ghyuvN3q46Ub/l9eF71LEdJ0thMNsRp9NgmmscNBEREdGlbNu2DcuXL8emTZuQnp6ODRs2YNasWTh79iwiIyNbld+9ezcWLFiAqVOnQq1W49lnn8X111+PkydPIi6O0wcQ0cCilEsxJTkcU5LDsXLOSJTWmfHNuQrsOVeBb7IqUGuy4b/Hi/Hf48UAgNGxwZg+LAKTEkNxxeBQhHKoH1GncPheG3yp6/nCfxzAvpwqPDJzGB6ZOdyrdSEiIhqIfKld0BXp6emYNGkSXnrpJQDi3Yjj4+Px0EMPYcWKFZc83uFwIDQ0FC+99BIWLVrUqdfsr+8VEVFX2B1OHLtQi91nxZDqp6K6VmWSIgKQNjgUaQniIzkikJOm04DS2TYBe0r5sPwqI/blVEEiAX45kUP3iIiIqHOsViuOHDmClStXurdJpVLMnDkT+/fv79Q5TCYTbDYbwsLC2i1jsVhgsVjc6waDofuVJiLqJ+QyKSYmhmFiYhgenZWCygYLvjlXgQPnq3AkvwY5FUacdz3+c6QQABCslmNCi5BqfLwOgSr+OU7EnwIf9p/vxV9g04dFIE6n8XJtiIiIqL+orKyEw+FodefhqKgonDlzplPnePzxxxEbG4uZM2e2WyYjIwPr1q27rLoSEfV3+kAVbr1iEG69YhAAoNZkxdGCWhzJr8GR/Bocu1ALg9mOPa7hfwAglQAjooPdIVVaQigGhWogkbA3FQ0sDKV8lMMp4D1Xqj6fvaSIiIioDz3zzDN45513sHv3bqjV6nbLrVy5EsuXL3evGwwGxMez3UJEA5tOq8Q1IyJxzQhx/j67w4kzpfXukOpIfg2KahtxqsSAUyUGvHkgHwAQEaRyD/m7IiEUY+KCoZLLvHkpRL2OoZSP+uZcBUoNZoRqFZg5qvVkpERERETt0ev1kMlkKCsr89heVlaG6OjoDo99/vnn8cwzz2Dnzp0YN25ch2VVKhVUKtVl15eIyJ/JZVKMiQvBmLgQLJ6aCAAorTPjh4LmkOpkcR0q6i3YfrIU20+WAgCUMinGDgoRQ6rBobgiQYfIoPa/KCDqjxhK+ahthy8AAG6ZMIjpOBEREXWJUqlEWloaMjMzcfPNNwMQJzrPzMzEsmXL2j3ur3/9K5566ins2LEDEydO7KPaEhENPNEhaswdG4O5Y2MAAGabAz8V1blDqh/ya1BltLrXm8TpNBgTF4wxsSHuoCsiiF8OUP/FUMoHVdRbsPO0+M3m/EnsAk9ERERdt3z5cixevBgTJ07E5MmTsWHDBhiNRixZsgQAsGjRIsTFxSEjIwMA8Oyzz2L16tV46623kJiYiNJS8Zv6wMBABAYGeu06iIgGArVChkmJYZiUKN5cQhAE5FeZxFCqQAypzpbVo6i2EUW1jdhxsrknbFSwCmNiQzA6LgRjYoMxdlAIooPVnJ+K+gWGUj7ow6OFsDsFpMbrkBId5O3qEBERUT80f/58VFRUYPXq1SgtLUVqaiq2b9/unvy8oKAAUqnUXf7ll1+G1WrF7bff7nGeNWvWYO3atX1ZdSKiAU8ikSBRH4BEfQBuSxMnUDeYbThVbMCJojrxUWxATkUDygwWlBnKkXmm3H18eIDSHVKNiQvB2LgQTqROPkkiCILg7Ur4GoPBgJCQENTV1SE4OLhPX1sQBMxcvwc5FUZk3DoWCyYP7tPXJyIiIk/ebBf0N3yviIj6ltFix+kSgzukOlFUh6zyBjicrf/MD1bL3UP+xrgCq8TwAEilDKqo53W2TcCeUj7mh4Ia5FQYoVHI8ItxMd6uDhEREREREfmoAJUcExPDMNE17A8Q56c6U1qPE0V1OFlchxNFBpwtrYfBbMe+nCrsy6lqPl4pw+jYEIx2zVM1dlAIkvQBkMukbb0cUY9jKOVjmiY4v2FcDILUCi/XhoiIiIiIiPoTtUKG1HgdUuN17m1WuxPnyurdIdWJ4jqcKjbAaHXgUF41DuVVu8uq5FKkRAdhVEwwRsUGY2RMMEZEB/HvU+oVDKV8SIPFjk9/LAHACc6JiIiIiIioZyjlUvewvfmTxG12hxM5FUbX0L86nCwy4GRxHYxWB34srMOPhXUe50gI14pBVYwYVI2KDUZMCCdUp8vDUMqHfHq8GCarA0kRAZiYEOrt6hAREREREZGfksvEHlEp0UHuydSdTgEF1SacKjHgVLEBp0oMOF1iQEmdGflVJuRXmfDFiVL3OXRaRaugamhkIBQc/kedxFDKh2z7Xhy6N39iPNNmIiIiIiIi6lNSafNd/+aObZ7juNpoxWlXUHW6RAyrssobUGuytZqnSimTYlhUoBhStRgCGKLh8D9qjaGUjzhXVo+jBbWQSyW49YpB3q4OEREREREREQAgLECJaUP1mDZU795mtjmQXd7g2auq2IB6ix0niw04WWzwOEecTuMOqFKigjAsKhCJ4QFQytmraiBjKOUjmiY4v3ZEJCKCVF6uDREREREREVH71AqZe56qJoIgoLCmsdXwv8KaRhTVio+vTpW5y8ukEiSGazEsUgyphkYGYlhkEJIiAqBWyLxxWdTHGEr5AKvdiQ+PFgEA7pzMCc6JiIiIiIio/5FIJIgP0yI+TItZo6Pd2+tMNpwuFYOqM6Xi0L/ssgbUW+zIqTAip8KI7SebzyOVAIPDtBjqCquGucKq5MgAaJWMMfwJP00fsPN0GaqNVkQFq3DVsAhvV4eIiIiIiIiox4RoFfhZUjh+lhTu3iYIAsoMFmSV1yOrrEEMqsrrca6sAXWNNuRVmZBXZcLO02Ue5xoUqhFDqqggV88qsYdVkJpzVvVHDKV8QNPQvdvTBkHOuxQQERERERGRn5NIJIgOUSM6RI3pLTpnCIKAygYrssrrkV3e4AqsxOXKBisKaxpRWNOIXWcrPM4XE6J2D/8bGhmI5IgADI0MRFiAkjcS82EMpbysuLYR32SJP0x3TOTQPSIiIiIiIhq4JBIJIoJUiAhSYWqy3mNftdEqBlXu3lXic3m9BSV1ZpTUmfFtVqXHMTqtAskRYkiVHBHoCqwCMShUw04hPoChlJf95/tCCALws6QwJIQHeLs6RERERERERD4pLECJyUPCMHlImMf2OpMN2RXNwwCzyhtwvqIBRbWNqDXZcCS/BkfyazyOUcqkSNRrXYFVc1iVFBGAABWjkr7Cd9qLnE4B/zkiDt27c9JgL9eGiIiIiIiIqP8J0SqQlhCGtATPsKrR6kBupRE5FQ3IqWhAdnkDciqMOF/RAIvdiXNlDThX1tDqfDEhanfvqqawKjkyEJFBKg4F7GEMpbxoX04VCmsaEaSWY/aY6EsfQERERERERESdolHKMCo2GKNigz22O50CimobXWGV0R1Yna8Q561qGgq4N9tzKGCgSu4eBpgUEYBEfQASwwOQEK7lROvdxFDKi7Z9L/aSujk1DmqFzMu1ISIiIiIiIvJ/UqkE8WFaxIdpcXWK575ak9UdVOVUNCCnXFwuqDahwWLH8cI6HC+sa3VOfaDSFVAFYIhe63pmYHUpDKW8pMZoxY4TpQCA+ZM4wTkRERERERGRt+m0SqQlKJGWEOqx3WJ3oKDK5O5VlVtpQn6VEXlVRlQ2WN2P7y+auwoAwgOUSHQFVEPCA5CgD3A9axE8wAMrr4dSGzduxHPPPYfS0lKMHz8eL774IiZPntxu+Q0bNuDll19GQUEB9Ho9br/9dmRkZECtVgMA6uvr8eSTT+LDDz9EeXk5JkyYgBdeeAGTJk3qq0vqlI+OFcHqcGJUTDDGxIV4uzpERERERERE1A6VXIZhUUEYFhXUal+92Yb8KhPyqozIqzQir8rkehYDqyqj+Lh4snVADKwSwrXuoYDis7g+EAIrr4ZS27Ztw/Lly7Fp0yakp6djw4YNmDVrFs6ePYvIyMhW5d966y2sWLECmzdvxtSpU3Hu3Dncc889kEgkWL9+PQDgV7/6FU6cOIE333wTsbGx2Lp1K2bOnIlTp04hLi6ury+xTYIgYNth1wTnk9lLioiIiIiIiKi/ClIrMCYupM0OJ+0HViZUNljcgdUPBbWtjg0PUGKIPgBJEQEYog90Lw8O0/rNFEASQRAEb714eno6Jk2ahJdeegkA4HQ6ER8fj4ceeggrVqxoVX7ZsmU4ffo0MjMz3dt+//vf4+DBg9i7dy8aGxsRFBSEjz/+GDfccIO7TFpaGubMmYO//OUvnaqXwWBASEgI6urqEBwcfOkDuujHwlrc+NJ3UMqlOPzHmQjR+n/6SURE1F/1drvAn/C9IiIi6ryWgVV+lQm5lUbkVxmRWykGVu2RSIA4nUYMqfQBrrBKDK1idRrIpN6/Q2Bn2wRe6ylltVpx5MgRrFy50r1NKpVi5syZ2L9/f5vHTJ06FVu3bsWhQ4cwefJknD9/Hp9//jnuvvtuAIDdbofD4XAP5Wui0Wiwd+/edutisVhgsTR/4AaD4XIu7ZKaeknNGRPNQIqIiIiIiIhoAOqoh1WDxY68SiPOVxqRW2FEbmUDciuNOF9hRL3FjsKaRhTWNOLbLM87BCrlUiSGazFEL/auStIHYEiEGF6FBSghkXg/sGrJa6FUZWUlHA4HoqKiPLZHRUXhzJkzbR6zcOFCVFZW4sorr4QgCLDb7fj1r3+NP/7xjwCAoKAgTJkyBX/+858xcuRIREVF4e2338b+/fsxdOjQduuSkZGBdevW9dzFdaDR6sAnx4oBAPMncugeEREREREREXkKVMnbDKwEQUCV0eoKqBpahFZibyur3YlzZQ04V9YAoMzj2GC1HEMiAt29q4boAzA2LgSJ+oA+vDJPXp/ovCt2796Np59+Gn//+9+Rnp6O7Oxs/Pa3v8Wf//xnPPnkkwCAN998E/feey/i4uIgk8lwxRVXYMGCBThy5Ei75125ciWWL1/uXjcYDIiP753A6POfSlBvsSM+TIOfJYX3ymsQERERERERkf+RSCTQB6qgD1RhUmKYxz6HU0BxbaMrqHL1rKoUA6ui2kYYzHYcv1CL4xdq3ccsmZaINfNG9/FVNPNaKKXX6yGTyVBW5pnclZWVITo6us1jnnzySdx999341a9+BQAYO3YsjEYj7r//fjzxxBOQSqVITk7Gnj17YDQaYTAYEBMTg/nz5yMpKanduqhUKqhUqp67uA6EByoxKTEUM4ZHQOoD4zyJiIiIiIiIqP+TSSWID9MiPkyLGcMjPPaZbQ7XvFWevatGx7YeOtiXvBZKKZVKpKWlITMzEzfffDMAcaLzzMxMLFu2rM1jTCYTpFKpxzaZTJxx/uL52gMCAhAQEICamhrs2LEDf/3rX3v+Irrh6pRIXJ0SCafTa/PLExEREREREdEAolbIkBIdhJToIG9XxYNXh+8tX74cixcvxsSJEzF58mRs2LABRqMRS5YsAQAsWrQIcXFxyMjIAADMmzcP69evx4QJE9zD95588knMmzfPHU7t2LEDgiAgJSUF2dnZ+MMf/oARI0a4z+kr2EuKiIiIiIiIiAYyr4ZS8+fPR0VFBVavXo3S0lKkpqZi+/bt7snPCwoKPHpGrVq1ChKJBKtWrUJRUREiIiIwb948PPXUU+4ydXV1WLlyJQoLCxEWFobbbrsNTz31FBQK3uWOiIiIiIiIiMhXSISLx70RDAYDQkJCUFdXh+DgYG9Xh4iIiLyI7YLO43tFREREQOfbBNJ29xAREREREREREfUShlJERERERERERNTnGEoREREREREREVGfYyhFRERERERERER9jqEUERERERERERH1OYZSRERERERERETU5xhKERERERERERFRn2MoRUREREREREREfY6hFBERERERERER9Tm5tyvgiwRBAAAYDAYv14SIiIi8rak90NQ+oPaxDUVERERA59tPDKXaUF9fDwCIj4/3ck2IiIjIV9TX1yMkJMTb1fBpbEMRERFRS5dqP0kEfu3XitPpRHFxMYKCgiCRSHr8/AaDAfHx8bhw4QKCg4N7/Py+aiBe90C8ZoDXzeseGHjdA+e6BUFAfX09YmNjIZVy5oOO9GYbaiD+2wN43bzugYHXPXCueyBeMzAwr7uz7Sf2lGqDVCrFoEGDev11goODB8w/yJYG4nUPxGsGeN0DDa97YBlo180eUp3TF22ogfZvrwmve2DhdQ8sA/G6B+I1AwPvujvTfuLXfURERERERERE1OcYShERERERERERUZ9jKOUFKpUKa9asgUql8nZV+tRAvO6BeM0Ar5vXPTDwugfWdZP3DdR/e7xuXvdAwOseONc9EK8ZGLjX3Rmc6JyIiIiIiIiIiPoce0oREREREREREVGfYyhFRERERERERER9jqEUERERERERERH1OYZSvWTjxo1ITEyEWq1Geno6Dh061GH5//znPxgxYgTUajXGjh2Lzz//vI9q2jMyMjIwadIkBAUFITIyEjfffDPOnj3b4TFbtmyBRCLxeKjV6j6qcc9Yu3Ztq2sYMWJEh8f0988aABITE1tdt0QiwYMPPthm+f74WX/zzTeYN28eYmNjIZFI8NFHH3nsFwQBq1evRkxMDDQaDWbOnImsrKxLnrervxv6WkfXbbPZ8Pjjj2Ps2LEICAhAbGwsFi1ahOLi4g7P2Z2fk752qc/7nnvuaXUNs2fPvuR5+/PnDaDNn3OJRILnnnuu3XP2h8+bfBfbT2w/tae/f9bAwGg/AWxDsQ31kcd+tqHYhroUhlK9YNu2bVi+fDnWrFmDH374AePHj8esWbNQXl7eZvl9+/ZhwYIFuO+++3D06FHcfPPNuPnmm3HixIk+rnn37dmzBw8++CAOHDiAr776CjabDddffz2MRmOHxwUHB6OkpMT9yM/P76Ma95zRo0d7XMPevXvbLesPnzUAHD582OOav/rqKwDAL3/5y3aP6W+ftdFoxPjx47Fx48Y29//1r3/F3/72N2zatAkHDx5EQEAAZs2aBbPZ3O45u/q7wRs6um6TyYQffvgBTz75JH744Qd88MEHOHv2LG688cZLnrcrPyfecKnPGwBmz57tcQ1vv/12h+fs7583AI/rLSkpwebNmyGRSHDbbbd1eF5f/7zJN7H9xPZTe/zhswYGRvsJYBuKbajW2IZiG6pDAvW4yZMnCw8++KB73eFwCLGxsUJGRkab5e+44w7hhhtu8NiWnp4u/L//9/96tZ69qby8XAAg7Nmzp90yr732mhASEtJ3leoFa9asEcaPH9/p8v74WQuCIPz2t78VkpOTBafT2eb+/v5ZAxA+/PBD97rT6RSio6OF5557zr2ttrZWUKlUwttvv93uebr6u8HbLr7uthw6dEgAIOTn57dbpqs/J97W1nUvXrxYuOmmm7p0Hn/8vG+66Sbh2muv7bBMf/u8yXew/cT2U3v88bMWBP9vPwkC21AdYRuqff74ebMN1T72lOphVqsVR44cwcyZM93bpFIpZs6cif3797d5zP79+z3KA8CsWbPaLd8f1NXVAQDCwsI6LNfQ0ICEhATEx8fjpptuwsmTJ/uiej0qKysLsbGxSEpKwl133YWCgoJ2y/rjZ221WrF161bce++9kEgk7Zbzh8+6SW5uLkpLSz0+y5CQEKSnp7f7WXbnd0N/UFdXB4lEAp1O12G5rvyc+Krdu3cjMjISKSkpeOCBB1BVVdVuWX/8vMvKyvDZZ5/hvvvuu2RZf/i8qW+x/SRi+6lt/vhZD8T2E8A2VEtsQ7XNHz9vtqE6xlCqh1VWVsLhcCAqKspje1RUFEpLS9s8prS0tEvlfZ3T6cQjjzyCadOmYcyYMe2WS0lJwebNm/Hxxx9j69atcDqdmDp1KgoLC/uwtpcnPT0dW7Zswfbt2/Hyyy8jNzcX06dPR319fZvl/e2zBoCPPvoItbW1uOeee9ot4w+fdUtNn1dXPsvu/G7wdWazGY8//jgWLFiA4ODgdst19efEF82ePRtvvPEGMjMz8eyzz2LPnj2YM2cOHA5Hm+X98fN+/fXXERQUhFtvvbXDcv7weVPfY/uJ7Se2n1rzh8/6YmxDidiGYhuqLf7weXeH3NsVIP/z4IMP4sSJE5cc/zplyhRMmTLFvT516lSMHDkSr7zyCv785z/3djV7xJw5c9zL48aNQ3p6OhISEvDuu+92Kgn3B//6178wZ84cxMbGtlvGHz5r8mSz2XDHHXdAEAS8/PLLHZb1h5+TO++80708duxYjBs3DsnJydi9ezeuu+46L9as72zevBl33XXXJSfZ9YfPm8gb2H4aWL8n2H4auNiGYhuqPf7weXcHe0r1ML1eD5lMhrKyMo/tZWVliI6ObvOY6OjoLpX3ZcuWLcOnn36KXbt2YdCgQV06VqFQYMKECcjOzu6l2vU+nU6H4cOHt3sN/vRZA0B+fj527tyJX/3qV106rr9/1k2fV1c+y+78bvBVTY2p/Px8fPXVVx1+w9eWS/2c9AdJSUnQ6/XtXoM/fd4A8O233+Ls2bNd/lkH/OPzpt7H9hPbT2w/XZo/fNZsQ7ENxTZU5/nD590ZDKV6mFKpRFpaGjIzM93bnE4nMjMzPb7paGnKlCke5QHgq6++are8LxIEAcuWLcOHH36Ir7/+GkOGDOnyORwOB3766SfExMT0Qg37RkNDA3Jyctq9Bn/4rFt67bXXEBkZiRtuuKFLx/X3z3rIkCGIjo72+CwNBgMOHjzY7mfZnd8NvqipMZWVlYWdO3ciPDy8y+e41M9Jf1BYWIiqqqp2r8FfPu8m//rXv5CWlobx48d3+Vh/+Lyp97H9xPYT20+X5g+fNdtQbEOxDdV5/vB5d4p351n3T++8846gUqmELVu2CKdOnRLuv/9+QafTCaWlpYIgCMLdd98trFixwl3+u+++E+RyufD8888Lp0+fFtasWSMoFArhp59+8tYldNkDDzwghISECLt37xZKSkrcD5PJ5C5z8XWvW7dO2LFjh5CTkyMcOXJEuPPOOwW1Wi2cPHnSG5fQLb///e+F3bt3C7m5ucJ3330nzJw5U9Dr9UJ5ebkgCP75WTdxOBzC4MGDhccff7zVPn/4rOvr64WjR48KR48eFQAI69evF44ePeq+Q8ozzzwj6HQ64eOPPxZ+/PFH4aabbhKGDBkiNDY2us9x7bXXCi+++KJ7/VK/G3xBR9dttVqFG2+8URg0aJBw7Ngxj591i8XiPsfF132pnxNf0NF119fXC48++qiwf/9+ITc3V9i5c6dwxRVXCMOGDRPMZrP7HP72eTepq6sTtFqt8PLLL7d5jv74eZNvYvuJ7Se2n/zjs2Ybim0otqFEbEN1DkOpXvLiiy8KgwcPFpRKpTB58mThwIED7n0zZswQFi9e7FH+3XffFYYPHy4olUph9OjRwmeffdbHNb48ANp8vPbaa+4yF1/3I4884n6PoqKihLlz5wo//PBD31f+MsyfP1+IiYkRlEqlEBcXJ8yfP1/Izs527/fHz7rJjh07BADC2bNnW+3zh896165dbf6bbroup9MpPPnkk0JUVJSgUqmE6667rtV7kZCQIKxZs8ZjW0e/G3xBR9edm5vb7s/6rl273Oe4+Lov9XPiCzq6bpPJJFx//fVCRESEoFAohISEBGHp0qWtGkb+9nk3eeWVVwSNRiPU1ta2eY7++HmT72L7ie0nQfDPz7qJv7efBIFtKLah2IZqwjZU50gEQRC628uKiIiIiIiIiIioOzinFBERERERERER9TmGUkRERERERERE1OcYShERERERERERUZ9jKEVERERERERERH2OoRQREREREREREfU5hlJERERERERERNTnGEoREREREREREVGfYyhFRERERERERER9jqEUERERERERERH1OYZSRERERERERETU5xhKERERERERERFRn2MoRUREREREREREfY6hFBERERERERER9TmGUkRERERERERE1OcYShERERERERERUZ9jKEVERERERERERH2OoRQREREREREREfU5hlJE5DckEgnWrl3b5ePy8vIgkUiwZcuWHq9TX0tMTMQ999zjXt+9ezckEgl2797ttToRERFR32O7iIj6A4ZSRNSjtmzZAolEAolEgr1797baLwgC4uPjIZFI8Itf/MILNey+poCn6SGTyRAZGYnbb78dp0+f9nb1iIiIyMcMpHZRy8edd97pLnfo0CH85je/QVpaGhQKBSQSSZdex2q14oUXXsCECRMQHBwMnU6H0aNH4/7778eZM2d6+rKIqI/JvV0BIvJParUab731Fq688kqP7Xv27EFhYSFUKpWXanb5Hn74YUyaNAk2mw0//vgjNm3ahN27d+PEiROIjo72dvWIiIjIxwyEdlFLiYmJ7uXPP/8c//znPzFu3DgkJSXh3LlzXTr/bbfdhi+++AILFizA0qVLYbPZcObMGXz66aeYOnUqRowY0ROXQURewlCKiHrF3Llz8Z///Ad/+9vfIJc3/6p56623kJaWhsrKSi/W7vJMnz4dt99+u3s9JSUFDzzwAN544w089thjXqwZERER+aKB1C662AMPPIDHH38cGo0Gy5Yt61IodfjwYXz66ad46qmn8Mc//tFj30svvYTa2truVrvLzGYzlEolpFIONiLqSfyJIqJesWDBAlRVVeGrr75yb7NarXjvvfewcOHCNo8xGo34/e9/j/j4eKhUKqSkpOD555+HIAge5SwWC373u98hIiICQUFBuPHGG1FYWNjmOYuKinDvvfciKioKKpUKo0ePxubNm3vuQiE2xgAgJyenW69tNpuxdu1aDB8+HGq1GjExMbj11ls9zvf8889j6tSpCA8Ph0ajQVpaGt57770evQ4iIiLqHQOpXXSxqKgoaDSabh3b1BaaNm1aq30ymQzh4eEe24qKinDfffchNjYWKpUKQ4YMwQMPPACr1eouc/78efzyl79EWFgYtFotfvazn+Gzzz7zOE/T0MR33nkHq1atQlxcHLRaLQwGAwDg4MGDmD17NkJCQqDVajFjxgx899133bpGooGOPaWIqFckJiZiypQpePvttzFnzhwAwBdffIG6ujrceeed+Nvf/uZRXhAE3Hjjjdi1axfuu+8+pKamYseOHfjDH/6AoqIi/N///Z+77K9+9Sts3boVCxcuxNSpU/H111/jhhtuaFWHsrIy/OxnP4NEIsGyZcsQERGBL774Avfddx8MBgMeeeSRHrnWvLw8AEBoaGiXX9vhcOAXv/gFMjMzceedd+K3v/0t6uvr8dVXX+HEiRNITk4GALzwwgu48cYbcdddd8FqteKdd97BL3/5S3z66adtXjsRERH5Dn9uF9XX17fq6RUWFtYjPYoSEhIAAP/+978xbdo0j15mFysuLsbkyZNRW1uL+++/HyNGjEBRURHee+89mEwmKJVKlJWVYerUqTCZTHj44YcRHh6O119/HTfeeCPee+893HLLLR7n/POf/wylUolHH30UFosFSqUSX3/9NebMmYO0tDSsWbMGUqkUr732Gq699lp8++23mDx58mVfN9GAIhAR9aDXXntNACAcPnxYeOmll4SgoCDBZDIJgiAIv/zlL4VrrrlGEARBSEhIEG644Qb3cR999JEAQPjLX/7icb7bb79dkEgkQnZ2tiAIgnDs2DEBgPCb3/zGo9zChQsFAMKaNWvc2+677z4hJiZGqKys9Ch75513CiEhIe565ebmCgCE1157rcNr27VrlwBA2Lx5s1BRUSEUFxcL27dvF4YOHSpIJBLh0KFDXX7tzZs3CwCE9evXt3o9p9PpXm4q38RqtQpjxowRrr32Wo/tCQkJwuLFi1vVedeuXR1eGxEREfW8gdAuauuRm5vb5jEPPvig0JU/QZ1OpzBjxgwBgBAVFSUsWLBA2Lhxo5Cfn9+q7KJFiwSpVCocPny4zfMIgiA88sgjAgDh22+/de+rr68XhgwZIiQmJgoOh8Pj2pKSkjzaYE6nUxg2bJgwa9asVu20IUOGCD//+c87fW1EJOLwPSLqNXfccQcaGxvx6aefor6+Hp9++mm7XdQ///xzyGQyPPzwwx7bf//730MQBHzxxRfucgBalbv42z1BEPD+++9j3rx5EAQBlZWV7sesWbNQV1eHH374oVvXde+99yIiIgKxsbGYPXs26urq8Oabb7on+ezKa7///vvQ6/V46KGHWr1Oy7vTtOz2XlNTg7q6OkyfPr3b10BERER9y1/bRatXr8ZXX33l8eipG79IJBLs2LEDf/nLXxAaGoq3334bDz74IBISEjB//nz3nFJOpxMfffQR5s2bh4kTJ7Z5HkB8vyZPnuwx4XxgYCDuv/9+5OXl4dSpUx7HLV682KMNduzYMWRlZWHhwoWoqqpyv4dGoxHXXXcdvvnmGzidzh65dqKBgsP3iKjXREREYObMmXjrrbdgMpngcDjanQgzPz8fsbGxCAoK8tg+cuRI9/6mZ6lU6h7W1iQlJcVjvaKiArW1tXj11Vfx6quvtvma5eXl3bqu1atXY/r06WhoaMCHH36Id955x6OLeldeOycnBykpKR12RweATz/9FH/5y19w7NgxWCwW9/au3laZiIiIvMNf20Vjx47FzJkzu3VsZ6hUKjzxxBN44oknUFJSgj179uCFF17Au+++C4VCga1bt6KiogIGgwFjxozp8Fz5+flIT09vtb3l+9ryHEOGDPEol5WVBUAMq9pTV1fnMaUDEXWMoRQR9aqFCxdi6dKlKC0txZw5c6DT6frkdZu+pfqf//mfdhsO48aN69a5Wza+br75ZphMJixduhRXXnkl4uPje/y1v/32W9x444246qqr8Pe//x0xMTFQKBR47bXX8NZbb3XrGoiIiKjv+WO7qC/FxMTgzjvvxG233YbRo0fj3XffxZYtW3rt9S6eoL3pfXzuueeQmpra5jGBgYG9Vh8if8RQioh61S233IL/9//+Hw4cOIBt27a1Wy4hIQE7d+5EfX29x7eCZ86cce9venY6ne4eRk3Onj3rcb6mO9A4HI5e/fYOAJ555hl8+OGHeOqpp7Bp06YuvXZycjIOHjwIm80GhULRZpn3338farUaO3bsgEqlcm9/7bXXevQ6iIiIqHcNhHZRX1AoFBg3bhyysrJQWVmJyMhIBAcH48SJEx0el5CQ0Oq9AVq/r+1p6pEWHBzsF+8jkS/gnFJE1KsCAwPx8ssvY+3atZg3b1675ebOnQuHw4GXXnrJY/v//d//QSKRuO9U0/R88V1qNmzY4LEuk8lw22234f3332+zgVJRUdGdy2lTcnIybrvtNmzZsgWlpaVdeu3bbrsNlZWVra4bgPuWzzKZDBKJBA6Hw70vLy8PH330UY9dAxEREfW+gdAu6klZWVkoKChotb22thb79+9HaGgoIiIiIJVKcfPNN+O///0vvv/++1blm9pUc+fOxaFDh7B//373PqPRiFdffRWJiYkYNWpUh/VJS0tDcnIynn/+eTQ0NLTa76vvI5EvY08pIup1HY27bzJv3jxcc801eOKJJ5CXl4fx48fjyy+/xMcff4xHHnnE/c1UamoqFixYgL///e+oq6vD1KlTkZmZiezs7FbnfOaZZ7Br1y6kp6dj6dKlGDVqFKqrq/HDDz9g586dqK6u7rFr/MMf/oB3330XGzZswDPPPNPp1160aBHeeOMNLF++HIcOHcL06dNhNBqxc+dO/OY3v8FNN92EG264AevXr8fs2bOxcOFClJeXY+PGjRg6dCh+/PHHHrsGIiIi6n0DoV3UUn5+Pt58800AcAdGf/nLXwCIPZPuvvvudo89fvw4Fi5ciDlz5mD69OkICwtDUVERXn/9dRQXF2PDhg2QyWQAgKeffhpffvklZsyYgfvvvx8jR45ESUkJ/vOf/2Dv3r3Q6XRYsWIF3n77bcyZMwcPP/wwwsLC8PrrryM3Nxfvv/++xxyhbZFKpfjnP/+JOXPmYPTo0ViyZAni4uJQVFSEXbt2ITg4GP/973974m0jGji8dds/IvJPLW993JGLb30sCOIteX/3u98JsbGxgkKhEIYNGyY899xzHrfcFQRBaGxsFB5++GEhPDxcCAgIEObNmydcuHCh1a2PBUEQysrKhAcffFCIj48XFAqFEB0dLVx33XXCq6++6i7T1Vsf/+c//2lz/9VXXy0EBwcLtbW1nX5tQRBvI/zEE08IQ4YMcZe7/fbbhZycHHeZf/3rX8KwYcMElUoljBgxQnjttdeENWvWtLqtckJCgrB48eJWdd61a1eH10ZEREQ9byC3iy4u19ZjxowZHR5bVlYmPPPMM8KMGTOEmJgYQS6XC6GhocK1114rvPfee63K5+fnC4sWLRIiIiIElUolJCUlCQ8++KBgsVjcZXJycoTbb79d0Ol0glqtFiZPnix8+umnXbq2o0ePCrfeeqsQHh4uqFQqISEhQbjjjjuEzMzMDq+HiFqTCIKrLyMREREREREREVEf4ZxSRERERERERETU5xhKERERERERERFRn2MoRUREREREREREfY6hFBERERERERER9TmGUkRERERERERE1OcYShERERERERERUZ9jKEVERERERERERH1O7u0K+CKn04ni4mIEBQVBIpF4uzpERETkRYIgoL6+HrGxsZBK+X1eR9iGIiIiIqDz7SeGUm0oLi5GfHy8t6tBREREPuTChQsYNGiQt6vh09iGIiIiopYu1X5iKNWGoKAgAOKbFxwc7OXaEBERkTcZDAbEx8e72wfUPrahiIiICOh8+4mhVBuaupsHBwezQUVEREQAwOFoncA2FBEREbV0qfYTJ0YgIiIiIiIiIqI+x1CKiIiIiIiIiIj6HEMpIiIiIiIiIiLqc5xT6jI4HA7YbDZvV6NfUigUkMlk3q4GERER9TGn0wmr1ertavRLbD8REZG/YSjVDYIgoLS0FLW1td6uSr+m0+kQHR3NiWOJiIgGCKvVitzcXDidTm9Xpd9i+4mIiPwJQ6luaAqkIiMjodVq2SjoIkEQYDKZUF5eDgCIiYnxco2IiIiotwmCgJKSEshkMsTHx0Mq5SwSXcH2ExER+SOGUl3kcDjcgVR4eLi3q9NvaTQaAEB5eTkiIyPZFZ2IiMjP2e12mEwmxMbGQqvVers6/RLbT0RE5G/4FVUXNc0hxcbU5Wt6DzkvFxERkf9zOBwAAKVS6eWa9G9sPxERkT9hKNVNHLJ3+fgeEhERDTz8///y8P0jIiJ/wlCKuiUxMREbNmzwdjWIiIiI+g22n4iIiDxxTqkB5Oqrr0ZqamqPNIYOHz6MgICAy68UERHRZao323CmtB6TEsO8XRXyQ2w/ERGRP7LYHbhQ3YggtRxRwWqv1YOhFLkJggCHwwG5/NL/LCIiIvqgRkRERK3ZHU4cL6zFt1mV2JtViaMXaiGVAMfXXA+tkk0b6ltsPxERka8y2xy4UG1CXpUJ+VVG5FYakV9lQl6VEcW1jXAKwB9mpeDBa4Z6rY4cvjdA3HPPPdizZw9eeOEFSCQSSCQSbNmyBRKJBF988QXS0tKgUqmwd+9e5OTk4KabbkJUVBQCAwMxadIk7Ny50+N8F3c/l0gk+Oc//4lbbrkFWq0Ww4YNwyeffNLHV0lERP5IEATkVhrx5v483P/G95jwp69w28v7sWFnFr7Pr4HDKSBOp0FRTaO3q0p+hu0nIiLydWabA+fK6vHlyVK8+k0O/vjhT7jrnwcw7ZmvMXL1dvz8/77B0je+x18+O41/HyzA3uxKFNaIgVSAUgaL3enV+vPrxB4gCAIabY4+f12NQtbpyS5feOEFnDt3DmPGjMGf/vQnAMDJkycBACtWrMDzzz+PpKQkhIaG4sKFC5g7dy6eeuopqFQqvPHGG5g3bx7Onj2LwYMHt/sa69atw1//+lc899xzePHFF3HXXXchPz8fYWEcTkFERF1Ta7Liu+wq7M2uwLdZYuOppRCNAlcO1ePKYXpcOVSP+DDeFbe/8Vb7Ceh8G4rtJyIi8gWNVgcKqk2unk5G5FWZkOdaLjGYIQjtHxuokiNRr0VCeACGhAcgIVyLRH0AEsMDoA9Uev0GGgylekCjzYFRq3f0+eue+tOsTg9TCAkJgVKphFarRXR0NADgzJkzAIA//elP+PnPf+4uGxYWhvHjx7vX//znP+PDDz/EJ598gmXLlrX7Gvfccw8WLFgAAHj66afxt7/9DYcOHcLs2bO7fG1ERDSwWO1OHMmvwd7sCuzNqsSPRXUeDSyFTIK0hFBMHxaBK4fqMSYuBDIp70LWn3mr/QR0vg3F9hMREfWVerMN+VUmFFSbkO8abpdXZURepQmlBnOHxwap5GLQpA9AYrgrgHIFUeEB3g+eOuITodTGjRvx3HPPobS0FOPHj8eLL76IyZMnt1nWZrMhIyMDr7/+OoqKipCSkoJnn33W4z/utWvXYt26dR7HpaSkuBsR5GnixIke6w0NDVi7di0+++wzlJSUwG63o7GxEQUFBR2eZ9y4ce7lgIAABAcHo7y8vFfqTERE/ZsgCMgqb3DNC1WBg7nVMFk9e80MiwzE9GERmD5Mj8lDwhCg8olmCxEAtp+IiKhrBEFAtdGKvCoTCqrFsEkMoMR5nqqM1g6PD1bLMUQfgIRwMXhKdC0P0QcgVKvw6eCpI15v3W3btg3Lly/Hpk2bkJ6ejg0bNmDWrFk4e/YsIiMjW5VftWoVtm7din/84x8YMWIEduzYgVtuuQX79u3DhAkT3OVGjx7tMY6/M5NPdpdGIcOpP83qtfN39Lo94eK7wDz66KP46quv8Pzzz2Po0KHQaDS4/fbbYbV2/EOiUCg81iUSCZxO745PJSIi31FRb8F32ZViEJVdgTKDxWO/PlDpGpIn9oaKDvHenWCo93mr/dT02peL7SciIrqY0ymgxGBGfpURBVWmVgFUg8Xe4fHhAUoMDtciMTwAg8O0SNSLy4nhAdD14+CpI14PpdavX4+lS5diyZIlAIBNmzbhs88+w+bNm7FixYpW5d9880088cQTmDt3LgDggQcewM6dO/G///u/2Lp1q7ucXC53d7PubRKJpF/c7UepVMLhuPTcDd999x3uuece3HLLLQDEb/7y8vJ6uXZERORvLHYHDufW4JsscV6o0yUGj/0quRSTh4Rh+jA9rhwagRHRQZBySN6AwfYTERH1Rw6ngAvVJuS6g6fm5ws1jbB2MHG4RALEBKubg6cWAVRCuBZBakW7x/orr7YErFYrjhw5gpUrV7q3SaVSzJw5E/v372/zGIvFArXa85tTjUaDvXv3emzLyspCbGws1Go1pkyZgoyMjHYnmbRYLLBYmr+tNRgMbZbr7xITE3Hw4EHk5eUhMDCw3W/hhg0bhg8++ADz5s2DRCLBk08+yW/siIioU/KrjNh9tgJ7zlVgf05Vq4msR8UEY/pwPaYPjcDExFCoe6jXL1FvYfuJiGhgMlntOF9hRE5FA7LLG5BT0YCcciNyK42wOtr//S6XShAfphV7OoVrMTi8aZ4nLQaFatn2uYhXQ6nKyko4HA5ERUV5bI+Kimp3/qdZs2Zh/fr1uOqqq5CcnIzMzEx88MEHHt9gpaenY8uWLUhJSUFJSQnWrVuH6dOn48SJEwgKCmp1zoyMjFZzUPmjRx99FIsXL8aoUaPQ2NiI1157rc1y69evx7333oupU6dCr9fj8ccf99ugjoiILo/JaseB81XY4wqi8qpMHvsjg1S4arg4L9S0oXroA1VeqilR97D9RETkvwRBQEWDBTnlnuHT+Qojimob2z1OJZciscWd7Jp6OiWGByAmRA25TNqHV9G/SQSho5sH9q7i4mLExcVh3759mDJlinv7Y489hj179uDgwYOtjqmoqMDSpUvx3//+FxKJBMnJyZg5cyY2b96Mxsa2/9HU1tYiISEB69evx3333ddqf1s9peLj41FXV4fg4GCPsmazGbm5uRgyZEirHlvUNXwviYj6n6YJyptCqEO51R7fFipkEkxMCMOMlAjMGC4Oyevv8x8YDAaEhIS02S4gTx29V/x/v2fwfSQi6jq7w4mCahNyKozNvZ4qGpBT3gCDuf15nsIDlEiOCERyZIDrORBDIwIRq9PwLsCX0Nn2k1d7Sun1eshkMpSVlXlsLysra3c+qIiICHz00Ucwm82oqqpCbGwsVqxYgaSkpHZfR6fTYfjw4cjOzm5zv0qlgkrFb26JiIjaYjDb8F1WJfacE4OokjrP2xLH6TS42hVCTR2qRyDvkkdERER9zOkUUNlgwYWaRhRUG5FT3hxA5VUZYXO03R9HKgHiw7Ri6BQRgKGRga7lQIQGKPv4KgYer7YalUol0tLSkJmZiZtvvhkA4HQ6kZmZiWXLlnV4rFqtRlxcHGw2G95//33ccccd7ZZtaGhATk4O7r777p6sPhERkV9yOgWcKjGIIdTZChwpqIHD2dyQU8ml+FlSOGYMj8CMlAgk6QP6fW8oIiIi8m0Op4AygxmFNY0oqjWhsLoRRbWNrvVGFNU0djjXk0YhQ1KE2OPJHTxFine24zxP3uP1rzKXL1+OxYsXY+LEiZg8eTI2bNgAo9HovhvfokWLEBcXh4yMDADAwYMHUVRUhNTUVBQVFWHt2rVwOp147LHH3Od89NFHMW/ePCQkJKC4uBhr1qyBTCbDggULvHKNREREvq7aaMW3WWII9U1WBSobPG9jnxQRgKuHR2JGSgTSh4Sx8UZEREQ9yuZworTOjAs1JhTVNIdNhTUmFNU2oqTWDLuz49mHpBIgJkSDQaEa91C75EixB1RsiIZ3+fVBXg+l5s+fj4qKCqxevRqlpaVITU3F9u3b3ZOfFxQUQCptniTMbDZj1apVOH/+PAIDAzF37ly8+eab0Ol07jKFhYVYsGABqqqqEBERgSuvvBIHDhxAREREX18eERGRT7I7nDh2oRbfZFViz9ly/FhUh5azTAYoZZg6VC/2hhoegfgwrfcqS0RERP2ewymguLYR+VUmd9BUWOMKnWoaUWow4xKZE+RSCWJ1YugUp9NgUKgWcaHN69Ehaig4yXi/4vVQCgCWLVvW7nC93bt3e6zPmDEDp06d6vB877zzTk9VjYiIyG8UVJnwTVYFvs2qwL7sKtRbPCf2HBkT7A6h0hJCoZSzUUdERESdZ3M4UVTTiLwqI/KrTMitNCLftXyhxtTuvE5NlHIpBuk0HkFTy+ApMkjNCcb9jE+EUkRERNTz6s027M+pwrdZlfgmqwL5VSaP/TqtAtNa9IaKCuadvIiIiKhjFrsDhTWNyKs0Iq/KhPyq5ufCmkaPeSgvppRJER+mQXyY1h04DQptDqH0ASoOsRtgGEoRERH5CYdTwE9Fdfj2nDgv1A8FtR4NQ7lUgisSQnHVMD2mD4vAmLgQfttIRERErZhtDhRUm5BXKfZyaur5lFdlRHFtY4fD7NQKKRLCApCo1yIxPAAJ4QFIDNciQR+A6GD2dCJPDKWIiIj6seLaRnybVYFvzlVib3Yl6hptHvuH6AMw3RVC/SwpDEFqhZdqSkRERL6i0epAcZ14x7riWvFRVGtGUa0JBVUmlBjMHnNNXkyrlCExXAye3KFTuHgnu8gg9naizmMoRURE1I+YrHYcPF+Nb7Iq8M25CuRUGD32B6nlmJasx/Thelw1jBOUExERDTSCIKCyweoKmhrbeDaj2mi95HmCVHIk6gOQEN7U40nrXo8IVEEiYfBEl4+hFHVaYmIiHnnkETzyyCPergoR0YDhdAo4VWIQ54U6V4Ej+TWwOpzu/VIJkBqvw/RhEbhquB7jB+kg511niHwG209E1NPMNgdK6sxiyFTTHDi5ez7VmWG1Oy95ngClDHGuycRjXY84nQaDXSFUqFbB4Il6HUMpIiIiH1NS14i9WeJwvL1Zlai66NvMOJ0GVw2PwFXD9JiarEeIlkPyiIiI/IUgCKgyWt13rWs5mXhRjQmVDZfu5SSRAFFBasTq1IgL1YrPOg1iQ8RJxWN1GgSr5QydyOsYShEREXlZg8WOAzlV2JtdiW+zWg/J0yplmJocjunDIjB9mB5D9AFsRBIREfVjTqeAsnoz8ipNKKhucRe7ShMKqk1osNg7PF6jkLnDpTidBnE6tUdvp+gQNRTsOU39AEOpAeLVV1/F2rVrUVhYCKm0+ZfTTTfdhPDwcDzxxBNYvnw5Dhw4AKPRiJEjRyIjIwMzZ870Yq2JiPyT3eHE8cJafJsl9oQ6dqEW9ha3sZFKgLGDdJg+VI9pQ/VISwiFUs6GJVFfY/uJiC6H3eFEca0Z+U2hU6X4XFAt9oCydDDETiIBYkM0SAjXuh7iZOKDQrUYFKpBiIZD68g/MJTqCYIA2Ex9/7oKrfjbqhN++ctf4qGHHsKuXbtw3XXXAQCqq6uxfft2fP7552hoaMDcuXPx1FNPQaVS4Y033sC8efNw9uxZDB48uDevgojI7wmCgPOVRuzNqsS3WZU4eL4K9Rd9A5oQrsWVQ/W4ciiH5NEA4a32E9DpNhTbT0R0KRa7A4U1je5eTvlVRuRXm5BfZcKFapPHl04Xk0kliA/VIME1iXjLu9gNCtVArZD14ZUQeQdDqZ5gMwFPx/b96/6xGFAGdKpoaGgo5syZg7feesvdqHrvvfeg1+txzTXXQCqVYvz48e7yf/7zn/Hhhx/ik08+wbJly3ql+kRE/qyqwYK92ZX4zjUvVHGd2WO/TqvAtGSxJ9T0YXreJY8GHm+1n4BOt6HYfiIiAGi0OpDv6t3UNLdTUwhVXNcIof3cCUq5FAlhWnfw1BQ6JYRrEavTcIgdDXgMpQaQu+66C0uXLsXf//53qFQq/Pvf/8add94JqVSKhoYGrF27Fp999hlKSkpgt9vR2NiIgoICb1ebiKhfMNscOJRbje+yxd5Qp0oMHvuVMinSEkJx5TAxhBodGwKZlN3uqfs2btyI5557DqWlpRg/fjxefPFFTJ48uc2yNpsNGRkZeP3111FUVISUlBQ8++yzmD17trvM2rVrsW7dOo/jUlJScObMmV69Dl/H9hPRwFBvtrkmFW8dPpUZLB0eG6CUtdnbKSFci+hgNaT8/56oXQyleoJCK37j5o3X7YJ58+ZBEAR89tlnmDRpEr799lv83//9HwDg0UcfxVdffYXnn38eQ4cOhUajwe233w6r9dJ3diAiGoicTgEniw3iHfKyK3A4r6bV7ZdHRAdh+jA9rhwWgcmJYdAo2Q2fesa2bduwfPlybNq0Cenp6diwYQNmzZqFs2fPIjIyslX5VatWYevWrfjHP/6BESNGYMeOHbjllluwb98+TJgwwV1u9OjR2Llzp3tdLu/FpqK32k9Nr91JbD8R+QdBEFBrsrlDp5bhU36VqdWdbi8WrJZjiD7AHToNbhE+6QOVnN+JqJsYSvUEiaTTw+i8Sa1W49Zbb8W///1vZGdnIyUlBVdccQUA4LvvvsM999yDW265BQDQ0NCAvLw8L9aWiMi3CIKA3Eojvsupwr7sSuw/X4Vak82jTHSw2t0TamqyHhFBKi/Vlvzd+vXrsXTpUixZsgQAsGnTJnz22WfYvHkzVqxY0ar8m2++iSeeeAJz584FADzwwAPYuXMn/vd//xdbt251l5PL5YiOju6bi2D7iYh6QY3RitwqI/Jck4qLz+K6wdzxHe30gcoWw+w8ez7ptMo+ugKigYWh1ABz11134Re/+AVOnjyJ//mf/3FvHzZsGD744APMmzcPEokETz75JJzO9u8GQUQ0EJTUNWJfdhW+y6nE/pwqlFw0L1SAUoYpyeHiBOXD9EiOCOQ3pdTrrFYrjhw5gpUrV7q3SaVSzJw5E/v372/zGIvFArVa7bFNo9Fg7969HtuysrIQGxsLtVqNKVOmICMjgxN2g+0nIl9Ta7K6A6fcFqFTXpUJdY22Do+NCVFjcJgrdNJ7hk+BKv55TNTX+FM3wFx77bUICwvD2bNnsXDhQvf29evX495778XUqVOh1+vx+OOPw2AwdHAmIiL/U2O0Yv/5KuzLqcS+7CqcrzR67FfKpLgiQYepyXpMGxqOcYN0nKCU+lxlZSUcDgeioqI8tkdFRbU7/9OsWbOwfv16XHXVVUhOTkZmZiY++OADOBwOd5n09HRs2bIFKSkpKCkpwbp16zB9+nScOHECQUFBbZ7XYrHAYmmea8Vf2w5sPxH1vbpGm7uXU26lOMSuKYC6uKfyxWJC1EgI12KIPgCJ4QFIdD0nhGt5RzsiH8NQaoCRSqUoLm49f0NiYiK+/vprj20PPvigxzq7oxORvzFa7DiUV439OVX4LlucnLzlHXSkEmBsXAimDtVjanI4JiZwXijqn1544QUsXboUI0aMgEQiQXJyMpYsWYLNmze7y8yZM8e9PG7cOKSnpyMhIQHvvvsu7rvvvjbPm5GR0WpydH/E9hNR7zBZ7ThfYcT5SldPp0ojcl1zPFVfYo6nqGAVEsMD3PM8DdFrkagPQEJYAP+vJupHGEoREdGAYbU7cbSgBt/lVGF/TiWOFtTC7vS8j/OwyEBMc4VQ6UnhCNEovFRborbp9XrIZDKUlZV5bC8rK2t3PqiIiAh89NFHMJvNqKqqQmxsLFasWIGkpKR2X0en02H48OHIzs5ut8zKlSuxfPly97rBYEB8fHwXr4iI/JnTKaC4rlEMnyoacL7SiPMVRuRUNLQaFn+xyCCVq5eTGDgNcfV6SgjXQqvkn7JE/oA/yURE5LccTgGnig34LqcS32VX4vu8GjTaHB5l4nQaTBsajmlD9ZiSHI7IIHU7ZyPyDUqlEmlpacjMzMTNN98MAHA6ncjMzMSyZcs6PFatViMuLg42mw3vv/8+7rjjjnbLNjQ0ICcnB3fffXe7ZVQqFVQqTuhPRECDxY5cV9h0vqIBOa7wKbeyAWZb+3OthQUokaQXezwluofbiXM9BXCOJyK/x59yIiLyG2abAyeK6nDsQi0O51XjwPnqVhOe6gOVmJIs9oSalqzH4PDO3xqeyFcsX74cixcvxsSJEzF58mRs2LABRqPRfTe+RYsWIS4uDhkZGQCAgwcPoqioCKmpqSgqKsLatWvhdDrx2GOPuc/56KOPYt68eUhISEBxcTHWrFkDmUyGBQsWeOUaicj3OJwCimsbXcGT0f18vrIBZQZLu8cpZBIkhAcgSR+ApIhAJEc0P/OudkQDG0MpIiLql5xOAecrG3C0oBbHC2tx7EItzpTUtxqOF6SSIz0pDFOT9Zg6NBwpUUG8Qx71e/Pnz0dFRQVWr16N0tJSpKamYvv27e7JzwsKCiCVNk/CbzabsWrVKpw/fx6BgYGYO3cu3nzzTeh0OneZwsJCLFiwAFVVVYiIiMCVV16JAwcOICIioq8vj4gukyAIsDkEWB1OWGwOWOxOWO3OFs+OVssty1jsjuZlmxOlhkbklIvzPVnt7fd60geqkBQRIIZO+kDXciAGhWog541BiKgNDKWIiKhfqKi34NiFWhy7UIPjF+pwvLAW9WZ7q3L6QBVS43WYMFiHqcnhGBsXwoawP3PYAEu9+AiJB6QD57NetmxZu8P1du/e7bE+Y8YMnDp1qsPzvfPOOz1VNSK/4nQ2hTstAxwHzLbWIY8Y4niGPA6nE3anAEeLh9397GxjmwCHQ3x2Ck3bnbA7mvc7BcG9bnM4W7yeK2xyOD1u3NGTlDIphugDkBTherjCp6SIQM7DSERdxlCqm4Te+i0/gPA9JKL2NFodOFFch2MFtThWWItjBbUoqm1sVU6tkGJcnA7j40OQGh+K1ME6xIao2RPK19mtgLWhOUxquXzxunvZ9Wytb163NgD2FpPkPp4PaHReuyzqHP7/f3n4/rXmdAowWu0wWR1osNhhtNhhtDjEZ2vzcoPFDpPVjgbXuslqh9nWcahksTtgc/T/91wpk0Ill0Ipb/ksg0ohFfc1PbfaJoNSLkVEkKsHlD4QcaEayKT8f5aIegZDqS5SKMT032QyQaPReLk2/ZvJZALQ/J4S0cDkdArIqWjA0Qu1OH7BNQyvtB6Oi4bhSSTinfHGD9IhdbAOqfE6pEQFsReUrxAEwFwL1OQDtfmu5wJxub6kRejUADjan3ek2+RqwGpkKOXDZDLxFu1Wq5VtqMvgz+0nQRBQ2WBFVlk9ssobUNVgcQdIYrjkCphcyw0WB0yuMKqvSCSA+qLgRiWXQeUKe1RymTv4USlkUMqkUMgkkEolkEslkLmfpR7rrfbLpBeVb/9YmVQClULmETq1rIdSJoV0IIRIggA4rOL/BdYG15cXrmWrEbA1ir1ppXJAqnA9ywCZosU2mbgsa7HfXVYOyOStj/eFL8KcTsBpB5w2sQex09787LQBjpb7HC2Wm/ZdtF8mF/9fbXoo1BetawC5CpBr+raHsiAAdov4hZT72ey5bnOtCw5ApvR8yJuWVeJnLFe1LjOAelz7CoZSXSSTyaDT6VBeXg4A0Gq1/Ea+iwRBgMlkQnl5OXQ6nbuRSkQDQ73ZhgPnq3HsQg2OXajFjxfqUG9pPQwvMkgchjc+XocJ8TqMHRSCILX//RHWr1gamoOmlqFTUxBlMXTtfHINoAoCVIGAMhBQBYvLqiDXumubezkIUAZddIxrXcZ/G75OLpdDq9WioqICCoXCY84rujR/az/VGK04V1aPc+UNOFdaj3OuIKraaO32OaUSIEAlR6BKjgCVHAFKmfjcYjlQJYdWKUeASlzXeIQ5MlfI1CJocodP4rpcKmHbvyfZreIXGo01rhCp3hUkGV29Y40tgqUGz3VLQ+v9ztbtiV7XFFhJ5YBEBrj/ebT4d+Lxb6at7V0o63S4QiR7c7AktD/PV6+TKjxDKrmqjRDronWZUgwQOwqV2gudev165O2HVu2FWnK1uE+uFvfJWzw81tVtlG9ab6O8zHUTAEEQQzanQ/ysPZadnts91puWHRctC57bg+OAsCG9/962g6FUN0RHRwOAO5ii7tHpdO73koj8lyAIOF9pxNeny/H1mXIczqtuNRm5RiHD2EEhmOAKoVLjdYjhMLy+Z7cAtReA2ry2QydT1aXPERAJhCYAugRAN1hcDh4EqIM9wyZlkPhNLA0YEokEMTExyM3NRX5+vrer02/1t/aTwWxDVlk9zpU1iCGUa7mivu0ekxIJMDhMi2GRQYgJUbuCJBm0yhZhkytQCnBt06pkCFTJoZJL+f+Gt9gtYrB08cNU3cb2aqCxVly2NvROfeQaQBngerj+35GrXX+Y21uEOi2Wna5eQu4eRm082tLRPm+StOwF1tT7S+Hq7aXw7BHWtK+pp5jTflFAZPZcd7a4s7HTBlhsQC90gr7EBbYIw1qGXq51qUz8LB0W8dluabFuFQNRh9XzWoDmz9PW9qv6pem/B65b7bWXZ2uwG5oaVZGRkbDZBtK/1p6jUCj6/Td8RNQ+i92Bg+er8fWZcuw6W478KpPH/iH6AExODHMHUMOjAjkMr6c57GLPJXNdx4/GalcQ5Rpmdylq3UWhU6K4HJogTjSu1Pb2lVE/plQqMWzYMFit3e8NM5D5cvvJaLEju7wBZ8vqPUKokrr2ezbE6TQYHhWI4dFBGB4ZhOFRQRgaGQiN0jev0eucDvGPaIdrmFXTH9QOW/s9Ipwte1W01buik/usxjaCptrmbTbjZVyYxPXFRUhzkNTUG7YpVGr53N4+lWtZEdA7X3o09S5xtgitWoVaTT2WBM/jmlfa2N7Fsu6wyTW00CNsajm0sBfbVQ67GO60F1rZG8UQyNbYxj6z+G+3qUdQm8GSuo19LXpiydXidfdECO10ip9de6FVh6GWxdWDy+K53Grd3KJnmLXjst2a4kDiGkoqdfXWk7ZYb1pub7sU0IZf/vt4GRhKXQaZTOazDQMior5WZjBj15lyZJ4px3fZlR5zfChlUqQnheGalEhcOyISifoAL9a0n3A6XMFR7aWDJfejRQhlre/e6yoCWvd0agqddIMBdUiPXiYNPFKpFGq12tvVoG5yOgXklNfjVGE5zpfUIL+8BgXltagy1EMJO5SwQQUblBI7hsKOUVIbIrUSDA6WIS5YhrhAKaICJIjQSqGCvfmPsDIrUGzx/EOw5R/oFw9zkki6sew6vs1lNG9rY7H1vo6Oa7EsCM3DrJoCJWfTst0zWGoZODkvWndY4RFS+CKJVPziQhPa/NCGea67H2HiHICaUPH/FWk/+JtKIhGDH/bybX4flH7QnpNKAakrIPMFTXOjNQVYQNtBkkTWYrl/9xDlTxQREXWLwyngeGEtdp0Rh+WdLPacTygySIVrR0TimhGRuHKoHgGqAfhfjtPp6q1U2/yNclvLTfNpuJdruz4/U3sUAWKDv9Uj2PWsA0IGNQdP2vB+37ghoh5ia4SpNAsF546jpuAEnBVZCDblIUEowTCJZw9YdPT3nB1AtetBPUcic03M7OoV4/FHaovlpl4SHr0lpJ7b2upV4X6Wiv+XtAqZdJ4hkyqYk0QTXS6JpHlOqQFiAP6FQERE3VXXaMO3WRX4+nQ5dp+r8JiQViIBxg/S4doRYm+o0bHB/jm3h6kaqM4FqnOA+tI2AqUWy+a6y598tN1Q6VIPnRg8cQJwIuqIIACGIqAyC0JlFhqKz8BUfAbKuvMIsZZCCwEjLj7mol/tTqkCEpkSkpaT8zZN2OsxGfCl9qlaTCSsFEORlsOWPIY2uere1HuozXJCO+UuPgae5S9rH1qTyV3X4xpqJVO6npuGXbVYbwqZWm1TtF5nAEREfoChFBERtUsQBGSXN+BrV2+o7/Nr4GgxSXmQWo6rhkfg2pRIzEiJgD7QT77VaawBqs4D1efF8Kkqp3m5sabr55OrXUMUdOI3y+7hDW0t65rLqkPEP9CIiC6XpQGoygIqs13PWXBWZkGoyobM3ghAzJqCXI8mdYIWhdJBaAgaAnnkMOgTxiB26FgoQuPdd46S+uMXEERE1CcYShERkQezzYED56vc80MV1jR67B8aGSgOy0uJxMTEUCj66wTljbWuwKmN8KnxEmNMgmKAsCTxFrrthkstlhWcP4eIepnNLN4h01QFNJQBVdlAZVZzEFVf3OqQpt/eNkGGAiES54UY5CMW5pAkBMaORNzQcRgzPAmjdbyBARER9Q6GUkREhPwqI3afrcCecxXYn1OFRluLScrlUkxJCncPy4sP60d/nJjrWvRyOu9adq2bqjo+NjBaDJ7Ck4CwZNey69kfJvYkIt9lt4rheFPI5H5Ut7Hseu7E3c8qhWCcF2Jw3hkjPguxqFYPRmTCCKQmRiAtIRTT40KgVvSDSaeJiMgvMJQiIhqAGq0OHMitwp6zFdh9thx5VZ4T1kYHq3GNK4SaNjQcWqWP/ndhtwJ1F4DafKAm/6LnvE4ET1EtAqcW4VNYknhraSKiy+V0isN+TZWAsVJ8dgdLNW0HT928e6ZTIodRFoIaSTDOWiNwzhGN885YnBdikCPEoF4SiJSoIFyREIq0waFYmBCKhHCtf87/R0RE/YKP/pVBREQ9SRAEnK80iiHUuQocPF8Fi715Am65VIKJiaG4OiUSM4ZHYER0kG/8keJ0AIZioLag7eDJUIxL3iI7INLVwykZCBviuawK6vhYIqKLOWxieNQUMBkrPddNVYCxqnlfY3X3bnggkQKaMAjacFiUOjRIQ1AjCUKFIxClVi0KzGrkGFW4YNaiGkGoEYJQDw1azkIeqJJjwhAdrhocit8lhCJ1sA7Bat78gIiIfAdDKSIiP2W02LE/pwq7z5Vjz7kKXKj2nBsqNkSNGSmRuDolAlOTwxHkjT9UBAEwVjSHTBcHT3WFgNPW8TnkGkA3GAhNAHQJrufB4nJYkngHOiKiSzFWAuWnAEOJZ6+mlgGTqVIcFtwd6hBAqwe04UCAHtCGAdpwODXhqJcGo8wRgGKLFnmNamQ3qJBVJ8WFGjNKisytb/Z2kbAAJZJCNRgUpkV8qBYJ4VqkxuswPCoIMqkPfMFARETUDoZSRER+QhAEZJU3uHpDleNwbg2sjuZv55UyKSYPCcPVKRGYMTwCQyMDe743lN0KmGvFScTNteKQlbaWTVWu3k8FgM3UwQkh3ho7JP6i4CmxOYAKiAB8oVcXEfUPVhNQcRooPw2UnQLKT4rPxvIunETiCpX0roCpKWhqf90qyPBTUR2OFtQgr8qIC1WNuJBtQmFNI6z2lj2pLK5HM41ChvgwDeJDtYgPcz1CNe7lQBWb9ERE1D/xfzAion6s3mzDd9lV2HOuHHvOVqC4zuyxPz5Mg6uHi72hpiR3cm4op0PsCeAOkVzPjTXNgZM7aKr1DJw6MdFuaxIgOLZ1L6emACo4FpBy0l0i6iKHXbypQfkp8VF2UnyuzkW7w36bAm+PQKll+OR61oRe8veSwWzDD/k1+P54DQ7l5eL4hVqPYdMtyaQSxOrUYugUqhUDKHf4pIU+UOkbQ6qJiIh6GEMpIqJ+RBAEnC6px55z4gTlR/JrYHc2/3Glkkvxs6Rwd2+oIfqAjv+QsRrFP9RKjgOlPwIlP4p/tDmsl1dRdQig1gEanfjHW6vlUCBkkPgHYMggQK66vNcjooFLEID6Elfw1CKAqjgLOCxtH6PVA1GjgMjRrudRQMSIy7rBQZnBjMN51TicW43DeTU4U2qA86LsKzxAibSEUAyLCkR8qBaDXcFTTIgacpm0269NRETUXzGUIiLycQ6ngMN51dh+ohQ7Tpai5KLeUEn6AFw1PAJXp0TgZ0nh7d/K21TdHDw1hVBV2e1PwKsIEMMjja5FqKRrDpUuXm4KnNQh7NlERL3DXCcOu7s4gDLXtl1eoRXDposDqMDIy6qGIAjIqWjA4bwaMYjKq241bx8AJIRrMTEhDJOHhGJiYhiSLvVFARER0QDDUIqIyAdZ7U58l1OJHSdK8dWpMlQZm3suaRQyTE1u6g0VicHhWs+DBUG8K13L3k+lPwJ1F9p+scAoIHocEDOu+Tl4ECBX9uIVEhF1gc0MvDQJqCtoe79ECoQPFQOnqNGu51GALhGQXn4PJJvDiRNFdfg+rwaH8qrxfV41akyeN2GQSoCRMcGYlBjmeoQiMlh92a9NRETkzxhKERH5iEarA3vOlWP7iVJkni5HvcXu3qfTKvDzkVGYPSYa04bqm3tDOZ1AZVbrAMpU1faLhCY2B08xqeJyUFSvXxsR0WVRqOGeByootrnHU1MApR/uKtMzGix2HC2ocQ/FO3qhBmabZ69SlVyKCYN17hBqwmCdd+5iSkRE1I8xlCIi8iKD2YavT4tB1O5z5R5/9EQGqTBrdDRmj4nG5MRQKMzVQG0+8NOXzQFU2QnA2tD6xBIZEJECxIxv0QtqrDi0joioP7rrP0BQtDhUuBcIgoCXvs7GjlOlOFXcej4onVbhMRRvTGwIlHLOA0VERHQ5GEoREfWxqgYLvjpVhu0nS/FddiVsDgGAAB0aMC3EgLmDrEgPbUAcKiCpKwB2FAC1BYDN1PYJ5Rqxt0DL4XeRowCFpk+vi4ioV0WO7NXTny2rx/9+dc69PihUg8mJYZiYKAZRSfpASKWcD4qIiKgnMZQiIuoDJbUm7DqWhR9P/oi64mzEogIzJJW4S1qBoaoqxKECSqcJsADIae8sEiAoBghP9uwBFT4MkPHXORHR5SiuFScqT4oIwL9/lY6YEAb7REREvY1/xRAR9RRLA1CTK/Zqqi2AoSQbVUXZQE0Bwu0lWChpxEIAuHjKkZbTlARGA7rBQGiC+Ox+JAAhgwC5qu+uh4hoACkzWAAAieEBDKSIiIj6CEMpIqKucNjFuz9VZgNVWUBVtjjReFUOUF/sUTTY9QAAuEZ8mJThkIUmQKVPvCh4SgBC4nt0ol4iIuq8MoMZABAVzPCfiIiorzCUIiK6mCCId6+rdIVOVVmuECobqD4POG3tHlotBKJAiEShEIFiREAZnojBySMxfsw4hMcNhVap7cMLISKizmrqKRUZxC8HiIiI+gpDKSIauGyNYg+ni4OnqizAXNfuYYJcDVNgAvIQi0OGcPxk1uO8EIvzQjTM8mBcNUyP2WNicMfISOi0yj68ICIi6q5yd08phlJERER9haEUEfkXpxOw1gNmA2AxiM/mOnHZVA1U5zT3gKorBCC0cyKJOJxOPxQIHwqbLhknLJH4vDgA72cLqC51uEsGKGW4ZkQkfjUmGlenRCJQxV+tRET9TVk9h+8RERH1Nf7lRES+w+kErA3NYZLHc11zuNRqX4vgyVKP9oOmNqh1gH4YEC6GT+7lsCQ0OBXYdaYc20+WYveBchitDgB2AECoVoGfj4rC7DHRmJqsh1oh6413hIiI+ki5a/gee0oRERH1HYZSRNQ+QQAEJ+B0AA6rONzN3ig+Nz1arZsBmwmwuZ7bXG/reLPYw0lwXrpenSFTAqpgQB3c/KzWAWFJLcKnYYA2DJBI3IdVG63YeboMO744gW+zK2G1N9cnOliN2WOiMWt0NCYlhkIuk/ZMXYmIyKvsDicqG1xzSrGnFBERUZ9hKEXUH9gtQEMZUF8GNJQC9aWuddeyubY5PBIcYpjkdIjbBEeLZafndo/1lse7lrvS46gnSeWAOuSiUKnFeqt9wYAqxHNfF+5iV1LXiC9PlmH7iVIczK2Cs8VlD9EHYNboaMweE41xcSGQSiXtn4iIiPqlKqMVTgGQSSUID2AoRURE1Fd8IpTauHEjnnvuOZSWlmL8+PF48cUXMXny5DbL2mw2ZGRk4PXXX0dRURFSUlLw7LPPYvbs2d0+J5HXWI2eAVNDGVBf0iJ8cj031ni7ps1kKkChaX7INRetqwGFVgyFFNqL1jVtbGta1wCqIFegpPHovdQbciuN2H6iFDtOluLYhVqPfaNigjF7jBhEDYsMhKSX60JERN5V5prkPCJQBRm/fCAiIuozXg+ltm3bhuXLl2PTpk1IT0/Hhg0bMGvWLJw9exaRkZGtyq9atQpbt27FP/7xD4wYMQI7duzALbfcgn379mHChAndOidRj7FbxV5LjbWuOZBqxUCpvcDJWt/5c8uUQGCU+AiKFh+B0UBQFKAJFXsXSWSAVApIpOKyRApIZS2WO7lPKruonFR8fbla3NfP2B1ONFjsKKxpxJenyrDjRCnOljW/9xIJkDY41D00Lz5M68XaEhFRXyszcOgeERGRN0gEQfDS+BxReno6Jk2ahJdeegkA4HQ6ER8fj4ceeggrVqxoVT42NhZPPPEEHnzwQfe22267DRqNBlu3bu3WOS9mMBgQEhKCuro6BAcH98RlUn9ia3SFSrXNz+a61tva2mczdf31FNrmoCkwCgiKEYOmpsAp0BVAaUJ7vfeQLxIEAUarA4ZGG+rNdtSbbTCYxWWD2X7RdvG5/qLt4gTlnuRSCaYkh2PW6GhcPyoKkZzYlojawXZB5/XX92rrgXys+ugEZo6Mwj8XT/R2dYiIiPq9zrYJvNpTymq14siRI1i5cqV7m1QqxcyZM7F///42j7FYLFCrPf941Gg02Lt372Wd02KxuNcNBkO3r4l8nM0MVJ4DKs4A5aeAinOAsaJFr6ZawGG51FkuTRUCaELEibU1uot6OMV4hlCqIJ8LmwRBgMXuhMnqgNFiR6PNAYvNCbvTCbtTgM3hhMMpwO4Ql+1OQXw4nOI2p7jf5nBtc5W1O52wOQQ4XM92p9O1XXD1ZnK4A6d6sw2GRhsaLHaPOZ4uR4BShmlD9Zg9JhrXjYhCiFbRMycmIqJ+rdw1fC+KPaWIiIj6lFdDqcrKSjgcDkRFRXlsj4qKwpkzZ9o8ZtasWVi/fj2uuuoqJCcnIzMzEx988AEcDke3z5mRkYF169b1wBWRz3DYgKocV/DkCqDKTwPV5zt3dzeJVAyU1CFiqNQULrmfQ9rY1rQ9pE+HuDVaHahrtMFktcNkdbgezcuNVjuMFy03XlSm5TFN+3oqCOopcqkEwRoFgtRyBKnlCFY3LStaLIvbgzXi9ovLKeW8Wx4REbXWNHwvir1miYiI+pTX55TqqhdeeAFLly7FiBEjIJFIkJycjCVLlmDz5s3dPufKlSuxfPly97rBYEB8fHxPVJd6m9MB1OSJgVP5aaDC9VyZBThtbR+j1gGRo4DIkeIjKLp1yOSF3kuCIKDeYket0YZqkxU1JitqTVZUG22oda3XGG3is8mGGqO4zWLvRMh2GVRyKbRKGVRyGeQyCRQyKeRSCWRS17JMAoVUCplU4t4v7pNALhX3y6USyGVSKFzPcldZuVTavE8mgVYpbxUoBbsCJbVCygnHiYioV5TVs6cUERGRN3g1lNLr9ZDJZCgrK/PYXlZWhujo6DaPiYiIwEcffQSz2YyqqirExsZixYoVSEpK6vY5VSoVVCo2QnyaIAB1F4DyFr2eKk4DFWcBu7ntY5SBYugUMcIVQrmeA6P6LHCy2B04WWxAVcOlQ6ZakxX2bnZPkkkl0Cpk0ChlCFDJoVHIEKCSQaOUQ6uQQauSQauUQauUu57bXtYoZQhosaxVynkXIiIi8nvl7onO2VOKiIioL3k1lFIqlUhLS0NmZiZuvvlmAOKk5JmZmVi2bFmHx6rVasTFxcFms+H999/HHXfccdnnJB9iaQBOfgBcOOQafnem/TvVydVARIoYOLUMoELivTJXU7XRil1nyrHzdBm+OVfR5iTbHdEoZAjVKqDTKhEWoIROq0CoVonQACVCXcs6rQJhAUr3cqBKzl5ERERE3VTe1FMqiKEUERFRX/L68L3ly5dj8eLFmDhxIiZPnowNGzbAaDRiyZIlAIBFixYhLi4OGRkZAICDBw+iqKgIqampKCoqwtq1a+F0OvHYY491+pzkwyrOAYf/CRx/G7BcNOG8VAHohzUPu4twPYcm9ukcTm3JrTTiq1Ol2HmqHN/nV3vMx6QPVCIuVOsZKGmV0LlCpjCtEjqtEqEB4n61wrvXQkRENJDYHE5UNlgBcPgeERFRX/N6KDV//nxUVFRg9erVKC0tRWpqKrZv3+6eqLygoABSafPkxGazGatWrcL58+cRGBiIuXPn4s0334ROp+v0OcnHOOzAuS+AQ/8Acvc0bw9LAsbcBkSNFgOo8GRA5ht3S3M4BRwtqMFXp8uw81QZciqMHvtHxQRj5qgo/HxkFMbEBbMXExERkY+qqBeH7ilkEoRqlV6uDRER0cAiEQTBx+6x5X0GgwEhISGoq6tDcHCwt6vjvxoqgB+2AN9vAQyF4jaJFBg+G5h0H5B0LSD1nbulGS12fJtViZ2ny/D1mXJUG63ufQqZBD9LCsfPR0XhupFRiNNpvFhTIiLqSWwXdF5/fK+OFtTglr/vQ2yIGvtWXuft6hAREfmFzrYJvN5TigYYQQAKDwOHXgVOftR8hzxNGJC2GEhbAoQmeLWKLZUZzNjp6g31XU4VrC3udBeiUeDaEZGYOTIKVw3XI0jtG724iIiIqPPKOMk5ERGR1zCUor5hNQEn3hOH6JX+2Lw9Lg2YtBQYfQug8H5jUBAEnCmtx85TZfjqdBl+LKzz2D84TIufj4rCzJFRmJgYCoXMd3pyERERUde5JznnfFJERER9jqEU9a6qHOD7zcDRrYC5VtwmUwFjbwcm/QqIu8Kr1QMAq92JQ7nV2Hm6DF+dKkNRbaN7n0QCTIjXueeHGhoZyPmhiIiI/EiZoSmU8v6XY0RERAMNQynqeU4HkPUVcPgfQPbO5u26BHGuqAl3A9ow79UPYo+oA+er8fahAuw6U456i929T62QYvqwCPx8ZBSuGRGJiCB+c0pEROSvmobvMZQiIiLqewylqOeYqoEf3hB7RtXmN28f+nNg8lJg6ExAKvNe/QA0Wh34+FgRtuzLw5nSevd2faAKM0dG4uejojBtqB5qhXfrSURERH2j3HX3vUh+CUVERNTnGErR5Sv6ATj8T+Cn9wCH2LCDOkTsETXxXiA82bv1A1BU24g39+fjncMFqDWJk6trFDLcekUcbksbhNRBOkilHJZHREQ00JRz+B4REZHXMJTyJw47UHIcyPsGKP0JkEgBqQKQuR4tl2VKQCpvZ7mdYy4+vugHcYhe0ZHmOkSPE3tFjbkdUGq9915AHKJ3MLcaW77Lw5enSuEUxO3xYRosnpKIX6bFI0TLO+YRERENZJxTioiIyHsYSvVnTidQ9hOQ+y2Q9y2Qvw+wGPq+HjIlMOpmMYwaNEmcHdyLzDZxiN5r33kO0Zs2NBz3TB2Ca0dEQsZeUURERAOexe5AjasHNe++R0RE1PcYSvUnggCUnxYDqNxvgLy9zXe0a6IOARKuBOIniWGRwyY+nDbAYXUt25uX3fsuLmf3XHZYXestljWhQOpdwBWLgcAIr7wlLRXVNmLrgXy8faj1EL3FUxMxPCrIyzUkIiIiX1LumuRcKZciRMPe00RERH2NoZQvEwSgKlsMoJpCKFOlZxllIJAwFUicDgyZLg6f8/Jk4n1JEAQcyq3Gln15+PJUGRyuMXqDQsUhendM5BA9IiIialt5vTh0LzJIBYmXe3oTERENRAylfIkgADV5zT2hcr8FGko9y8g1wOCfiQHUkBlATCogG3gfo9nmwCfHivHavjycLmkesjg1ORz3TE3EdSOjOESPiIiIOlTm6inF+aSIiIi8Y+ClGb6mrlAMn3K/EcOougue+2UqIH5yc0+ouDRAPnDnPCiubcSbB/LxzqEC9xwQaoUUt14xCIunJCIlmkP0iIiIqHOaJzkfuG0rIiIib2Io1dcaKoDcPa7Ht0BNrud+qRyIm+jqCXWVOHG4QuOduvoIQRBwOK8GW/blYsfJ5iF6cToNFk9NwB0T46HTKr1cSyIior61ceNGPPfccygtLcX48ePx4osvYvLkyW2WtdlsyMjIwOuvv46ioiKkpKTg2WefxezZs7t9Tn/Q1FMqMog9pYiIiLyBoVRfO/428NWTzesSKRA7wdUT6ipxaJ4ywHv18yFmmwOfHC/Glu/ycKrFEL0pSeG4Z1oiZnKIHhERDVDbtm3D8uXLsWnTJqSnp2PDhg2YNWsWzp49i8jIyFblV61aha1bt+If//gHRowYgR07duCWW27Bvn37MGHChG6d0x80zSnF4XtERETeIREEQfB2JXyNwWBASEgI6urqEBwc3LMnLz4GfPKQGEANuQoYPAVQ9/Br9EP1ZhvOlNbjVLFBfJQYcLasHla7E4A4RO+WCeJd9EZE8/0iIqK+06vtgm5KT0/HpEmT8NJLLwEAnE4n4uPj8dBDD2HFihWtysfGxuKJJ57Agw8+6N522223QaPRYOvWrd06Z1t88b3qyP/88yD2Zldi/R3jcesVg7xdHSIiIr/R2TYBe0r1tdhU4NffersWXiMIAsoMFpwqqcPJIjF8OlViQH6Vqc3ycToNFk1JwPxJHKJHREQEAFarFUeOHMHKlSvd26RSKWbOnIn9+/e3eYzFYoFa7dkbSKPRYO/evd0+pz9onlOKPaWIiIi8gaEU9Rq7w4nzlUZ3z6em52qjtc3yMSFqjIoJxqjYYPdzfKgWUg7RIyIicqusrITD4UBUVJTH9qioKJw5c6bNY2bNmoX169fjqquuQnJyMjIzM/HBBx/A4XB0+5yAGHZZLBb3usFgaLesL+JE50RERN7FUIp6RIPFjjMlnuHTmdLm4XctyaQSDI0I9AifRsYEIyyAPaGIiIh6wwsvvIClS5dixIgRkEgkSE5OxpIlS7B58+bLOm9GRgbWrVvXQ7XsW41WBwxmOwAgkj2liIiIvIKhFHVZrcmKYxdqcaKozh1C5bUz/C5AKcPIi3o/DY8Kgloh6+NaExER+Qe9Xg+ZTIaysjKP7WVlZYiOjm7zmIiICHz00Ucwm82oqqpCbGwsVqxYgaSkpG6fEwBWrlyJ5cuXu9cNBgPi4+O7e2l9qmmSc7VCiiAVm8RERETewP+BqUMWuwOnS+pxrKAGxwvrcOxCLXIrjW2WjQ5We4RPo2KCMTiMw++IiIh6klKpRFpaGjIzM3HzzTcDECclz8zMxLJlyzo8Vq1WIy4uDjabDe+//z7uuOOOyzqnSqWCStU/h76VGcRhh1HBakgkbKsQERF5A0MpchMEAflVJhy7UOt+nCo2wOpoPQRviD4A4waFYHRsMEbFhGBkTBDCA/tno5SIiKi/Wb58ORYvXoyJEydi8uTJ2LBhA4xGI5YsWQIAWLRoEeLi4pCRkQEAOHjwIIqKipCamoqioiKsXbsWTqcTjz32WKfP6W/c80kFcegeERGRtzCUGsBqjFYcK6zFsQIxgDpeWItak61VuVCtAqnxOoyP1yHV9eCd8IiIiLxn/vz5qKiowOrVq1FaWorU1FRs377dPVF5QUEBpFKpu7zZbMaqVatw/vx5BAYGYu7cuXjzzTeh0+k6fU5/0xRKRXKScyIiIq+RCIIgeLsSvsZgMCAkJAR1dXUIDg72dnV6hMXuwMliA4636AWV38Y8UEq5FKNjg93hU2q8DoPDtOzWTkREA5Y/tgt6S396rzI+P41XvjmP+64cgid/Mcrb1SEiIvIrnW0TsKeUn8qrNOKHghp3CHWqxACbo3X+mKQPEMOnwTqMH6TDyJhgKOXSNs5IRERE5D/cw/fYU4qIiMhrGEr5oS3f5WLtf0+12h4WoPToATV+kA4hWoUXakhERETkXS0nOiciIiLvYCjlh/ZmVwIAhkUGYvqwCKQO1mFCvA6DQjUchkdEREQEoKzeNacUJzonIiLyGoZSfqiwphEA8MQNI3F1SqSXa0NERETke8rdPaU4fI+IiMhbOHmQnxEEAUWuUGpQqMbLtSEiIiLyPQ0WOxosdgBAJIfvEREReQ1DKT9jaLSj3tXIitNpvVwbIiIiIt9T7prkPEApQ6CKAweIiIi8haGUn7lQYwIA6AOV0ChlXq4NERERke/hJOdERES+gaGUn2maTyoulL2kiIiIiNpS3jTJOeeTIiIi8iqGUn6mqJbzSRERERF1pJw9pYiIiHwCQyk/U+gavjdIx1CKiIiIqC1lrjmlGEoRERF5F0MpP1PIO+8RERERdaisXuwpFRnE4XtERETexFDKzzSHUpxTioiIiKgt7ClFRETkGxhK+Rn38D32lCIiIiJqUzlDKSIiIp/AUMqP1DXaUG+2AwDiGEoRERERtSIIAsrcE51z+B4REZE3MZTyI0WuoXthAUpolXIv14aIiIjI99Rb7Gi0OQAAkUHsKUVERORNDKX8CIfuEREREXWsaehekFoOjVLm5doQERENbAyl/AjvvEdERETUseahe+wlRURE5G0MpfwI77xHRERE1LHy+qZJzjmfFBERkbcxlPIjRbUcvkdERETUEXdPKc4nRURE5HUMpfxIU0+pOB1DKSIiIqK2lLnmlIrk8D0iIiKvYyjlRzh8j4iIiKhj5e45pTh8j4iIyNsYSvkJg9mGukYbACCOw/eIiIiI2tTUU4oTnRMREXkfQyk/UeTqJRWqVSBQJfdybYiIiKgtdrsdO3fuxCuvvIL6+noAQHFxMRoaGrxcs4GjjBOdExER+QymF36CQ/eIiIh8W35+PmbPno2CggJYLBb8/Oc/R1BQEJ599llYLBZs2rTJ21X0e4IguCc6j+RE50RERF7HnlJ+oqhGvPMeJzknIiLyTb/97W8xceJE1NTUQKNp/v/6lltuQWZmphdrNnDUNdpgtTsBABFB7ClFRETkbewp5Seae0oxlCIiIvJF3377Lfbt2welUumxPTExEUVFRV6q1cDS1EtKp1VArZB5uTZERETEnlJ+gqEUERGRb3M6nXA4HK22FxYWIigoyAs1GnjKm+aT4tA9IiIin8BQyk8U1orD9zinFBERkW+6/vrrsWHDBve6RCJBQ0MD1qxZg7lz53qvYgOIez4pTnJORETkEzh8z0+4e0qFsacUERGRL3r++ecxe/ZsjBo1CmazGQsXLkRWVhb0ej3efvttb1dvQCgzNN15jz2liIiIfIFP9JTauHEjEhMToVarkZ6ejkOHDnVYfsOGDUhJSYFGo0F8fDx+97vfwWw2u/evXbsWEonE4zFixIjevgyvabDYUWuyAeBE50RERL4qPj4ex48fxxNPPIHf/e53mDBhAp555hkcPXoUkZGR3q7egFDuDqXYU4qIiMgXeL2n1LZt27B8+XJs2rQJ6enp2LBhA2bNmoWzZ8+22UB76623sGLFCmzevBlTp07FuXPncM8990AikWD9+vXucqNHj8bOnTvd63K51y+11xS5ekmFaBQIUiu8XBsiIiK6mM1mw4gRI/Dpp5/irrvuwl133eXtKg1ITcP32FOKiIjIN3i9p9T69euxdOlSLFmyBKNGjcKmTZug1WqxefPmNsvv27cP06ZNw8KFC5GYmIjrr78eCxYsaNW7Si6XIzo62v3Q6/V9cTleUVjTNJ8Ue0kRERH5IoVC4dGrm7yjzDXReSQnOiciIvIJXg2lrFYrjhw5gpkzZ7q3SaVSzJw5E/v372/zmKlTp+LIkSPuEOr8+fP4/PPPW00QmpWVhdjYWCQlJeGuu+5CQUFBu/WwWCwwGAwej/6Ed94jIiLyfQ8++CCeffZZ2O12b1dlwCrnROdEREQ+pUtj2n788cdOlx03btwly1RWVsLhlsuomwAANPpJREFUcCAqKspje1RUFM6cOdPmMQsXLkRlZSWuvPJKCIIAu92OX//61/jjH//oLpOeno4tW7YgJSUFJSUlWLduHaZPn44TJ060ecvljIwMrFu3rtPX5muae0rxzntERES+6vDhw8jMzMSXX36JsWPHIiAgwGP/Bx984KWaDQxOp4Dyek50TkRE5Eu6FEqlpqZCIpFAEIQ29zftk0gkcDgcPVLBi+3evRtPP/00/v73vyM9PR3Z2dn47W9/iz//+c948sknAQBz5sxxlx83bhzS09ORkJCAd999F/fdd1+rc65cuRLLly93rxsMBsTHx/dK/XtDUS17ShEREfk6nU6H2267zdvVGLBqTFbYHGIbNiKQPaWIiIh8QZdCqdzc3B59cb1eD5lMhrKyMo/tZWVliI6ObvOYJ598EnfffTd+9atfAQDGjh0Lo9GI+++/H0888QSk0tYjEnU6HYYPH47s7Ow2z6lSqaBS9d/GSdPwPd55j4iIyHe99tpr3q7CgFZeLw7dCw9QQin3+rSqREREhC6GUgkJCT364kqlEmlpacjMzMTNN98MAHA6ncjMzMSyZcvaPMZkMrUKnmQyGQC024OroaEBOTk5uPvuu3uu8j6keU4pDt8jIiLydRUVFTh79iwAICUlBREREV6u0cBQZnBNcs6he0RERD6jS6HUJ5980umyN954Y6fKLV++HIsXL8bEiRMxefJkbNiwAUajEUuWLAEALFq0CHFxccjIyAAAzJs3D+vXr8eECRPcw/eefPJJzJs3zx1OPfroo5g3bx4SEhJQXFyMNWvWQCaTYcGCBV253H7BaLGj2mgFAMRx+B4REZHPMhqNeOihh/DGG2/A6XQCEL9YW7RoEV588UVotfxyqTc1TXIexUnOiYiIfEaXQqmm3kyX0pU5pebPn4+KigqsXr0apaWlSE1Nxfbt292TnxcUFHj0jFq1ahUkEglWrVqFoqIiREREYN68eXjqqafcZQoLC7FgwQJUVVUhIiICV155JQ4cOOCX30Q2zScVrJYjRKPwcm2IiIioPcuXL8eePXvw3//+F9OmTQMA7N27Fw8//DB+//vf4+WXX/ZyDf1bU0+pqCD2lCIiIvIVEqG9MW8DmMFgQEhICOrq6hAcHOzt6nRo15lyLNlyGKNigvH5b6d7uzpERER+p6faBXq9Hu+99x6uvvpqj+27du3CHXfcgYqKisusqff5chtq1Uc/YeuBAjx87VAsvz7F29UhIiLya51tE3CWx36usMYEgEP3iIiIfJ3JZHL3BG8pMjISJpPJCzUaWMpcw/c4pxQREZHv6NLwvYsZjUbs2bMHBQUFsFqtHvsefvjhy6oYdU7zJOcMpYiIiHzZlClTsGbNGrzxxhtQq8VgpLGxEevWrcOUKVO8XDv/V940fI+hFBERkc/odih19OhRzJ07FyaTCUajEWFhYaisrIRWq0VkZCRDqT7CO+8RERH1Dy+88AJmzZqFQYMGYfz48QCA48ePQ61WY8eOHV6unf9z95QK4kTnREREvqLbw/d+97vfYd68eaipqYFGo8GBAweQn5+PtLQ0PP/88z1ZR+pA0/A99pQiIiLybWPGjEFWVhYyMjKQmpqK1NRUPPPMM8jKysLo0aO9XT2/5nQKqGhouvsee0oRERH5im73lDp27BheeeUVSKVSyGQyWCwWJCUl4a9//SsWL16MW2+9tSfrSe1ouvseQykiIiLfp9VqsXTpUm9XY8CpMlrhcAqQSAB9oNLb1SEiIiKXbveUUigUkErFwyMjI1FQUAAACAkJwYULF3qmdtShRqsDlQ3iXF6DdBy+R0RE5MsyMjKwefPmVts3b96MZ5991gs1GjjKXPNJ6QNVkMt4nx8iIiJf0e3/lSdMmIDDhw8DAGbMmIHVq1fj3//+Nx555BGMGTOmxypI7SuqFYfuBankCNZc1pz1RERE1MteeeUVjBgxotX20aNHY9OmTV6o0cBRXt80yTnnkyIiIvIl3Q6lnn76acTExAAAnnrqKYSGhuKBBx5ARUUFXnnllR6rILXvgmuS87hQDSQSiZdrQ0RERB0pLS11t51aioiIQElJiRdqNHA0TXIeFcT5pIiIiHxJt7vXTJw40b0cGRmJ7du390iFqPN45z0iIqL+Iz4+Ht999x2GDBnisf27775DbGysl2o1MDQN34vkJOdEREQ+pduhVG5uLux2O4YNG+axPSsrCwqFAomJiZdbN7qEohpOck5ERNRfLF26FI888ghsNhuuvfZaAEBmZiYee+wx/P73v/dy7fybu6cUh+8RERH5lG6HUvfccw/uvffeVqHUwYMH8c9//hO7d+++3LrRJRTWiHNKMZQiIiLyfX/4wx9QVVWF3/zmN7BaxRuVqNVqPP7441i5cqWXa+ffyg1Nc0qxpxQREZEv6facUkePHsW0adNabf/Zz36GY8eOXU6dqJMK2VOKiIio35BIJHj22WdRUVGBAwcO4Pjx46iursbq1au9XTW/V+aa6DwyiD2liIiIfEm3QymJRIL6+vpW2+vq6uBwOC6rUtQ5nFOKiIio/wkMDMSkSZMQFBSEnJwcOJ1Ob1fJ75W7h++xpxQREZEv6XYoddVVVyEjI8MjgHI4HMjIyMCVV17ZI5Wj9pltDlQ2iA0s9pQiIiLyXZs3b8b69es9tt1///1ISkrC2LFjMWbMGFy4cMFLtfN/dofT3WaK5JxSREREPqXbodSzzz6Lr7/+GikpKViyZAmWLFmClJQUfPPNN3juued6so7UhqJasZdUoEqOEI3Cy7UhIiKi9rz66qsIDQ11r2/fvh2vvfYa3njjDRw+fBg6nQ7r1q3r8nk3btyIxMREqNVqpKen49ChQx2W37BhA1JSUqDRaBAfH4/f/e53MJvN7v1r166FRCLxeIwYMaLL9fI1VUYrnAIgk0oQHsBQioiIyJd0O5QaNWoUfvzxR9xxxx0oLy9HfX09Fi1ahDNnzmDMmDE9WUdqQ9PQvTidBhKJxMu1ISIiovZkZWVh4sSJ7vWPP/4YN910E+666y5cccUVePrpp5GZmdmlc27btg3Lly/HmjVr8MMPP2D8+PGYNWsWysvL2yz/1ltvYcWKFVizZg1Onz6Nf/3rX9i2bRv++Mc/epQbPXo0SkpK3I+9e/d2/YJ9TJlrkvOIQBVkUraZiIiIfEm3774HALGxsXj66ad7qi7UBbzzHhERUf/Q2NiI4OBg9/q+fftw3333udeTkpJQWlrapXOuX78eS5cuxZIl/7+9+w+uurrzP/66NyE3CeaHGpIQpES0xqUGsLHkC2jbkQwBnRS2O5Qf8rMChYGZ1rSuoPxYS5V23WXZ7SA4TkDcbiuyS9udhUExNWwVkN3EroViRgTFRHJDovltft37+f5B7oVrbpKbkNzP53PzfMzcGe/nns/hHA6JZ973fd6fFZKkPXv26PDhw9q7d682bNjQrf2JEyc0ffp0LVq0SJKUmZmphQsX6p133gloFx0drfT09H6Nxerc/npSZEkBAGA1A86UkqQ//vGPWrx4saZNm6bKykpJ0r/+679GxLdqVseT9wAAsIdx48aptLRUklRTU6OzZ88GPMG4qqpKSUlJIffX3t6u0tJS5eXl+a85nU7l5eXp5MmTQe+ZNm2aSktL/Uf8Lly4oCNHjuihhx4KaPfBBx8oIyND48eP1yOPPKJLly6FPC6r8mVKpVLkHAAAyxlwptR//Md/aMmSJXrkkUdUVlamtrar30LV19fr2Wef1ZEjRwZtkOiOJ+8BAGAPy5Yt07p163T27Fn94Q9/0N13362cnBz/5ydOnOhX6YOamhp5PB6lpaUFXE9LS9P7778f9J5FixappqZG999/vwzDUGdnp9asWRNwfC83N1cvvfSSsrKydPnyZT399NN64IEHdObMGSUkJATtt62tzb8HlKSGhoaQ5xEu1V1BKTKlAACwngFnSv3sZz/Tnj179OKLL2rEiGuFtqdPn66ysrJBGRx6xvE9AADs4W//9m+1atUqHTp0SLGxsTp48GDA52+//bYWLlw4pGMoKSnRs88+q+eff15lZWU6dOiQDh8+rG3btvnbzJ49W/PmzdPEiROVn5+vI0eOqK6uTq+++mqP/W7fvl1JSUn+19ixY4d0HgPhP76XQKYUAABWM+BMqfLycn3zm9/sdj0pKUl1dXU3MiaEoNJX6JygFAAAluZ0OvXTn/5UP/3pT4N+/uUgVV9SUlIUFRUlt9sdcN3tdvdYD2rz5s1asmSJVq5cKUnKzs5Wc3OzVq9eraeeekpOZ/fvKZOTk3XXXXfp/PnzPY5l48aNKiws9L9vaGiwXGDK3eg7vkemFAAAVjPgTKn09PSgm5S33npL48ePv6FBoXetHR5VN1791o/jewAADC8xMTHKyckJeGKf1+tVcXGxpk6dGvSelpaWboGnqKgoSZJhGEHvaWpq0ocffqjRo0f3OBaXy6XExMSAl9VUd2VKUVMKAADrGXBQatWqVfrhD3+od955Rw6HQ59++qn+7d/+TT/+8Y+1du3awRwjvuTTuqtZUvExUbo5fkQfrQEAQKQpLCzUiy++qP379+vcuXNau3atmpub/U/jW7p0qTZu3OhvX1BQoN27d+uVV17RxYsXdezYMW3evFkFBQX+4NRPfvITHT9+XB999JFOnDihv/7rv1ZUVNSQHy0catVdmVIc3wMAwHoGfHxvw4YN8nq9mjFjhlpaWvTNb35TLpdLjz/+uD81HEPj+ifvORwOk0cDAADCbf78+bpy5Yq2bNmiqqoqTZ48WUePHvUXP7906VJAZtSmTZvkcDi0adMmVVZWatSoUSooKNAzzzzjb1NRUaGFCxeqtrZWo0aN0v33369Tp05p1KhRYZ/fYOnweFXT1C6JQucAAFiRw+gpZztE7e3tOn/+vJqamjRhwgS98MILeu6551RVVTVYYwy7hoYGJSUlqb6+3pJp6L9+55Ke/O2f9eDdqdq7/BtmDwcAgIhm9X2BlVjt7+rTui807ed/0Igoh8q3zZbTyZd5AACEQ6h7gn4f32tra9PGjRt13333afr06Tpy5IgmTJigs2fPKisrS//8z/+sxx577IYGj95V1l198t6YZIqcAwAA9MTd0FXkPCGWgBQAABbU76DUli1btHv3bmVmZurixYuaN2+eVq9erX/6p3/SP/7jP+rixYt64oknhmKs6HL98T0AAGBvn3zyib7//e+bPYyI5PYXOefoHgAAVtTvoNTBgwf18ssv69///d/1+uuvy+PxqLOzU//3f/+nBQsW+ItlYuhcC0rx5D0AAOzus88+0/79+80eRkSiyDkAANbW70LnFRUVysnJkSTdc889crlceuyxxyi4HUYVn189vkemFAAA1vef//mfvX5+4cKFMI1k+PEd36PIOQAA1tTvoJTH41FMTMy1DqKjddNNNw3qoNCztk6PPxWdoBQAANY3d+5cORwO9fZsGb7cGxrXju+RKQUAgBX1OyhlGIaWL18ul+vqN06tra1as2aNRo4cGdDu0KFDgzNCBLhcd/Ubv9gRTt0yMqaP1gAAwGyjR4/W888/rzlz5gT9/E9/+pM/Cx2Dq7qxKyiVQKYUAABW1O+g1LJlywLeL168eNAGg75dX0+Kb1UBALC+nJwclZaW9hiU6iuLCgNX7T++R6YUAABW1O+g1L59+4ZiHAgR9aQAALCXxx9/XM3NzT1+fuedd+rNN98M44iGDzdBKQAALK3fQSmY61qmFEEpAADs4IEHHuj185EjR+pb3/pWmEYzfLR1evR5S4ckCp0DAGBVTrMHgP65likVb/JIAABAKC5cuMDxPBNUdxU5j4l2KiluhMmjAQAAwRCUspnKuquZUmOSyZQCAMAOvvrVr+rKlSv+9/Pnz5fb7TZxRMNDdaPv6J6LOpwAAFgUQSmb4fgeAAD28uUsqSNHjvRaYwqDw92VKZWWQD0pAACsiqCUjbR3elXVVbCT43sAAAA9o8g5AADWR1DKRi7XfyHDkFzRTqXcFGP2cAAAQAgcDke342McJxt6vkypVIqcAwBgWTx9z0auP7rHZhYAAHswDEPLly+Xy3U1ONLa2qo1a9Zo5MiRAe0OHTpkxvAilq+mVCrH9wAAsCyCUjZS2RWUGsPRPQAAbGPZsmUB7xcvXmzSSIYX39P30siUAgDAsghK2UjF5y2SKHIOAICd7Nu3z+whDEvUlAIAwPqoKWUjPHkPAAAgNNeCUmRKAQBgVQSlbORaUIrjewAAAD35ot2jhtZOSVIqmVIAAFgWQSkb4fgeAABA33xFzuNGRCnBRbUKAACsiqCUTXR4vKrqSkO/LZmgFAAAQE/c1xU554nFAABYF0Epm6iqb5XXkGKinUq5idoIAAAAPfHVk+LoHgAA1kZQyiY+8R3dS46T08k3fgAAAD3hyXsAANgDQSmb8BU5H0M9KQAAgF5dabx6fC81gexyAACsjKCUTfDkPQAAgNBcy5QiKAUAgJURlLIJnrwHAAAQmmuFzjm+BwCAlVkiKLVr1y5lZmYqNjZWubm5On36dK/td+7cqaysLMXFxWns2LF67LHH1NraekN9Wl2lP1OKoBQAAEBv3I1dhc4TCEoBAGBlpgelDhw4oMLCQm3dulVlZWWaNGmS8vPzVV1dHbT9r3/9a23YsEFbt27VuXPnVFRUpAMHDujJJ58ccJ92UEFQCgAAICTV/kwpju8BAGBlpgelduzYoVWrVmnFihWaMGGC9uzZo/j4eO3duzdo+xMnTmj69OlatGiRMjMzNXPmTC1cuDAgE6q/fVpdp8erqq7aCNSUAgAA6FlTW6ea2jolSakc3wMAwNJMDUq1t7ertLRUeXl5/mtOp1N5eXk6efJk0HumTZum0tJSfxDqwoULOnLkiB566KEB92l1l+tb5fEaiolyatRNfOMHAADQk+quL/JuckXrJle0yaMBAAC9MfX/1DU1NfJ4PEpLSwu4npaWpvfffz/oPYsWLVJNTY3uv/9+GYahzs5OrVmzxn98byB9trW1qa2tzf++oaHhRqY16HxH9zKSY+V0OkweDQAAgHX5ipyncnQPAADLM/34Xn+VlJTo2Wef1fPPP6+ysjIdOnRIhw8f1rZt2wbc5/bt25WUlOR/jR07dhBHfOMq63z1pDi6BwAA0JvqriLnaRQ5BwDA8kzNlEpJSVFUVJTcbnfAdbfbrfT09KD3bN68WUuWLNHKlSslSdnZ2Wpubtbq1av11FNPDajPjRs3qrCw0P++oaHBUoGpis9bJFHkHAAAoC8UOQcAwD5MzZSKiYlRTk6OiouL/de8Xq+Ki4s1derUoPe0tLTI6QwcdlRUlCTJMIwB9elyuZSYmBjwshKevAcAABAad1dNKYqcAwBgfaZXfywsLNSyZct03333acqUKdq5c6eam5u1YsUKSdLSpUs1ZswYbd++XZJUUFCgHTt26N5771Vubq7Onz+vzZs3q6CgwB+c6qtPu7mWKcXxPQAAgN64G7tqSiWQKQUAgNWZHpSaP3++rly5oi1btqiqqkqTJ0/W0aNH/YXKL126FJAZtWnTJjkcDm3atEmVlZUaNWqUCgoK9Mwzz4Tcp92QKQUAABAaX6ZUGplSAABYnsMwDMPsQVhNQ0ODkpKSVF9fb/pRvk6PV3dvPqpOr6GTGx/U6CQCUwAAhJOV9gVWZ4W/q28/96Y+qm3Rqz+Yqim332LKGAAAGO5C3RPY7ul7w427sU2dXkMjohxK5SkyAAAAPTIMQ24KnQMAYBsEpSyu4rOr9aQykuMU5XSYPBoAAADramzr1BcdHkniyzwAAGyAoJTFUU8KAAAgNNVd9aQSY6MVFxNl8mgAAEBfCEpZnD8olcyT9wAAAHpz7egeWVIAANgBQSmLq6y7enxvDJlSAAAAvapu5Ml7AADYCUEpi+P4HgAAQGh8mVKpCRQ5BwDADghKWdy1oBTH9wAAAHrj7qoplUqmFAAAtkBQysI8XkOf1pEpBQAAEIpqf00pMqUAALADglIW5m5oVafXULTTQW0EAACAPvgypdg3AQBgDwSlLKyyK0tqdHKsopwOk0cDAABgbW5/oXMypQAAsAOCUhZW8fnVJ+/dlkw9KQAAgN4YhnFdoXMypQAAsAOCUhZW8Rn1pAAAAEJR/0WH2ju9kqRUMqUAALAFglIWxpP3AAAAQuPLkro5foRc0VEmjwYAAISCoJSFVdR1Hd8jUwoAAKBX1Y0UOQcAwG4ISllYZVem1BiCUgAAAL3yZUqNSuDoHgAAdkFQyqK8XsP/9D0ypQAAAHrnbiBTCgAAuyEoZVHVjW3q8BiKcjqUzuYKAACgV9X+oBSZUgAA2AVBKYuq+PxqPanRSbGKjmKZAABAoF27dikzM1OxsbHKzc3V6dOne22/c+dOZWVlKS4uTmPHjtVjjz2m1tbWG+rTSnzH98iUAgDAPoh2WNS1J+9xdA8AAAQ6cOCACgsLtXXrVpWVlWnSpEnKz89XdXV10Pa//vWvtWHDBm3dulXnzp1TUVGRDhw4oCeffHLAfVqNu6vQeWoCQSkAAOyCoJRF+epJjUmON3kkAADAanbs2KFVq1ZpxYoVmjBhgvbs2aP4+Hjt3bs3aPsTJ05o+vTpWrRokTIzMzVz5kwtXLgwIBOqv31aTbU/U4rjewAA2AVBKYvyHd8jUwoAAFyvvb1dpaWlysvL819zOp3Ky8vTyZMng94zbdo0lZaW+oNQFy5c0JEjR/TQQw8NuE8r8XoNVTdS6BwAALuJNnsACI7jewAAIJiamhp5PB6lpaUFXE9LS9P7778f9J5FixappqZG999/vwzDUGdnp9asWeM/vjeQPiWpra1NbW1t/vcNDQ0DndYN+bylXR0eQ5I0KoFMKQAA7IJMKYu6FpTi+B4AALgxJSUlevbZZ/X888+rrKxMhw4d0uHDh7Vt27Yb6nf79u1KSkryv8aOHTtII+6f6sargbGUm2I0ggfEAABgG2RKWZDXa6iSTCkAABBESkqKoqKi5Ha7A6673W6lp6cHvWfz5s1asmSJVq5cKUnKzs5Wc3OzVq9eraeeempAfUrSxo0bVVhY6H/f0NBgSmDK3UCRcwAA7IivkizoSlOb2j1eOR1SehKbKwAAcE1MTIxycnJUXFzsv+b1elVcXKypU6cGvaelpUVOZ+C2LyoqSpJkGMaA+pQkl8ulxMTEgJcZfEXOUylyDgCArZApZUG+o3ujk+JIQQcAAN0UFhZq2bJluu+++zRlyhTt3LlTzc3NWrFihSRp6dKlGjNmjLZv3y5JKigo0I4dO3TvvfcqNzdX58+f1+bNm1VQUOAPTvXVp5X5MqXSyJQCAMBWCEpZkO/Je2M4ugcAAIKYP3++rly5oi1btqiqqkqTJ0/W0aNH/YXKL126FJAZtWnTJjkcDm3atEmVlZUaNWqUCgoK9Mwzz4Tcp5W5/U/eI1MKAAA7cRiGYZg9CKtpaGhQUlKS6uvrTUlD3/XmeT33Wrm++/Ux2vG9yWH/8wEAwDVm7wvsxKy/q1Uv/6+O/cWtn829R4v/37iw/bkAACC4UPcEnA2zIJ68BwAAELpq3/G9RI7vAQBgJwSlLMh3fO+2ZI7vAQAA9MXdVeic43sAANgLQSkLqqzzZUoRlAIAAOiNx2voSpMvKEWmFAAAdkJQymIMw1Alx/cAAABC8llzuzxeQ06HdOvIGLOHAwAA+oGglMVcaWpTW6dXToeUnsS3fQAAAL1xd9WTSrnJpegotrYAANgJ/+e2GF+R8/TEWMVEszwAAAC9qW68GpRKpZ4UAAC2Q9TDYnxBqTHUkwIAAOiTv8h5AhnmAADYDUEpi6GeFAAAQOh8x/dSKXIOAIDtEJSymIrPWyTx5D0AAIBQ+DOlOL4HAIDtEJSymAp/phRBKQAAgL5Ud2VKpZEpBQCA7RCUsphrmVIc3wMAAOiLu9EXlCJTCgAAuyEoZSGGYaiyrqvQeTKZUgAAAH3xHd9LpdA5AAC2Q1DKQmqb29Xa4ZXDIY1OZmMFAADQm06PV7VNvppS7J0AALAbglIW4qsnlZYQK1d0lMmjAQAAsLba5nZ5DSnK6dCtI2PMHg4AAOgnglIWwpP3AAAAQufuKnI+6iaXnE6HyaMBAAD9RVDKQnjyHgAAQOh89aQocg4AgD0RlLIQX6bUGIJSAAAAffJlSqVSTwoAAFsiKGUhlf5MqXiTRwIAAGB91V1BKTKlAACwJ4JSFsLxPQAAgND5j+8lkCkFAIAdEZSyCMMwrgtKkSkFAADQF3ejL1OKoBQAAHZEUMoiPmtu1xcdHklSRjIbKwAAgL74MqVSOb4HAIAtEZSyCF+WVGqCS67oKJNHAwAAYH1XyJQCAMDWCEpZRGUd9aQAAABC1eHxqqapXRJBKQAA7IqglEVUfN4iiXpSAAAAobjSePXo3ogoh26OH2HyaAAAwEBYIii1a9cuZWZmKjY2Vrm5uTp9+nSPbb/97W/L4XB0ez388MP+NsuXL+/2+axZs8IxlQHjyXsAAAChczdcPbqXmhArh8Nh8mgAAMBARJs9gAMHDqiwsFB79uxRbm6udu7cqfz8fJWXlys1NbVb+0OHDqm9vd3/vra2VpMmTdK8efMC2s2aNUv79u3zv3e5rF0AkyfvAQAAhI4i5wAA2J/pmVI7duzQqlWrtGLFCk2YMEF79uxRfHy89u7dG7T9LbfcovT0dP/r2LFjio+P7xaUcrlcAe1uvvnmcExnwHzH98aQKQUAANCnal+R8wTqSQEAYFemBqXa29tVWlqqvLw8/zWn06m8vDydPHkypD6Kioq0YMECjRw5MuB6SUmJUlNTlZWVpbVr16q2tnZQxz6YDMPg+B4AAEA/+I7vpZEpBQCAbZl6fK+mpkYej0dpaWkB19PS0vT+++/3ef/p06d15swZFRUVBVyfNWuWvvvd7+r222/Xhx9+qCeffFKzZ8/WyZMnFRUV1a2ftrY2tbW1+d83NDQMcEYDU9fSoZZ2jyRpTDJBKQAAgL5cO75HphQAAHZlek2pG1FUVKTs7GxNmTIl4PqCBQv8/52dna2JEyfqjjvuUElJiWbMmNGtn+3bt+vpp58e8vH2xJclNSrBpdgR3YNmAAAACHQtU4qgFAAAdmXq8b2UlBRFRUXJ7XYHXHe73UpPT+/13ubmZr3yyit69NFH+/xzxo8fr5SUFJ0/fz7o5xs3blR9fb3/9cknn4Q+iUHgqyfF0T0AAIDQXGm8minF8T0AAOzL1KBUTEyMcnJyVFxc7L/m9XpVXFysqVOn9nrvwYMH1dbWpsWLF/f551RUVKi2tlajR48O+rnL5VJiYmLAK5x8mVIc3QMAAAgNmVIAANif6U/fKyws1Isvvqj9+/fr3LlzWrt2rZqbm7VixQpJ0tKlS7Vx48Zu9xUVFWnu3Lm69dZbA643NTXp8ccf16lTp/TRRx+puLhYc+bM0Z133qn8/PywzKm/rmVKxZs8EgAAAOtr6/To85YOSTx9DwAAOzO9ptT8+fN15coVbdmyRVVVVZo8ebKOHj3qL35+6dIlOZ2BsbPy8nK99dZbev3117v1FxUVpffee0/79+9XXV2dMjIyNHPmTG3btk0ulzXTuyvrePIeAABAqKq7ipzHRDuVGGf6dhYAAAyQJf4vvn79eq1fvz7oZyUlJd2uZWVlyTCMoO3j4uL02muvDebwhpzv+B5BKQAAgL5VN/qO7rnkcDhMHg0AABgo04/vDXeGYVwXlOL4HgAAQF/cXZlSHN0DAMDeCEqZrP6LDjW1dUqi0DkAAEAoKHIOAEBkIChlMl+WVMpNMYqLiTJ5NAAAANbny5RKTbRmvVAAABAaglIm8wWlxnB0DwAAICTVZEoBABARCEqZrOLzFkkUOQcAAAhVdWNXTSkypQAAsDWCUibjyXsAAAD9468pRaFzAABsjaCUyfxBKYqcAwAAhMQXlErl+B4AALZGUMpk147vUVMKAACgL1+0e9TQevXJxRzfAwDA3ghKmayyjuN7AAAAoapuvJolFTciSje5ok0eDQAAuBEEpUxU/0WHGru+6RtDUAoAAKBP7oZrRc4dDofJowEAADeCoJSJfEf3bh0Zo/gYvukDAADoC/WkAACIHASlTMST9wAAAPrH/+Q9glIAANgeQSkT+YJSHN0DAAAITXVj1/G9BIqcAwBgdwSlTFTpz5TiyXsAAAChqCZTCgCAiEFQykS+mlIc3wMAAAiNr9B5aiKZUgAA2B1BKRNRUwoAAKB/3I1kSgEAECkISpnoWqYUx/cAAABCUd2VKUVQCgAA+yMoZZKG1g41tHZKksYkkykFAADQl6a2TjW1Xd0/pVLoHAAA2yMoZRJfkfOb40dopCva5NEAAABYn6/I+U2uaPZPAABEAIJSJqngyXsAAAD9QpFzAAAiC0Epk/DkPQAAcCN27dqlzMxMxcbGKjc3V6dPn+6x7be//W05HI5ur4cfftjfZvny5d0+nzVrVjimErJqX5HzBOpJAQAQCch7NglP3gMAAAN14MABFRYWas+ePcrNzdXOnTuVn5+v8vJypaamdmt/6NAhtbe3+9/X1tZq0qRJmjdvXkC7WbNmad++ff73Lpe1MpLcDb4n71lrXAAAYGDIlDKJL1OKIucAAKC/duzYoVWrVmnFihWaMGGC9uzZo/j4eO3duzdo+1tuuUXp6en+17FjxxQfH98tKOVyuQLa3XzzzeGYTsh48h4AAJGFoJRJKuuoKQUAAPqvvb1dpaWlysvL819zOp3Ky8vTyZMnQ+qjqKhICxYs0MiRIwOul5SUKDU1VVlZWVq7dq1qa2t77aetrU0NDQ0Br6HkbvTVlCIoBQBAJCAoZRL/8b1byJQCAAChq6mpkcfjUVpaWsD1tLQ0VVVV9Xn/6dOndebMGa1cuTLg+qxZs/Tyyy+ruLhYv/jFL3T8+HHNnj1bHo+nx762b9+upKQk/2vs2LEDm1SIOL4HAEBkoaaUCRpbO1TX0iGJ43sAACC8ioqKlJ2drSlTpgRcX7Bggf+/s7OzNXHiRN1xxx0qKSnRjBkzgva1ceNGFRYW+t83NDQMaWCq2h+UIlMKAIBIQKaUCXxH95LjRyghdoTJowEAAHaSkpKiqKgoud3ugOtut1vp6em93tvc3KxXXnlFjz76aJ9/zvjx45WSkqLz58/32MblcikxMTHgNVQMw5C7q6ZUagKZUgAARAKCUiao+OxqUIosKQAA0F8xMTHKyclRcXGx/5rX61VxcbGmTp3a670HDx5UW1ubFi9e3OefU1FRodraWo0ePfqGxzwYGts69UXH1aOEqQlkSgEAEAkISpnA9+S9224mKAUAAPqvsLBQL774ovbv369z585p7dq1am5u1ooVKyRJS5cu1caNG7vdV1RUpLlz5+rWW28NuN7U1KTHH39cp06d0kcffaTi4mLNmTNHd955p/Lz88Myp774ju4lxkYrLibK5NEAAIDBQE0pE/DkPQAAcCPmz5+vK1euaMuWLaqqqtLkyZN19OhRf/HzS5cuyekM/O6xvLxcb731ll5//fVu/UVFRem9997T/v37VVdXp4yMDM2cOVPbtm2Ty2WNo3K+o3vUkwIAIHIQlDKB/8l7ZEoBAIABWr9+vdavXx/0s5KSkm7XsrKyZBhG0PZxcXF67bXXBnN4g85NkXMAACIOx/dMcC0oRaYUAABAKKobu4qcJ1ojcwsAANw4glIm8NWUotA5AABAaMiUAgAg8hCUCrPmtk593tIhSRrD8T0AAICQVPtqSiWQKQUAQKQgKBVmviLnibHRSoobYfJoAAAA7IFMKQAAIg9BqTDzHd2jnhQAAEDo3I1Xg1KpBKUAAIgYBKXCjCfvAQAA9I9hGHJ3Hd9L5fgeAAARI9rsAQw3BRMzdHd6olzRxAMBAABCdWjtNLkbWjm+BwBABCEoFWY3j4zRlNtvMXsYAAAAtuFwOHTPmCTdMybJ7KEAAIBBRLoOAAAAAAAAwo6gFAAAAAAAAMKOoBQAAAAAAADCjqAUAAAAAAAAwo6gFAAAAAAAAMKOoBQAAAAAAADCjqAUAAAAAAAAwo6gFAAAAAAAAMKOoBQAAAAAAADCjqAUAAAAAAAAwo6gFAAAAAAAAMIu2uwBWJFhGJKkhoYGk0cCAADM5tsP+PYH6Bl7KAAAIIW+fyIoFURjY6MkaezYsSaPBAAAWEVjY6OSkpLMHoalsYcCAADX62v/5DD42q8br9erTz/9VAkJCXI4HIPef0NDg8aOHatPPvlEiYmJg96/VQ3HeQ/HOUvMm3kPD8x7+MzbMAw1NjYqIyNDTieVD3ozlHuo4fhvT2LezHt4YN7DZ97Dcc7S8Jx3qPsnMqWCcDqduu2224b8z0lMTBw2/yCvNxznPRznLDHv4YZ5Dy/Dbd5kSIUmHHuo4fZvz4d5Dy/Me3gZjvMejnOWht+8Q9k/8XUfAAAAAAAAwo6gFAAAAAAAAMKOoJQJXC6Xtm7dKpfLZfZQwmo4zns4zlli3sx7eGDew2veMN9w/bfHvJn3cMC8h8+8h+OcpeE771BQ6BwAAAAAAABhR6YUAAAAAAAAwo6gFAAAAAAAAMKOoBQAAAAAAADCjqAUAAAAAAAAwo6g1BDZtWuXMjMzFRsbq9zcXJ0+fbrX9gcPHtTdd9+t2NhYZWdn68iRI2Ea6eDYvn27vvGNbyghIUGpqamaO3euysvLe73npZdeksPhCHjFxsaGacSD4+/+7u+6zeHuu+/u9R67r7UkZWZmdpu3w+HQunXrgra341r/93//twoKCpSRkSGHw6Hf/e53AZ8bhqEtW7Zo9OjRiouLU15enj744IM+++3v74Zw623eHR0deuKJJ5Sdna2RI0cqIyNDS5cu1aefftprnwP5OQm3vtZ7+fLl3eYwa9asPvu183pLCvpz7nA49Nxzz/XYpx3WG9bF/on9U0/svtbS8Ng/Seyh2EP9LuBz9lDsofpCUGoIHDhwQIWFhdq6davKyso0adIk5efnq7q6Omj7EydOaOHChXr00Uf17rvvau7cuZo7d67OnDkT5pEP3PHjx7Vu3TqdOnVKx44dU0dHh2bOnKnm5uZe70tMTNTly5f9r48//jhMIx48X/va1wLm8NZbb/XYNhLWWpL+53/+J2DOx44dkyTNmzevx3vsttbNzc2aNGmSdu3aFfTzv//7v9e//Mu/aM+ePXrnnXc0cuRI5efnq7W1tcc++/u7wQy9zbulpUVlZWXavHmzysrKdOjQIZWXl+s73/lOn/325+fEDH2ttyTNmjUrYA6/+c1veu3T7ustKWC+ly9f1t69e+VwOPQ3f/M3vfZr9fWGNbF/Yv/Uk0hYa2l47J8k9lDsobpjD8UeqlcGBt2UKVOMdevW+d97PB4jIyPD2L59e9D23/ve94yHH3444Fpubq7xgx/8YEjHOZSqq6sNScbx48d7bLNv3z4jKSkpfIMaAlu3bjUmTZoUcvtIXGvDMIwf/vCHxh133GF4vd6gn9t9rSUZv/3tb/3vvV6vkZ6ebjz33HP+a3V1dYbL5TJ+85vf9NhPf383mO3L8w7m9OnThiTj448/7rFNf39OzBZs3suWLTPmzJnTr34icb3nzJljPPjgg722sdt6wzrYP7F/6kkkrrVhRP7+yTDYQ/WGPVTPInG92UP1jEypQdbe3q7S0lLl5eX5rzmdTuXl5enkyZNB7zl58mRAe0nKz8/vsb0d1NfXS5JuueWWXts1NTVp3LhxGjt2rObMmaOzZ8+GY3iD6oMPPlBGRobGjx+vRx55RJcuXeqxbSSudXt7u371q1/p+9//vhwOR4/tImGtfS5evKiqqqqAtUxKSlJubm6PazmQ3w12UF9fL4fDoeTk5F7b9efnxKpKSkqUmpqqrKwsrV27VrW1tT22jcT1drvdOnz4sB599NE+20bCeiO82D9dxf4puEhc6+G4f5LYQ12PPVRwkbje7KF6R1BqkNXU1Mjj8SgtLS3gelpamqqqqoLeU1VV1a/2Vuf1evWjH/1I06dP1z333NNju6ysLO3du1e///3v9atf/Uper1fTpk1TRUVFGEd7Y3Jzc/XSSy/p6NGj2r17ty5evKgHHnhAjY2NQdtH2lpL0u9+9zvV1dVp+fLlPbaJhLW+nm+9+rOWA/ndYHWtra164okntHDhQiUmJvbYrr8/J1Y0a9YsvfzyyyouLtYvfvELHT9+XLNnz5bH4wnaPhLXe//+/UpISNB3v/vdXttFwnoj/Ng/sX9i/9RdJKz1l7GHuoo9FHuoYCJhvQci2uwBIPKsW7dOZ86c6fP869SpUzV16lT/+2nTpumv/uqv9MILL2jbtm1DPcxBMXv2bP9/T5w4Ubm5uRo3bpxeffXVkCLhkaCoqEizZ89WRkZGj20iYa0RqKOjQ9/73vdkGIZ2797da9tI+DlZsGCB/7+zs7M1ceJE3XHHHSopKdGMGTNMHFn47N27V4888kifRXYjYb0BM7B/Gl6/J9g/DV/sodhD9SQS1nsgyJQaZCkpKYqKipLb7Q647na7lZ6eHvSe9PT0frW3svXr1+u//uu/9Oabb+q2227r170jRozQvffeq/Pnzw/R6IZecnKy7rrrrh7nEElrLUkff/yx3njjDa1cubJf99l9rX3r1Z+1HMjvBqvybaY+/vhjHTt2rNdv+ILp6+fEDsaPH6+UlJQe5xBJ6y1Jf/zjH1VeXt7vn3UpMtYbQ4/9E/sn9k99i4S1Zg/FHoo9VOgiYb1DQVBqkMXExCgnJ0fFxcX+a16vV8XFxQHfdFxv6tSpAe0l6dixYz22tyLDMLR+/Xr99re/1R/+8Afdfvvt/e7D4/Hoz3/+s0aPHj0EIwyPpqYmffjhhz3OIRLW+nr79u1TamqqHn744X7dZ/e1vv3225Wenh6wlg0NDXrnnXd6XMuB/G6wIt9m6oMPPtAbb7yhW2+9td999PVzYgcVFRWqra3tcQ6Rst4+RUVFysnJ0aRJk/p9bySsN4Ye+yf2T+yf+hYJa80eij0Ue6jQRcJ6h8TcOuuR6ZVXXjFcLpfx0ksvGX/5y1+M1atXG8nJyUZVVZVhGIaxZMkSY8OGDf72b7/9thEdHW38wz/8g3Hu3Dlj69atxogRI4w///nPZk2h39auXWskJSUZJSUlxuXLl/2vlpYWf5svz/vpp582XnvtNePDDz80SktLjQULFhixsbHG2bNnzZjCgPz4xz82SkpKjIsXLxpvv/22kZeXZ6SkpBjV1dWGYUTmWvt4PB7jK1/5ivHEE090+ywS1rqxsdF49913jXfffdeQZOzYscN49913/U9I+fnPf24kJycbv//974333nvPmDNnjnH77bcbX3zxhb+PBx980PjlL3/pf9/X7wYr6G3e7e3txne+8x3jtttuM/70pz8F/Ky3tbX5+/jyvPv6ObGC3ubd2Nho/OQnPzFOnjxpXLx40XjjjTeMr3/968ZXv/pVo7W11d9HpK23T319vREfH2/s3r07aB92XG9YE/sn9k/snyJjrdlDsYdiD3UVe6jQEJQaIr/85S+Nr3zlK0ZMTIwxZcoU49SpU/7PvvWtbxnLli0LaP/qq68ad911lxETE2N87WtfMw4fPhzmEd8YSUFf+/bt87f58rx/9KMf+f+O0tLSjIceesgoKysL/+BvwPz5843Ro0cbMTExxpgxY4z58+cb58+f938eiWvt89prrxmSjPLy8m6fRcJav/nmm0H/Tfvm5fV6jc2bNxtpaWmGy+UyZsyY0e3vYty4ccbWrVsDrvX2u8EKepv3xYsXe/xZf/PNN/19fHneff2cWEFv825paTFmzpxpjBo1yhgxYoQxbtw4Y9WqVd02RpG23j4vvPCCERcXZ9TV1QXtw47rDeti/8T+yTAic619In3/ZBjsodhDsYfyYQ8VGodhGMZAs6wAAAAAAACAgaCmFAAAAAAAAMKOoBQAAAAAAADCjqAUAAAAAAAAwo6gFAAAAAAAAMKOoBQAAAAAAADCjqAUAAAAAAAAwo6gFAAAAAAAAMKOoBQAAAAAAADCjqAUAAAAAAAAwo6gFAAAAAAAAMKOoBQAAAAAAADCjqAUAAAAAAAAwu7/A7uGf3x7BW6bAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x800 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot the training history\n",
"plot_graphs(history)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "8dd56fac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"28/28 [==============================] - 1s 13ms/step\n",
" precision recall f1-score support\n",
"\n",
" 1 0.00 0.00 0.00 15\n",
" 2 0.00 0.00 0.00 37\n",
" 3 0.91 0.81 0.85 36\n",
" 4 0.00 0.00 0.00 4\n",
" 6 0.40 0.45 0.43 467\n",
" 7 0.59 0.54 0.57 100\n",
" 8 0.00 0.00 0.00 16\n",
" 9 0.00 0.00 0.00 56\n",
" 10 0.33 0.53 0.40 97\n",
" 11 0.25 0.21 0.23 478\n",
" 12 0.48 0.52 0.50 684\n",
" 13 0.26 0.15 0.19 236\n",
" 14 0.36 0.23 0.28 65\n",
" 15 0.17 0.02 0.04 45\n",
" 16 0.00 0.00 0.00 16\n",
" 17 0.00 0.00 0.00 11\n",
" 19 0.40 0.11 0.17 55\n",
" 20 0.40 0.31 0.35 465\n",
" 21 0.00 0.00 0.00 2\n",
" 22 0.31 0.40 0.35 143\n",
" 23 0.46 0.53 0.49 49\n",
" 24 0.00 0.00 0.00 6\n",
" 25 0.00 0.00 0.00 2\n",
" 26 0.00 0.00 0.00 2\n",
" 27 0.00 0.00 0.00 3\n",
" 28 1.00 0.38 0.55 8\n",
" 29 0.00 0.00 0.00 11\n",
" 30 0.50 0.01 0.03 74\n",
" 31 0.80 0.88 0.84 32\n",
" 32 0.00 0.00 0.00 7\n",
" 33 0.34 0.37 0.36 558\n",
" 34 0.00 0.00 0.00 12\n",
" 35 0.00 0.00 0.00 10\n",
" 36 0.29 0.18 0.23 163\n",
" 37 0.00 0.00 0.00 10\n",
" 38 0.00 0.00 0.00 4\n",
" 40 0.00 0.00 0.00 11\n",
" 41 0.00 0.00 0.00 7\n",
" 42 0.91 0.89 0.90 71\n",
" 43 0.00 0.00 0.00 11\n",
" 45 0.52 0.51 0.51 505\n",
" 46 0.00 0.00 0.00 1\n",
" 47 0.00 0.00 0.00 10\n",
" 48 0.00 0.00 0.00 15\n",
" 49 0.42 0.57 0.48 161\n",
" 50 0.20 0.22 0.21 460\n",
" 51 0.63 0.54 0.58 924\n",
" 52 0.33 0.24 0.28 199\n",
" 53 0.38 0.40 0.39 107\n",
" 54 0.16 0.14 0.15 59\n",
" 55 0.29 0.05 0.09 78\n",
" 56 0.25 0.08 0.12 13\n",
" 58 0.29 0.22 0.25 188\n",
" 59 0.40 0.28 0.33 385\n",
" 60 0.00 0.00 0.00 2\n",
" 61 0.37 0.29 0.32 119\n",
" 62 0.59 0.48 0.53 48\n",
" 63 0.00 0.00 0.00 9\n",
" 64 0.00 0.00 0.00 4\n",
" 65 0.00 0.00 0.00 2\n",
" 66 0.00 0.00 0.00 1\n",
" 67 0.00 0.00 0.00 3\n",
" 68 0.00 0.00 0.00 9\n",
" 69 0.00 0.00 0.00 9\n",
" 70 0.00 0.00 0.00 1\n",
" 71 0.24 0.17 0.20 354\n",
" 72 0.00 0.00 0.00 3\n",
" 73 0.00 0.00 0.00 6\n",
" 74 0.29 0.20 0.24 127\n",
" 75 0.00 0.00 0.00 8\n",
" 76 0.00 0.00 0.00 7\n",
" 78 0.98 0.99 0.98 79004\n",
"\n",
" accuracy 0.93 86900\n",
" macro avg 0.22 0.18 0.19 86900\n",
"weighted avg 0.92 0.93 0.93 86900\n",
"\n"
]
}
],
"source": [
"from sklearn.metrics import classification_report\n",
"\n",
"# Get the model predictions\n",
"y_pred = model.predict(test_sequences_padded)\n",
"\n",
"# Convert the predictions from one-hot encoded format to the label format\n",
"y_pred_labels = np.argmax(y_pred, axis=2)\n",
"test_labels_labels = np.argmax(test_labels, axis=2)\n",
"\n",
"# Print the classification report\n",
"print(classification_report(test_labels_labels.reshape(-1), y_pred_labels.reshape(-1), zero_division=0))\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "fe75e157",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABg4AAAY1CAYAAAD6kCXGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3RUxfvH8c9uOpBegAAhCYHQq3QEKVJEpNhFiqDwE0QRv4goSFGMvVBFUbpgA2xUC2ChQ+jSOwHSezZl9/dHdHFNgo1ks+T9Ouee486dmTxzcvDJ3bkzY7BYLBYBAAAAAAAAAABIMto7AAAAAAAAAAAAUHowcQAAAAAAAAAAAKyYOAAAAAAAAAAAAFZMHAAAAAAAAAAAACsmDgAAAAAAAAAAgBUTBwAAAAAAAAAAwIqJAwAAAAAAAAAAYMXEAQAAAAAAAAAAsGLiAAAAAAAAAAAAWDFxAAAAAAAAAAAArJg4AAAAAAAAAACgFNq8ebN69eql4OBgGQwGrVq16i/bbNy4UU2bNpWbm5siIiK0YMGCf/xzmTgAAAAAAAAAAKAUSk9PV6NGjTRr1qy/Vf/UqVPq2bOnOnbsqOjoaI0ePVoPP/yw1q1b949+rsFisVj+TcAAAAAAAAAAAKBkGAwGrVy5Un369Cmyzrhx4/TNN9/owIED1rL77rtPSUlJWrt27d/+Waw4AAAAAAAAAACghJhMJqWkpNhcJpPpuvS9ZcsWdenSxaasW7du2rJlyz/qx/m6RAO7y8q1dwQAAAAAAACA43Lnm9J/xaPJY/YOweGM6x2gKVOm2JRNmjRJkydP/s99X7p0SRUrVrQpq1ixolJSUpSZmSkPD4+/1Q//HAAAAAAAAAAAKCHjx4/XmDFjbMrc3NzsFE3hmDgAAAAAAAAAAKCEuLm5FdtEQaVKlXT58mWbssuXL8vLy+tvrzaQOOMAAAAAAAAAAIAbQuvWrfXdd9/ZlG3YsEGtW7f+R/0wcQAAAAAAAAAAQCmUlpam6OhoRUdHS5JOnTql6OhonT17VlL+tkcDBw601v+///s/nTx5Uk8//bR+/fVXzZ49W5988omefPLJf/RzmTgoBTZv3qxevXopODhYBoNBq1atsndIgENa/tFS9bi1k5o3aaD+992t/fv2XbP++nVr1Pv27mrepIHu7NNLP27eZHPfYrFo1ox31LlDO7Vo2lDDhg7WmTOni3EEAABHQt4BAJQUcg4AlF07d+5UkyZN1KRJE0nSmDFj1KRJEz3//POSpJiYGOskgiSFhYXpm2++0YYNG9SoUSO98cYbmjdvnrp16/aPfi4TB6VAenq6GjVqpFmzZtk7FMBhrV2zWq+/GqXhI0Zq+acrFRlZW48OH6r4+PhC60fv2a1nxj6lvv3u0sefrVLHTp01etRIHTt21Fpn/gfva9nSxZowabKWLPtEHh4eenTYUJlMppIaFgCglCLvAABKCjkHQKlnMHL90+sfuOWWW2SxWApcCxYskCQtWLBAGzduLNBmz549MplMOnHihAYPHvzPf60Wi8Xyj1uh2BgMBq1cuVJ9+vT5R+2ycosnHsBR9L/vbtWr30DPTsifbTWbzerauYPuf2CAhj4yrED9sU+NVmZmpmbOnmste/D+exRZu7YmTpoqi8WiLrfcrIGDH9Kgh4ZKklJTU9WpfRtNnfayetzWs2QGBgAolcg7AICSQs4BSo67s70jcEweTR+3dwgOJ3P3dHuH8JdYcQDA4eVkZ+vwoYNq1bqNtcxoNKpVqzbat3dPoW32RUerVSvbQ2HatG2nfb/tF3fh/HnFxcWqZaurfXp6eqpBw0ZF9gkAKBvIOwCAkkLOAQDYCxMHABxeYlKi8vLy5O/vb1Pu7++vuLi4QtvExcXJ3z+gYP34uN/ux+aXBfz9PgEAZQN5BwBQUsg5AAB7YQGOAzKZTAX2HbQ4ucnNzc1OEQEAAAAAAAAAbhSsOHBAUVFR8vb2trleeyXK3mEBduPr4ysnJ6cCh4PFx8crICCg0DYBAQGKj48rWP+3N3MCAgLzy+L+fp8AgLKBvAMAKCnkHACAvTBx4IDGjx+v5ORkm2vsuPH2DguwGxdXV9WpW0/btm6xlpnNZm3btkUNGzUptE3Dxo21betWm7KtW35Rw8aNJUlVqlZVQECgtm272mdaWpr279tbZJ8AgLKBvAMAKCnkHAAOwWDg+qeXA2CrolIgLS1Nx48ft34+deqUoqOj5efnp5CQkAL13dwKbkuUlVvsYQKl2oBBD2nis+NUr1591W/QUEsWL1RmZqb69O0nSXpu/NMKCqqoJ558SpLU/8GBGjp4gBYu+FDt23fQ2jWrdfDAAU2cPFWSZDAY1H/AQL0/d46qh1RXlapVNWvGOwoMClKnzl3sNk4AQOlA3gEAlBRyDgDAHpg4KAV27typjh07Wj+PGTNGkjRo0CAtWLDATlEBjqV7j9uUmJCg2TOnKy4uVpG162j23Hny/22p7aWYGBkNVxdZNW7SVFGvvq6Z09/WjLffVEj1UL09Y5Zq1qxlrfPQ0EeUmZmpqZOfV2pqipo0babZc+dxnggAgLwDACgx5BwAgD0YLBaLxd5B4L9jxQEAAAAAAADw77nzivW/4tHsCXuH4HAyd71j7xD+EmccAAAAAAAAAAAAKyYOAAAAAAAAAACAFQtwAAAAAAAAAAD/joF3029E/FYBAAAAAAAAAIAVEwcAAAAAAAAAAMCKiQMAAAAAAAAAAGDFxAEAAAAAAAAAALBi4gAAAAAAAAAAAFg52zsAAAAAAAAAAICDMhjsHQGKASsOSoGoqCg1b95cnp6eCgoKUp8+fXTkyBF7hwU4nOUfLVWPWzupeZMG6n/f3dq/b981669ft0a9b++u5k0a6M4+vfTj5k029y0Wi2bNeEedO7RTi6YNNWzoYJ05c7oYRwAAcCTkHQBASSHnAABKGhMHpcCmTZs0cuRIbd26VRs2bFBOTo66du2q9PR0e4cGOIy1a1br9VejNHzESC3/dKUiI2vr0eFDFR8fX2j96D279czYp9S33136+LNV6tips0aPGqljx45a68z/4H0tW7pYEyZN1pJln8jDw0OPDhsqk8lUUsMCAJRS5B0AQEkh5wAA7MFgsVgs9g4CtmJjYxUUFKRNmzapffv2f6tNVm4xBwWUcv3vu1v16jfQsxOelySZzWZ17dxB9z8wQEMfGVag/tinRiszM1MzZ8+1lj14/z2KrF1bEydNlcViUZdbbtbAwQ9p0ENDJUmpqanq1L6Npk57WT1u61kyAwMAlErkHQBASSHnACXHnU3d/xWP5mPsHYLDydzxpr1D+EusOCiFkpOTJUl+fn52jgRwDDnZ2Tp86KBatW5jLTMajWrVqo327d1TaJt90dFq1aq1TVmbtu20LzpaknTh/HnFxcWqZaurfXp6eqpBw0ZF9gkAKBvIOwCAkkLOAQDYCxMHpYzZbNbo0aPVtm1b1a9f397hAA4hMSlReXl58vf3tyn39/dXXFxcoW3i4uLk7x9QsH583G/3Y/PLAv5+nwCAsoG8AwAoKeQcAIC9sACnlBk5cqQOHDign376qcg6JpOpwL6DFic3ubm5FXd4AAAAAAAAAHCVgXfTb0T8VkuRxx57TF9//bV++OEHVa1atch6UVFR8vb2trleeyWqBCMFShdfH185OTkVOBwsPj5eAQEBhbYJCAhQfHxcwfq/vZkTEBCYXxb39/sEAJQN5B0AQEkh5wAA7IWJg1LAYrHoscce08qVK/X9998rLCzsmvXHjx+v5ORkm2vsuPElFC1Q+ri4uqpO3XratnWLtcxsNmvbti1q2KhJoW0aNm6sbVu32pRt3fKLGjZuLEmqUrWqAgICtW3b1T7T0tK0f9/eIvsEAJQN5B0AQEkh5wAA7IWtikqBkSNH6qOPPtIXX3whT09PXbp0SZLk7e0tDw+PAvXd3ApuS5SVWyKhAqXWgEEPaeKz41SvXn3Vb9BQSxYvVGZmpvr07SdJem780woKqqgnnnxKktT/wYEaOniAFi74UO3bd9DaNat18MABTZw8VZJkMBjUf8BAvT93jqqHVFeVqlU1a8Y7CgwKUqfOXew2TgBA6UDeAQCUFHIOAMAemDgoBebMmSNJuuWWW2zK58+fr8GDB5d8QIAD6t7jNiUmJGj2zOmKi4tVZO06mj13nvx/W2p7KSZGxj/sude4SVNFvfq6Zk5/WzPeflMh1UP19oxZqlmzlrXOQ0MfUWZmpqZOfl6pqSlq0rSZZs+dx3kiAADyDgCgxJBzAAD2YLBYLBZ7B4H/jhUHAAAAAAAAwL/nzivW/4pHi//ZOwSHk7n9dXuH8Jf45wAAAAAAAAAA+HcMBntHgGLA4cgAAAAAAAAAAMCKiQMAAAAAAAAAAGDFxAEAAAAAAAAAALBi4gAAAAAAAAAAAFhxOPINwrfXW/YOAQBQRngGV7F3CACAMiQzLdPeIQAAyojUjwfZOwSg1GDiAAAAAAAAAADw7xjY1OZGxG8VAAAAAAAAAABYMXEAAAAAAAAAAACsmDgAAAAAAAAAAABWnHFQCsyZM0dz5szR6dOnJUn16tXT888/rx49etg3MMDBDL+9kZ68q5kq+pbX/pOxGjPnB+08ernQus5ORo29t7ke7FJXwf4VdPR8oiZ8+KM27DpjrdO2fhU9eddNahoRpMr+FXTP1C/11ZYTJTUcAEApN6RjhEZ0j1SQt7sOnkvSsx/t0Z5TCUXWH9alpgZ3rKEqfuWUkJatr3ae17TP98mUa5YktaoVoJHdaqtRqK8q+Xho0MyftGbPxZIaDgCgFHuka6Se6FVfFX08tP9MgsbO365dJ+KKrD/itjp6+NZIVQ0or/gUk1ZtO6PJy3bJlJOfc8bf1UjP3t3Yps3RC8lqNmZVMY4CAOBIWHFQClStWlUvv/yydu3apZ07d6pTp07q3bu3Dh48aO/QAIdxV/taemVYe01bulWtRy3VvlNx+vLFfgr09ii0/uRBbfRwj4YaM+cHNRm+SPNW79PHE+9QoxqB1jrl3V20/2SsRs/+vqSGAQBwEL2bV9OUexvp9S8PqsuUDTp4LkkfP9leAZ5uhdbv1zJEE+5qqNe/PKR2E9bqyQU71KdFNT13ZwNrnXKuzjp4PknPLNldUsMAADiAfq1DFTWwuV7+fK/aPfOVDpxJ1MpnuyjAy73Q+ne3DdOU+5sp6rO9umnMKo2c+4vubB2qyfc1tal36Fyiagz72Hp1nbSmJIYDAHAQrDgoBXr16mXzedq0aZozZ462bt2qevXq2SkqwLE83rep5q85oMUbDkmSRs34Vj2ah2lQ1/p6/dMdBeo/0KmOXlm+Xet2nJYkvf/NPnVqHKIn+jXTkNfWSpLW7zyt9TtPl9QQAAAO5P+61tKSzSe1/OfTkqSxi3fp1oaVdX+7MM1Y82uB+s1r+Gv78Tit2HZWknQuPkMrt51V03A/a53vD1zS9wculUj8AADH8VjPulrw3TEt2XhckvTEvC3q1rSqBnaM0JtfHChQv2WtIG09ckWf/nxKknQ2Nl2f/XJKN0UE2NTLzbPoSnJW8Q8AwI3PYLB3BCgGrDgoZfLy8rR8+XKlp6erdevW9g4HcAguzkY1qVlR30eftZZZLNL30WfVok7lQtu4ujgpKzvXpiwzO1dt6gUXa6wAAMfn4mRUo+q+2nz46nZ4Fou0+dAV3VTDv9A2O07Eq1F1XzUJy58oqB5QXp0bVNa3+5goAAAUzcXJqCbh/tq4/+rWdRaLtHH/RbWoGVhom21Hr6hxuL+a1cifKAgNqqCuTapo/Z4LNvVqVPLU0Tl3a9/0fpo36mZV9S9ffAMBADgcVhyUEvv371fr1q2VlZWlChUqaOXKlapbt669wwIcQoCXh5ydjLqSmGFTfiUxQ5FVfQtt8+2uM3q8XzP9dOCCTsYkqWPjEPVuEyEnJ2bJAQDX5ufpKmcno2JTTDblsSlZiqjsWWibFdvOyq+Cm756pqMMMsjF2agFPxzXO6sPl0TIAAAH5e/llv+s86eVAVeSs1Qz2LvQNp/+fEr+nm5aP7W7NefMW39Er6/ab62z83ic/m/Ozzp2MUWVfD00/s5GWjelu1r+7wulZeUW2i8AoGxh4qCUiIyMVHR0tJKTk/XZZ59p0KBB2rRpU6GTByaTSSaT7YOqxZwrg5FfJ/B3/W/uRs1+vIv2vjdIFkknY5K0aMNBDepa396hAQBuQG0iAzW6Z22NW7Jbu08mKCyogl68v7HG3F5Xb359yN7hAQBuIO3qVtT/+jbUmA+2acexWNWo5KVXBjfX04kN9eqKfZKkDdFXVx8cPJuoncdidXDWXerXOlSLfjhur9ABAKUI3zSXEq6uroqIiJAkNWvWTDt27NA777yjuXPnFqgbFRWlKVOm2JQ51egql5rdSyRWoLSJS8lUbp5ZQb7lbMqDfMvp0p9WIVjbJGfqnhe+kpuLk/y93HUxPl0vDmmnU5eSSyJkAIADS0jNVm6eWYFetgchB3q5F7lX9DN96uvTLWe09Mf8/aYPX0hWOTcnvT7wJr31zSFZLMUeNgDAAcWnmPKfdbxtD0IO8nbXlaTMQttMvKeJlm8+oYXfH5MkHTqXpHJuzpo+rLVeW7mv0JyTnJGj4zEpCq/kdd3HAABwTJxxUEqZzeYCqwp+N378eCUnJ9tczjW6lHCEQOmRk2vWnmOX1bFxNWuZwSB1bFxN2w/HXLOtKSdPF+PT5exkVJ+2NfX1lhPFHS4AwMHl5Jm190yibq5T0VpmMEg31wnSzhPxhbbxcHWS+U9f1OT9VmAQ2+QBAAqXk2fWnpPx6tDg6tltBoPUoX5lbT8WW2gbDzdnmf80O/BXOae8m7PCKnoW+eIVAKDsYcVBKTB+/Hj16NFDISEhSk1N1UcffaSNGzdq3bp1hdZ3c3OTm5vtG25sU4SybvrK3Xr/qW7adeyKdh65pMf6NFE5Nxct2nBQkjTvqW66GJ+m5xf8LElqHllJwf4VtPdkrKr4V9BzD7aS0WDQm5/ttPZZ3t1FNYJ9rJ9DK3qpYXigElOzdC42tUTHBwAoXd5df1QzhrbQ3tMJ2n0qQcO71FI5N2ct/zl/RcHMoS0Uk5ipaSvy95NevzdG/9e1lvafTbRuVfRMn/pav/ei9cud8m7OCguqYP0ZIQEVVL+ajxLTs3UhgS9yAKCsmvnNIc0d0U57TsRr14k4jbitjsq5OWvxxvwtheaObKeYhAxNXrZbkrRm1zk91rOu9p5O0M5jcQqv5KkJ9zbWml3nrDln2oM3afWuczoXl6bKvuX07N2NZTZb9NlveQwA/hED76bfiPi2uRS4cuWKBg4cqJiYGHl7e6thw4Zat26dbr31VnuHBjiMzzYfVYC3h55/sLUq+pXTvhOx6j1xpa4k5X/RUi3I0+atGzdXJ00a1EZhlbyVlpmjdTtOaehra5WcfnWlT9OaFbX+1butn18dfoskafGGgxr25vqSGRgAoFT6Ysc5+Xu66ek+9RXk5a4D55J031ubrQcmV/ErZ5N33vz6kCyyaHyf+qrk66H4VJPW743RSyuuHlTZKNRXq57uaP38wn2NJUnLfz6lxz/cUTIDAwCUOiu2nFaAl7ueu6exKvp4aN/pBPWL+laxv22PV82/vCx/WNb26op9skiaeG8TBfuVU1xKltbsOq+py3db6wT7l9P8x9vLz9NNcSlZ2nLkijpNWK241MJ3PgAAlD0Gi4UdVW8EHj3esncIAIAywjO4ir1DAACUIZlphe/jDgDA9Zb68SB7h+CQPNo8a+8QHE7mLy/ZO4S/xDoSAAAAAAAAAABgxcQBAAAAAAAAAACwYuIAAAAAAAAAAABYcTgyAAAAAAAAAODfMRjsHQGKASsOAAAAAAAAAACAFSsObhCJXz1p7xAAAAAAAAAAADcAVhwAAAAAAAAAAAArJg4AAAAAAAAAAIAVEwcAAAAAAAAAAMCKiYNS5uWXX5bBYNDo0aPtHQrgcJZ/tFQ9bu2k5k0aqP99d2v/vn3XrL9+3Rr1vr27mjdpoDv79NKPmzfZ3LdYLJo14x117tBOLZo21LChg3XmzOliHAEAwJGQdwAAJYWcA6BUMxi5/unlABwjyjJix44dmjt3rho2bGjvUACHs3bNar3+apSGjxip5Z+uVGRkbT06fKji4+MLrR+9Z7eeGfuU+va7Sx9/tkodO3XW6FEjdezYUWud+R+8r2VLF2vCpMlasuwTeXh46NFhQ2UymUpqWACAUoq8AwAoKeQcAIA9MHFQSqSlpal///56//335evra+9wAIezeOF89bvrHvXpe6dqRERowqQpcnd316oVnxdaf+mSRWrT7mYNHvKwwmvU0GOPj1adunW1/KMlkvLfwFm6eJEeGf6oOnbqolqRtfVi1KuKvXJF33/3bUkODQBQCpF3AAAlhZwDALAHJg5KiZEjR6pnz57q0qWLvUMBHE5OdrYOHzqoVq3bWMuMRqNatWqjfXv3FNpmX3S0WrVqbVPWpm077YuOliRdOH9ecXGxatnqap+enp5q0LBRkX0CAMoG8g4AoKSQcwAA9uJs7wAgLV++XLt379aOHTvsHQrgkBKTEpWXlyd/f3+bcn9/f506dbLQNnFxcfL3DyhQPy4+7rf7sfllAQX7jIuLu16hAwAcEHkHAFBSyDkAAHth4sDOzp07pyeeeEIbNmyQu7v732pjMpkK7DtocXKTm5tbcYQIAAAAAAAAAChD2KrIznbt2qUrV66oadOmcnZ2lrOzszZt2qTp06fL2dlZeXl5BdpERUXJ29vb5nrtlSg7RA+UDr4+vnJycipwOFh8fLwCAgIKbRMQEKD4+LiC9X97MycgIDC/LO7v9wkAKBvIOwCAkkLOAeAQDAauf3o5ACYO7Kxz587av3+/oqOjrddNN92k/v37Kzo6Wk5OTgXajB8/XsnJyTbX2HHj7RA9UDq4uLqqTt162rZ1i7XMbDZr27YtatioSaFtGjZurG1bt9qUbd3yixo2bixJqlK1qgICArVt29U+09LStH/f3iL7BACUDeQdAEBJIecAAOyFrYrszNPTU/Xr17cpK1++vPz9/QuU/87NreC2RFm5xRYi4BAGDHpIE58dp3r16qt+g4ZasnihMjMz1advP0nSc+OfVlBQRT3x5FOSpP4PDtTQwQO0cMGHat++g9auWa2DBw5o4uSpkiSDwaD+Awbq/blzVD2kuqpUrapZM95RYFCQOnXmEHMAKOvIOwCAkkLOAQDYAxMHAG4I3XvcpsSEBM2eOV1xcbGKrF1Hs+fOk/9vS20vxcTIaLi6yKpxk6aKevV1zZz+tma8/aZCqofq7RmzVLNmLWudh4Y+oszMTE2d/LxSU1PUpGkzzZ47j/NEAADkHQBAiSHnAADswWCxWCz2DgL/HSsOAAAAAAAAgH/PnVes/xWPm5+3dwgOJ/PHqfYO4S9xxgEAAAAAAAAAALBiHg0AAAAAAAAA8O8YeDf9RsRvFQAAAAAAAAAAWDFxAAAAAAAAAAAArJg4AAAAAAAAAAAAVpxxcIP4YNtpe4cAACgjLqfl2DsEAEAZUsGV990AACXj6Y417B0CUGrwFxgAAAAAAAAAALBixQEAAAAAAAAA4N8x8G76jYjfKgAAAAAAAAAAsGLiAAAAAAAAAAAAWLFVUSlw4cIFjRs3TmvWrFFGRoYiIiI0f/583XTTTfYODXAoe7/7UrvXfqaM5AQFVAtXh/4jVCm89l+2O7pto9bOjVJ4k9a6fdRka7nFYtG2VYt0YPNamTLSFBxRVx0HPi6filWKcRQAAEdxbPPX+vX7FcpKSZRPlTA1vWu4/KtH/mW7s7s2acvC11SlQSu1e2SCtXzbkrd0evt3NnUr1W6qDiOmXvfYAQCO5dDGr7R//efKTEmUX9Uwtb73UQWG/XXOObFjkzZ+8IpCGrXSrY8+by3f/dUSndy5WemJsTI6uyggJELNeg9UUNhfPz8BAMoGJg7sLDExUW3btlXHjh21Zs0aBQYG6tixY/L19bV3aIBDObp9o378+D11GjBKFcNrK3rDSn3x5nMa8NIHKuflU2S7lLhL+vGT9xVcq36Be7vWfKLob7/QrQ//T94BlbRl5UKteuNZPTjtfTm7uBbjaAAApd3Z3ZsVvXKemt07Uv7VI3V00xfaNPt53TZhrtw9fYpslx5/WdGrPlRgjXqF3q9Up5la9B9t/ezk7HKdIwcAOJqTOzdp22fvq+0DjykwtLYOfr9Ka2dM1F2T35PHNZ51UuMua/vn81QxomDO8a5YRa3ve1SeAZWUl5OtA9+t1Np3JujuFz6Qh6d3MY4GAOAo2KrIzl555RVVq1ZN8+fPV4sWLRQWFqauXbuqRo0a9g4NcCh71q1Q/fbdVffmbvKvUl2dBj4uZ1c3HfpxXZFtzOY8rXvvFbXqPUDegZVt7lksFkVvWKUWve5XjSZtFFAtXF0fflrpSfE6ufuX4h4OAKCUO/LDKoW36abwVrfKu3KIbrpnpJxd3XRq64Yi25jNedqy6HXVv62/yvtXKrSOk7OLPLx8rZdruQrFNQQAgIM48O1KRbbtrlptuso3OERtH3hMzi5uOvrL+iLbmM152vjhq2ra60F5BVQucL9Gi46qUqeJvAIryze4ulreNUw5WRlKvHCqOIcCAHAgTBzY2ZdffqmbbrpJd999t4KCgtSkSRO9//779g4LcCh5uTm6cuaYqtVtai0zGI2qVreJYk4cKrLd9i+XysPTR/Xady9wLyX2kjKSE2z6dCtXXhXDayvmxOHrOwAAgEPJy81R4rnjqhjZ2FpmMBpVMbKx4k79WmS7Q2uXy93TW+GtuxZZ58rx/Vr1bH+tfnG4dn48S6b0lOsZOgDAweTl5iju7HEF12lsLTMYjQqu01hXThadc6K/WSYPTx9Ftu32t37GkR/XyNWjvPyqhl2PsAEANwC2KrKzkydPas6cORozZoyeffZZ7dixQ48//rhcXV01aNAge4cHOITM1BRZzOYCWxKV8/JVYsy5QttcPHpAB39cpwcmzy70fkZKwm99/LlPH2UkJ/znmAEAjis7PT/v/HlLIndPH6VcPl9om9gTB3Vyy3p1Gze9yH4r12mqqo3aqLx/RaXFxWj/V4u0ec4kdR7zuoxGp+s5BACAg8hKy885Hl622xl7ePoo+VLhzzqXjh/UkZ/Xqe+Emdfs++y+bfrhg1eUm21SOS8/dX9imtwrsE0RgH/BaLB3BCgGTBzYmdls1k033aSXXnpJktSkSRMdOHBA7777bpETByaTSSaTyaYsJ9skF1e3Yo8XuBFkZ2Zo/bxX1XnQaPbvBAAUu5ysDG1b/Kaa3z9Kbtf4QiakWQfrf/sEh8onOEzfTH1Yscf226xuAACgKNlZGdo0/3W1e/Dxv5wEqBzZSH2fm6mstBQd+Wmtvn8/SneMe+ua5yYAAMoOJg7srHLlyqpbt65NWZ06dfT5558X2SYqKkpTpkyxKevx0BPqOXR0cYQIlHoenl4yGI3KSEmyKc9ISVQ574IHjSfHxigl7rK+mv68tcxisUiSZjzc47cDlf1+6yNJ5X38/9BnkgJDOIMEAMoy1/L5eScrNcmmPCs1Se6eBfNOWtwlpSdc1o/vTbWW/Z53Phl9h257bq4qBBbcf7pCQCW5lfdSalwMEwcAUEa5V8jPOZkpiTblmalJ8vjtmeWPUmNjlBZ/WRtmX/3O4Pec8+GI23XXlPfl9VvOcXFzl0tQsLyCghUUXlufTnxYR39Zp0bd7y3GEQEAHAUTB3bWtm1bHTlyxKbs6NGjql69epFtxo8frzFjxtiUfbgrpljiAxyBk7OLgqrX1LnDe1SjaRtJksVs1rnD0WrU6Y4C9X0rV1P/qXNtyrasXKDsrEx1uP9RefoFyujkrHLefjp3aI91osCUma7LJ39Vw463F/+gAACllpOzi3yrRejy0b2q2rC1pPy8c/nIXtVsXzBHeFWsqm7P2G4XceCbJcoxZahJv2Hy8A0o9OdkJMbJlJFa6BdDAICywcnZRQEhEYr5da9CG1991rn4a7Tq3tKrQH3vStXUd6Ltdqy7vlyknKxMtbpnuMoXkXMkyWIxKy8n5/oOAADgsJg4sLMnn3xSbdq00UsvvaR77rlH27dv13vvvaf33nuvyDZubm5yc7PdlsjFlT3XUbY16dZPG+a9roqhtVQxLFLRG1Yq15Sluu3yD6Bc//6rKu8boLZ3DZGzi6v8q4batHcrV0GSbMob39pHO75eJp+KVeQVWElbVy5UeR9/hf82OQEAKLsiO/bRtiVvya9aTflXr6UjG79QbnaWwlp2kSRtXfyGynn7q+Edg+Xk4iqf4FCb9i4e5SXJWp5jytTBNctUtVEbeXj5Ki0uRnu/mK8KAZVVqXbTkhwaAKCUqd+lrzYveFMB1WsqMLSWDnz/hXKzTarV5lZJ0qb5r6ucj7+a931Izi6u8qsSatPezSP/Wef38hxTlvauWa6Qhq3k4e0rU1qKDm36WhlJ8QprdnNJDg0AUIoxcWBnzZs318qVKzV+/HhNnTpVYWFhevvtt9W/f397hwY4lFotblFmarK2rlqk9OREBVYLV+8np1m3KkpNiJXBaPxHfTbrcY9yTVn6fuE7MmWkKbhmPfUeM03OLq7FMQQAgAMJadpeprRkHVi9RFkpifKpGq4Oj06V+2+HV2Ykxspg+Pt5x2AwKvniKZ3e/p1yMtPl7u2nSrWbqMFtD8rJxaW4hgEAcADhN3VQVmqKdn21WJkpifKvGq5uo6ZaD0xOS/iHOcdoVNKl8zq2ZZqy0pPlXt5LAdVrqef/XpNvcNG7HwAAyhaD5ffN7uDQZv182t4hAADKiMtpLGEHAJScCq7/7OUPAAD+rac7cqbhv+HRaZq9Q3A4md8/Z+8Q/hJ/gQEAAAAAAAAAACsmDgAAAAAAAAAAgBUTBwAAAAAAAAAAwIqJAwAAAAAAAAAAYMXEAQAAAAAAAAAAsHK2dwC4PtYdjLV3CACAMsKngpu9QwAAlCGmnDx7hwAAAK7FYLB3BCgGrDgAAAAAAAAAAABWTBwAAAAAAAAAAAArJg4AAAAAAAAAAIAVZxyUAqGhoTpz5kyB8hEjRmjWrFl2iAhwTLfVDVLfRpXk6+GiUwkZeu/nszoWm15o3U61/DX6lnCbsuxcs+76cJf1s4+Hswa1qKbGVb1Uwc1JB2PSNPfnM4pJMRXrOAAAjqFzTX/dVidQ3h7OOpeYpcW7LuhkfGahdduF+WpY62o2Zdl5Zj388YFC6w9uXkWdavpr6a6LWnck7rrHDgBwLF0jA9SrfpB8PFx0JiFT87ef14m4jELrdqjhpxHtqtuUZeeZNWDJXuvnjwc1KbTtkp0X9NXBK9cvcACAw2LioBTYsWOH8vKuHvh14MAB3Xrrrbr77rvtGBXgWNqF+2lo62qa/eMZHb2SpjsaVNSU22rp0Y/3Kzkrt9A26dm5evTj/UX2+WzXmsozWzRt/XFlZuepd8OKeqFnpEZ+ekCmXHNxDQUA4ABahnjrgaaVtWDHBZ2Iy1C32gEa2zFMT391RKmmwg9yzcjO07ivj1g/W4rou1lVL9UIKKeEjJxiiBwA4Ghah/poYPMqmrf1nI7FZui2uoF6tksNPbnqsFKKeNbJyM7T6JWHiuxz2J+eg5pU9dLwNiHadibpeoYOAHBgbFVUCgQGBqpSpUrW6+uvv1aNGjXUoUMHe4cGOIzeDStq/a+x+u5onM4lZWn2j2dkyjWrS2RAkW0sFikpM9fm+l2wt5tqV6yg2T+d1vHYdF1IztKcH8/I1dmo9jX8SmJIAIBSrHvtQG08kaAfTybqYopJC7ZfkCnXog7XyBEWSclZudarsC97fD2cNeCmYL37y1nlmYuaWgAAlCU96wbpu2Px2ng8QReSszRvyzll55nVMcK/yDYWWWxyzp9fpvrzvZuqeevgpTRdScsu7uEAuBEZjFz/9HIArDgoZbKzs7VkyRKNGTNGBoPB3uEADsHZaFBEQHl9tifGWmaRtPdCimpXrFBkOw8XJ827v6EMBoNOxqVr0Y7zOpeYJUlyMeb/Tzwn9+qXNhZJOXkW1a3kqQ1sGwEAZZaT0aBQPw99dejqVg4WSYcupSoioFyR7dydjXqzd20ZJJ1JzNSney/pQvLV7e8Mkoa3DtHqw7E25QCAssvJaFC4fzmt2n/ZWmaRtP9iqmoGXivnOGnmnfVkMEin4jO0fE+MzidlFVrX291ZTap6a/ZPBbdQBgCUXY4xvVGGrFq1SklJSRo8eLC9QwEchpe7s5yMBiVl2m7pkJSZI59yLoW2uZCUpembTmna+mN684eTMhgMerV3HfmXz69/PilLV1JNGtiiqsq7OsnZaFC/RpUUWMFVvkX0CQAoGzzdnORkNBRYMZCclStv98JzxKVUk+ZtO6e3N53Wu1vOyWAwaOKtEfL1uFq/Z91A5VksWn8kvljjBwA4Dq/fck5ylu2zTnJWrnw8Cs85F1Oy9O7PZ/Xa9yc188czMhoMeqFHLfkV8RzToYafsnLytJ1tigAAf8CKg1Lmgw8+UI8ePRQcHFxkHZPJJJPJ9i20vJxsObm4Fnd4wA3jyJV0Hbly9eDkXy+lafY99dW9TpCW7rygPItFURuOa1T7MC0b3FR5Zov2XkjRzrNJYi0QAOCfOh6XoeN/OMTyeGy6Xr49Up1q+unzfZcV6uuhrpEBen7tMTtGCQC4ERyLzdCx2Ks55+iVNL3Zp6661ArQJ9ExBerfUtNfP51MVA5b5AEA/oCJg1LkzJkz+vbbb7VixYpr1ouKitKUKVNsymrd/rAiew0rzvCAUislK1d5ZkuBN258PFyU9DcPlsyzWHQyPkOVvdysZSfiMjR6xUGVc3GSs1P+m6Wv9amj47Hp1+gJAHCjSzXlKc9skZe77Z/S3u7OBd4ILUqeJX+7oqAK+XknMqi8vNyd9VbvOtY6TkaD7m9SWV0jA/TUl79evwEAABxGym85588r2rzdnQusuC5KnkU6nZChSn941vld7aDyquLtrnc2nb4e4QIAbiBsVVSKzJ8/X0FBQerZs+c1640fP17Jyck2V0T3wSUTJFAK5ZotOh6XrkZVvKxlBkkNg7306+W0v9WH0SBV9/NQQiETDRk5eUrJylVlLzdFBJTXttNJ1ylyAIAjyjNbdDohU/X+cI6OQVLdShVsVhVci8EgVfV2t040/HwqUc+tPqoJa65eCRk5Wn04Vq/9cKo4hgEAcAB55vwXnBpU9rSWGSTVr+xps6rgWgwGqZqvhxILedbpWNNfJ+IydCYx83qFDAC4QbDioJQwm82aP3++Bg0aJGfna/9a3Nzc5OZm+6YA2xShrPti32WNviVMx2PTdTQ2XXc0qCh3F6O+O5p/iPHoW8KUkJ6jRTvOS5LubRqsI5fTFJNiUnlXp9/OL3DThl9jrX22DfNVclauYtOyFernoYfbhGjbmURFX0ixyxgBAKXH2l9j9UjrajqVkKmT8RnqGhkgN2ejNp9MlCQNa11NiRk5+nTvJUlS7/pBOhGXocup2Srn6qTb6gQqoLyrNh5PkCSlZecpLTvP5mfkmS1KzsrVpVQOSgaAsuybQ1c0ol11nYjP0Im4dN1WJ0huzkZtPJ5/Js7IdtWVkJGtZbvztyG6s2ElHYtL16XfnnV61a+owPKu+v6Y7Rk6Hi5Gtaruo8U7L5T4mADcYAxs6nwjYuKglPj222919uxZDRkyxN6hAA7pp5MJ8vZw1gM3VZFvORedjM/Q5NVHlZSZf3BlYAVXWf6wZWcFNyc91j5UvuVclGbK0/G4dI374rDOJWVZ6/iWc9GQ1iHy8XBWYkaOfjgWr493XyzpoQEASqFtZ5Pl6e6sfg0rytvdWWcTs/TaD6esByb7l3OR5Q+Jp7yrk4a0rCpvd2elZ+fpdEKmXthwXBdTmBQAAFzbltNJ8nJ31j2NK8vHw1mnEzIV9e0JJf+ec8q7yPzHnOPmpGG/PcekZ+fpZHyGJq45qgvJWTb9tgn1lcFg0M+nEkt0PAAAx2Cw/PGJBg7rjvd22DsEAEAZ4VOh4P64AAAUF1NO3l9XAgDgOvh4UBN7h+CQPG59xd4hOJzMDePsHcJf4owDAAAAAAAAAABgxcQBAAAAAAAAAACwYuIAAAAAAAAAAABYcTgyAAAAAAAAAODfMfBu+o2I3yoAAAAAAAAAALBixcEN4pMhze0dAgAAAAAAAADgBsCKAwAAAAAAAAAAYMXEAQAAAAAAAAAAsGLiAAAAAAAAAAAAWHHGAQAAAAAAAADg3zEY7B0BigErDuwsLy9PEydOVFhYmDw8PFSjRg298MILslgs9g4NcDjLP1qqHrd2UvMmDdT/vru1f9++a9Zfv26Net/eXc2bNNCdfXrpx82bbO5bLBbNmvGOOndopxZNG2rY0ME6c+Z0MY4AAOBIyDsAgJJCzgEAlDQmDuzslVde0Zw5czRz5kwdPnxYr7zyil599VXNmDHD3qEBDmXtmtV6/dUoDR8xUss/XanIyNp6dPhQxcfHF1o/es9uPTP2KfXtd5c+/myVOnbqrNGjRurYsaPWOvM/eF/Lli7WhEmTtWTZJ/Lw8NCjw4bKZDKV1LAAAKUUeQcAUFLIOQAAe2DiwM5++eUX9e7dWz179lRoaKjuuusude3aVdu3b7d3aIBDWbxwvvrddY/69L1TNSIiNGHSFLm7u2vVis8Lrb90ySK1aXezBg95WOE1auixx0erTt26Wv7REkn5b+AsXbxIjwx/VB07dVGtyNp6MepVxV65ou+/+7YkhwYAKIXIOwCAkkLOAQDYAxMHdtamTRt99913Ono0f+Z/7969+umnn9SjRw87RwY4jpzsbB0+dFCtWrexlhmNRrVq1Ub79u4ptM2+6Gi1atXapqxN23baFx0tSbpw/rzi4mLVstXVPj09PdWgYaMi+wQAlA3kHQBASSHnAADshcOR7eyZZ55RSkqKateuLScnJ+Xl5WnatGnq37+/vUMDHEZiUqLy8vLk7+9vU+7v769Tp04W2iYuLk7+/gEF6sfFx/12Pza/LKBgn3FxcdcrdACAAyLvAABKCjkHAGAvTBzY2SeffKKlS5fqo48+Ur169RQdHa3Ro0crODhYgwYNKrSNyWQqsO+gxclNbm5uJREyAAAAAAAAAOQzsKnNjYjfqp2NHTtWzzzzjO677z41aNBAAwYM0JNPPqmoqKgi20RFRcnb29vmeu2VousDNzpfH185OTkVOBwsPj5eAQEBhbYJCAhQfHxcwfq/vZkTEBCYXxb39/sEAJQN5B0AQEkh5wAA7IWJAzvLyMiQ0Wj7a3BycpLZbC6yzfjx45WcnGxzjR03vrhDBUotF1dX1albT9u2brGWmc1mbdu2RQ0bNSm0TcPGjbVt61absq1bflHDxo0lSVWqVlVAQKC2bbvaZ1pamvbv21tknwCAsoG8AwAoKeQcAIC9sFWRnfXq1UvTpk1TSEiI6tWrpz179ujNN9/UkCFDimzj5lZwW6Ks3OKOFCjdBgx6SBOfHad69eqrfoOGWrJ4oTIzM9Wnbz9J0nPjn1ZQUEU98eRTkqT+Dw7U0MEDtHDBh2rfvoPWrlmtgwcOaOLkqZIkg8Gg/gMG6v25c1Q9pLqqVK2qWTPeUWBQkDp17mK3cQIASgfyDgCgpJBzAAD2wMSBnc2YMUMTJ07UiBEjdOXKFQUHB2v48OF6/vnn7R0a4FC697hNiQkJmj1zuuLiYhVZu45mz50n/9+W2l6KiZHxD3vuNW7SVFGvvq6Z09/WjLffVEj1UL09Y5Zq1qxlrfPQ0EeUmZmpqZOfV2pqipo0babZc+dxnggAgLwDACgx5BwAgD0YLBaLxd5B4L9jxQEAAAAAAADw77nzivW/4tH9TXuH4HAy146xdwh/iX8OAAAAAAAAAIB/x2CwdwQoBhyODAAAAAAAAAAArJg4AAAAAAAAAAAAVkwcAAAAAAAAAAAAKyYOAAAAAAAAAACAFRMHAAAAAAAAAADAytneAQAAAAAAAAAAHJSBd9NvRPxWAQAAAAAAAACAFRMHAAAAAAAAAADAiokDAAAAAAAAAABgxcRBKZCamqrRo0erevXq8vDwUJs2bbRjxw57hwU4nOUfLVWPWzupeZMG6n/f3dq/b981669ft0a9b++u5k0a6M4+vfTj5k029y0Wi2bNeEedO7RTi6YNNWzoYJ05c7oYRwAAcCTkHQBASSHnAABKGhMHpcDDDz+sDRs2aPHixdq/f7+6du2qLl266MKFC/YODXAYa9es1uuvRmn4iJFa/ulKRUbW1qPDhyo+Pr7Q+tF7duuZsU+pb7+79PFnq9SxU2eNHjVSx44dtdaZ/8H7WrZ0sSZMmqwlyz6Rh4eHHh02VCaTqaSGBQAopcg7AICSQs4BANiDwWKxWOwdRFmWmZkpT09PffHFF+rZs6e1vFmzZurRo4defPHFv9VPVm5xRQg4hv733a169Rvo2QnPS5LMZrO6du6g+x8YoKGPDCtQf+xTo5WZmamZs+dayx68/x5F1q6tiZOmymKxqMstN2vg4Ic06KGhkvJXB3Vq30ZTp72sHrf1LNAnAKDsIO8AAEoKOQcoOe7O9o7AMXn0nG7vEBxO5jeP2zuEv8SKAzvLzc1VXl6e3N3dbco9PDz0008/2SkqwLHkZGfr8KGDatW6jbXMaDSqVas22rd3T6Ft9kVHq1Wr1jZlbdq2077oaEnShfPnFRcXq5atrvbp6empBg0bFdknAKBsIO8AAEoKOQcAYC9MHNiZp6enWrdurRdeeEEXL15UXl6elixZoi1btigmJqbQNiaTSSkpKTYXywlRliUmJSovL0/+/v425f7+/oqLiyu0TVxcnPz9AwrWj4/77X5sflnA3+8TAFA2kHcAACWFnAMAsBcmDkqBxYsXy2KxqEqVKnJzc9P06dN1//33y2gs/NcTFRUlb29vm+u1V6JKOGoAAAAAAAAAwI2IiYNSoEaNGtq0aZPS0tJ07tw5bd++XTk5OQoPDy+0/vjx45WcnGxzjR03voSjBkoPXx9fOTk5FTgcLD4+XgEBAYW2CQgIUHx8XMH6v72ZExAQmF8W9/f7BACUDeQdAEBJIecAAOyFiYNSpHz58qpcubISExO1bt069e7du9B6bm5u8vLysrnc3NxKOFqg9HBxdVWduvW0besWa5nZbNa2bVvUsFGTQts0bNxY27ZutSnbuuUXNWzcWJJUpWpVBQQEatu2q32mpaVp/769RfYJACgbyDsAgJJCzgEA2AtnhZcC69atk8ViUWRkpI4fP66xY8eqdu3aeuihh+wdGuAwBgx6SBOfHad69eqrfoOGWrJ4oTIzM9Wnbz9J0nPjn1ZQUEU98eRTkqT+Dw7U0MEDtHDBh2rfvoPWrlmtgwcOaOLkqZIkg8Gg/gMG6v25c1Q9pLqqVK2qWTPeUWBQkDp17mK3cQIASgfyDgCgpJBzAJR6Bt5NvxExcVAKJCcna/z48Tp//rz8/Px05513atq0aXJxcbF3aIDD6N7jNiUmJGj2zOmKi4tVZO06mj13nvx/W2p7KSZGxj8kssZNmirq1dc1c/rbmvH2mwqpHqq3Z8xSzZq1rHUeGvqIMjMzNXXy80pNTVGTps00e+48VvgAAMg7AIASQ84BANiDwWKxWOwdBP67rFx7RwAAAAAAAAA4Lndesf5XPG6fae8QHE7m14/ZO4S/xDoSAAAAAAAAAABgxcQBAAAAAAAAAACwYuIAAAAAAAAAAABYsXMXAAAAAAAAAODfMfBu+o2I3yoAAAAAAAAAALBixcENYvXBGHuHAAAoI1b/Gm/vEAAAZUijquXtHQIAoIwY1TbM3iEApQYrDgAAAAAAAAAAgBUTBwAAAAAAAAAAwIqJAwAAAAAAAAAAYMUZB8Vs8+bNeu2117Rr1y7FxMRo5cqV6tOnj/W+xWLRpEmT9P777yspKUlt27bVnDlzVLNmTfsFDTioLWtXavNXy5WWlKBK1SN0x5DHVS2iTqF1D2zbrI0rlyj+0gXl5eUpoFIVtet1r5q272qt8+0n87Xvl++VFB8rJ2dnVQmvpa73PayQmnVLakgAgFKsY4SfutUOkLe7s84lZWnZ7hidSsgstG6bUB8NaVnVpiwnz6xHPztk/XxHvSA1D/GWXzkX5ZotOpOQqZX7LxfZJwCg7Nj33Zfas/YzZSQnKqBauNr3H6GK4ZF/2e7oto1aP/dlhTVprZ6jJlnLLRaLtq9arIOb18iUka7KEXV1y8BR8qlYpTiHAeBGZTDYOwIUA1YcFLP09HQ1atRIs2bNKvT+q6++qunTp+vdd9/Vtm3bVL58eXXr1k1ZWVklHCng2Pb98r2+WTRbne8arMdeeV+Vq9fQh9PGKi05sdD65Sp4qmO/AXr0xdl64rUP1KxjD30++2Udjd5urRMQXE13DHlCo1//UP83dYZ8AyvpwxfHKi0lqYRGBQAorZpX89I9jSvpq4NXNHX9CZ1LytLoDqHydHMqsk1Gdp7GfPGr9Rr31RGb+5dSTfpo90VNWntMr3x3UvEZ2XqyQ6gqXKNPAMCN79j2Tfrp4/fV/I4Hde+kmfKvFq4v33xOGX/xXJISd0k/fzJPwbXqF7i3e82n2vvtF7pl4OO6e8LbcnFz15dvPKfcnOxiGgUAwNEwcVDMevTooRdffFF9+/YtcM9isejtt9/WhAkT1Lt3bzVs2FCLFi3SxYsXtWrVqpIPFnBgP379qZp37qmbOvZQxaqh6vPIGLm6umvnD6sLrR9er4nqtbhZQVWry79SFbW97S5Vql5Dp3/db63TuF0XRTS8SX4Vg1WxWph6DhwpU2a6Lp05UVLDAgCUUrdGBujHk4n6+VSSYlJMWrLzorJzzWoX5nvNdilZuVcvU57Nve1nk3X4crri0nN0McWkj/dcUjlXJ1X1di/OoQAASrnodStUr3131b25q/yqVFfHgaPk7Oqmwz+uK7KN2Zyn9e+9qpa9H5RXYCWbexaLRXs3rNRNve5XeJPWCqgWri4Pj1V6UrxO7v6luIcDAHAQTBzY0alTp3Tp0iV16dLFWubt7a2WLVtqy5YtdowMcCy5uTm6ePKIIho0s5YZjUbVaNBMZ48eukbLfBaLRcf371LsxXMKq9uoyJ+x/duv5F6uvCpXr3HdYgcAOB4no0HVfT106HKatcwi6fDlNIUHlCuynZuzUa/cXkuv9orUyHYhCvZyu+bPaF/DVxnZeTqfxEpUACir8nJzdOXMMVWr28RaZjAaVbVuE106cbjIdju+/EjlPH1Ut333AvdSYi8pIznRpk+3cuVVMbz2NfsEAJQtnHFgR5cuXZIkVaxY0aa8YsWK1nsA/lpGSrLMZrMq+PjZlHv6+Cr24tki22VlpClq+F3Kzc2R0WhU76FPqmbDm2zqHN71i5a/PVU52SZ5+vhryIQ3VN7LpziGAQBwEBVcneRkNCglK9emPCUrV5WKmAy4lGrSgh0XdD4pSx4uRnWLDNAzncM1ae0xJWZe7adhZU8Na11Vrs5GJWfm6s1Np5WWnVdonwCAG19maoosZrM8/vQMUs7LR0kx5wptc/HoAR36cZ3um1z4lskZKYnWPv7cZ0YRW70CAMoeJg4ckMlkkslksinLyTbJxbXot9YAFOTqXk6jXpun7KxMndi/W98smiW/ipUVXu/qmzc16jXRqNfmKSMlWTu++0bL3pqsES/NUQXva29FAQDAH52Mz9TJ+KuHHJ+IO6sXetRU+xp++uLAFWv5r1fSNHX9CVVwc9LN4X4a3rqaXvr2hFJNTB4AAP5admaGNsx7TZ0GPSEPT297hwMAcGBsVWRHlSrl7zN4+fJlm/LLly9b7xUmKipK3t7eNteKD2YUa6xAaVbOy1tGo1FpSQk25alJifL80yqEPzIajQqoVFXBoTV1c697Vb9VB21c9ZFNHVd3DwVUqqqQWvV056NPy+jkpJ3fF35uAgCgbEjLzlOe2SIvd9t3cLzcnZX8p1UIRcmzSGeTshRUwdWmPDvPoitp2ToZn6mFOy7IbLGoXTiT1QBQVnl4eslgNCrzTwchZ6QkqVwhLzMlx8YoNe6yvp4+SbMevk2zHr5Nv/7ynU5Fb9Wsh29T8pWLKufla+3j7/QJAH/JYOT6p5cDcIwob1BhYWGqVKmSvvvuO2tZSkqKtm3bptatWxfZbvz48UpOTra5+g0dVRIhA6WSs7OLgsMjdeLAbmuZ2WzWiQO7FFKr7t/ux2K2KDcn+9p1LH9dBwBwY8szW3QmMVN1Klawlhkk1a5YQSfjMv5WHwaDVMXb/S8nGgwGg1yM/MkOAGWVk7OLgqrX1LnD0dYyi9ms84ejValGnQL1fStX0/1T39V9k2dbr7DGrVS1diPdN3m2KvgFyiuwksp5++r8oat9Zmem6/LJXwvtEwBQNrFVUTFLS0vT8ePHrZ9PnTql6Oho+fn5KSQkRKNHj9aLL76omjVrKiwsTBMnTlRwcLD69OlTZJ9ubm5yc7PdlsjFNb24hgA4hJtvv1ufzopSlfBIVYuoo59Xf6ZsU5aa3dJDkvTJzJfk5Reg7g8MkyRtXLlUVWpEyr9isHJzcnRkz1bt+XG9+jz8pCQpOytTP6xYojo3tZGnr78yUpO1Ze0qpSTEqkHrW+w1TABAKbHhSJyGtKyqMwmZOhWfqS6R/nJzNurnU/l7Qw9pWUVJGblasT9/ZentdQN1Mj5TV9JMKufqpG6RAfIv56IfT+bXd3UyqGfdIO29mKKkzFx5ujmpY4S/fD2ctfNcst3GCQCwv8bd+unbea8rKLSmKoZFau+Glco1ZalOu66SpA3vv6byvv5qc9cQObu4yr9qqE17t3LlJcmmvNGtfbXz62XyqRgsz8BK2rZykcr7+Cu8aZuSGhYAoJRj4qCY7dy5Ux07drR+HjNmjCRp0KBBWrBggZ5++mmlp6dr2LBhSkpKUrt27bR27Vq5u7vbK2TAITVs00lpKUn69pP5Sk1KUOXQCD307KvWrYqS4i7LYDBY62ebMvXFvLeUHB8rF1c3BVYJ0b2jnlPDNp0kSQajUbEXz2r3G+uUnpqscp5eqlqjtoZNmaGK1cLsMkYAQOmx41yKKrhdUu/6QfJyd9a5pCy9vem0Un47i8C/nKsslqv1y7s6aVDzYHm5OysjO09nErMU9d1JxaTkn1tltkiVvVzVJjREFdyclJ6dp1MJmXrl+1O6mGIqLAQAQBlRs0UHZaYma/uqxUpPTlRgtXD1evJF67ZCqQlXZDAa/qIXW0173K1cU5Z+WDhdpow0Va5ZT73GvChnF9e/bgwAKBMMFssfH2ngqFbsjbF3CACAMmL1r/H2DgEAUIY0qlre3iEAAMqIUW15UfDf8Og9194hOJzML4bbO4S/xIapAAAAAAAAAADAiq2KAAAAAAAAAAD/juGfbZcGx8CKAwAAAAAAAAAAYMXEAQAAAAAAAAAAsGLiAAAAAAAAAAAAWHHGwQ2icnkPe4cAACgjRrQKsXcIAIAyJM9ssXcIAAAAZQ4rDgAAAAAAAAAAgBUrDgAAAAAAAAAA/46Bd9NvRPxWAQAAAAAAAACAFRMHAAAAAAAAAADAiq2KitnmzZv12muvadeuXYqJidHKlSvVp08f6/0VK1bo3Xff1a5du5SQkKA9e/aocePGdosXcGTffv2p1ny+VMmJ8QoJq6kH/+8phUfWK7TuxrWr9Mv3q3X+9ElJUmhEbd016FGb+u+/OVU/f/eNTbv6TVvpfy+8U3yDAAA4jPVffqKvPl2i5IR4hYTX1OCRYxVRu/C8893qlfrx29U6f/qEJCmsZm3d+9BIm/rbf/pe3369QqeO/aq01GRFzVmi0BqRJTIWAEDptuHLT/XNZ0vyn3XCa2rgiP+pRhHPOj+sWaUfv/1G58/kP+uERdTWPQ+NsKn/+eL3tHXTBiXEXpaTi4vCImrr7sGPKqJ2/RIZDwCg9GPFQTFLT09Xo0aNNGvWrCLvt2vXTq+88koJRwbcWLZt3qDl77+jPg8M1ZTpC1UtLEKvT3xCKUkJhdb/df9utWzfVeOiZmvCG/PkFxik1yY+rsS4Kzb1GjRrrbcXr7Zejz79QkkMBwBQym3ZuF6L576tOx98WC/NXqzq4TX18rOjlJxYeN45vHeX2tzSVRNem6Mpb38o/8CKihr/mBL+kHdMWVmKrN9I9z/8WEkNAwDgALZu2qCl77+tvg8+rBdnLlJIeE298tzjSi7iWefwvl1qfUs3PffKHE1+6wP5BVbUK8+Ossk5lauGaNCIsYp6d5mef/09BVSsrFeeHaWUpMSSGhYAoJRjxUEx69Gjh3r06FHk/QEDBkiSTp8+XUIRATemdSuXqUP33rr51l6SpEGPPaO9O3/R5vVf6fZ7BhWo/39jp9p8HvL4c9r58w86tHen2na+zVru7OIiHz//4g0eAOBwvvn8I3Xq0Ue3dLtDkjT0ifHas/1nbVz3pXrfN7hA/cfGv2jzediTE7T9px90YM8Otb+1pyTp5i75+Sf20sXiDR4A4FDWrPhIHbv3UYeu+c86D416RtHbf9amdV/pjnsLPuuMGGf7stMjo5/Tjp9/0MHoHbq5S37OadOxu02d/sNGa9O6L3X21DHVb9KimEYCAHAkrDgA4PByc3J0+vivqtv46h+4RqNR9Ro314lf9/+tPkymLOXl5am8p5dN+a/7d2vUA931zLC7tXDWK0pLSb6usQMAHE9uTo5OHfvV5osVo9Go+k1a6Njhv593cnNzVeFPeQcAgD/6PefUa9LcWmY0GlWvSXMd/wc5J+8aOSc3J0c/rFmlcuUrqHp4resSN4AyxmDg+qeXA2DFgQMymUwymUw2Zdkmk1zd3OwUEWBfqSlJMpvz5O3jZ1Pu5eOnmHNn/lYfn86fJR+/ANVtfPUP8gbNWummNrcooFKwrsRc0OcLZ+uNSaM18fV5Mjo5XdcxAAAcR8rvecfXNu94+/rp4rnTf6uPj+bNkK9/gOo35a1OAEDRinrW8f4HzzrLP5wpX/8A1fvTSoI9237UzKgJyjZlyccvQONemilPb5/rFToAwMGx4sABRUVFydvb2+ZaNPcte4cFOKyvP1mobZs36PEJr8jV9eoEXKsOXdWkVXtVC41Qs9YdNHrSmzp19JB+3b/bjtECABzdF8sXaMumDRoz6TWbvAMAwPX25ccLtXXjBo2e+GqBnFOn0U2aNnuJJr05Tw2btdLMl8YXeW4CAKDsYeLAAY0fP17Jyck218DhT9o7LMBuPL18ZDQ6FfgjNyUpocDboH+25vMl+uazRfrfi9NVLazmNesGVa4iTy8fXY45959jBgA4Lq/f886fDkJOTkz4y3Nxvv50sb78eKHGR81Q9fBr5x0AAIp61klOSpC377VzzjefLdHXnyzUuJemK6SQnOPu7qFKwdUUUaeBHhkzUUYnZ21a++V1jR8A4LiYOHBAbm5u8vLysrnYpghlmbOLi0IjautQ9A5rmdls1qHoHapRu0GR7VZ/tlhfLv9QT019W2E16/zlz0mIu6y01GT5+AZcl7gBAI7J2cVFYTVr68Cf8s7B6B2qWafovPPlJ4u0YukHeual6apRq25JhAoAcHC/55yDBXLOTkVcI+d8/ekirfroAz394jsK/5s5x2IxKycn+z/HDAC4MXDGQTFLS0vT8ePHrZ9PnTql6Oho+fn5KSQkRAkJCTp79qwuXrwoSTpy5IgkqVKlSqpUqZJdYgYcUbe+9+v9N6cqrGYdhdeqq/VfLJcpK0s333q7JOm9NybL1z9Qdw8eKUn65tNFWrnkPQ1/eqoCgoKVlBAvSXL38JC7RzllZWZo1UfzdFPbjvL29VdszAV9/OEMBVWuqvrNWtltnACA0qHnnQ9ozmtTFF6zjiJq19OaFctkyspUh269JEmzX50kX/9A3T/0MUn5W0V8umiuHnvmRQVWrKykhDhJkrtHObl7lJMkpaUkKy72khLj8+/9vne1j6+/fPyYtAaAsqpHvwc09/UpCqtZRzUi62ntyuX5Oadr/rPOu69Nkq9/kO4dkv+s89UnC/X54vc0YtwLCigk52RlZeqLZfPVrNXN8vELUGpKkjZ89ZkS42LV8ubOdhsnAKB0YeKgmO3cuVMdO3a0fh4zZowkadCgQVqwYIG+/PJLPfTQQ9b79913nyRp0qRJmjx5conGCjiylu1vVWpyklYueU/JifEKCa+lp6a+bV2+Gx97WQbD1UVW369eodzcHM16abxNP70feFh9+z8io9Go86eP6+fvVisjPVU+foGq36SF+g0YLhcX1xIdGwCg9Gl9S1elJCfps0VzlZQYr+rhtfTMtOny+S3vxF25JIPBYK2/4evPlZuTo7dfGGfTz50PPqK7Bg6TJO3aulnvvj7Vem/6S88VqAMAKHtadbhVKcmJ+nxx/rNO9fBaevrFd6zPOnFXbJ91vvt6hXJzcjT9xWds+unb/2HdOWCYjEajYs6d1jvffqPUlCRV8PRWeK26mvD6e6oaWqNExwbgxvDHv3tx4zBYLBaLvYPAf7fleJK9QwAAlBFuLux0CAAoOXlmHlkBACWjeZi3vUNwSOXu/NDeITicjM+H2DuEv8STPwAAAAAAAAAAsGLiAAAAAAAAAAAAWDFxAAAAAAAAAAAArJg4AAAAAAAAAAAAVs72DgAAAAAAAAAA4JgMBoO9Q0AxYOLgBrHi18v2DgEAUEYkZ+baOwQAQBni5sxCeQBAyWge5m3vEIBSg7/AAAAAAAAAAACAFRMHAAAAAAAAAADAiokDAAAAAAAAAABgxRkHxWzz5s167bXXtGvXLsXExGjlypXq06ePJCknJ0cTJkzQ6tWrdfLkSXl7e6tLly56+eWXFRwcbN/AAQd06qdvdHzjSplSE+UVHKYGfYfJN6TWX7a7sGezdi15XZXqtVSLIc9Zy3NNmTr0zUJdOrBN2empKudfUeHtbldomx7FOQwAgIO4pYafukb6y9vdWeeTsrRszyWdTswstG7r6j56qEUVm7KcPLNGrjgsSXIySL3rV1SDyhUUUN5VmTl5Onw5XSv2X1ZyFueKAEBZd3OYrzrX9JOXu7MuJJv02b5LOpOYVWjdliHeerCZ7XcKOXlmjfnyiE3ZbXUC1CbUVx4uRp2Kz9TH0TGKTc8ptjEAABwLEwfFLD09XY0aNdKQIUPUr18/m3sZGRnavXu3Jk6cqEaNGikxMVFPPPGE7rjjDu3cudNOEQOO6cKeH3Xwyw/U8K4R8g2ppZM/fqmt701Sp3Fz5ObpU2S7jITLOvjVfPmF1y1w7+CXHyj22D41fWCMyvkF6cqRPdq/4l25e/mpUv2WxTgaAEBpd1NVL93dqKKW7o7RqfhMda7lpyfaV9fza48p1ZRXaJvMnDxNXHPc+tkii/W/XZ2MCvF119eHYnU+KUvlXJ10X+NKGtk2RC99d7LYxwMAKL2aVvFU3wZB+jj6ks4kZuqWGn4a0SZEL2w4obTsonPOCxtOFNlnl5r+6hDupyW7Lyo+PUc96wZqRNsQTfv2pHLNliLbAUChDPYOAMWBrYqKWY8ePfTiiy+qb9++Be55e3trw4YNuueeexQZGalWrVpp5syZ2rVrl86ePWuHaAHHdWLzFwpp1VUhLbrIs1KIGt45Qk4ubjq7/dsi21jMedq19A1Fdrtf5f0qFbifcPpXVWveSQERDVTOr6JCW3eXV3CYEs8dK86hAAAcwK21/PXTqUT9cjpJMakmLd0Vo+w8s9qG+hbZxmKRUky51uuPEwyZuWa9vfmMdp1P0eW0bJ1KyNRHe2IU6uchPw+XkhgSAKCU6hjhry2nk7TtbLIupWbr4+hLys4zq3WoT5FtLBYp1ZRnc/3RLRF+WnckTvtj0nQxxaTFOy/K291ZDSt7FvNoAACOgomDUiY5OVkGg0E+Pj72DgVwGObcHCWfP67Amo2tZQajUQG1GinxzK9Ftjuy/mO5VfBR9ZZdC73vF1pblw9uV2ZyvCwWi+KO71Na7EUF1WpcaH0AQNngZDAoxNdDhy+nW8sskg5fTle4v0eR7dycjYq6raZe7llLI9pUU2Uvt2v+nHIuTjJbLMrIKfxtUgDAjc/JIFXzcdeRWNuccyQ2XaF+1845U7pFaGq3CD3Sqqoqebpa7/mXc5G3u7NNn1m5Zp1OzFTYNfoEAJQtbFVUimRlZWncuHG6//775eXlZe9wAIeRnZ4ii9lcYEsitwo+SrtyodA28ScP6ez2Deow5p0i+63fd7j2fjpTG6Y+JIPRSQaDQY3ueUz+Nepfz/ABAA6mgpuTnIwGpfzp7IHUrFxV9ixXaJvLqSYt3HlB55NMKudi1K2RAXqmU5gmrTuupMyCZxg4Gw3q17CidpxNVlauuVjGAQAo/cq7OefnnD+tGEjNylPFCoVPQF9Oy9ZHu2N0ISVLHs5O6lTTT2M6hOqlb08qKStXXu7O1j7+3Ofv9wAAICOUEjk5ObrnnntksVg0Z86ca9Y1mUwymUw2Zbk52XJ2cS2iBYA/ys3K0J5lb6rR3Y/JrULRk3SnfvxaiWeOqsWQCfLwDVTCyYPat2Ku3L38FMiqAwDAP3AyIVMnE64enHwi/qymdI9Q+3A/fXnwik1dJ4M0vHVVGSQt3R1TwpECABzd6YRMnf5DzjmZkKEJXWqobZivvjkca8fIAACOhImDUuD3SYMzZ87o+++//8vVBlFRUZoyZYpNWev7R6rtA6OKM0yg1HIt7yWD0ShTapJNuSktSe6FHIycHn9JGQlXtP3DF6xlFkv+AWBfje2jTuPmyN3bT4fXLFaLweNVsW5zSZJ3cJiSL5zS8Y0rmTgAgDIszZSnPLOlwFuZnu7OSs4quHqgMHkW6VxiloIq2L744WSQhrWuJr9yrnpz02lWGwBAGZduys3POW5ONuWe7k5KMf29nGO2SOeTsxRYPv/MnN9XzP25D093J11IMhXaBwCg7GHiwM5+nzQ4duyYfvjhB/n7+/9lm/Hjx2vMmDE2ZZO+O1NcIQKlntHZRd5VIxR3bK8qN2glSbKYzYo7tk9hbXsWqF8hqKpu+d8Mm7Jf1yxRrilT9fs8Ig+fAOXl5siSlysZbI+CMRiN+SeNAQDKrDyLRWcTM1U7qLyiL6ZKkgyS6gSV1w/HE/5WHwZJVbzdtf9SqrXs90mDoAquemPjaaVnc7YBAJR1eRbpXFKWagWW176YNEn5OaRWYHn9eDLxb/VhkBTs5aaDl/Pbx2fkKDkrV5GB5XUhOX+iwN3ZqFBfD/10MqkYRgHgRmcwGOwdAooBEwfFLC0tTcePH7d+PnXqlKKjo+Xn56fKlSvrrrvu0u7du/X1118rLy9Ply5dkiT5+fnJ1bXwrYfc3Nzk5ma7lyHbFKGsq9G+t/Ysf1ve1SLkG1JLJzd/qbzsLFVr0VmStPujt+Tu7ae6PQfJycVVXpWr27R38SgvSdZyo7OL/GvU16Gv58vJxVUevoGKP3FQ53b+oHq9h5Ts4AAApc6Go/F6qEUVnUnM1KmETHWp6S9XZ6N+Pp3/Jc5DzasoKTNHKw/kb0PUs06gTiVk6Epatsq5OKlrZID8yrtYv6DJ356omkJ8PTTzpzMyGgzycsv/Uz09O095TFoDQJn1w/F4PdgsWGeTsnQmMVO31PCTm5NRW88kSZIGNKuspMxcfXUofxui7pEBOp2Yqdi0bHm4OKlLTT/5lnPRltNJ1j43Hk9Qt8gAXUnLVnxGjm6vE6jkrFzti0ktJAIAQFnExEEx27lzpzp27Gj9/PtKgUGDBmny5Mn68ssvJUmNGze2affDDz/olltuKakwAYdXpcnNyk5P1pF1H8mUkiivKuFq9chkuXv6SpIyk2L/8Qx4swfH6vDqRdq99A1lZ6SpnG+g6tz2oEJb9yiOIQAAHMjO8ynydHPWHfWC5OXurPNJWZr+4xml/nZ4pV85F1l09cv+8q5OGtAsWF7uzsrIydPZxCy98v0pxaTmv+np4+GixlXyt6t8vmuEzc96feMpHY3NKKGRAQBKm90XUlXB7Yp61gmUp5uTLiSbNPuXs9ac4+vhYrMoupyrUfc3qSxPNydl5ph1LilLb206rUup2dY63x6Ll6uzQfc3qSwPF6NOxmdq9i/nlGtmohoAkM9gsfD60o1g7NdH7B0CAKCMSM78e/vpAgBwPbg5G/+6EgAA18GMvnXsHYJDqnDPAnuH4HDSPhls7xD+En+BAQAAAAAAAAAAKyYOAAAAAAAAAACAFWccAAAAAAAAAAD+lX96piQcAysOAAAAAAAAAACAFRMHAAAAAAAAAADAiq2KbhC9I4PsHQIAoIyo6OVu7xAAAGVIVk6evUMAAAAoc1hxAAAAAAAAAAAArJg4AAAAAAAAAAAAVmxVBAAAAAAAAAD4VwwGg71DQDFgxQEAAAAAAAAAALBixUEx27x5s1577TXt2rVLMTExWrlypfr06WO9P3nyZC1fvlznzp2Tq6urmjVrpmnTpqlly5b2CxpwUN9//ZnWrlii5MQEVQuL0APDn1J4ZL1C625au0pbvl+jC2dOSpKqR0Sq38BHC9S/eO6UPps/S0cP7FFeXp6CQ8I0YnyU/IMqFft4AACl29crlmvF8oVKTIhXWI1aGv7EOEXWbVBo3TOnjmvpB3N0/OghXbkUo0ce+5963/OgTZ2lH87RsgVzbcqqhoTq3SWrimsIAAAHsWbVJ/ryk0VKSohX9Ro1NXTU06pZu36hdc+dPqHlC97VyaOHFXs5RoNHPKXb73zApk5mRrqWz5+jbT/9oJSkRIVGRGrIyP8ponbhz08AgLKHFQfFLD09XY0aNdKsWbMKvV+rVi3NnDlT+/fv108//aTQ0FB17dpVsbGxJRwp4Ni2b96gj+e9ozvuf1iT3lmoamE19dbzo5WSlFBo/SP7d6tFh1s1NmqWnn39ffkFVtSbzz+hxLgr1jpXYs7r5aeHq3LV6hobNVtTZi5Rr/sekoura0kNCwBQSm3+bp3mzXpD9w8ernfmLVNYRC09/78RSkosPO+YsrJUKbiKBg1/Qr5+AUX2GxJWQ4tXfmu9Xpk5v7iGAABwED//sF4L331Tdw8cplffXarQGrX04rjHlHyNnFOxchX1f3iUfPz8C60z540XtHfXNj0+/gW9Me9jNbqplaY+/ajiY68UWh8AUPYwcVDMevTooRdffFF9+/Yt9P4DDzygLl26KDw8XPXq1dObb76plJQU7du3r4QjBRzb+lXL1L5bb7W79XYFh4RpwMhxcnVz108bvi60/rCxU9Wp510KCa+lytVCNXjUs7KYzTq8d6e1zopF76rBTW1095BRql4jUkGVq6pxy/by8vErqWEBAEqpVZ8sVrfb++nW2/ooJLSGRj41QW7u7trwzapC69eqU19DRoxRh87d5eLqUmS/Tk5O8vUPsF7ePr7FNAIAgKP46rMl6nJbX3XqfoeqhYZr2Ohn5ebmru/XflFo/Yja9TRw+Gi169RNLi4FX3oymbK0dfP3GjDscdVt2FSVq1TTvYOGq1JwNa3/6rPiHg4AwEEwcVCKZGdn67333pO3t7caNWpk73AAh5Gbk6Mzx4+oTuPm1jKj0ai6jZvrxK/7/1YfJlOW8vLyVN7TS5JkNpu1b+cvqhQcojcnPqHR/XvoxTFDtHvLpmIZAwDAceTk5Oj40cNqfNPVrSWNRqMaN2upXw/+t5c/Lp4/q4F9b9XQe3vqtanjdeVyzH8NFwDgwHJycnTy6K9q2LSFtcxoNKpB0xY6cujvPev8mTkvT2Zznlxc3WzKXd3cdPhA9H8JFwBwA2HioBT4+uuvVaFCBbm7u+utt97Shg0bFBBQ9BJ2k8mklJQUmys721SCEQOlS2pKkszmvAIrAbx8fJWcGP+3+vhswSz5+AWo7m+TD6nJiTJlZmj1Z4tUv1krjXnhHTVtfYtmv/SMjuzffd3HAABwHCnJiTLn5cnH13b7Bx8/fyUmxP3rfiPrNtCT46dqyuuzNOKp53Q55oLGPTZEGRnp/zVkAICDSk3Of9bx/nPO8fVX0r/MOR7lyqtW3Yb6bMk8JcTFKi8vT5s3rNbRQ/uVFP/v8xiAsstgMHD9w8sRMHFQCnTs2FHR0dH65Zdf1L17d91zzz26cqXofQWjoqLk7e1tcy15960SjBi4saz+dJG2b/5WI5972frWjdlsliQ1adVeXfvcr5DwWrrt7oFq2LytNq5Zac9wAQA3qJtatVO7jl0VVqOWmrVoo8mvzlR6Wqp++n69vUMDANxgHh8/VbJYNOze7rq/e2utXrlcbTt2k8HoGF9mAQCKn7O9A4BUvnx5RUREKCIiQq1atVLNmjX1wQcfaPz48YXWHz9+vMaMGWNTtvNcRkmECpRKnl4+MhqdChyEnJKUWODNnD9bu2KpVn+2SP97cYaqhdW06dPJyUmVq4Xa1K9cLVTHD+29brEDAByPl7evjE5OSvrTqrakhPhrHnz8T1Xw9FKVaiG6eOHcdesTAOBYPL3zn3X+vJI6KTFePv8h51QKrqapb72vrMxMZWakydc/UG++8IwqVq7yX0MGANwgWHFQCpnNZplMRW895ObmJi8vL5vL9U97EwJlibOLi6pHROrw3h3WMrPZrMN7d6hG7QZFtlvz2WJ9vfxDPTnlbYXWrFOgz9CadXXpwlmb8ssXzsk/qPL1HQAAwKG4uLgoolYd7d213VpmNpu1d/d21a7X8Lr9nMyMDMVcOC8//+s3GQEAcCwuLi4Kr1Vb+/fYPuvs37NDkXWLftb5u9w9POTrH6i01BRF79ii5m1u+c99AgBuDKw4KGZpaWk6fvy49fOpU6cUHR0tPz8/+fv7a9q0abrjjjtUuXJlxcXFadasWbpw4YLuvvtuO0YNOJ6ufe7XB2+9oNCadRRWq66+/eJjmbKy1LZLT0nSvDemyNc/UHcOHiFJWv3ZIn2x5H09MnaKAipWtr7B4+buIXePcpKk7v36691XJ6hWvcaq3bCZDuzaqr3bf9LTUbPsM0gAQKnR554BeitqompG1lWtOvX1xadLlZWZqS639ZYkvTFtgvwDgjR4+OOS8g+3PHf6hCQpNydX8XFXdPLYr3L3KKfgqiGSpA9mvakWbdsrqGJlJcTFaun8OTIandShS3f7DBIAUCr0uutBzXxlkmrUqqOI2vX1zecfyZSVqY7d7pAkTX/5efkHBKr/w6Mk5eec82dOSpJyc3OUEHdFp44fkbtHOVWuUk2SFL3jF1ksUnC16rp04ZwWv/eOqoSEqmP3XvYZJACg1GHioJjt3LlTHTt2tH7+fYuhQYMG6d1339Wvv/6qhQsXKi4uTv7+/mrevLl+/PFH1atXz14hAw6pRftblZqcpFVL3ldKYryqhdfUk1Pfsm5VlBB7yWa/zo2rVyg3N0dzop616eeO+4eqd/9HJElN29yiASPGafWnC7XsvbdUqUqIRjwbpZr1GpfYuAAApVP7zt2UnJSoJR/OUWJCnMIjIjX19dny9cvPO7GXY2T8w6FnCXFX9PjQ+6yfVyxfpBXLF6l+42Z6efoHkqS42Mt6bcp4paQkydvHV3UbNNEb7y6St49fyQ4OAFCqtO3YVSnJiVq+4F0lJcYrtEYtPffyDPn8lnPirlyyyTmJ8bEaO/wB6+cvP1msLz9ZrLqNmmnqm+9JkjLS07R03kzFx11RBU8vtbq5s+4fMkLOzi4lOzgAQKllsFgsFnsHgf/up2OJ9g4BAFBGVPRyt3cIAIAyJCsnz94hAADKiAZVK9g7BIfk/cBie4fgcJI/GmDvEP4SZxwAAAAAAAAAAAArJg4AAAAAAAAAAIAVEwcAAAAAAAAAAMCKiQMAAAAAAAAAAGDFxAEAAAAAAAAAALBytncAuD7OpKTbOwQAQBnh5sR7BwCAkpOanWvvEAAAZUYFewfgkAwGg71DQDHgyR8AAAAAAAAAAFgxcQAAAAAAAAAAAKyYOAAAAAAAAAAAAFaccVDMNm/erNdee027du1STEyMVq5cqT59+hRa9//+7/80d+5cvfXWWxo9enSJxgncCHasX6Vfvv5EackJqhhSQz0GjVKViNqF1j28/Uf99MVHSrh8Qea8PPlVqqLWt92thjffalMv9sIZfbfsfZ05vE9mc54Cq1TX3aMnyTugYkkMCQBQim346lN989kSJSfGKyS8pgY++j/ViKxXaN0f1qzSj999o/NnTkqSwiJq657BI2zqf77kPW3dtEEJsZfl5OKisIjaunvQo4qoXb9ExgMAKL02fvO5NqxaqpTEBFUNjdC9w8YotFbdQuv+tP4Lbf1hrS7+lnNCakSqz4D/s6mflZmhVYvmaO+2zUpPTZZ/ULA63n632vfoWyLjAQCUfkwcFLP09HQ1atRIQ4YMUb9+/Yqst3LlSm3dulXBwcElGB1w4zi45QetX/Kueg4ZrSoRtbVtzQotfXmcRr6xQOW9fQvU96jgqZv79Jd/cDU5Obvo2O4t+mLuqyrn5aOIRs0lSQmXL2rBlCfU+JYe6nDXILl5lFfs+dNydnEt6eEBAEqZrZs2aOl7b+uhUc8oIrKe1q5arlcmPK7X3v9U3j5+Beof3rdLrW/pplp1GsrF1VVffbpIrzw3Si+/u1x+AUGSpMpVQjRoxFgFVaqi7OwsrVm5TK88N0pvfLBCXj4FcxkAoGzY+eO3+vzD6br/0bEKq1VP33/1saZPflKTZy+TVyE55+j+PWp+cxeFP9JALq6uWv/5Ek2fPFrPz1gqH/9ASdLnH07XkX279NCTk+QfVFmHordp+btvyNsvQI1a3lzSQwQAlEJsVVTMevTooRdffFF9+xY9a3/hwgWNGjVKS5culYuLSwlGB9w4tqz+TE073qbGt3RXYNVQ9Rw6Wi5ubtqzaW2h9UPrNlbt5u0UWKW6/CoGq2WPO1UxJFznjhyw1vnh4w8U0bilbn1guCqH1pRfxWBFNmtT6EQEAKBsWbPyI3Xs0UcduvZSlerhemjUM3Jzc9em9V8VWn/EuBd06+13qXqNWgquFqpHnnhOZrNFB6N3WOu06dhd9Zu0UFDlKqpavYb6PzJamRnpOnvqWEkNCwBQCn33xXK17XqH2nS5XZVDwnT/o0/L1c1NW779utD6Q56arA633alq4bVUqWqoHnxsvCxms37du9Na58Sv+9Wq022q1aCp/CtW1s3d+qhKWIROHztUUsMCcAMxGAxc//ByBEwc2JnZbNaAAQM0duxY1atX+NJ2ANeWl5ujmFNHFVa/qbXMYDQqrH5Tnf8bf/haLBadPLBb8THnFVKnQX6Z2axj0dvkX6mqlkSN0+v/d6fmTRypX3f8VGzjAAA4htycHJ069qvqNW5uLTMajarXuLmOH97/t/owmbKUl5erCp5eRf6MH9asUrnyFVQ9vNZ1iRsA4Hhyc3J09sQR1W50k7XMaDSqdqPmOvmHl56uJfu3nFP+DzmnRu0G2rf9RyXFx8pisejIvl26cuGc6jZpcd3HAABwTGxVZGevvPKKnJ2d9fjjj9s7FMBhZaQmy2I2F1gJUN7bV3EXzxXZLisjTW+NvFd5uTkyGI267aEnVKNB/h/k6SlJys7K1M9fLVfHux9Sl/sf0fF9O/TJ25M1cMIbCq3TqFjHBAAovVJTkmQ258nb13Z7CG9fP8WcP/O3+lj+4Uz5+gWo3p++oNmz7UfNfHmCsk1Z8vEL0LhpM+Xp7XO9QgcAOJi033LOn7ck8vLx0+W/mXNWLpotb78Am8mHe4aN0dJZr2j8kN4yOjnJaDCq/8hnVLNek+saPwDAcTFxYEe7du3SO++8o927d/+jJSomk0kmk8mmLCfbJBdXt+sdInBDc3Mvp+FR7yk7K1OnDu7W+iVz5BtUWaF1G8tiMUuSIpu1Uavb7pIkVQqN0PmjB7Xr26+YOAAA/GtffrJQWzdt0HOvzpHrn/5+q9PoJk2btURpyUn6Ye0qzYwar8lvzy/03AQAAP7Kus8WaeeP3+rJabNsvjPY+PVnOnXkoB597lX5BVXS8YPRWj43/4yDOn9YUQcAKLvYqsiOfvzxR125ckUhISFydnaWs7Ozzpw5o6eeekqhoaFFtouKipK3t7fN9eX8WSUXOFDKlPP0lsFoVHpyok15enKiKlzjixaD0Si/SlVUKTRCrXveo7ot2uunL5ZZ+zQ6OSmgSnWbNgFVQpQcf+X6DwIA4DA8vXxkNDopOTHBpjw5MUHevv7XbPvNZ0v09ScLNW7adIWE1Sxw393dQ5WCqymiTgM98uREGZ2ctWndl9c1fgCA46jwW85JSbLNOSlJCfLyvfak8oaVH2ndiiV6fPLbqhoaYS3PNpn0xZJ3ddfQUWrYop2qhkbolp53qVm7zvp21UfFMg4AgONh4sCOBgwYoH379ik6Otp6BQcHa+zYsVq3bl2R7caPH6/k5GSb646HRpZg5EDp4uTsosphtXTq4B5rmcVs1qmDe1S1Zt2/3Y/FYlFebo61z+DwSMXH2G51FB9zXj4BFa9P4AAAh+Ts4qKwmrVtDjY2m806GL1TEb+dlVOYrz9dpFXLPtDTL7yj8Fp/Lz9ZzGbl5GT/55gBAI7J2cVFITUidWTfLmuZ2WzWkX07FR5Zv8h261cs0epP5uuxSW+qes06Nvfy8nKVl5srg8H2KyGjk9G68hoAALYqKmZpaWk6fvy49fOpU6cUHR0tPz8/hYSEyN/f9q00FxcXVapUSZGRkUX26ebmJjc322XtLq4p1zdwwMG0vu0urXr3FQWH11JwjdratuZz5WRlqXGHbpKkVbNflqdfgDrf97Ak6acvPlLl8FryCwpWbm6Ojkdv076fNui2IU9Y+2xz+736bPoLql67oULrNtbxvTt0dPcWDZrwpl3GCAAoPXr0fUBz35iisJp1VCOyntauWi6TKVMdbr1dkvTu65Pk6x+ke397ueOrTxbq88XvacS4FxRQsbKSEuIkSe4e5eTuUU5ZWZn6Yvl8NWt5s3z8ApSakqQNX32mxPhYtby5s93GCQCwv86979PCd15USERthdasq++/+limrCy17pKfcxa8NVU+/oHqM/BRSdK6zxfr64/m6aGnJss/qLKSE+MlSW7uHnL3KCePcuVVs34TrVgwU66ubvILqqRjB/Zo2w9rdOcQzl8E8M/9ky3Y4TiYOChmO3fuVMeOHa2fx4wZI0kaNGiQFixYYKeogBtPvdYdlZ6SrI2fLVBaUqIqVq+hB555WRW885fvJsdfkcF4NZFlm7K05sPpSkmIlbOrmwKCq6nviPGq1/rqv9fazdup59DR+vmLZVq7cKb8g6vpntGTFVK76LdJAQBlQ6sOtyolOVGfL3lPyQnxql6jlp5+4R3rVkVxVy7bvMn53TcrlJubo+nTnrHpp2//h3Xng8NkNBoVc+603vn2G6UmJ6mCl7fCa9XVhNfeU9XqNUp0bACA0uWmm7soLSVJX3/0vlISE1Q1rKZGTXrTemByQtxlGYxXc87mtSuVm5uj9195zqafnvcN0e33579INfR/U/XFojn68M3JykhLkV9gJd3x4HC179635AYGACjVDBaLxWLvIPDfLd113t4hAADKiFq+nvYOAQBQhqRm59o7BABAGdGp9rXPq0Lh/AZwPso/lbD4AXuH8Jc44wAAAAAAAAAAAFgxcQAAAAAAAAAAAKyYOAAAAAAAAAAAAFYcjgwAAAAAAAAA+FcMBoO9Q0AxYMUBAAAAAAAAAACwYsXBDaJpsK+9QwAAlBHV/MrZOwQAQBmSazbbOwQAAIAyhxUHAAAAAAAAAADAiokDAAAAAAAAAABgxcQBAAAAAAAAAACw4owDAAAAAAAAAMC/Y7B3ACgOrDgoZps3b1avXr0UHBwsg8GgVatW2dwfPHiwDAaDzdW9e3f7BAs4uNUrP9Yj9/bU3be20thHB+ro4QNF1j176oRefv5/euTenupzS1N9+enSAnV+v/fna+7bUcU5DACAg/hk+VLd3r2TWt/UUAMfuEcH9u+7Zv0N69eq3x091PqmhrqnXy/99OMm672cnBxNf+t13dOvl9q2aKJunW/W88+OU+yVy8U9DACAA/h0+Ufq06OLbm7RWEMevFcH/yLnfLd+re7p01M3t2isB+7qrZ//kHP+7OUXJ6tl47patmTR9Q4bAODAmDgoZunp6WrUqJFmzZpVZJ3u3bsrJibGei1btqwEIwRuDD99v04fzn5T9w0epjff/0ihNWpqytiRSkpMKLS+yZSlSpWraOCwx+XrF1BondfnLtH8z9dbrymvz5Ektelwa7GNAwDgGNavXa03X3tZw/5vpJZ+vEK1IiP12P89rIT4+ELr743erefGPaU+fe/SR5+s1C2duuipJx7T8WNHJUlZWVn69fAhPTx8hJZ+/Llef3OGTp8+pScfH1GSwwIAlEIb1q3RO2+8oqHDR2jhss8UUau2nhgxTAkJheecfdF7NHH8WPXq00+Lln+u9h076+knR+nE8WMF6m78/lsd2LdXgYFBxT0MAICDYeKgmPXo0UMvvvii+vbtW2QdNzc3VapUyXr5+vqWYITAjeGLT5eqa8++6tyjt6qFhuvRMc/Jzd1d363+otD6NWvX0+BHn9TNnbvJ2cWl0DrePr7y9Q+wXju2bFal4Kqq37hZcQ4FAOAAlixaoL533q07+typ8BoRenbiFLl7uOuLVZ8XWn/Z0sVq3badBj40VGHhNTTisSdUu05dfbI8f8Wbp6enZr/3obp266HQsHA1aNRY456dqMOHDiom5mJJDg0AUMosW7xAvfvdrV59+im8RoSemTBJ7u7u+mrVikLrf/zRYrVq004DBufnnP8b+bgi69TVp8ttV1lfuXxZr788TVNfelXOzuxkDQCwxcRBKbBx40YFBQUpMjJSjz76qOKLeFMNQOFycnJ04shhNWzW0lpmNBrVqFlLHTl07SW8/+RnbNqwRp1v6y2Dgc37AKAsy8nJ1q+HD6pFqzbWMqPRqBYtW2v/3uhC2+zbG62WLdvYlLVu01b7iqgvSWlpqTIYDPL09LoeYQMAHFB+zjmkFi1bWcuMRqOat2yt/fuiC22zf1+0mrdsbVPWqnVb7d+31/rZbDZr8oRn9OCgIQqPqFkssQMAHBtTynbWvXt39evXT2FhYTpx4oSeffZZ9ejRQ1u2bJGTk1OhbUwmk0wmk01ZtilXrm5uJREyUOqkJifJbM6Tj5+fTbm3r5/Onz19XX7Gtp9+UHpaqjp3v+O69AcAcFxJiYnKy8uTv7+/Tbm/f4BOnzpVaJv4uDj5/am+n3+A4uPiCq1vMpk0/a3X1a1HT1WoUOH6BA4AcDhJiUnKy8uTn7/t9qp+/v46c/pkoW3+Ts5ZNH+enJycdO8DD17/oAEANwQmDuzsvvvus/53gwYN1LBhQ9WoUUMbN25U586dC20TFRWlKVOm2JSNGDNej/3vuWKNFSjLvl29Sk1btpFfQKC9QwEA3OBycnL0zP9Gy2KRxk+YbO9wAAA3mMOHDurjjxZr0bLPWU0N4Lrg/yU3JrYqKmXCw8MVEBCg48ePF1ln/PjxSk5OtrmGjfpfCUYJlC6e3j4yGp2UlGB7EHJyYoJ8/fyLaPX3Xbl0Uft2bdetPYs+qwQAUHb4+PrKycmpwPaS8fFxCggIKLSNf0BAgYOTE+Lj5P+n+jk5OXpm7JOKibmo2e99wGoDACjjfHx95OTkpIR42xVqCfHx8vuXOSd69y4lJiSod4/OatOsgdo0a6CYmIua/uar6tOjS/EMBADgcJg4KGXOnz+v+Ph4Va5cucg6bm5u8vLysrnYpghlmYuLi2pE1tG+3dutZWazWft2bVdk3Yb/uf/v1nwpbx8/3dSq3X/uCwDg+FxcXFW7Tj3t2LbFWmY2m7Vj21Y1aNS40DYNGzXW9j/Ul6RtW39Rwz/U/33S4NyZM5rz3nz5+PgWR/gAAAeSn3Pqasf2rdYys9msHdu3qkHDxoW2adCwsXb+ob4kbd+6RQ0aNpIk3Xb7HVr66Sot/niF9QoMDNKDg4bonTnvF9tYAACOha2KillaWprN6oFTp04pOjpafn5+8vPz05QpU3TnnXeqUqVKOnHihJ5++mlFRESoW7dudowacDy97+6vd6ImKSKyrmrWqaevPvtIWVmZ6twj/0yCt1+aKP+AIA0YNkpS/pcz537bEzQ3N0cJcVd08tgReXh4qHLVEGu/ZrNZ36/9Uh273S4nZ/6XCQDI9+DAwZo04RnVqVtf9Rs01EdLFiozM1N39OknSXr+2XEKrBikUU88JUm6v/8APTJkoBYv/FDt2t+i9Wu+0aGDB/Xc81Ml5eelcU89oV8PH9LbM99VnjlPcXGxkiRvb2+5uLjaZ6AAALu7f8BgTZ04XnXq1lfd+g20fOkiZWVm6vbe+SuiJ094RoFBQRr5+BhJ0r0PDND/PTxISxfNV9ubO2jD2tU6fOiAxj+fv+Wxt4+PvH18bH6Gs7Oz/PwDVD00rETHBgAovfgWrJjt3LlTHTt2tH4eMyY/kQ8aNEhz5szRvn37tHDhQiUlJSk4OFhdu3bVCy+8IDdWEAD/SLtO3ZSclKhl8+coMSFeYRGRmvTqTPn8tlVR7OVLMhiuLrJKiIvVmEfut35e9fFirfp4seo1aqZp71x9y2bvrm2KvXxJnW/rXXKDAQCUel2736bExAS9O3uG4uNiVSuyjmbMeV/+vx1eeenSRRmMV/d6bdS4qaa9/LrmzHhbs6a/pZCQUL3xzkxF1KwlSYq9clmbNn4vSbr/7j42P2vuBwt1U/OWJTMwAECpc2u3HkpKTNB7c2YoPi5OtSJr6+3Zc60553JMjIx/eNZp2LiJXnjpVb07a7rmzHhb1UKq69W3ZqhGRE17DQEA4IAMFovFYu8g8N8djkm3dwgAgDKiml85e4cAAChDcs1me4cAACgjfDyc7B2CQwoYvNzeITicuAX32TuEv8SKAwAAAAAAAADAv2IwGP66EhwOhyMDAAAAAAAAAAArJg4AAAAAAAAAAIAVEwcAAAAAAAAAAMCKiQMAAAAAAAAAAGDF4cg3iLDA8vYOAQAAAACuO2cnJ3uHAAAAUOYwcQAAAAAAAAAA+FcMBoO9Q0AxYKsiAAAAAAAAAABgxcQBAAAAAAAAAACwYuKgmG3evFm9evVScHCwDAaDVq1aVaDO4cOHdccdd8jb21vly5dX8+bNdfbs2ZIPFnBwyz9aqh63dlLzJg3U/767tX/fvmvWX79ujXrf3l3NmzTQnX166cfNm2zuWywWzZrxjjp3aKcWTRtq2NDBOnPmdDGOAADgSMg7AICSQs4BAJQ0Jg6KWXp6uho1aqRZs2YVev/EiRNq166dateurY0bN2rfvn2aOHGi3N3dSzhSwLGtXbNar78apeEjRmr5pysVGVlbjw4fqvj4+ELrR+/ZrWfGPqW+/e7Sx5+tUsdOnTV61EgdO3bUWmf+B+9r2dLFmjBpspYs+0QeHh56dNhQmUymkhoWAKCUIu8AAEoKOQcAYA8Gi8VisXcQZYXBYNDKlSvVp08fa9l9990nFxcXLV68+D/1nZX7H4MDHFz/++5WvfoN9OyE5yVJZrNZXTt30P0PDNDQR4YVqD/2qdHKzMzUzNlzrWUP3n+PImvX1sRJU2WxWNTllps1cPBDGvTQUElSamqqOrVvo6nTXlaP23qWzMAAAKUSeQcAUFLIOUDJcXe2dwSOKWjIJ/YOweFc+fAee4fwl1hxYEdms1nffPONatWqpW7duikoKEgtW7YsdDsjAEXLyc7W4UMH1ap1G2uZ0WhUq1ZttG/vnkLb7IuOVqtWrW3K2rRtp33R0ZKkC+fPKy4uVi1bXe3T09NTDRo2KrJPAEDZQN4BAJQUcg4Ah2Dg+seXA2DiwI6uXLmitLQ0vfzyy+revbvWr1+vvn37ql+/ftq0adNfdwBAkpSYlKj/Z+8+w6Ou0j6O/yaVAOmThBJCJ9SEgHQMVZoiCHakLYrrBpSyFlAs+LixsIoiIDbAgihKQJGqSMCFoJTQe2+B9N5nnhew444JoujMZMj3c13/F3P+9zncZ7ncQ3LPOae0tFSBgYFW7YGBgUpJSSm3T0pKigIDjWXjU1OuvE++3Gb8/WMCACoH1h0AgL2w5gAAHIUNOA5kMpkkSYMGDdLEiRMlSa1bt9bmzZv1zjvvqFu3buX2KywsLHPuoNnVU56enrZNGAAAAAAAAABww2PHgQMZjUa5ubmpefPmVu3NmjXT6dOnr9ovNjZWvr6+Vs9rr8TaOl2gwvL385erq2uZy8FSU1NlNBrL7WM0GpWamlI2/so3c4zGoMttKb9/TABA5cC6AwCwF9YcAICjUDhwIA8PD7Vr106HDh2yaj98+LDq1q171X5TpkxRZmam1fP4k1NsnS5QYbl7eKhZ8xbamrDF0mYymbR16xZFREaV2yeidWttTUiwakvYslkRrVtLkmqHhspoDNLWrb+MmZOToz27d111TABA5cC6AwCwF9YcAICjcFSRjeXk5Ojo0aOWzydOnFBiYqICAgIUFhamxx9/XPfcc4+io6PVo0cPrV69Wt988402bNhw1TE9PcseS1RQYqsZAM5h+MjRmjb1SbVo0VItW0Xok48XKj8/X4PvGCJJenrKEwoODtFjEydLkoY9MEJjRg3XwgUfKjq6m1avWql9e/dq2vPTJUkGg0HDho/Qe/Pmqm5YXdUODdXsWW8qKDhYPXv1dtg8AQAVA+sOAMBeWHMAAI5A4cDGtm3bph49elg+T5o0SZI0cuRILViwQHfccYfeeecdxcbG6tFHH1V4eLi++uorde3a1VEpA06pX/8BSk9L05y331JKSrLCmzbTnHnvK/DKVtukCxfkYvhlk1XrqDaKfXWG3n5rpmbNfF1hdetp5qzZaty4iSVm9JiHlJ+fr+nPP6vs7CxFtWmrOfPe5z4RAADrDgDAblhzAFR0BoPB0SnABgxms9ns6CTw57HjAAAAAAAAALh+VfiK9XUJeXCJo1NwOhffv8vRKVwTdxwAAAAAAAAAAAALCgcAAAAAAAAAAFRQs2fPVr169VSlShV16NBBP/3002/Gz5w5U+Hh4fLy8lKdOnU0ceJEFRQU/KE/k8IBAAAAAAAAAAAV0Oeff65Jkybpueee044dOxQZGam+ffvq0qVL5cYvWrRITz31lJ577jkdOHBAH3zwgT7//HNNnTr1D/25FA4AAAAAAAAAAKiAXn/9dT300EMaPXq0mjdvrnfeeUdVq1bVhx9+WG785s2b1aVLF91///2qV6+e+vTpo/vuu++auxR+jcIBAAAAAAAAAOC6GAwGnj/4FBYWKisry+opLCws879tUVGRtm/frt69e1vaXFxc1Lt3b23ZsqXcv4/OnTtr+/btlkLB8ePHtXLlSg0YMOAP/b1SOAAAAAAAAAAAwE5iY2Pl6+tr9cTGxpaJS0lJUWlpqUJCQqzaQ0JClJSUVO7Y999/v6ZPn66uXbvK3d1dDRs2VPfu3TmqCAAAAAAAAACAimrKlCnKzMy0eqZMmfKXjL1hwwb961//0pw5c7Rjxw4tXbpU3377rV588cU/NI7bX5INAAAAAAAAAAC4Jk9PT3l6el4zzmg0ytXVVRcvXrRqv3jxomrUqFFun2nTpmn48OF68MEHJUmtWrVSbm6uxo4dq6efflouLr9vLwE7DgAAAAAAAAAAqGA8PDzUtm1bff/995Y2k8mk77//Xp06dSq3T15eXpnigKurqyTJbDb/7j+bHQcAAAAAAAAAAFRAkyZN0siRI3XTTTepffv2mjlzpnJzczV69GhJ0ogRI1S7dm3LHQkDBw7U66+/rqioKHXo0EFHjx7VtGnTNHDgQEsB4fdgx4GNbdy4UQMHDlStWrVkMBi0bNkyq/dXu1n7tddec0zCgBNbvOhT9b+lp9pFtdKwe+/Snt27fzN+7ZpVGnRbP7WLaqWhgwdq08Z4q/dms1mzZ72pXt26qn2bCI0dM0qnTp204QwAAM6EdQcAYC+sOQAqsqv9fpPn6s8fcc8992jGjBl69tln1bp1ayUmJmr16tWWC5NPnz6tCxcuWOKfeeYZTZ48Wc8884yaN2+uMWPGqG/fvpo3b94f+nMpHNhYbm6uIiMjNXv27HLfX7hwwer58MMPZTAYNHToUDtnCji31atWasarsXr4HzFavCRO4eFN9cjDY5SamlpufOLOHXrq8cm6Y8id+vzLZerRs5cmjI/RkSOHLTHzP3hPn336sZ557nl98tkX8vLy0iNjx6iwsNBe0wIAVFCsOwAAe2HNAQCMGzdOp06dUmFhobZu3aoOHTpY3m3YsEELFiywfHZzc9Nzzz2no0ePKj8/X6dPn9bs2bPl5+f3h/5Mg/mPHGyEP8VgMCguLk6DBw++aszgwYOVnZ1tdW7V71FQ8ieTA5zcsHvvUouWrTT1mWclXT7vrU+vbrrv/uEa89DYMvGPT56g/Px8vT3nl2rrA/fdrfCmTTXtuekym83q3f1mjRg1WiNHj5EkZWdnq2d0Z01/6WX1H3CrfSYGAKiQWHcAAPbCmgPYTxUOdb8uNcd+5egUnM6Fdyv+l8bZcVCBXLx4Ud9++63GjBnj6FQAp1JcVKQD+/epY6fOljYXFxd17NhZu3ftLLfP7sREdexofYlM5y5dtTsxUZJ07uxZpaQkq0PHX8b09vZWq4jIq44JAKgcWHcAAPbCmgMAcBQKBxXIwoUL5e3trSFDhjg6FcCppGekq7S0VIGBgVbtgYGBSklJKbdPSkqKAgONZeNTU668T77cZvz9YwIAKgfWHQCAvbDmAAAchQ04FciHH36oYcOGqUqVKr8ZV1hYWObcQbOrpzw9PW2ZHgAAAAAAAACgEmDHQQWxadMmHTp0SA8++OA1Y2NjY+Xr62v1vPZKrB2yBComfz9/ubq6lrkcLDU1VUajsdw+RqNRqakpZeOvfDPHaAy63Jby+8cEAFQOrDsAAHthzQHgDAwGA88ffJwBhYMK4oMPPlDbtm0VGRl5zdgpU6YoMzPT6nn8ySl2yBKomNw9PNSseQttTdhiaTOZTNq6dYsiIqPK7RPRurW2JiRYtSVs2ayI1q0lSbVDQ2U0Bmnr1l/GzMnJ0Z7du646JgCgcmDdAQDYC2sOAMBROKrIxnJycnT06FHL5xMnTigxMVEBAQEKCwuTJGVlZWnJkiX697///bvG9PQseyxRQclflzPgjIaPHK1pU59UixYt1bJVhD75eKHy8/M1+I7Ld4Y8PeUJBQeH6LGJkyVJwx4YoTGjhmvhgg8VHd1Nq1et1L69ezXt+emSLlfLhw0foffmzVXdsLqqHRqq2bPeVFBwsHr26u2weQIAKgbWHQCAvbDmAAAcgcKBjW3btk09evSwfJ40aZIkaeTIkVqwYIEkafHixTKbzbrvvvsckSJwQ+jXf4DS09I05+23lJKSrPCmzTRn3vsKvLLVNunCBbkYftlk1TqqjWJfnaG335qpWTNfV1jdepo5a7YaN25iiRk95iHl5+dr+vPPKjs7S1Ft2mrOvPe5TwQAwLoDALAb1hwAgCMYzGaz2dFJ4M9jxwEAAAAAAABw/arwFevrUuvhpY5OwemcnzfE0SlcE3ccAAAAAAAAAAAAC+poAAAAAAAAAIDrY3B0ArAFdhwAAAAAAAAAAAALCgcAAAAAAAAAAMCCwgEAAAAAAAAAALDgjoMbxAdbTzo6BQBAJXF7s5qOTgEAUInkFJQ4OgUAQCXRrFY1R6cAVBjsOAAAAAAAAAAAABbsOAAAAAAAAAAAXBeDweDoFGAD7DgAAAAAAAAAAAAW7DiwsY0bN+q1117T9u3bdeHCBcXFxWnw4MGW9xcvXtSTTz6ptWvXKiMjQ9HR0Zo1a5YaN27suKQBJ7Xr+6+1Y/WXystMk7FOA3Ub9g/VaND0mv0Ob92g1fNi1SCqk24b/7yl3Ww2a+uyj7R342oV5uWoVqPm6jHiUfmF1LbhLAAAzmL5l4v1xacLlJaWooaNmmjcpClq2qJVubEnjx/Vgvdm68jBA7qYdF6PPPa4ht473Cpm985t+uLTBTpy6IBSU5L1wssz1aVbT3tMBQBQwa2M+1xxn3+kjLRU1WvYRA89+oSaNGtZbuzpE8e0aP5cHTt8QMkXL+hvMZN1+53DrGIeuvdWJV+8UKZv/0F36eEJU2wyBwCAc2HHgY3l5uYqMjJSs2fPLvPObDZr8ODBOn78uJYvX66dO3eqbt266t27t3Jzcx2QLeC8Dv+0QZs+f1cdbh+me5+bLWOdBlr++tPKy8r4zX5ZKUna9MV7qtWk7D+6t6/6QonfLVePEeN1zzNvys2zipb9e6pKiotsNAsAgLP44bvVeuet1zR8zN/1zoLP1aBxuJ6a+Help6WWG19QUKCatUL14D8eU0Cg8Sox+WrQOFzjJ0+1ZeoAACfz4/o1+nDu67p35Fi9/u4i1WvYWC88EaOM9LRy4wsLC1SjVm2NGPuo/APKX3NmvPOJ5n+11vK8MGOuJKlz91tsNg8AgHOhcGBj/fv31//93//pjjvuKPPuyJEjSkhI0Ny5c9WuXTuFh4dr7ty5ys/P12effeaAbAHntXPNUrWM7qfmN/dVYO266jniUbl5eGr/pjVX7WMylWrNu6+o46Dh8g2qafXObDYrcd0ytR94nxpGdZaxTgP1efAJ5Wak6viOzbaeDgCggvvqs4804Pah6nfbYNWt31ATnpgmT08vrV6xrNz4ps1b6uHxk9Xjlv5yd/coN6Z9p5v1t4fHq2v3XjbMHADgbJYv+VR9br1DvfoPUp16DfTIpKflWaWKvl+1vNz4xk1baNTfJ+rmnn3l5u5eboyvn7/8A4yW5+ctG1WjVqhaRra15VQAAE6EwoEDFRYWSpKqVKliaXNxcZGnp6d+/PFHR6UFOJ3SkmJdOnVEdZq3sbQZXFxUp3mULhzbf9V+P339qby8/dQiul+Zd1nJScrLTLMa07NqNYU0aKoLxw78tRMAADiV4uJiHT50QG3adbS0ubi4qE27Dtq/d5cDMwMA3GiKi4t17PABRbTtYGlzcXFRZJsOOrRv91/2Z8SvW6Ve/QdxwSkAwILCgQM1bdpUYWFhmjJlitLT01VUVKRXXnlFZ8+e1YULZc8aBFC+/OwsmU0mVfXxs2qv6uOvvMz0cvucP7xX+zatUa9RE8p9n5eVdmWMX4/pp7zM8rcEAwAqh8yMdJlKS+UfEGjV7h8QqPTUFAdlBQC4EWVnZshkKpWff4BVu69/wFWPx/ujtv74g3JzstWr3+1/yXgAKh+DwcDzBx9nQOHAgdzd3bV06VIdPnxYAQEBqlq1qn744Qf1799fLi5X/6spLCxUVlaW1VNcVGjHzAHnVpSfp7Xvv6peIyfIy9vX0ekAAAAAgMN8t3KZ2nTorABjkKNTAQBUIBQOHKxt27ZKTExURkaGLly4oNWrVys1NVUNGjS4ap/Y2Fj5+vpaPWs/nmvHrIGKxcvbRwYXlzIXIedlpauqr3+Z+MzkC8pKuahv3npWsx7sr1kP9teBzd/peGKCZj3YXxmXzquqT8CVMX49Zoaq+gaUGRMAUHn4+vnLxdW1zDc909NS5X+Vi48BALge3r5+cnFxLXMRcmZ6Wpmdb9fjUtJ57d7xk24ZUPZeRgBA5UbhoILw9fVVUFCQjhw5om3btmnQoEFXjZ0yZYoyMzOtnj7DH7FjtkDF4urmruC6jXXmwE5Lm9lk0pkDiarZsHmZeP+adTRs+jzd//xcy9OgdUeFNo3U/c/PlXdAkHyCaqiqb4DO7P9lzML8XF08flA1Gzazy7wAABWTu7u7moQ3045tWy1tJpNJO7dtVfOWkQ7MDABwo3F3d1fDJs20e8dPljaTyaTdO35SeIuIPz3+96u/lq9fgG7q1PVPjwUAuLG4OTqBG11OTo6OHj1q+XzixAklJiYqICBAYWFhWrJkiYKCghQWFqY9e/boscce0+DBg9WnT5+rjunp6SlPT0+rNncPzlxH5RbVd4jWvT9DIfWaKKR+uBLXxamksEDNu17+b2nte6+qmr9RXe78m9zcPRQYWs+qv2fV6pJk1d76lsH6ecVn8gupLZ+gGkqIW6hqfoFq0KazvaYFAKight43Qq+++IzCmzZXeItWWrr4ExUU5KvfbYMlSS+/MFXGoBA9+I/HJF2+ePLUiWOSpJKSYqUkX9LRwwfl5VVVteuESZLy8/J07uxpy59x4fw5HT18UN4+vgqpUdO+EwQAVBiD7hqmN19+To2aNFfjZi30zZeLVFCQb7mTYOa/pikwKFjDHxov6fKac+bUcUmX15y0lEs6fvSQvLy8VLN2mGVck8mk9au/Vo++t8nVlV8PAQCssTLY2LZt29SjRw/L50mTJkmSRo4cqQULFujChQuaNGmSLl68qJo1a2rEiBGaNm2ao9IFnFaT9t2Vn52phGUfKTczXUF1GmjQxJcsRxVlpyXL8Bt3h5Snbf+7VVJYoPUL31RhXo5qNW6hQZNekpu7hy2mAABwIj1691NmeroWvD9H6akpatg4XLFvzLUcG3HpYpLVnVWpKZf095F3Wz4vWbRQSxYtVETUTXp9zoeSpEMH9+mfMWMsMe+89Zokqc+A2/XEtP+zx7QAABVQ1559lZmZrs8WzFV6WqrqNwzXc6+8Lb8ra07ypSSrn3XSUpM16aH7LJ+Xff6xln3+sVpEttVLM9+ztO/avlXJF5PUq//VTzwAAFReBrPZbHZ0EvjzZv/npKNTAABUErc345vPAAD7ySkocXQKAIBKolmtao5OwSnViVnu6BSczpnZFb9oyx0HAAAAAAAAAADAgsIBAAAAAAAAAACwoHAAAAAAAAAAAAAsKBwAAAAAAAAAAAALCgcAAAAAAAAAAMDCzdEJ4K9hMDg6AwBAZZF4LsPRKQAAKpGckhJHpwAAqCSa1arm6BScE7+XvCGx4wAAAAAAAAAAAFhQOAAAAAAAAAAAABYUDgAAAAAAAAAAgAWFAwAAAAAAAAAAYMHlyDYWGxurpUuX6uDBg/Ly8lLnzp31yiuvKDw83BJTUFCgyZMna/HixSosLFTfvn01Z84chYSEODBzwPns+v5rbV/1pfIy02QMa6Duw/6hGg2aXrPfoa0btPqdWDWI6qSBjz5vaTebzUpY9pH2xq9WYV6OajVurh7DH5V/jdo2nAUAwFn8Z9VSbfh6sbIz0lSzbkPdMeYxhTVuXm7snoR4fb/0E6UknVNpaYmCaoaq28B71LZbX6uYLWuX6+zxw8rLydLE1z5Q7fqN7TUdAEAF9tOaZfrPN58rJzNNNcIaqv/o8Qpt1Kzc2P0/bdSmZYuUlnROptJSBdSorc633qXI6D6WmLg5r2jXxjVW/RpGttPwKa/YdB4AAOdB4cDG4uPjFRMTo3bt2qmkpERTp05Vnz59tH//flWrdvmm9okTJ+rbb7/VkiVL5Ovrq3HjxmnIkCH6z3/+4+DsAedxeOsGbVr8rnqMGK8aDZoqcV2clv37aY2I/UBVffyu2i8rJUk/fv6eajVpWebd9pVfKHHdcvV58J/yCaqhhKULtez1qRr+0ntyc/ew4WwAABVd4n++19cLZ2vo2MkKa9xcm75dovf+75964q1P5e3rXybeq7qPeg0druDaYXJ1c9eB7Zv1+eyXVd3XX+Gt20uSigoLVK9ZhCI799SSd16195QAABXU3s0/aM3Hc3XbgxNUu1EzJaz8Sp/EPqlxry9U9fLWnGo+ih48TMbaYXJ1ddPhHQla9s6rqubrr0aR7SxxjSLba9AjT1g+u7m522U+AG48BoPB0SnABjiqyMZWr16tUaNGqUWLFoqMjNSCBQt0+vRpbd++XZKUmZmpDz74QK+//rp69uyptm3bav78+dq8ebMSEhIcnD3gPHasXaoW0f3U4ua+CqxdVz1HPCo3D0/t27Tmqn1MplKtnveKOgweLt+gmlbvzGazdq5bpvYD71PDNp0VVKeB+jz0hHLTU3Vsx2ZbTwcAUMHFf/OFOvS+Te17DlCNOvU0dOxkuXtW0c/rvy03vlHLKLXqEK2Q0Hoy1qitm2+9SzXrNtCJA7stMW279VWfu0apcURbe00DAOAEtny7RG16DlBU9/4KDq2n2x6cKHcPT+3csKrc+PotWqtZ+5sVVLuuAmrUVscBQxUS1kCnD+6xinN1d5e3X4Dl8arubY/pAACcBIUDO8vMzJQkBQQESJK2b9+u4uJi9e7d2xLTtGlThYWFacuWLQ7JEXA2pSXFunTyiMJatLG0GVxcFNY8SklH91+139bln6qqj59aRvcr8y4rOUl5mWlWY3pWraYaDZsq6eiBv3YCAACnUlJcrHPHD6tJxE2WNhcXFzVu1VanDu27Zn+z2awju7fr0vkzatA80papAgCcXElJsc6fOKwGrX4pKru4uKhBq7Y6e/jqP+v8l9ls1vE9O5R64azqNouwendyf6JeHTtEsyaO0Ir331BeduZfnj8AwHlxVJEdmUwmTZgwQV26dFHLlpePRUlKSpKHh4f8/PysYkNCQpSUlOSALAHnk5+dJbPJVOZIoqq+/kpLOlNun3OH92r/pjW6/4U55b7PzUy7PMavx/Txs7wDAFROudmZMplKyxwP4e0XoEvnTl+1X35ujl58eKhKiovk4uKqIQ9OVJP/OTICAIBfy8vKlNlkKrPmVPP1V8pvrDkFeTn69yN3q7SkWAYXF936twlq+D8F70at26lZ+67yD66ptIvn9f3iD/TJy0/pwRfflouLq83mAwBwHhQO7CgmJkZ79+7Vjz/++KfGKSwsVGFhoVVbcVGh3D08/9S4QGVRlJ+nte+9ql6jJsjL29fR6QAAKglPr6qa9NoHKizI15E92/X1wtkKCKmlRi2jHJ0aAOAG41Glqv7+ynsqKsjXib07tObjOfIPrqn6LVpLklp17mmJDQlroJCwBnrrsQd0ct8uNWjV5iqjAgAqEwoHdjJu3DitWLFCGzduVGhoqKW9Ro0aKioqUkZGhtWug4sXL6pGjRrljhUbG6sXXnjBqm3A3x7TrWMm2CJ1oMLz8vaRwcVFeVkZVu15memq5lP2srDM5AvKSrmor9981tJmNpslSW+N6a8RsR+omu/l48TysjJUzS/wlzGzMhRUp6ENZgEAcBbVvH3l4uKqnMx0q/bsjDT5+AVctZ+Li4uMNS//O7B2/ca6dO6U1sd9QuEAAHBVVX18ZXBxKbPm5Gamq/o11pzAGrUlSTXrNVLyudP6cfkiS+Hg1wJCaqmqt6/SLp6jcAAAkEThwObMZrPGjx+vuLg4bdiwQfXr17d637ZtW7m7u+v777/X0KFDJUmHDh3S6dOn1alTp3LHnDJliiZNmmTVNn/HBdtMAHACrm7uCq7XWGf271TDNp0lSWaTSWcOJCqi1+1l4v1r1tGwF+dZtW1ZukBFBfnqdv8j8g4Ikourm6r6BujM/p0KCrtcKCjMz1XSsYNq1eM2208KAFBhubm7q3aDJjqyZ7tatr9Z0uUjKY/u2aEu/e/43eOYTWaVFBfbKk0AwA3Azc1dteo30Ym9O9SsXVdJl9ec43t3qH3fwb97HLPZ9JtrTmZqsvJysn6zGAEAV2MwGBydAmyAwoGNxcTEaNGiRVq+fLm8vb0t9xb4+vrKy8tLvr6+GjNmjCZNmqSAgAD5+Pho/Pjx6tSpkzp27FjumJ6envL0tD6WyN2DM9dRubXpM0Rr35+h4HpNVKNBuHaujVNxYYGad+0jSVrz3quq7mdUl7v+Jjd3DxlD61n196xaXZKs2qNuGayfvvlMfiG15WOsoS1xC1XNP9BSnAAAVF7dBt6txW/HKrRhuMIaNdOmb5eoqDBf7XoMkCR99tZL8g00asCwhyVJ3y/9RHUahiuwRm2VFBfpwI4Ebd+4RkMfmmwZMy87S+kpF5WVniJJSj5/+exqb78A+fgHCgBQOXW69S7FzX1ZtRqEq3ajpkpY+ZWKCwsU1a2fJGnp7Fj5BBjV+76HJEmbli1SrQZN5B9SS6UlxTqyc6t2b1pnOaWgsCBf8V8uVLMO0aruG6D0i+e1btE8BYTUViPu3gEAXEHhwMbmzp0rSerevbtV+/z58zVq1ChJ0htvvCEXFxcNHTpUhYWF6tu3r+bMKf/CVgDla9Khu/KzM5Ww7CPlZabLGNZAgye9pGpXLhHLTk2WweDyh8ZsO+BuFRcV6PsFb6owL0e1mrTQ4Ekvyc3dwxZTAAA4kdZdeiknK0NrFn+o7Iw01arXSA8+PUPeV76pmZ5yUQaXX755VVSYr6Xvva6MtGS5e3gquFaY7n/0GbXu0ssSs2/bf/T57FjL50/euHw05S13jVLfe/5mp5kBACqalp17KDcrQz8sma+cjHTVqNtQDzz1imV3QGbKJaufdYoK8/Xth28qKzVZbh6eMtaqoyExU9Wycw9Jl48xunj6uBI3rlVBbo68/QPVMOIm9bx7ND/rAAAsDOb/HuwNpzZn80lHpwAAqCTqeHs5OgUAQCWSU1Li6BQAAJXEfVG1HZ2CU6r76DeOTsHpnHproKNTuKY/9vVbAAAAAAAAAABwQ6NwAAAAAAAAAAAALLjjAAAAAAAAAABwXQwGw7WD4HTYcQAAAAAAAAAAACwoHAAAAAAAAAAAAAuOKrpB/K19PUenAAAAAAAAAAC4AbDjAAAAAAAAAAAAWFA4AAAAAAAAAAAAFhxVBAAAAAAAAAC4LgaDwdEpwAbYcWBjsbGxateunby9vRUcHKzBgwfr0KFDVjHvvvuuunfvLh8fHxkMBmVkZDgmWcDJLV70qfrf0lPtolpp2L13ac/u3b8Zv3bNKg26rZ/aRbXS0MEDtWljvNV7s9ms2bPeVK9uXdW+TYTGjhmlU6dO2nAGAABnwroDALAX1hwAgL1ROLCx+Ph4xcTEKCEhQevWrVNxcbH69Omj3NxcS0xeXp769eunqVOnOjBTwLmtXrVSM16N1cP/iNHiJXEKD2+qRx4eo9TU1HLjE3fu0FOPT9YdQ+7U518uU4+evTRhfIyOHDlsiZn/wXv67NOP9cxzz+uTz76Ql5eXHhk7RoWFhfaaFgCggmLdAQDYC2sOAMARDGaz2ezoJCqT5ORkBQcHKz4+XtHR0VbvNmzYoB49eig9PV1+fn5/aNyCkr8wScAJDbv3LrVo2UpTn3lWkmQymdSnVzfdd/9wjXlobJn4xydPUH5+vt6eM8/S9sB9dyu8aVNNe266zGazene/WSNGjdbI0WMkSdnZ2eoZ3VnTX3pZ/Qfcap+JAQAqJNYdAIC9sOYA9lOFQ92vS/0J3zo6BadzYmbF//9adhzYWWZmpiQpICDAwZkAN47ioiId2L9PHTt1trS5uLioY8fO2r1rZ7l9dicmqmPHTlZtnbt01e7EREnSubNnlZKSrA4dfxnT29tbrSIirzomAKByYN0BANgLaw4AwFEoHNiRyWTShAkT1KVLF7Vs2dLR6QA3jPSMdJWWliowMNCqPTAwUCkpKeX2SUlJUWCgsWx8asqV98mX24y/f0wAQOXAugMAsBfWHACAo7ABx45iYmK0d+9e/fjjj39qnMLCwjLnDppdPeXp6fmnxgUAAAAAAACAP8Tg6ARgC+w4sJNx48ZpxYoV+uGHHxQaGvqnxoqNjZWvr6/V89orsX9RpoDz8ffzl6ura5nLwVJTU2U0GsvtYzQalZqaUjb+yjdzjMagy20pv39MAEDlwLoDALAX1hwAgKNQOLAxs9mscePGKS4uTuvXr1f9+vX/9JhTpkxRZmam1fP4k1P+gmwB5+Tu4aFmzVtoa8IWS5vJZNLWrVsUERlVbp+I1q21NSHBqi1hy2ZFtG4tSaodGiqjMUhbt/4yZk5Ojvbs3nXVMQEAlQPrDgDAXlhzAACOwlFFNhYTE6NFixZp+fLl8vb2VlJSkiTJ19dXXl5ekqSkpCQlJSXp6NGjkqQ9e/bI29tbYWFh5V6i7OlZ9liighIbTwSo4IaPHK1pU59UixYt1bJVhD75eKHy8/M1+I4hkqSnpzyh4OAQPTZxsiRp2AMjNGbUcC1c8KGio7tp9aqV2rd3r6Y9P12SZDAYNGz4CL03b67qhtVV7dBQzZ71poKCg9WzV2+HzRMAUDGw7gAA7IU1BwDgCBQObGzu3LmSpO7du1u1z58/X6NGjZIkvfPOO3rhhRcs76Kjo8vEAPht/foPUHpamua8/ZZSUpIV3rSZ5sx7X4FXttomXbggF8Mvm6xaR7VR7Ksz9PZbMzVr5usKq1tPM2fNVuPGTSwxo8c8pPz8fE1//lllZ2cpqk1bzZn3PveJAABYdwAAdsOaAwBwBIPZbDY7Ogn8eew4AAAAAAAAAK5fFb5ifV3qT/zW0Sk4nRNv3OroFK6J/xwAAAAAAAAAANfFYDA4OgXYAJcjAwAAAAAAAAAACwoHAAAAAAAAAADAgsIBAAAAAAAAAACwoHAAAAAAAAAAAAAsuBz5BvH9wUuOTgEAUEmczMxzdAoAgErEWNXd0SkAACqJe6JqOzoFoMKgcAAAAAAAAAAAuC4Gg8HRKcAGOKoIAAAAAAAAAABYUDgAAAAAAAAAAAAWFA4AAAAAAAAAAIAFdxzYWGxsrJYuXaqDBw/Ky8tLnTt31iuvvKLw8HBJUlpamp577jmtXbtWp0+fVlBQkAYPHqwXX3xRvr6+Ds4ecC4/rlqqH5Z/puyMNNWq11B3jJmguo2blxu7OyFe3y39WCkXzslUWiJjzVB1H3iPburezypm89rlOnvskPJysjR5xoeqXb+xvaYDAKjgdn3/tXas/lJ5mWky1mmgbsP+oRoNml6z3+GtG7R6XqwaRHXSbeOft7SbzWZtXfaR9m5crcK8HNVq1Fw9RjwqvxAu6QOAym7rmmX6zzefKyczTSFhDXXr6PEKbdSs3Nj9P23UxmWLlJZ0TqWlpQqsUVudb71LraP7WGKWznlFiRvXWPVrFNlOI6a8YtN5AACcB4UDG4uPj1dMTIzatWunkpISTZ06VX369NH+/ftVrVo1nT9/XufPn9eMGTPUvHlznTp1Sn//+991/vx5ffnll45OH3AaO//zvZYveFt3PTxZYY2ba+OKJXr3xcl6atYiefv6l4mvWt1HvYeOUEjtMLm6uWv/ts1aPPtlVff1V9OoDpKkooJ81W/aSq0799AXc1+195QAABXY4Z82aNPn76rn8PEKadBUievitPz1pzX8Xx+oqo/fVftlpSRp0xfvqVaTlmXebV/1hRK/W65bHvynfI01tCVuoZb9e6oeeOk9ubl72HA2AICKbM/mH7T647ka+OAEhTZqpi0rv9JHsU/q0dcXqno5P+t4VfNR9OBhCqodJldXNx3akaBl77yqar7+ahzZzhLXKLK97njkCctnNzd3u8wHAOAcKBzY2OrVq60+L1iwQMHBwdq+fbuio6PVsmVLffXVV5b3DRs21EsvvaQHHnhAJSUlcnPjrwj4PeK/+Vwdew9U+563SpLufPif2r9ji376/lv1GvJAmfhGLaOsPkffdpd+3rBKJw7usRQO/rv7IO3SBRtnDwBwNjvXLFXL6H5qfnNfSVLPEY/q5O6ftH/TGt106z3l9jGZSrXm3VfUcdBwnT+yV4V5OZZ3ZrNZieuWqf3A+9QwqrMkqc+DT+j9Cffo+I7NatKhu83nBAComDZ/u0Rtew5Qm+79JUkDH5yowzsTtGPDKkUPur9MfP0Wra0+dxowVIkb1+j0wT1WhQM3d3d5+wXYNHcAlYPB4OgMYAvccWBnmZmZkqSAgKsvzpmZmfLx8aFoAPxOJcXFOnvssJpEtLW0ubi4qEnETTp5eN81+5vNZh3evU3J58+oQfNIW6YKALgBlJYU69KpI6rTvI2lzeDiojrNo3Th2P6r9vvp60/l5e2nFtH9yrzLSk5SXmaa1ZieVasppEFTXTh24K+dAADAaZSUFOvCicNq2Mr6Z52Grdrq7OGrrzn/ZTabdWzPDqVcOKu6zSKs3p3cn6hXxg7RmxNH6Jv331BeduZfnj8AwHnxm2k7MplMmjBhgrp06aKWLctuT5eklJQUvfjiixo7dqydswOcV252pkym0jLflvH29delc6eu2i8/N0cvjB2ikuIiubi4auhDkxT+P9/AAQCgPPnZWTKbTGWOJKrq46/0C2fK7XP+8F7t27RG9z8/p9z3eVlpV8b49Zh+ystM+9M5AwCcU15Wpkwmk6r96kiiar7+Sj53+qr9CvJyNOORu1VSUiwXFxfd9rcJahRxk+V949bt1Lx9V/kH11TaxfP6bvEH+vjlp/TQi2/LxcXVZvMBADgPCgd2FBMTo7179+rHH38s931WVpZuvfVWNW/eXM8///xVxyksLFRhYaFVW3FRodw9PP/KdIEbnqdXVU2e8aGKCvJ1ZM92LV/wtgJDapU5xggAgD+jKD9Pa99/Vb1GTpCXt6+j0wEAVAIeVarqkVfeU1FBvo7v3aHVH8+Rf3BNyzFGrTr3tMSGhDVQSFgDzXzsAZ3Yt0sNW7W5yqgAgMqEwoGdjBs3TitWrNDGjRsVGhpa5n12drb69esnb29vxcXFyd396pcSxcbG6oUXXrBqu++Rf2rYPx7/y/MGnEE1b1+5uLgqO8P6G5nZmeny9gu8aj8XFxcF1bz832Pt+o118exJfb/0YwoHAIDf5OXtI4OLi/KyMqza87LSVbWcSyozky8oK+WivnnrWUub2WyWJM16sP+VC5UDroyRoWr/s3blZWUoKKyhDWYBAHAGVX185eLiotzMdKv23Mz037yfwMXFRYE1akuSatZrpORzp7Vx+aIy9x/8V0BILVX19lXaxXMUDgAAkigc2JzZbNb48eMVFxenDRs2qH79+mVisrKy1LdvX3l6eurrr79WlSpVfnPMKVOmaNKkSVZt649yFiEqLzd3d4U2bKIje7arVYdoSZePBjuye7u69h/yu8cxm80qKSm2VZoAgBuEq5u7gus21pkDO9WwzeWLjM0mk84cSFRkz9vLxPvXrKNh0+dZtW2JW6Cignx1u+8ReQcEycXVTVV9A3Rm/05LoaAwP1cXjx9URI/bbD8pAECF5Obmrpr1m+j43h1q1q6rpMs/6xzfu0Pt+w7+3eOYzSaVFl/9Z53M1GTl52RxWTIAwILCgY3FxMRo0aJFWr58uby9vZWUlCRJ8vX1lZeXl7KystSnTx/l5eXpk08+UVZWlrKysiRJQUFBcnUte7agp6enPD2tjyVy9yiw/WSACqzbwHv02ax/qU7Dpgpr3EzxK5aoqDBf7XsOkCQteuv/5BNg1G0P/F2S9N3Sj1WnYVMZQ2qrpKRIB3YkaFv8Gt05drJlzNzsLGWkXFRmWook6dL5y2eIevsFyMf/6jsZAAA3vqi+Q7Tu/RkKqddEIfXDlbguTiWFBWretY8kae17r6qav1Fd7vyb3Nw9FBhaz6q/Z9XqkmTV3vqWwfp5xWfyC6ktn6AaSohbqGp+gWpwpTgBAKicOt96l+LmvqxaDcIV2qiptqz8SkWFBWrTrZ8k6avZsfIJMOqW+x6SJG1ctki1GjRRQEgtlZYU6/DOrdq1aZ0GjpkgSSosyNeGLxeqeYdoVfcNUNrF81q7aJ4CQmqrEXe+AbgOBoPB0SnABigc2NjcuXMlSd27d7dqnz9/vkaNGqUdO3Zo69atkqRGjRpZxZw4cUL16tWzR5qA04vq0ks5mRlavfgDZWWkqXb9Rhr7zAzLN2bSUy5aLWRFBQX66t3XlZF2Se4engqpXVfDHpumqC69LDH7fv5Ri2fHWj5//PrzkqQ+d49Wv3v+Zp+JAQAqpCbtuys/O1MJyz5Sbma6guo00KCJL1mOKspOS5bBxeUPjdm2/90qKSzQ+oVvqjAvR7Uat9CgSS/Jzd3DFlMAADiJVp17KC8rQ+uXzFdORrpq1G2o4U+9oupXftbJTLkkg+GXNaeoMF8rPnxTWanJcvfwlLFWHQ2NmapWnXtIunyMUdLp40rcuFYFuTny9g9Uw4ib1Ovu0aw5AAALg/m/B6zCqX2795KjUwAAVBInM/McnQIAoBIxVr36/W8AAPyV7omq7egUnFLjx1c7OgWnc+S1fo5O4Zr+2NegAAAAAAAAAADADY3CAQAAAAAAAAAAsKBwAAAAAAAAAAAALLgcGQAAAAAAAABwXQwGR2cAW2DHAQAAAAAAAAAAsGDHwQ1i67lMR6cAAKgkzqYXODoFAEAl4uPl7ugUAACVxD1Rjs4AqDjYcQAAAAAAAAAAACwoHAAAAAAAAAAAAAsKBwAAAAAAAAAAwII7DmwsNjZWS5cu1cGDB+Xl5aXOnTvrlVdeUXh4uCXm4Ycf1nfffafz58+revXqlpimTZs6MHPA+RzZuEIH1y9VQVa6/GrXV5s7H1Zg3fBr9ju9PV5bFr6m2q06qutDz1i9y0o6o11fz1fy0b0ymUrlUyNMXf42RdUCgm01DQCAk+jZKED9mgXJt4qbzmQU6NPt53UiLb/c2C71/TSmQx2rtuJSkx5ess/yeVDLYLUP81VAVQ+VmMw6lZavpbuTdPwqYwIAKo+u9f3Us1GgvD1ddT6rUF/tvqjTGde+dyqqtrdG3lRbey5k64Ofzlnaq3u66vbmwQoPriovN1cdS83TV3suKiW32JbTAHCDMhgMjk4BNsCOAxuLj49XTEyMEhIStG7dOhUXF6tPnz7Kzc21xLRt21bz58/XgQMHtGbNGpnNZvXp00elpaUOzBxwLqd3bFRi3Ptq0e8+9Xn8TfnVrq/4Oc+qIDvjN/vlpl5U4rIPFdSwRZl3OckX9P3MJ+QTEqoe42PV78m31aLvvXJ197DRLAAAzqJdHV/dE1VTX++9pBfWHNWZjAJN6l5f3p6uV+2TV1SqCcsOWJ7Hvz5k9T4pu1Cfbj+vZ1cdVux3x5SSW3TNMQEAN76oWt4a3CJYqw+laEb8SZ3LLNTfO9VRdY/fXh8CvNw1qEWwjqXklXn3YPtQBVZ11/tbz2lG/Eml5xfrH53D5OHKL/8AAJdROLCx1atXa9SoUWrRooUiIyO1YMECnT59Wtu3b7fEjB07VtHR0apXr57atGmj//u//9OZM2d08uRJxyUOOJlDPyxTg8591aDjLfKtGaab7o6Rm4enTiSsu2ofk6lUWz6aoZYDhqlaYI0y73d/+5FqNr9JkYP+Jv86DVU9qKZqt+qgKt5+NpwJAMAZ9G1q1MZj6frxRLrOZxXqo5/PqajEpJsbBPxmv6yCkl+ewhKrd1tPZWr/xVwl5xbrfFahFu+8oKoergr1q2LLqQAAKrjujQK05VSmfjqdqYvZRVqyK0lFpSZ1qOt71T4GSQ+0ralVB1OUmme9iyComrvqBXhpye4kncko0KWcIi3ZdVHurga1qe1j49kAAJwFhQM7y8zMlCQFBJT/Q2Vubq7mz5+v+vXrq06dOuXGALBWWlKs9DNHFRLe2tJmcHFRSHhrpZw4eNV++1cvVhVvXzXo1KfMO7PJpAv7tsk7uJbi50zTsqnDtO7fk3R29xZbTAEA4ERcXQyq6++l/RdzLG1mSfsv5qhhYNWr9vN0c9GrA8M14/Zwje9aV7V8PH/zz+jWMEB5RaU6k37toygAADcmV4MU6ltFh5N/ObXALOlwcp7q+XtdtV/fcKNyikq19XRmmXduLpd/FVRcarYas8RkVoPfWMcAAJULhQM7MplMmjBhgrp06aKWLVtavZszZ46qV6+u6tWra9WqVVq3bp08PDgOBfg9inKzZDaZyuwEqOLtp4Ls9HL7JB/bp+Nb1qrdvePLfV+Qk6mSwnwd+O5L1WjWVt3+8aJCIzrpPx/8S5eO7PmrpwAAcCLeHq5ydTEoq8B6x0BWQYl8vcq/Qiwpq0jzfzqrWZtO6d0tZ2UwSFN7N5T/r+Ija3lrztDmmndXC/UJN2rGhhPKKeL4SgCorKp5usnVxaDsX+1Syy4skU+V8tec+gFe6ljXV58nJpX7/mJOodLyinVb8yB5ubvI1SD1ahQgfy93+VTheDwAwGUUDuwoJiZGe/fu1eLFi8u8GzZsmHbu3Kn4+Hg1adJEd999twoKyv92WWFhobKysqyekqIiW6cP3DCKC/K09ePX1e6+8fKsfpXtvWaTJKl2q44K7zFY/qEN1OyWu1SrRTsd+88qO2YLALgRHEvN0+aTGTqTUaDDybma/eMpZReWqHujQKu4Axdz9Pyao/rXd8e0Nylbj3QO444DAMDv5unmogfa1NTniUnKvUrh2WSWPvzprIKreyh2QBO9elu4Ghmrav/FHJnN5XYBAFRC5Zen8ZcbN26cVqxYoY0bNyo0NLTMe19fX/n6+qpx48bq2LGj/P39FRcXp/vuu69MbGxsrF544QWrtuhh49Rt+KM2yx+oyDyq+cjg4lLmIuSC7AxV8fYvE5+TkqTctIva9O50S5v5yr+Qv5hwuwY8PU9e/kYZXFzlU8P6yDCfkDpKPr7/r58EAMBpZBeVqtRkLvNNT58qbsrML7lKL2ulZul0eoGCq1vvMC0qNetSTpEu5UjHU88p9tYmurlBgFYeSP7L8gcAOI/cwhKVmszy9rRec7w93crsfJMkY1V3BVbz0IMdfvm9g+HKfcf/Hhiuf31/XKl5xTqbWajXNpxUFTcXuboYlFtUqonRdXU6g+PxAPxxBu5VvyFROLAxs9ms8ePHKy4uThs2bFD9+vV/Vx+z2azCwsJy30+ZMkWTJk2yans5/sxfki/gjFzd3OVfp5EuHt6l0IhOki7fUXDx0C41jr6tTLxPSKj6PvW2Vdvebz9RcWGeooaMlZe/Ua5u7goIa6zsi+es4rKTz6laQLDtJgMAqPBKTWadSs9Xs5Bq2nkuS9LlSyibhVTX+iOpv2sMg0EK9fPU7vM514xzd+UnMQCorErN0tnMAjUOqqY9SZfXDIOkJkFVtelE2WNZL+YU6eX1x63abm0WJE83Fy3dc1EZ+dYXJReUXN5pbazmrjp+VShUAwAsKBzYWExMjBYtWqTly5fL29tbSUmXzxj09fWVl5eXjh8/rs8//1x9+vRRUFCQzp49q5dfflleXl4aMGBAuWN6enrK09P6Mj037kNAJRfeY7C2fvKGAuo0VmDdJjq0YblKigpUv0NvSVLCx/9WVd9ARdw+Sq7uHvKrVc+qv7tXNUmyam/aa4i2LHhVQY1aKLhxhJIObNf5vT+px/hYe00LAFBBrTmYogc7hupkWr5OpOXrliaB8nRz0Y/HL/8S58EOoUrPL9ZXuy9Kkga2CNbx1Dxdyi6Ul4er+jcNUmBVD206niZJ8nA16LYWwUo8l6XM/BJV93RVz8aB8vdy18/lXGwJAKg8NhxN0/1taupMRr5OpxeoW0N/ebi6WC4+HtampjLzS7TiQLJKTGYlZVsfZZxffLk48L/tkbW8lVtYqvT8YtX08dSQViHacyFHh5Lz7DcxAECFRuHAxubOnStJ6t69u1X7/PnzNWrUKFWpUkWbNm3SzJkzlZ6erpCQEEVHR2vz5s0KDuZbzcDvFdYmWoU5mdq78hMVZKXLL7SBuj0yXVV8Lh9VlJeeLIPhj13rEhrZWW3v/ocOfLdEO796V97BtdXlb1MV1LCFLaYAAHAiP5/JlHcVNw1uFSLfKm46k1GgNzacUNaVyysDqrnL9D/x1TxcNbJdbflWcVNeUalOpufrX98d0/msyztMTWapprenunSpq+qersotKtWJ1HzFfn/cEgMAqJx2ns9WNc/LRWcfT1edyyrUvIQzyim8fIeBv5f7H76bwLeKmwa3DLYcefTzmUytPZRig+wBAM7KYDZz9c2N4Nk1RxydAgCgkjibztm3AAD78fFyd3QKAIBKYuagpo5OwSk1fWqNo1NwOgdf7uvoFK7pj339FgAAAAAAAAAA3NA4qggAAAAAAAAAcF1cXAyOTgE2wI4DAAAAAAAAAABgQeEAAAAAAAAAAABYUDgAAAAAAAAAAAAW3HFwg5jaq7GjUwAAAAAAAAAA3ADYcQAAAAAAAAAAACzYcQAAAAAAAAAAuC4Gg6MzgC2w4wAAAAAAAAAAAFhQOAAAAAAAAAAAABYUDmwsNjZW7dq1k7e3t4KDgzV48GAdOnSo3Fiz2az+/fvLYDBo2bJl9k0UuAEsXvSp+t/SU+2iWmnYvXdpz+7dvxm/ds0qDbqtn9pFtdLQwQO1aWO81Xuz2azZs95Ur25d1b5NhMaOGaVTp07acAYAAGfCugMAsBfWHACAvVE4sLH4+HjFxMQoISFB69atU3Fxsfr06aPc3NwysTNnzpSBQ8GA67J61UrNeDVWD/8jRouXxCk8vKkeeXiMUlNTy41P3LlDTz0+WXcMuVOff7lMPXr20oTxMTpy5LAlZv4H7+mzTz/WM889r08++0JeXl56ZOwYFRYW2mtaAIAKinUHAGAvrDkAAEcwmM1ms6OTqEySk5MVHBys+Ph4RUdHW9oTExN12223adu2bapZs6bi4uI0ePDg3z1uQYkNkgWcyLB771KLlq009ZlnJUkmk0l9enXTffcP15iHxpaJf3zyBOXn5+vtOfMsbQ/cd7fCmzbVtOemy2w2q3f3mzVi1GiNHD1GkpSdna2e0Z01/aWX1X/ArfaZGACgQmLdAQDYC2sOYD9V3BydgXNq8fRaR6fgdPa91MfRKVwTOw7sLDMzU5IUEBBgacvLy9P999+v2bNnq0aNGo5KDXBaxUVFOrB/nzp26mxpc3FxUceOnbV7185y++xOTFTHjp2s2jp36ardiYmSpHNnzyolJVkdOv4ypre3t1pFRF51TABA5cC6AwCwF9YcAM7AYDDw/MHHGVA4sCOTyaQJEyaoS5cuatmypaV94sSJ6ty5swYNGuTA7ADnlZ6RrtLSUgUGBlq1BwYGKiUlpdw+KSkpCgw0lo1PTbnyPvlym/H3jwkAqBxYdwAA9sKaAwBwFDbg2FFMTIz27t2rH3/80dL29ddfa/369dq58/dX9QsLC8ucO2h29ZSnp+dflisAAAAAAAAAoHJix4GdjBs3TitWrNAPP/yg0NBQS/v69et17Ngx+fn5yc3NTW5ul2s5Q4cOVffu3csdKzY2Vr6+vlbPa6/E2mMaQIXk7+cvV1fXMpeDpaamymg0ltvHaDQqNTWlbPyVb+YYjUGX21J+/5gAgMqBdQcAYC+sOQAAR6FwYGNms1njxo1TXFyc1q9fr/r161u9f+qpp7R7924lJiZaHkl64403NH/+/HLHnDJlijIzM62ex5+cYuupABWWu4eHmjVvoa0JWyxtJpNJW7duUURkVLl9Ilq31taEBKu2hC2bFdG6tSSpdmiojMYgbd36y5g5OTnas3vXVccEAFQOrDsAAHthzQEAOApHFdlYTEyMFi1apOXLl8vb21tJSUmSJF9fX3l5ealGjRrlXogcFhZWpsjwX56eZY8lKij563MHnMnwkaM1beqTatGipVq2itAnHy9Ufn6+Bt8xRJL09JQnFBwcoscmTpYkDXtghMaMGq6FCz5UdHQ3rV61Uvv27tW056dLunyxz7DhI/TevLmqG1ZXtUNDNXvWmwoKDlbPXr0dNk8AQMXAugMAsBfWHACAI1A4sLG5c+dKUpljh+bPn69Ro0bZPyHgBtWv/wClp6VpzttvKSUlWeFNm2nOvPcVeGWrbdKFC3Ix/LLJqnVUG8W+OkNvvzVTs2a+rrC69TRz1mw1btzEEjN6zEPKz8/X9OefVXZ2lqLatNWcee9znwgAgHUHAGA3rDkAKjqDwdEZwBYMZrPZ7Ogk8Oex4wAAAAAAAAC4flX4ivV1aTVtnaNTcDp7XrzF0SlcE3ccAAAAAAAAAAAACwoHAAAAAAAAAADAgsIBAAAAAAAAAACwoHAAAAAAAAAAAAAsuPIDAAAAAAAAAHBdDAaDo1OADbDjAAAAAAAAAAAAWFA4AAAAAAAAAAAAFhQOAAAAAAAAAACABYUDAAAAAAAAAABgQeEAAAAAAAAAAABYUDiwsdjYWLVr107e3t4KDg7W4MGDdejQIauY7t27y2AwWD1///vfHZQx4LwWL/pU/W/pqXZRrTTs3ru0Z/fu34xfu2aVBt3WT+2iWmno4IHatDHe6r3ZbNbsWW+qV7euat8mQmPHjNKpUydtOAMAgDNh3QEA2AtrDoCK7Ne/1+S59uMMKBzYWHx8vGJiYpSQkKB169apuLhYffr0UW5urlXcQw89pAsXLlieV1991UEZA85p9aqVmvFqrB7+R4wWL4lTeHhTPfLwGKWmppYbn7hzh556fLLuGHKnPv9ymXr07KUJ42N05MhhS8z8D97TZ59+rGeee16ffPaFvLy89MjYMSosLLTXtAAAFRTrDgDAXlhzAACOYDCbzWZHJ1GZJCcnKzg4WPHx8YqOjpZ0ecdB69atNXPmzOset6DkL0oQcFLD7r1LLVq20tRnnpUkmUwm9enVTffdP1xjHhpbJv7xyROUn5+vt+fMs7Q9cN/dCm/aVNOemy6z2aze3W/WiFGjNXL0GElSdna2ekZ31vSXXlb/AbfaZ2IAgAqJdQcAYC+sOYD9VHFzdAbOKfK57x2dgtPZ9UIvR6dwTew4sLPMzExJUkBAgFX7p59+KqPRqJYtW2rKlCnKy8tzRHqAUyouKtKB/fvUsVNnS5uLi4s6duys3bt2lttnd2KiOnbsZNXWuUtX7U5MlCSdO3tWKSnJ6tDxlzG9vb3VKiLyqmMCACoH1h0AgL2w5gAAHIU6mh2ZTCZNmDBBXbp0UcuWLS3t999/v+rWratatWpp9+7devLJJ3Xo0CEtXbq03HEKCwvLbB80u3rK09PTpvkDFVV6RrpKS0sVGBho1R4YGKgTJ46X2yclJUWBgcYy8SmpKVfeJ19uM5YdMyUl5a9KHQDghFh3AAD2wpoDAHAUCgd2FBMTo7179+rHH3+0ah879petha1atVLNmjXVq1cvHTt2TA0bNiwzTmxsrF544QWrtqenPadnnn3eJnkDAAAAAAAAACoPjiqyk3HjxmnFihX64YcfFBoa+puxHTp0kCQdPXq03PdTpkxRZmam1fP4k1P+8pwBZ+Hv5y9XV9cyl4OlpqbKaDSW28doNCo1NaVs/JVv5hiNQZfbUn7/mACAyoF1BwBgL6w5AJyBwcDzRx9nQOHAxsxms8aNG6e4uDitX79e9evXv2afxCvnDtasWbPc956envLx8bF6OKYIlZm7h4eaNW+hrQlbLG0mk0lbt25RRGRUuX0iWrfW1oQEq7aELZsV0bq1JKl2aKiMxiBt3frLmDk5Odqze9dVxwQAVA6sOwAAe2HNAQA4CkcV2VhMTIwWLVqk5cuXy9vbW0lJSZIkX19feXl56dixY1q0aJEGDBigwMBA7d69WxMnTlR0dLQiIiIcnD3gPIaPHK1pU59UixYt1bJVhD75eKHy8/M1+I4hkqSnpzyh4OAQPTZxsiRp2AMjNGbUcC1c8KGio7tp9aqV2rd3r6Y9P12SZDAYNGz4CL03b67qhtVV7dBQzZ71poKCg9WzV2+HzRMAUDGw7gAA7IU1BwDgCBQObGzu3LmSpO7du1u1z58/X6NGjZKHh4e+++47zZw5U7m5uapTp46GDh2qZ555xgHZAs6rX/8BSk9L05y331JKSrLCmzbTnHnvK/DKVtukCxfkYvhlk1XrqDaKfXWG3n5rpmbNfF1hdetp5qzZaty4iSVm9JiHlJ+fr+nPP6vs7CxFtWmrOfPeZ4cPAIB1BwBgN6w5AABHMJjNZrOjk8CfV1Di6AwAAAAAAAAA51WFr1hfl9bPf+/oFJxO4vO9HJ3CNXHHAQAAAAAAAAAAsKCOBgAAAAAAAAC4LgaDwdEpwAbYcQAAAAAAAAAAACwoHAAAAAAAAAAAAAsKBwAAAAAAAAAAwILCAQAAAAAAAAAAsKBwAAAAAAAAAAAALCgcAAAAAAAAAAAACzdHJwAAAAAAAAAAcE4Gg6MzgC2w48DGYmNj1a5dO3l7eys4OFiDBw/WoUOHysRt2bJFPXv2VLVq1eTj46Po6Gjl5+c7IGPAeS1e9Kn639JT7aJaadi9d2nP7t2/Gb92zSoNuq2f2kW10tDBA7VpY7zVe7PZrNmz3lSvbl3Vvk2Exo4ZpVOnTtpwBgAAZ8K6AwCwF9YcAIC9UTiwsfj4eMXExCghIUHr1q1TcXGx+vTpo9zcXEvMli1b1K9fP/Xp00c//fSTfv75Z40bN04uLvz1AL/X6lUrNePVWD38jxgtXhKn8PCmeuThMUpNTS03PnHnDj31+GTdMeROff7lMvXo2UsTxsfoyJHDlpj5H7ynzz79WM8897w++ewLeXl56ZGxY1RYWGivaQEAKijWHQCAvbDmAAAcwWA2m82OTqIySU5OVnBwsOLj4xUdHS1J6tixo2655Ra9+OKL1z1uQclflSHgnIbde5datGylqc88K0kymUzq06ub7rt/uMY8NLZM/OOTJyg/P19vz5lnaXvgvrsV3rSppj03XWazWb2736wRo0Zr5OgxkqTs7Gz1jO6s6S+9rP4DbrXPxAAAFRLrDgDAXlhzAPupwqHu16XN9PWOTsHp7Hi2p6NTuCa+0m5nmZmZkqSAgABJ0qVLl7R161YFBwerc+fOCgkJUbdu3fTjjz86Mk3AqRQXFenA/n3q2Kmzpc3FxUUdO3bW7l07y+2zOzFRHTt2smrr3KWrdicmSpLOnT2rlJRkdej4y5je3t5qFRF51TEBAJUD6w4AwF5YcwAAjkLhwI5MJpMmTJigLl26qGXLlpKk48ePS5Kef/55PfTQQ1q9erXatGmjXr166ciRI45MF3Aa6RnpKi0tVWBgoFV7YGCgUlJSyu2TkpKiwEBj2fjUlCvvky+3GX//mACAyoF1BwBgL6w5AABHYQOOHcXExGjv3r1WuwlMJpMk6eGHH9bo0aMlSVFRUfr+++/14YcfKjY2tsw4hYWFZc4dNLt6ytPT04bZAwAAAAAAAIA1g8Hg6BRgA+w4sJNx48ZpxYoV+uGHHxQaGmppr1mzpiSpefPmVvHNmjXT6dOnyx0rNjZWvr6+Vs9rr5QtMACVhb+fv1xdXctcDpaamiqj0VhuH6PRqNTUlLLxV76ZYzQGXW5L+f1jAgAqB9YdAIC9sOYAAByFwoGNmc1mjRs3TnFxcVq/fr3q169v9b5evXqqVauWDh06ZNV++PBh1a1bt9wxp0yZoszMTKvn8Sen2GwOQEXn7uGhZs1baGvCFkubyWTS1q1bFBEZVW6fiNattTUhwaotYctmRbRuLUmqHRoqozFIW7f+MmZOTo727N511TEBAJUD6w4AwF5YcwAAjsJRRTYWExOjRYsWafny5fL29lZSUpIkydfXV15eXjIYDHr88cf13HPPKTIyUq1bt9bChQt18OBBffnll+WO6elZ9liighKbTwWo0IaPHK1pU59UixYt1bJVhD75eKHy8/M1+I4hkqSnpzyh4OAQPTZxsiRp2AMjNGbUcC1c8KGio7tp9aqV2rd3r6Y9P13S5W12w4aP0Hvz5qpuWF3VDg3V7FlvKig4WD179XbYPAEAFQPrDgDAXlhzAACOQOHAxubOnStJ6t69u1X7/PnzNWrUKEnShAkTVFBQoIkTJyotLU2RkZFat26dGjZsaOdsAefVr/8Apaelac7bbyklJVnhTZtpzrz3FXhlq23ShQtyMfyyyap1VBvFvjpDb781U7Nmvq6wuvU0c9ZsNW7cxBIzesxDys/P1/Tnn1V2dpai2rTVnHnvc58IAIB1BwBgN6w5AABHMJjNZrOjk8Cfx44DAAAAAAAA4PpV4SvW16Xtiz84OgWns31aD0encE385wAAAAAAAAAAuC4Gg6MzgC1wOTIAAAAAAAAAALCgcAAAAAAAAAAAACwoHAAAAAAAAAAAAAsKBwAAAAAAAAAAwILCAQAAAAAAAAAAsHBzdAIAAAAAAAAAAOdkMBgcnQJsgB0HAAAAAAAAAADAgsIBAAAAAAAAAACwoHAAAAAAAAAAAAAsKBzYWGxsrNq1aydvb28FBwdr8ODBOnTokOX9yZMnZTAYyn2WLFniwMwB57N40afqf0tPtYtqpWH33qU9u3f/ZvzaNas06LZ+ahfVSkMHD9SmjfFW781ms2bPelO9unVV+zYRGjtmlE6dOmnDGQAAnAnrDgDAXlhzAAD2RuHAxuLj4xUTE6OEhAStW7dOxcXF6tOnj3JzcyVJderU0YULF6yeF154QdWrV1f//v0dnD3gPFavWqkZr8bq4X/EaPGSOIWHN9UjD49RampqufGJO3foqccn644hd+rzL5epR89emjA+RkeOHLbEzP/gPX326cd65rnn9clnX8jLy0uPjB2jwsJCe00LAFBBse4AAOyFNQcA4AgGs9lsdnQSlUlycrKCg4MVHx+v6OjocmOioqLUpk0bffDBB7973IKSvypDwDkNu/cutWjZSlOfeVaSZDKZ1KdXN913/3CNeWhsmfjHJ09Qfn6+3p4zz9L2wH13K7xpU017brrMZrN6d79ZI0aN1sjRYyRJ2dnZ6hndWdNfeln9B9xqn4kBACok1h0AgL2w5gD2U8XN0Rk4p/b/2uDoFJzOT1O7OzqFa2LHgZ1lZmZKkgICAsp9v337diUmJmrMmDH2TAtwasVFRTqwf586dupsaXNxcVHHjp21e9fOcvvsTkxUx46drNo6d+mq3YmJkqRzZ88qJSVZHTr+Mqa3t7daRURedUwAQOXAugMAsBfWHACAo1BHsyOTyaQJEyaoS5cuatmyZbkxH3zwgZo1a6bOnTuX+16SCgsLy2wfNLt6ytPT8y/NF3AW6RnpKi0tVWBgoFV7YGCgTpw4Xm6flJQUBQYay8SnpKZceZ98uc1YdsyUlJS/KnUAgBNi3QEA2AtrDgDAUdhxYEcxMTHau3evFi9eXO77/Px8LVq06Jq7DWJjY+Xr62v1vPZKrC1SBgAAAAAAAABUMhQO7GTcuHFasWKFfvjhB4WGhpYb8+WXXyovL08jRoz4zbGmTJmizMxMq+fxJ6fYIm3AKfj7+cvV1bXM5WCpqakyGo3l9jEajUpNTSkbf+WbOUZj0OW2lN8/JgCgcmDdAQDYC2sOAMBRKBzYmNls1rhx4xQXF6f169erfv36V4394IMPdPvttysoKOg3x/T09JSPj4/VwzFFqMzcPTzUrHkLbU3YYmkzmUzaunWLIiKjyu0T0bq1tiYkWLUlbNmsiNatJUm1Q0NlNAZp69ZfxszJydGe3buuOiYAoHJg3QEA2AtrDgDAUbjjwMZiYmK0aNEiLV++XN7e3kpKSpIk+fr6ysvLyxJ39OhRbdy4UStXrnRUqoBTGz5ytKZNfVItWrRUy1YR+uTjhcrPz9fgO4ZIkp6e8oSCg0P02MTJkqRhD4zQmFHDtXDBh4qO7qbVq1Zq3969mvb8dEmSwWDQsOEj9N68uaobVle1Q0M1e9abCgoOVs9evR02TwBAxcC6AwCwF9YcABWdwWBwdAqwAQoHNjZ37lxJUvfu3a3a58+fr1GjRlk+f/jhhwoNDVWfPn3smB1w4+jXf4DS09I05+23lJKSrPCmzTRn3vsKvLLVNunCBbkYftlk1TqqjWJfnaG335qpWTNfV1jdepo5a7YaN25iiRk95iHl5+dr+vPPKjs7S1Ft2mrOvPfZ4QMAYN0BANgNaw4AwBEMZrPZ7Ogk8OcVlDg6AwAAAAAAAMB5VeEr1telQ2y8o1NwOlundHN0CtfEHQcAAAAAAAAAAMCCwgEAAAAAAAAAALCgcAAAAAAAAAAAACw4uQsAAAAAAAAAcF0MBkdnAFtgxwEAAAAAAAAAALBgx8ENwr/dOEenAACoJGa/+4SjUwAAVCI/HE53dAoAgEri42GRjk4BqDDYcQAAAAAAAAAAACwoHAAAAAAAAAAAAAsKBwAAAAAAAAAAwII7DmwsNjZWS5cu1cGDB+Xl5aXOnTvrlVdeUXh4uCUmKSlJjz/+uNatW6fs7GyFh4fr6aef1tChQx2YOeBcurRpqIkjeqtN8zDVDPLV3RPf1Tcbdv9mn5vbNtYrk4eoecMaOpuUoZffX61PvtlqFfPw3dGaOLKXQgJ9tOfwOU16ZYm27Ttly6kAAJzEjnXLtfXbJcrNTFNwWEP1HhGjWg2blht76OdNSvj6M6VfPC9Taan8Q2qp3YA71bLrLZaYooJ8xX/+vg5v26yCnCz5BtVQ276DFdVroL2mBACooHo3CdSAZsHy9XLTmfR8fbTtnI6n5pcbe3MDf43tFGbVVlRq0pjFeyyfx3aso5sbBljF7D6fpdd+OPHXJw/ghmcwGBydAmyAwoGNxcfHKyYmRu3atVNJSYmmTp2qPn36aP/+/apWrZokacSIEcrIyNDXX38to9GoRYsW6e6779a2bdsUFRXl4BkAzqGal6f2HD6nj5Zv0eevj71mfN1agYqb9Xe9/+WPGv30AvVoH665z96vpJQsfbflgCTpzj5t9MrkOzT+pc/1896TGnd/D309J0aRg6crOT3H1lMCAFRgBxI2aP2n89Rn9KOq1aiZtq1eqi9emaKHXvtQ1Xz9y8R7VfNRp9vvV0CtOnJ1c9exnQla+e4MVfXxU4OIdpKk9Z++o1P7EjXwkafkGxSiE3u2a+2Ct1TdL1CN23a29xQBABVEh7p+ur9NLc3/6ayOpeSpX9MgPdGjgZ745pCyCkvK7ZNXVKonvjlo+WwuJ2bX+Sy9t+WM5XOxqbwoAEBlxVFFNrZ69WqNGjVKLVq0UGRkpBYsWKDTp09r+/btlpjNmzdr/Pjxat++vRo0aKBnnnlGfn5+VjEAftva/+zXC3NW6OsffnuXwX89dGdXnTyXqqdej9OhExf1zucbFfd9osYP62GJefSBnpq/dLM+/jpBB48nafxLi5VfUKSRgzvZahoAACfx86qvFNmjvyK69ZOxdl31Hf2Y3D09tSd+TbnxYc0j1aRdVxlr15V/SC3d1G+Igus00NlD+ywx547sV8ubb1FY80j5BtVQ6563KjisoS4cP2SvaQEAKqD+TY3acDRNm46n63xWoeb/dFaFpWZF/2rHwP8yS8osKLE8WQVlCwwlpWarmLyiUhvOAgDgbCgc2FlmZqYkKSDglwW+c+fO+vzzz5WWliaTyaTFixeroKBA3bt3d1CWwI2vQ2R9/bDV+hcx6zYfUIeI+pIkdzdXRTWro/X/E2M2m7V+6yG1vxIDAKicSkuKlXTisOq2aGNpM7i4qF6LNjp3dP81+5vNZp3cu0NpSWdVp2krS3vtxs11dMcWZaelyGw269T+RKUnnVX9Vm1tMg8AQMXn6mJQvYCq2peUbWkzS9qXlK1GxqpX7VfFzUVvDG6mmYObaUJ0PdX29SwT0zSkumYPba5XB4ZrVLvaqu7haospAACcFEcV2ZHJZNKECRPUpUsXtWzZ0tL+xRdf6J577lFgYKDc3NxUtWpVxcXFqVGjRg7MFrixhQT66GJatlXbpbQs+Xp7qYqnu/x9qsrNzVWXfh2TmqXweiH2TBUAUMHkZWfKbDKVOZKoqq+/Ui+cuUovqTAvV7PH36vSkmIZXFzUZ9SjVkWB3iNitOaDmZrz6H1ycXWVweCifmMmqk7TCJvNBQBQsXl7usrVxaDMX+0YyCooUS2fssUASbqQVaj3Es7oTEa+qrq7akCzID3bp7GeWnFI6fnFkqTdF7L185lMJecWKaS6h+5qXVP/7NFAL6w9IjMnFgEAROHArmJiYrR37179+OOPVu3Tpk1TRkaGvvvuOxmNRi1btkx33323Nm3apFatWpUZp7CwUIWFhVZtZlOpDC58OwAAAKCi8qjipdEvvaOiwnyd2rdT6z99R35BNRXWPFKStH3tcp0/ekBDJ02XjzFEZw7u1rqFs1TdP1D1Wra5xugAAFx2NCVPR1PyLJ+PJOfqlYFN1bNxoL7anSRJSjiVYXl/NqNApzMK9PqgZmoWXF37L3KfGwCAwoHdjBs3TitWrNDGjRsVGhpqaT927Jjefvtt7d27Vy1atJAkRUZGatOmTZo9e7beeeedMmPFxsbqhRdesGpzDWkn95rtbTsJ4AZyMTVLIQHeVm3BAT7KzM5XQWGxUtJzVFJSquBfxwT6KCk1y56pAgAqmKrevjK4uCg3M92qPS8zvdyLkf/L4OIi/xq1JUkhdRsp9dxpbfnmM4U1j1RxUaE2fvGhhkx4Xg2jOkiSgsMa6NKpY/rp2yUUDgCgksouLFWpySzfKta/vvGp4qaM/PIvRv61UrN0Ki1fId4eV41JzilSVkGJQrw9tP/in0oZQCVkMDg6A9gCdxzYmNls1rhx4xQXF6f169erfn3rs9Hz8i5/C8DFxfqvwtXVVSaTqdwxp0yZoszMTKvHLYSzb4E/YuuuE+rePtyqrVfHptq6+4QkqbikVDsPnFGPDr/EGAwG9WjfRD9diQEAVE6ubu6qUb+JTu3baWkzm0w6uW+najdq/rvHMZvNKi2+fGSEqaREptISycX6py6Di6vM5vL/TQgAuPGVmsw6mZan5jV++UKTQVKLGtWtdhX8FoNBCvWr8puFBn8vd1X3dP3dxQgAwI2PHQc2FhMTo0WLFmn58uXy9vZWUtLlbYG+vr7y8vJS06ZN1ahRIz388MOaMWOGAgMDtWzZMq1bt04rVqwod0xPT095elqfZcgxRajsqnl5qGGdIMvnerUDFdGkttKz8nQmKV3Tx9+uWsG+enDax5Kk9778UX+/N1ovPTZIC5cnqHu7Jhp6S5TuePSXXT5vfbJe700fru37T2vb3pMad38PVfXy1EfLE+w+PwBAxdKu/1B9O+9V1ajfRDUbhmvb6jgVFxaoVbe+kqQV77wib3+jut0zRpK05evPVKN+E/mH1FJJcZGO7/pJ+/7znfqMelSS5Fm1muo0jdCGz96Tu7unfIzBOnNwt/b9uE49h/3dYfMEADjeqoMpGtupjk6k5ul4ap76Ng2Sp6uLNh5PkyQ93KmO0vOL9UXi5d83DG4ZoqMpubqYU6Sq7q66tXmQjNU8tOFoqiTJ081Fd7QK0c+nM5VZUKzg6p66N6qmLmYXac+F7KvmAQCoXCgc2NjcuXMlSd27d7dqnz9/vkaNGiV3d3etXLlSTz31lAYOHKicnBw1atRICxcu1IABAxyQMeCc2jSvq7XvP2b5/Oo/h0qSPv46QWOf+0Q1jD6qUyPA8v7U+VTdMf4dvfrPIYq5v7vOXczQI9MX6bstBywxX67dIaN/dT37yK0KCfTW7kPnNChmdpkLkwEAlU+zjt2Vl5WhH79aqNzMdAXXbai7n/iX5aiirJRLMvzPnu3iwgKtW/CWstNS5ObhqYBadXTbI0+pWcfulpjbxz2t+M8/0DdzY1WQky0fY4huvmu0Wve6zd7TAwBUIFtPZcjb01VDI2vIt4qbTqfn67UfTijryoXJgdU8rC40rubhqjEd68i3iptyi0p1Mi1f09ce1fmsy3clmsxm1fHz0s0N/FXV3VXp+SXaeyFbX+5OUomJm5EBAJcZzGYzq8INwCtqnKNTAABUErPffcLRKQAAKpEfDqdfOwgAgL/Ax8MiHZ2CU+r86kZHp+B0Nj8R7egUrok7DgAAAAAAAAAAgAVHFQEAAAAAAAAArsv/HtGJGwc7DgAAAAAAAAAAgAWFAwAAAAAAAAAAYEHhAAAAAAAAAAAAWHDHwQ0i/ee3HZ0CAAAAAPzl7o8Kc3QKAAAAlQ47DgAAAAAAAAAAgAU7DgAAAAAAAAAA18VgcHQGsAV2HAAAAAAAAAAAAAsKBwAAAAAAAAAAwILCgY3FxsaqXbt28vb2VnBwsAYPHqxDhw5ZxRw7dkx33HGHgoKC5OPjo7vvvlsXL150UMaA81q86FP1v6Wn2kW10rB779Ke3bt/M37tmlUadFs/tYtqpaGDB2rTxnir92azWbNnvale3bqqfZsIjR0zSqdOnbThDAAAzoR1BwBgL6w5AAB7o3BgY/Hx8YqJiVFCQoLWrVun4uJi9enTR7m5uZKk3Nxc9enTRwaDQevXr9d//vMfFRUVaeDAgTKZTA7OHnAeq1et1IxXY/XwP2K0eEmcwsOb6pGHxyg1NbXc+MSdO/TU45N1x5A79fmXy9SjZy9NGB+jI0cOW2Lmf/CePvv0Yz3z3PP65LMv5OXlpUfGjlFhYaG9pgUAqKBYdwAA9sKaAwBwBIPZbDY7OonKJDk5WcHBwYqPj1d0dLTWrl2r/v37Kz09XT4+PpKkzMxM+fv7a+3aterdu/fvGregxJZZAxXfsHvvUouWrTT1mWclSSaTSX16ddN99w/XmIfGlol/fPIE5efn6+058yxtD9x3t8KbNtW056bLbDard/ebNWLUaI0cPUaSlJ2drZ7RnTX9pZfVf8Ct9pkYAKBCYt0BANgLaw5gP1XcHJ2Bc+o6Y5OjU3A6P/7zZkencE3sOLCzzMxMSVJAQIAkqbCwUAaDQZ6enpaYKlWqyMXFRT/++KNDcgScTXFRkQ7s36eOnTpb2lxcXNSxY2ft3rWz3D67ExPVsWMnq7bOXbpqd2KiJOnc2bNKSUlWh46/jOnt7a1WEZFXHRMAUDmw7gAA7IU1B4AzMBgMPH/wcQYUDuzIZDJpwoQJ6tKli1q2bClJ6tixo6pVq6Ynn3xSeXl5ys3N1T//+U+VlpbqwoUL5Y5TWFiorKwsq4fthKjM0jPSVVpaqsDAQKv2wMBApaSklNsnJSVFgYHGsvGpKVfeJ19uM/7+MQEAlQPrDgDAXlhzAACOQuHAjmJiYrR3714tXrzY0hYUFKQlS5bom2++UfXq1eXr66uMjAy1adNGLi7l//XExsbK19fX6nntlVh7TQMAAAAAAAAAcAPj5C47GTdunFasWKGNGzcqNDTU6l2fPn107NgxpaSkyM3NTX5+fqpRo4YaNGhQ7lhTpkzRpEmTrNrMrp7lxgKVgb+fv1xdXctcDpaamiqj0VhuH6PRqNTUlLLxV76ZYzQGXW5LSVVQULBVTHjTpn9l+gAAJ8O6AwCwF9YcAICjsOPAxsxms8aNG6e4uDitX79e9evXv2qs0WiUn5+f1q9fr0uXLun2228vN87T01M+Pj5Wz//ekQBUNu4eHmrWvIW2JmyxtJlMJm3dukURkVHl9olo3VpbExKs2hK2bFZE69aSpNqhoTIag7R16y9j5uTkaM/uXVcdEwBQObDuAADshTUHAOAo7DiwsZiYGC1atEjLly+Xt7e3kpKSJEm+vr7y8vKSJM2fP1/NmjVTUFCQtmzZoscee0wTJ05UeHi4I1MHnMrwkaM1beqTatGipVq2itAnHy9Ufn6+Bt8xRJL09JQnFBwcoscmTpYkDXtghMaMGq6FCz5UdHQ3rV61Uvv27tW056dLunyxz7DhI/TevLmqG1ZXtUNDNXvWmwoKDlbPXr0dNk8AQMXAugMAsBfWHACAI1A4sLG5c+dKkrp3727VPn/+fI0aNUqSdOjQIU2ZMkVpaWmqV6+enn76aU2cONHOmQLOrV//AUpPS9Oct99SSkqywps205x57yvwyvbdpAsX5GL4ZZNV66g2in11ht5+a6ZmzXxdYXXraeas2WrcuIklZvSYh5Sfn6/pzz+r7OwsRbVpqznz3meHDwCAdQcAYDesOQAqOoPB4OgUYAMGs9lsdnQS+PMKShydAQAAAAAAAOC8qvAV6+sS/fp/HJ2C09k4qYujU7gm7jgAAAAAAAAAAAAWFA4AAAAAAAAAAIAFhQMAAAAAAAAAAGBB4QAAAAAAAAAAAFhw5QcAAAAAAAAA4LoYDI7OALZA4eAGMfmbA45OAQBQSbx2a1NHpwAAqERKzWZHpwAAqCSquHE4C/Bf/NcAAAAAAAAAAAAsKBwAAAAAAAAAAAALCgcAAAAAAAAAAMCCwoGNzZ07VxEREfLx8ZGPj486deqkVatWWd4XFBQoJiZGgYGBql69uoYOHaqLFy86MGPAeUXX99f0Pg018/ZwPd6tnur6V7lqbMcwX82+o5nVM/P28DJxtzYz6l/9G+uN28M1vkuYgqq523IKAAAn8vlnn2pA357q0DZCw++/W3v37P7N+HVrVuuOgf3VoW2E7rpjoDZtjLd6//13a/XI2L+pe9cOimrVVIcOcocVAOCyLxZ/qoH9eqnzTZEaef8911xzvlu7WkNvH6DON0XqniG368dN1mvOvDlva+jtA9S1fRv16NJB/3hotPbu3mXLKQAAnAyFAxsLDQ3Vyy+/rO3bt2vbtm3q2bOnBg0apH379kmSJk6cqG+++UZLlixRfHy8zp8/ryFDhjg4a8D5tKntrSGtgrXyYIpe/uGEzmYWaFznMFX3cL1qn/ziUk1ZedjyTFtz1Or9LY0D1b1BgBYnXtBrG06qqNSkcV3C5OZisPV0AAAV3JrVK/Xv117Ww3+P0aIvlqpJk3D94+EHlZaaWm58YuIOTXlysgYPuVOfLYlT9569NemxcTp65LAlJj8/X62j2urRif+01zQAAE5g7eqVeuO1V/TQ32P0yedfqUl4uMb//aGrrjm7Enfq6Sf/qUF3DNWnXyxV95699M/HxlutOXXr1tMTU5/R4qXL9f7CT1SzVm3F/P1Bpael2WtaAG4gBoOB5w8+zoDCgY0NHDhQAwYMUOPGjdWkSRO99NJLql69uhISEpSZmakPPvhAr7/+unr27Km2bdtq/vz52rx5sxISEhydOuBUejUK1OaTGUo4namk7CItTkxSUalJner5XbWP2SxlFZZanuzCUqv3PRoFaPWhFO2+kKPzWYVauO28fKu4KbKmt41nAwCo6D75aIGGDL1Lg+4YqoYNG+npZ19QFa8qWhb3Vbnxn33ysTp36aqRo8eoQYOGihn/mJo1b67Fn31qiblt4CA9/EiMOnbsZK9pAACcwKcfLdTgoXfp9sFD1KBhI02Z9ryqeFXR18uWlhu/+NOP1KlLV40YPUb1GzTUI+MeU9NmzfTF4kWWmH633qYOHTsrNLSOGjZqrImPP6XcnBwdOXzIXtMCAFRwFA7sqLS0VIsXL1Zubq46deqk7du3q7i4WL1797bENG3aVGFhYdqyZYsDMwWci6tBquNXRQeTcy1tZkkHk3PVIMDrqv083Vz0Yt9G+r++jfRwx1DV9PawvAus6i7fKm469D9jFpSYdDI9X/V/Y0wAwI2vuLhIB/bvU4eOnS1tLi4u6tCxk3bvSiy3z+5diVbxktSpc5erxgMAIF1ecw4e2KcO/1NUdnFxUfsOv7Xm7FL7DtZF6E6du2rPVeKLi4sU9+UXqu7trSbhTf+q1AEATs7N0QlUBnv27FGnTp1UUFCg6tWrKy4uTs2bN1diYqI8PDzk5+dnFR8SEqKkpCTHJAs4oeqebnJ1MZTZMZBdUKoa1T3L7XMxp0if7Lig81kFquLmqt6NAzS5Wz3933fHlVFQIp8ql//vMaug7Jj/fQcAqJzS09NVWlqqgMBAq/bAQKNOnjhRbp+UlJRy41NTUmyWJwDA+WWkZ5S75gQEBl51zUlNSVFAoLFM/K/XnE3xP2jqE/9UQUG+jEFBmj3vA/n5+/+1EwAAOC1++2UH4eHhSkxMVGZmpr788kuNHDlS8fHx1+54FYWFhSosLLRqKy0ukqu7x1V6APi1E2n5OpGWb/l8PC1Pz/ZuqK71/bXiQLIDMwMAAAAA27upXQctWrJUGenpilu6RFP+OVELPv28TJECAFA5cVSRHXh4eKhRo0Zq27atYmNjFRkZqTfffFM1atRQUVGRMjIyrOIvXryoGjVqXHW82NhY+fr6Wj3bv3rXxrMAKq6cwhKVmszy9rS+CNm7iquyCkt+1xgms3Qms0BB1dwlSVkFl/v5VClnzILfNyYA4Mbk7+8vV1fXMpdSpqamKPBX3/D8L6PRWH68sfx4AAAkyc/fr9w1Jy019aprSKDRqLTUlGvGe1WtqjphddUqsrWefeElubq5avlV7uoBAFQ+FA4cwGQyqbCwUG3btpW7u7u+//57y7tDhw7p9OnT6tTp6pfiTZkyRZmZmVZP26Fj7ZE6UCGVmqUzGQUKD6pmaTNICg+qpuP/s6vgtxgk1fLxVOaVQkNqXrEyC0qsxqzi5qJ6/l5WOxUAAJWPu7uHmjVvoa1bf7mTymQy6aeEBEVEti63T0Rka/201foOq4Qtm68aDwCAdHnNadqshX7ammBpM5lM+nnrb605kfr5f+IlaWvCZrW6xppjMplVVFT0Z1MGUAkZDDx/9HEGHFVkY1OmTFH//v0VFham7OxsLVq0SBs2bNCaNWvk6+urMWPGaNKkSQoICJCPj4/Gjx+vTp06qWPHjlcd09PTU56e1ue2c0wRKrvvj6ZqRNtaOp1RoJPp+erZMECeri5KOJUhSRrRtqYy8kv09f7LxxD1DzfqRHq+knOKVNX98h0HAVXdtflkhmXMH46mqV+4UZdyipSaV6zbmgUps6BEuy5kO2CGAICK5IERo/Ts00+peYuWatkqQos+Xqj8/HwNGjxEkvTM1CcVHBysRydMliTd98BwPTR6hD5a+KFuvrm71qz+Vvv37dO056ZbxszMzFDShQu6dOmSJOnkyctnVwcajTIag+w8QwBARTFsxEg9/8wUNW/eUi1atdKiTz5Sfn6+Bg6+Q5L07NQnFRwSonGPTZIk3TtshMb+bYQ+WThfXaO7ac2qldq/b5+mPvuCJCk/L08fvjdP0d17yBgUpIyMDH2xeJGSL11U7z59HTZPAEDFQuHAxi5duqQRI0bowoUL8vX1VUREhNasWaNbbrlFkvTGG2/IxcVFQ4cOVWFhofr27as5c+Y4OGvA+ew4ly1vz0u6rVmQvD1ddS6zULM3n7ZcmOzv5S6z+Zf4qh4uGhZVU96ersovNul0RoH+HX9SSdm/fMNm3ZFUebgZdH9UTXm5u+hYar5mbz6jEpP51388AKCS6dtvgNLT0jR39iylpiQrvGkzzX7nPcsxEEkXzsvlf75K1Lp1G/3r5Rma/fZMvf3mGwqrW0+vv/m2GjVuYomJ/2G9nps21fL5qccv/wLo4Udi9Pd/jLfTzAAAFU2ffgOUnp6ud+a8pdSUFDUJb6ZZc9+1HI+XlHRBLi6/HCgR2TpKL738mubMelOz33pDdcLqasabsyxrjourq06ePK4Vk5cpIz1dvn5+at6ild5b8IkaNmrskDkCACoeg9ls5jdgN4CYuAOOTgEAUEm8dmtTR6cAAKhESvmRFQBgJ96enOp+PXq8udnRKTidHx7r7OgUron/GgAAAAAAAAAAgAWFAwAAAAAAAAAAYMEdBwAAAAAAAACA62L4n7u9cONgxwEAAAAAAAAAALCgcAAAAAAAAAAAACw4qugG8dXKfY5OAQBQSXz40X8cnQIAoBKpUs3L0SkAACqJ9E+GOToFoMJgxwEAAAAAAAAAALCgcAAAAAAAAAAAACw4qggAAAAAAAAAcF0MBkdnAFtgxwEAAAAAAAAAALBgx4GNzZ07V3PnztXJkyclSS1atNCzzz6r/v37S5LeffddLVq0SDt27FB2drbS09Pl5+fnuIQBJza6e0P9o28TBflW0f4zmXr6s53aeTL9qvEP9Wqkkd0bqnZAVaXlFGrF9nP619I9KiwxXfeYAIDK4+H+zTRxcIRC/Ly052SaJr2/RduOJF81ftxtLfRQv2aqY6yu1OwCxW0+oWmfbFNhcakkycXFoGfuaaP7ujVSiJ+XLqTn6eP1h/XykkQ7zQgAUFE92LuJxt/aTMG+Xtp7Ol1PfrRNO46nXjX+733D9bfeTRQaWFVp2YVa/tNpTf8iUYXFpjKxEwY213P3RGnu6oOa+sl2W04DAOBE2HFgY6GhoXr55Ze1fft2bdu2TT179tSgQYO0b98+SVJeXp769eunqVOnOjhTwLkNuilUz98doX9/s199XvxO+85m6LMJN8vo7Vlu/B3t6+jpoa3072/2K/rZNZq0cLsGtQvVlCEtr3tMAEDlcWeXBnpldEe99PkOdZq8TLtPpunrZ/spyLdKufH33NxQLw5vp399vlOtx3+pv7+9SXd2baDpD9xkiZl8R4Qe6tdME9/brNbjv9QzH/2kSXdE6B+3trDXtAAAFdAdHerq/4a10Stxe9T9mZXaezpdXz3ZQ0af8n8uubNTPT13T5ReXbpHHZ5YofHvJeiOjnU17e7WZWKjGgRoVI/G2nuKL0cBAKxROLCxgQMHasCAAWrcuLGaNGmil156SdWrV1dCQoIkacKECXrqqafUsWNHB2cKOLeHb2miTzed0OLNp3T4Qrae+GSH8otKdW+XeuXGt2sYqJ+PpirupzM6k5qn+P0XteynM4qqF3DdYwIAKo9Hb2+p+esO6uP1R3TwbIbGv/Oj8gtLNLJXk3LjOzYN1paDF/X5pmM6nZyj73ed0xebjuumxkH/ExOiFT+d0urtZ3Q6OUdxW07q+8RzVjEAgMrnH/2b6qMfjmrRxuM6dD5Lk+b/pLzCUj3QrWG58e0bG7X1SLK+3HJSZ1Jy9cPeJH215ZTaNgi0iqvm6aZ3H+mixz7Yqoy8IntMBQDgRCgc2FFpaakWL16s3NxcderUydHpADcMd1eDIur6aeOBS5Y2s1nadOCibmoYWG6fn4+lKqKun6Lq+UuSwozV1LNVDX2/N+m6xwQAVA7ubi6KamjU+l3nLW1ms7R+9zm1Dw8pt0/CwUuKami0FAHqhXirb9s6Wr39zP/EXFSPiFpqVMtHktSqXoA6NauhtTvOlDsmAODG5+7qotb1A7RhX5KlzWyW4vclqV0jY7l9fjqSotb1AtTmSqGgblB13RJZS+v+Z92SpNdGtdPaxHOK/5+xAQD4L+44sIM9e/aoU6dOKigoUPXq1RUXF6fmzZtf93iFhYUqLCy0ajOXFsvg6v5nUwWcUkB1T7m5uig5q8CqPTmrUI1q+JTbJ+6nMwqo7qnlT/aQQZd/CbRwwzG9tfLgdY8JAKgcjN5V5ObqokuZ+VbtlzIKFF7br9w+n286pkCfKvr+pdtkMBjk7uaid1cf0Gtf7bLEzFi6Sz5VPbRr1l0qNZnl6mLQc59u0+KNx2w5HQBABRbofeXnksxf/VySWaDGNcv/ueTLLScV4O2pVc/eIoMurzkffndYr3+9zxIzpGNdRdYLUM9nV9k0fwCVg4vB4OgUYAMUDuwgPDxciYmJyszM1JdffqmRI0cqPj7+uosHsbGxeuGFF6zaqkXdpept7/4r0gUqhc5NgvTYgKZ66tMd2nEiTfWDq+vFe1pr4q0FeuPbA45ODwBwg7m5RU09PjRSj727WT8fvqSGNX00Y0wnXbirteXy4zu7NNC90Q016o0ftP90uiLqB+q1MR11IT1Pn/5wxLETAAA4jS7NgjXp9hb654Kftf1oqurXqK6XH7hJ/xycrxnL9qp2QFXFDm+rIS+vL/eyZAAAJAoHduHh4aFGjRpJktq2bauff/5Zb775pubNm3dd402ZMkWTJk2yams84ds/nSfgrNJyClVSalKQj/WFlEE+nrr0qx0D//XE4Bb6MuGUFv14UpJ08FyWqnq46bXhbTRz5YHrGhMAUDmkZBeopNSkYF8vq/ZgvypKysgvt89z97fVZ/FHteC7Q5KkfafTVbWKu2Y/0lWvfJkos1n618j2mrF0l5b8eNwSExZUXY8PiaRwAACVVGr2lZ9LfH/1c4lvlTI73/7r6Tsj9cV/TujjDZd3rO0/m6Fqnm56428d9O/lexVZP0DBvl7a8H/9LX3cXF3UOTxYD93SRCGjFstkNttuUgAAp8AdBw5gMpnKHDX0R3h6esrHx8fq4ZgiVGbFpWbtPpWhm5sFW9oMBqlrs2BtO5Zabh8vD1eZfvVv4dIr/zg2XOeYAIDKobjEpJ3HUtQjopalzWCQerSqrZ8OXSy3j5enm0y/WnhMpaYrfQ3/E2Pdr9RklosLW78BoLIqLjUp8USaurWoYWkzGKToFjX089GUcvt4ebiWWXNKTf/9WcegjfuS1PmpFYp+eqXl2XE8VUs2n1T00yspGgAAJLHjwOamTJmi/v37KywsTNnZ2Vq0aJE2bNigNWvWSJKSkpKUlJSko0ePSrp8H4K3t7fCwsIUEBDgyNQBpzJv3WG9+bd22nUyXTtPpOmh3o1V1cNNi/9zUpI062/tdCE9X/+K2ytJWrfrgh6+pbH2nL4cXy+oup4c1ELrdl+wFBSuNSYAoPJ66+u9eu/RaG0/lqJtR5I17rYWqlrFTR99f3lnwPuPdtP5tFw9+8k2SdLKn0/r0dtbateJVP10+JIa1vTVs/e31cqfT1t+ubPy59N68s7WOpOSo/2n09W6QaAevb2lPvr+sMPmCQBwvDmrDmrOw52080SqdhxL1SP9mqqap6s+jb+8Q23uw510IT1f079IlCSt3nlO/+jfTLtPpWvbsRQ1CPHW1DsjtXrnOZnMZuUUlOjA2UyrPyOvsERpOYVl2gEAlReFAxu7dOmSRowYoQsXLsjX11cRERFas2aNbrnlFknSO++8Y3VfQXR0tCRp/vz5GjVqlCNSBpzS8m1nFejtqScGNVeQTxXtO5Op+978USnZl3f31A6oavXNmTe+PSCzzHpqcEvV8PNSanah1u0+r9i4fb97TABA5fXlf47L6FNFz97bRiH+VbX7RKoGTV9tOTaiTlB1q3Xn5SU7ZTab9dz9bVUroJpSsgr07bbTev5KYUGSJr23Rc/d31Zvju2sIF8vXUjP0wdrD+pfX+y0+/wAABVH3NZTMvp4aurQSAX7VtGeU+m689UflHzlCNVQYzWrNWfGsr0ym6Wn74pUTX8vpWYVavXOc3rxyp06AAD8HgazmT1oN4IaD33p6BQAAJVEZkqGo1MAAFQiVap5XTsIAIC/QPonwxydglPqMzvB0Sk4nbUxHR2dwjVxxwEAAAAAAAAAALCgcAAAAAAAAAAAACwoHAAAAAAAAAAAAAsKBwAAAAAAAAAAwILCAQAAAAAAAAAAsHBzdAL4a5yce6ejUwAAAAAAAABQyRgMBkenABtgxwEAAAAAAAAAALCgcAAAAAAAAAAAACwoHAAAAAAAAAAAAAsKBzY2d+5cRUREyMfHRz4+PurUqZNWrVolSUpLS9P48eMVHh4uLy8vhYWF6dFHH1VmZqaDswac0+JFn6r/LT3VLqqVht17l/bs3v2b8WvXrNKg2/qpXVQrDR08UJs2xlu9N5vNmj3rTfXq1lXt20Ro7JhROnXqpA1nAABwJqw7AAB7Yc0BANgbhQMbCw0N1csvv6zt27dr27Zt6tmz5/+zd+dxVVf5H8fflx0VEO8FXBAXUBQRES2BSnPNZRxNyxZyy9RfWbk0ZbRpTYWZ07ibY2nmEpalU5NLaqPWpGQqgZb7kqaGF5BFARXu7w+c69yAMpN7ufF69vg+HuP5nu/hcx497DNfPt9zjvr166e9e/fq1KlTOnXqlKZNm6Y9e/bonXfe0bp16zRixAhHhw04nXVr12ja1CSNfmSMkj9YpfDwFnp49AhlZmaW2z919y49/eQTunPAXVqxcrU6d+mqcY+N0cGDB6x9Fr29QO8tW6LnJk3W0vfel7e3tx4eNUJFRUX2mhYAoIoi7wAA7IWcAwBwBIPFYrE4Oojqpk6dOnr99dfLLRB88MEHeuCBB3T+/Hm5ubld85iFl29khIDzSbj3brWKbK1nnntBklRSUqIeXTvpvvsHa8TIUWX6P/nEOBUUFGj23PnWtgfuG6TwFi30/KSXZLFY1O322zRk2HANHV76dzUvL09dOsbrpVemqFfvPvaZGACgSiLvAADshZwD2I/Xtf8qDv+j17wUR4fgdNY+3MHRIfwqVhzYUXFxsZKTk3X+/HnFxcWV2ycnJ0e+vr6/qWgAVHeXLl7U99/tVWxcvLXNxcVFsbHxSvt2d7nPpKWmKjbW9u9h/C23Ki01VZL048mTMpvPqkPs1TF9fHzUOqpNhWMCAKoH8g4AwF7IOQAAR+G303aQnp6uuLg4FRYWqlatWlq1apUiIiLK9DObzfrrX/+qUaPKfjEAoGLZ57JVXFwso9Fo0240GnX06JFynzGbzTIaTWX6mzPNV+6fLW0zlR3TbDbfqNABAE6IvAMAsBdyDgDAUSgc2EF4eLhSU1OVk5OjlStXaujQodqyZYtN8SA3N1d9+vRRRESEJk+e/IvjFRUVldl30OLqKU9Pz8oIHwAAAAAAAABQjbBVkR14eHgoLCxM7dq1U1JSktq0aaMZM2ZY7+fl5alnz57y8fHRqlWr5O7u/ovjJSUlyc/Pz+Z6/bWkyp4GUGX51/aXq6trmcPBMjMzZTKZyn3GZDIpM9Nctv+VL3NMpoDSNvO1jwkAqB7IOwAAeyHnAAAchcKBA5SUlFhXDOTm5qpHjx7y8PDQxx9/LC8vr199PjExUTk5OTbXkxMTKztsoMpy9/BQy4hWStm+zdpWUlKilJRtimrTttxnoqKjlbJ9u03b9m1fKSo6WpLUIDhYJlOAUlKujpmfn6/0tG8rHBMAUD2QdwAA9kLOAQA4ClsVVbLExET16tVLISEhysvL0/Lly7V582atX7/eWjS4cOGCli5dqtzcXOXm5kqSAgIC5OrqWu6Ynp5ltyUqvFzpUwGqtMFDh+v5ZyaqVatIRbaO0tIli1VQUKD+dw6QJD2b+JQCA4M0dvwTkqSEB4ZoxLDBWvzOQnXs2Enr1q7R3j179PzklyRJBoNBCYOHaMH8eWoU0kgNgoM1Z9YMBQQGqkvXbg6bJwCgaiDvAADshZwDoKozGAyODgGVgMJBJcvIyNCQIUN0+vRp+fn5KSoqSuvXr1f37t21efNmpaSkSJLCwsJsnjt69KgaN27sgIgB59SzV29lZ2Vp7uyZMpvPKrxFS82d/5aMV5banjl9Wi6Gq4usotvGKGnqNM2eOV2zpr+hkEaNNX3WHDVr1tzaZ/iIkSooKNBLk19QXl6u2sa009z5b3GeCACAvAMAsBtyDgDAEQwWi8Xi6CDw+7HiAAAAAAAAALh+XnxifV16v/m1o0NwOmv+72ZHh/CrOOMAAAAAAAAAAABYUTgAAAAAAAAAAKCKmjNnjho3biwvLy916NBBX3/9y6s8zp07pzFjxqhevXry9PRU8+bNtWbNmt/0M1mAAwAAAAAAAABAFbRixQpNmDBBb775pjp06KDp06frjjvu0P79+xUYGFim/8WLF9W9e3cFBgZq5cqVatCggY4fP67atWv/pp/LGQd/EJxxAAAAAAAAAFw/zji4Pn3mc8bBb/Xp6Gs/46BDhw666aabNHv2bElSSUmJGjZsqMcee0xPP/10mf5vvvmmXn/9de3bt0/u7u7XHSNbFQEAAAAAAAAAYCdFRUXKzc21uYqKisr0u3jxonbu3Klu3bpZ21xcXNStWzdt27at3LE//vhjxcXFacyYMQoKClJkZKReffVVFRcX/6YYqaP9QXy855SjQwAAVBMXLrHMDQBgP+4ufO8GALCPhHbBjg4B1URSUpJefPFFm7ZJkyZp8uTJNm1ms1nFxcUKCgqyaQ8KCtK+ffvKHfvIkSP6/PPPlZCQoDVr1ujQoUN65JFHdOnSJU2aNOmaY6RwAAAAAAAAAACAnSQmJmrChAk2bZ6enjdk7JKSEgUGBuof//iHXF1d1a5dO/344496/fXXKRwAAAAAAAAAAFAVeXp6XlOhwGQyydXVVT/99JNN+08//aS6deuW+0y9evXk7u4uV1dXa1vLli115swZXbx4UR4eHtcUI2s+AQAAAAAAAACoYjw8PNSuXTtt2rTJ2lZSUqJNmzYpLi6u3GduueUWHTp0SCUlJda2AwcOqF69etdcNJAoHAAAAAAAAAAArpOBf37zP7/FhAkTtGDBAi1evFjff/+9Hn74YZ0/f17Dhw+XJA0ZMkSJiYnW/g8//LCysrI0duxYHThwQJ9++qleffVVjRkz5jf9XLYqqmTz5s3TvHnzdOzYMUlSq1at9MILL6hXr16SpNGjR2vjxo06deqUatWqpfj4eL322mtq0aKFA6MGnFPK+lX68pMVyj+XpbqNQtVn+OMKDmtZbt+9KVu1dfUyZZ35UcXFxTLWbaBb/jRI0R17lNv/4wVvaMfGT9RryBjF97mrMqcBAHASOzf8UymffqD8nCwFhoSqx5Axqh9a/v+H27/jC3318XvK/umUSoqL5R9UXzf3vkutb+1u7ZP0QPdyn+1870jF/mlQpcwBAOAcdny2Wl/9633l52QpKCRUvYY+pgZh5eec77/+Ql/+c7myfvpRJcXFqlO3geJ6362o22zzzNkfj2vTewt0/Ps0lZQUK6BBI909bpL8TEHljgsAcIx77rlHZ8+e1QsvvKAzZ84oOjpa69atsx6Y/MMPP8jF5er6gIYNG2r9+vUaP368oqKi1KBBA40dO1YTJ078TT+XwkElCw4O1pQpU9SsWTNZLBYtXrxY/fr10+7du9WqVSu1a9dOCQkJCgkJUVZWliZPnqwePXro6NGjNvtQAfhl6V99rrXvztOfHxqv4GYttW3NSi1+9SmN/fu7quXnX6Z/jVq+6nTnAzLVD5Gbm5v279qmVfNeU03f2moWfbNN3+++/kInDn4nH3+TvaYDAKjivtu+WZuWzVfP4Y+rflhL7Vj3kVa8lqhRry9UzXLyjldNX8X/+X4Z6zeUq5u7Du3erk//MU01fWuradRNkqTHZq+weebIt1/r07feUPjNt9llTgCAqmnvtn/rs6Vvqs+D49QgrIVS1n6kZVMmaszf3ik353jX8tFt/ROsOefgrm365/ypquFbW2FtSnNO1k+n9M6LYxV9ey91umuoPL1r6uzJY3Jzv/YtLAAA9vPoo4/q0UcfLffe5s2by7TFxcVp+/btv+tnslVRJevbt6969+6tZs2aqXnz5nrllVdUq1Yt67+4UaNGqWPHjmrcuLFiYmL08ssv68SJE9YVCgCuzVeffqD2XfsopnMvBQY3Vt+HJsjdw0u7/r223P5NWkUr4ubbFBjc6MoXOHcpKCRUx/fvsemXm3VWny6aqbsee1aubhTzAAClvl77odp07qWoTj1latBIPYePlZunp9K2rC+3f6OINgq/6VaZGjSSf1B93dRzgAIbNtWJ/XutfWrVrmNzHdi1TY1atpF/YD17TQsAUAVtW7NSMZ17K/r2ngoIbqw+I8bJ3dNTu7esK7d/44hotbjpVgU0aKQ6QfXVoddABYU01Yn/edf594q3FRbdQd3vH616jZupTlB9hbeLL7cQAQConigc2FFxcbGSk5N1/vz5cg+vOH/+vBYtWqQmTZqoYcOGDogQcE6XL1/SqSMH1LR1O2ubi4uLQlvH6MTBvb/wZCmLxaLD6TtlPn1CjVtGWdtLSkq0cnaSbu17j4IaNqmU2AEAzqf48iWdOXpATVrFWNsMLi5q3CpGPx767left1gsOrZnl7LOnFRIi9bl9jmfk63DqSlqc3uvGxY3AMD5FF++pNNHD6hJpG3OaRIZo5MHry3nHNmzS5mnTyqkZWnOsZSU6GBqiox1g7U0aaKm/d9AvfX8GO3b8WWlzQMA4HzYqsgO0tPTFRcXp8LCQtWqVUurVq1SRESE9f7cuXP11FNP6fz58woPD9eGDRt+0wnXQHV3ITdHJSUlZbYkquXnL/OpHyp8rvBCvl7/iCrcSQABAABJREFUv7t1+fIlubi46E8jxiksqr31/hf/fE8urq6K7TWw0mIHADifC3k5spSUqMbP8k5NP39lnj5R4XOFF85r9mP3qvjyJRlcXHTHsMfV5H+K3v8r/YvP5OFVQ+Htb72hsQMAnMt/c87PVwLU9POX+dQv5Zx8/X3MPdac03v4WIW2Ln3XOZ97ThcLC/SfT5LV+e7h6nbfSB1K26H3p0/WkOf+psYt21TqnAAAzoHCgR2Eh4crNTVVOTk5WrlypYYOHaotW7ZYiwcJCQnq3r27Tp8+rWnTpmnQoEH6z3/+Iy8vr3LHKyoqUlFRkU3bpYtFcvfwrPS5AH8kHl419MjUt3SxsEBH0ndp3btzVSewvpq0itaPR/Zr+9oP9fCUf8hg+G2n3QMAUB5PL289+MqbulRUoGN7d2vTsjdVO6CeGkWU/QXNt1vWq1V8F7nxMQkA4Dp4etXQ6KR/6GJhgY7u3aXPls6Tf2A9NY6IlsVSIkkKbxev2N53SZLqNg7TyQN7tXPjJxQOAPxmLvza5A+JwoEdeHh4KCwsTJLUrl077dixQzNmzND8+fMlSX5+fvLz81OzZs0UGxsrf39/rVq1Svfdd1+54yUlJenFF1+0abtr9ATd/X9PVO5EgCqqhq+fXFxclJ+TbdOen5OtWrXrVPici4uLjHUbSJLqNQ7T2R+Pa+vqZWrSKlrHv0/X+dxz+tuYe6z9S0pKtG7JPG1bu1JPzE6unMkAAKq8Gj5+Mri46MLP8s75nOwyq9/+l8HFRXWu5J2gRmHK/PEHbfvkvTKFgxP70pV1+oT6P/rsjQ8eAOBU/ptzzpeXc37hXed/c07dxmEy//iDvvzne2ocEa0aPn5ycXWVqUEjm2dMDUL0w8/OfAMAVF8UDhygpKSkzIqB/7JYLLJYLBXel6TExERNmDDBpu2TfZk3NEbAmbi5uat+0+Y6kr5LETeVbulQUlKiI3t2qcMdd17zOBZLiS5fviRJiu7YXaE/2z5i8atPKbpjd7W9veeNCx4A4HRc3dxVt0lzHdu7W83b3yKpdL/o43t3q133ftc8jsViUfGlS2Xav92yVnWbNFNQo9AbFjMAwDm5urmrXpPmOrp3t1pcedexlJTo6N7duqlH/2sex2KxqPjKu46rm7vqNw0vs71e5umTqm0KumGxAwCcG4WDSpaYmKhevXopJCREeXl5Wr58uTZv3qz169fryJEjWrFihXr06KGAgACdPHlSU6ZMkbe3t3r37l3hmJ6envL0tN2WyN0jv7KnAlRp8X3u1kdzp6hBaHM1CG2pbWtW6mJRoWKu/JJ/5exX5VsnQD3uHylJ2rJqmRqEhqtOUH1dvnRJB3enKPWLDeo7Yryk0i97avj42fwMVzdX1fKro4D6IfadHACgyrm510D9a/5U1W3SXPVDw7Vj3SpdKipUVKc7JEmfvPmafPxNuv2eEZKkrz5+T/WaNFftoPoqvnRRh7/9Wnv+s1F3DHvcZtyiC+e17+sv1OX+UXafEwCgaorrfZdWv/ma6jdtrvqhLZSy9kNdKixU9JWcs3ruFPnUManrvQ9Jkr7853LVa9pcdQLr6/LlSzqUmqK0Lzeo94NjrWPG/+kerZz5VzVqEaXGEdE69O0OHdi1TUOfe8MhcwQAVD0UDipZRkaGhgwZotOnT8vPz09RUVFav369unfvrlOnTumLL77Q9OnTlZ2draCgIHXs2FFfffWVAgMDHR064FRax3fR+dwcbXr/HeWfy1K9xqEakviadfluTmaGXFxcrP0vFRXqk7enKzfzrNw9PGVqEKK7Hn1GreO7OGoKAAAnEhF7uy7kntMXHy7W+ZxsBTYK1aCnXrUeXplrzrA5I+dSUaHWvzNTeVlmuXl4yli/ofo+/LQiYm+3Gfe77ZtlsVgUEUc+AgCUahXXWedzc7R55TvKP5etoEahuv/pKarld/Vdx/A/G4xfLCrU2oUzlZt1Vm4enjLVb6g7H0lUq7jO1j4tbrpVfUaM03/++Z7WLZ4tY/2GGjRuskJatLb7/AAAVZPBYrFYHB0Efr/3U085OgQAQDVx4dJlR4cAAKhG3P/n4w8AACpTQrtgR4fglP78jx2ODsHpfDzqJkeH8KtYcQAAAAAAAAAAuC7/u9IWfxx8ugEAAAAAAAAAAKwoHAAAAAAAAAAAACsKBwAAAAAAAAAAwIrCAQAAAAAAAAAAsOJw5D+IP0fWd3QIAAAAAAAAAIA/AAoHAAAAAAAAAIDrYjA4OgJUBrYqAgAAAAAAAAAAVhQOAAAAAAAAAACAFYWDSjZv3jxFRUXJ19dXvr6+iouL09q1a8v0s1gs6tWrlwwGg1avXm3/QIE/gOTly9Srexfd1La1Eu69W+lpab/Y/7P1a9XvTz11U9vWGti/r77YusXmvsVi0ZxZM9S10626OSZKo0YM0/HjxypxBgAAZ0LeAQDYCzkHAGBvFA4qWXBwsKZMmaKdO3fqm2++UZcuXdSvXz/t3bvXpt/06dNlYEMw4LqtW7tG06YmafQjY5T8wSqFh7fQw6NHKDMzs9z+qbt36eknn9CdA+7SipWr1blLV417bIwOHjxg7bPo7QV6b9kSPTdpspa+9768vb318KgRKioqste0AABVFHkHAGAv5BwAgCNQOKhkffv2Ve/evdWsWTM1b95cr7zyimrVqqXt27db+6Smpupvf/ubFi5c6MBIAee2ZPEiDbhrkPrfOVChYWF6btKL8vLy0uqPPiy3/7Kl7yr+1ts07MGH1DQ0VI8+Pk4tIyKUvHyppNIvcJYteVcjRz+szl26qXl4C72cNFVnMzL0+aaN9pwaAKAKIu8AAOyFnAMAcAQKB3ZUXFys5ORknT9/XnFxcZKkCxcu6P7779ecOXNUt25dB0cIOKdLFy/q++/2KjYu3trm4uKi2Nh4pX27u9xn0lJTFRsbZ9MWf8utSktNlST9ePKkzOaz6hB7dUwfHx+1jmpT4ZgAgOqBvAMAsBdyDgBn4GIwcP3Gyxm4OTqA6iA9PV1xcXEqLCxUrVq1tGrVKkVEREiSxo8fr/j4ePXr18/BUQLOK/tctoqLi2U0Gm3ajUajjh49Uu4zZrNZRqOpTH9zpvnK/bOlbaayY5rN5hsVOgDACZF3AAD2Qs4BADgKhQM7CA8PV2pqqnJycrRy5UoNHTpUW7Zs0aFDh/T5559r9+7fVtEvKioqs++gxdVTnp6eNzJsAAAAAAAAAEA1xFZFduDh4aGwsDC1a9dOSUlJatOmjWbMmKHPP/9chw8fVu3ateXm5iY3t9I6zsCBA3X77bdXOF5SUpL8/PxsrtdfS7LTbICqx7+2v1xdXcscDpaZmSmTyVTuMyaTSZmZ5rL9r3yZYzIFlLaZr31MAED1QN4BANgLOQcA4CgUDhygpKRERUVFevrpp5WWlqbU1FTrJUl///vftWjRogqfT0xMVE5Ojs315MREO0UPVD3uHh5qGdFKKdu3WdtKSkqUkrJNUW3alvtMVHS0Uv7nkHJJ2r7tK0VFR0uSGgQHy2QKUErK1THz8/OVnvZthWMCAKoH8g4AwF7IOQAAR2GrokqWmJioXr16KSQkRHl5eVq+fLk2b96s9evXq27duuUeiBwSEqImTZpUOKanZ9ltiQov3/DQAacyeOhwPf/MRLVqFanI1lFaumSxCgoK1P/OAZKkZxOfUmBgkMaOf0KSlPDAEI0YNliL31mojh07ad3aNdq7Z4+en/ySJMlgMChh8BAtmD9PjUIaqUFwsObMmqGAwEB16drNYfMEAFQN5B0AgL2QcwAAjkDhoJJlZGRoyJAhOn36tPz8/BQVFaX169ere/fujg4N+EPp2au3srOyNHf2TJnNZxXeoqXmzn9LxitLbc+cPi0Xw9VFVtFtY5Q0dZpmz5yuWdPfUEijxpo+a46aNWtu7TN8xEgVFBTopckvKC8vV21j2mnu/Lc4TwQAQN4BANgNOQdAVWcwODoCVAaDxWKxODoI/H6sOAAAAAAAAACunxefWF+XgQt3OjoEp/Phg+0cHcKv4owDAAAAAAAAAABgReEAAAAAAAAAAABYUTgAAAAAAAAAAABWFA4AAAAAAAAAAIAVR34AAAAAAAAAAK6LwWBwdAioBKw4AAAAAAAAAAAAVhQOAAAAAAAAAACAFYUDAAAAAAAAAABgReEAAAAAAAAAAABYUTgAAAAAAAAAAABWFA4q2bx58xQVFSVfX1/5+voqLi5Oa9eutd6//fbbZTAYbK7/+7//c2DEgPNKXr5Mvbp30U1tWyvh3ruVnpb2i/0/W79W/f7UUze1ba2B/fvqi61bbO5bLBbNmTVDXTvdqptjojRqxDAdP36sEmcAAHAm5B0AgL2QcwBUZQYD12+9nAGFg0oWHBysKVOmaOfOnfrmm2/UpUsX9evXT3v37rX2GTlypE6fPm29pk6d6sCIAee0bu0aTZuapNGPjFHyB6sUHt5CD48eoczMzHL7p+7epaeffEJ3DrhLK1auVucuXTXusTE6ePCAtc+itxfovWVL9NykyVr63vvy9vbWw6NGqKioyF7TAgBUUeQdAIC9kHMAAI5A4aCS9e3bV71791azZs3UvHlzvfLKK6pVq5a2b99u7VOjRg3VrVvXevn6+jowYsA5LVm8SAPuGqT+dw5UaFiYnpv0ory8vLT6ow/L7b9s6buKv/U2DXvwITUNDdWjj49Ty4gIJS9fKqn0C5xlS97VyNEPq3OXbmoe3kIvJ03V2YwMfb5poz2nBgCogsg7AAB7IecAAByBwoEdFRcXKzk5WefPn1dcXJy1fdmyZTKZTIqMjFRiYqIuXLjgwCgB53Pp4kV9/91excbFW9tcXFwUGxuvtG93l/tMWmqqYmPjbNrib7lVaampkqQfT56U2XxWHWKvjunj46PWUW0qHBMAUD2QdwAA9kLOAQA4ipujA6gO0tPTFRcXp8LCQtWqVUurVq1SRESEJOn+++9Xo0aNVL9+faWlpWnixInav3+/PvroIwdHDTiP7HPZKi4ultFotGk3Go06evRIuc+YzWYZjaYy/c2Z5iv3z5a2mcqOaTabb1ToAAAnRN4BANgLOQcA4CgUDuwgPDxcqampysnJ0cqVKzV06FBt2bJFERERGjVqlLVf69atVa9ePXXt2lWHDx9WaGhoueMVFRWV2XfQ4uopT0/PSp0HAAAAAAAAAOCPj62K7MDDw0NhYWFq166dkpKS1KZNG82YMaPcvh06dJAkHTp0qMLxkpKS5OfnZ3O9/lpSpcQOOAP/2v5ydXUtczhYZmamTCZTuc+YTCZlZprL9r/yZY7JFFDaZr72MQEA1QN5BwBgL+QcAM7AxWDg+o2XM6Bw4AAlJSVlVgz8V+qVPQfr1atX4fOJiYnKycmxuZ6cmFgZoQJOwd3DQy0jWill+zZrW0lJiVJStimqTdtyn4mKjlbK/xxSLknbt32lqOhoSVKD4GCZTAFKSbk6Zn5+vtLTvq1wTABA9UDeAQDYCzkHAOAobFVUyRITE9WrVy+FhIQoLy9Py5cv1+bNm7V+/XodPnxYy5cvV+/evWU0GpWWlqbx48erY8eOioqKqnBMT8+y2xIVXq7smQBV2+Chw/X8MxPVqlWkIltHaemSxSooKFD/OwdIkp5NfEqBgUEaO/4JSVLCA0M0YthgLX5noTp27KR1a9do7549en7yS5Ikg8GghMFDtGD+PDUKaaQGwcGaM2uGAgID1aVrN4fNEwBQNZB3AAD2Qs4BADgChYNKlpGRoSFDhuj06dPy8/NTVFSU1q9fr+7du+vEiRPauHGjpk+frvPnz6thw4YaOHCgnnvuOUeHDTidnr16KzsrS3Nnz5TZfFbhLVpq7vy3ZLyy1PbM6dNyMVxdZBXdNkZJU6dp9szpmjX9DYU0aqzps+aoWbPm1j7DR4xUQUGBXpr8gvLyctU2pp3mzn+L80QAAOQdAIDdkHMAAI5gsFgsFkcHgd+PFQcAAAAAAADA9fPiE+vrcs/i3Y4OwemsGFr1t4bjjAMAAAAAAAAAAGBFHQ0AAAAAAAAAcF0Mjg4AlYIVBwAAAAAAAAAAwIrCAQAAAAAAAAAAsKJwAAAAAAAAAAAArDjj4A9i68Gzjg4BAFBN1PfxdnQIAIBqpPBSiaNDAABUE+2b+Do6BKDKYMUBAAAAAAAAAACwYsUBAAAAAAAAAOC6GAwGR4eASsCKAwAAAAAAAAAAYMWKg0o2b948zZs3T8eOHZMktWrVSi+88IJ69epl7bNt2zY9++yzSklJkaurq6Kjo7V+/Xp5e7OHNPBbbF3zoTatek+557LUoHGo7ho5Xo2bR5Tb9z+ffayv/71Op384IklqGBquvg+Mtumfey5L/1w8T/tSv1bB+XyFtWqju0aOV2D9hnaZDwCgalu7+n398/13dS4rU41Dm2nEY0+pWYvIcvv+cOywkt95U0cOfK+zP53W8Eee0J8G3m/Tp7i4WO+/O19bN67VuaxM+RtN6nxHX931wEN8xQUA1dxnH7+vT1cuVU52pkKaNtPQR55UaHircvt+vnaVvty4RieOH5YkNQlroXuGj7Hp/+GSf2jbls+UdfYnubq7q0lYCw0a9ojCKshjAIDqhxUHlSw4OFhTpkzRzp079c0336hLly7q16+f9u7dK6m0aNCzZ0/16NFDX3/9tXbs2KFHH31ULi78qwF+i51fbtKqhbPV697heuqNt9WgcZjmvjhBeeeyy+1/aM9utbutmx7/6yxNeG2+/E1Bmjt5gs5llh40brFYtCApUZk/ndKoZ6Zo4t8XqU5AXc2eNE5FhQX2nBoAoAr6z78/0ztvvqFBQ0bp9TeXqVFoc/114qPKyc4qt//FwkIF1WugBx56TLXrGMvtszp5sdZ/vFIPPfaUZixaqcEjH9fqFe9qzarkypwKAKCK27blMy1bMF0DHnhIL89eopCmzTTl2ceUc678nPN92k7F3d5Dz742Ty/+faGMAUGa8syjyjJnWPvUDQ7RsEee1JQ339OkaQsUEFRfU555VLkVvD8BAKoffjtdyfr27avevXurWbNmat68uV555RXVqlVL27dvlySNHz9ejz/+uJ5++mm1atVK4eHhGjRokDw9PR0cOeBc/v3PZMX16KvYrn1Ur2ET3fPwk/Lw9NK2Tf8qt//QCZPUsfcABTdtprrBjXT/mImyWEq0P+0bSdLZUyd0bP9e3fN/T6hRs5YKahCiQf/3F126WKSdX2y059QAAFXQJyuXqlvvO9Wl55/VsHFTjR73jDw9vbRp3T/L7R/WopWGjh6nW7vcIXd3j3L77N/7rW6Kv13tYm9TYN36iuvUTW3ax+rQvr2VORUAQBW39qPl6tyzvzr1+LOCGzXVg48lytPTS1vWf1xu/zETX1b3vnercWi46jdsrJHjnlOJxaK9qTusfW7p3FORMR0UWC9YwY1DlTBqnAounNcPRw/aa1oAgCqOwoEdFRcXKzk5WefPn1dcXJwyMjKUkpKiwMBAxcfHKygoSJ06ddKXX37p6FABp3L50iWdOHxA4VHtrW0uLi4Kb9Nex/Zf2y9bLl4sUnHxZdWs5WsdU5Lc3K8W8VxcXOTm5qHD36XdwOgBAM7m0qVLOnxgn6Jibra2ubi4KCrmZh34Lv26xw1v1Ubpu7/WqRPHJUnHDh/QvvRUtb05/nfHDABwTpcvXdLRg/sU2dY250S2vVkHv7+2nFNUVKjiy5dV08e3wp/x77WrVKNmLTVq2vyGxA0AcH6ccWAH6enpiouLU2FhoWrVqqVVq1YpIiLCuupg8uTJmjZtmqKjo/Xuu++qa9eu2rNnj5o1a+bgyAHncD4vRyUlxfKtXcem3cevjn46efyaxvjn4rny8zcpvE1p8SEouJH8A4L0yZI3de8jT8rD01v//mSFzmVmKDc784bPAQDgPPJyzqmkpFi1/W23HPLzN+rHE8eue9w77xumCxfy9fjwgXJxcVFJSYnuf/ARdezW+3dGDABwVnm5pTnH72fvOr616+jUNeac5IWz5G802RQfJGlXyheanfSsLhYVqnYdk55+dbZ8/GrfoMgBVCcuHMf1h0ThwA7Cw8OVmpqqnJwcrVy5UkOHDtWWLVtUUlIiSRo9erSGDx8uSWrbtq02bdqkhQsXKikpqdzxioqKVFRUZNN28WKRPDzY3gi4Hp99uES7vtykx1+eJfcrf49c3dz00MRXtHz2FE18oLdcXFwV3qadImJiZZHFwREDAP6Ivtq8QV9sWqdxz7yiho2b6ujhA1o052/yNwao8x19HR0eAMAJfbziHW3bvEHPTX2zzO8MItq016tzlykv55z+vXa1Zr36jF6csahMkQIAUD2xVZEdeHh4KCwsTO3atVNSUpLatGmjGTNmqF69epKkiIgIm/4tW7bUDz/8UOF4SUlJ8vPzs7lW/GNGpc4BqMpq+vjJxcVVuT87HCwvJ0u+/uUfQPlfm1Yv18YPl2nM5L+rQeMwm3shYS309PR3NHXZOr28aLUemfSGzuflyBRU/4bPAQDgPHz8asvFxVXnfrYCLSc7U7XrmK573Hf/MUN33jtMt3a5Q42aNtPt3fuo713366P3Fv3ekAEATsrHtzTn/Pwg5NxzWfL7lXedT1cu0SfvL9bTr85SSNOyOxp4eXmrbv2GataytUZNeF4urq7aXMFZPQCA6ofCgQOUlJSoqKhIjRs3Vv369bV//36b+wcOHFCjRo0qfD4xMVE5OTk21z2jxlZ22ECV5eburoahzXUgbae1raSkRAfSdqpxeKsKn9v40TKte3+xHp40TSFhLSrs512zlnz8/JVx6oR+OLxfrW++7YbGDwBwLu7u7gpt3kLpu68eMllSUqK03TvUPKL1dY9bVFgow8/Webu4uMhSwko3AKiu3Nzd1aRZC5uDjUtKSrQndYeataw453zywbtatfxtPfXyTDVtHlFhv/9lsZRYz3oDAICtiipZYmKievXqpZCQEOXl5Wn58uXavHmz1q9fL4PBoCeffFKTJk1SmzZtFB0drcWLF2vfvn1auXJlhWN6enrK09N2iaGHR1EFvYHqoXO/e7V0xisKCWuhRs1aavMn76uosECxXftIkt6d/lfVNgboz4P/T5K04aOlWrP8bQ2dMEnGwHrWcws8vbzl6V1DkrT7P5+rlm9t+QcE6dTxI/rwrRmKuvk2tfzZ3qAAgOqn710PaNZrkxTavKWatYjUvz5crqLCAnW548+SpJlTXlAdU4AeeOgxSaUHKp88fkSSdPnyJWWaM3T00H55eddQvQYNJUnt427Th8sWKiCwrho2DtXRQ/v0ycpl6tKzn2MmCQCoEnoNuF/zp72oJs1aKjS8ldatek9FhQXq1KN0G7t5r0+SvzFA9z74qCTpk/cXa+WS+Roz8WUFBNXTuSyzJMnLu4a8vGuosLBA/3xvoWJiO6p2HZPyc89pwycfKNt8Vh1u6+qweQIAqhYKB5UsIyNDQ4YM0enTp+Xn56eoqCitX79e3bt3lySNGzdOhYWFGj9+vLKystSmTRtt2LBBoaGhDo4ccC7tbu2q/Jxz+vS9t5SXnaUGTcL0yKS/WQ9Mzj77kwyGq4usvly7WpcvX9LbU5+zGafXPcPV+74Rkkq3nPho4Wzrlkc3395TPQcNs9ucAABV1y2deygnJ1vJ77ypc9mZahLaXM9NmaXadUq3jTBnnJHBcHX1QHbmWf1l9P3WP3/8/hJ9/P4StWrTTi+98Q9J0kOPPaX3Fs3TP2ZMUe65bPkbTer+p4G6e/BI+04OAFClxHXqobycc1q5ZL5ysjPVqGlzTXx5pnWrosyf5ZyN//pQly9d0oyXJ9qMMyBhpAYOHiUXFxedOnFMX2z8VHm551TLx09Nm0fo+Wn/UHBjfhcBAChlsFgsrH3+A/js+7OODgEAUE3U9/F2dAgAgGqk8FKJo0MAAFQT7Zv4OjoEp/TA0m8dHYLTWfpAG0eH8Ks44wAAAAAAAAAAAFhROAAAAAAAAAAAAFYUDgAAAAAAAAAAgBWFAwAAAAAAAAAAYEXhAAAAAAAAAAAAWLk5OgDcGB2bBTg6BAAAAAAAAADVjMHg6AhQGVhxAAAAAAAAAAAArCgcAAAAAAAAAAAAKwoHAAAAAAAAAADAisIBAAAAAAAAAACwonBQyebNm6eoqCj5+vrK19dXcXFxWrt2rSTp2LFjMhgM5V4ffPCBgyMHnE/y8mXq1b2LbmrbWgn33q30tLRf7P/Z+rXq96eeuqltaw3s31dfbN1ic99isWjOrBnq2ulW3RwTpVEjhun48WOVOAMAgDMh7wAA7IWcAwCwNwoHlSw4OFhTpkzRzp079c0336hLly7q16+f9u7dq4YNG+r06dM214svvqhatWqpV69ejg4dcCrr1q7RtKlJGv3IGCV/sErh4S308OgRyszMLLd/6u5devrJJ3TngLu0YuVqde7SVeMeG6ODBw9Y+yx6e4HeW7ZEz02arKXvvS9vb289PGqEioqK7DUtAEAVRd4BANgLOQdAVVfRh9FcFV/OwGCxWCyODqK6qVOnjl5//XWNGDGizL22bdsqJiZGb7/99m8as/DyjYoOcE4J996tVpGt9cxzL0iSSkpK1KNrJ913/2CNGDmqTP8nnxingoICzZ4739r2wH2DFN6ihZ6f9JIsFou63X6bhgwbrqHDS/+u5uXlqUvHeL30yhT16t3HPhMDAFRJ5B0AgL2QcwD78XJzdATOacjyX14FhbLevT/K0SH8KlYc2FFxcbGSk5N1/vx5xcXFlbm/c+dOpaamlltQAFCxSxcv6vvv9io2Lt7a5uLiotjYeKV9u7vcZ9JSUxUba/v3MP6WW5WWmipJ+vHkSZnNZ9Uh9uqYPj4+ah3VpsIxAQDVA3kHAGAv5BwAgKNQR7OD9PR0xcXFqbCwULVq1dKqVasUERFRpt/bb7+tli1bKj4+vpxRAFQk+1y2iouLZTQabdqNRqOOHj1S7jNms1lGo6lMf3Om+cr9s6VtprJjms3mGxU6AMAJkXcAAPZCzgEAOAqFAzsIDw9XamqqcnJytHLlSg0dOlRbtmyxKR4UFBRo+fLlev755391vKKiojL7DlpcPeXp6XnDYwcAAAAAAAAAVC9sVWQHHh4eCgsLU7t27ZSUlKQ2bdpoxowZNn1WrlypCxcuaMiQIb86XlJSkvz8/Gyu119LqqzwgSrPv7a/XF1dyxwOlpmZKZPJVO4zJpNJmZnmsv2vfJljMgWUtpmvfUwAQPVA3gEA2As5BwDgKBQOHKCkpKTMioG3335bf/7znxUQEPCrzycmJionJ8fmenJiYmWFC1R57h4eahnRSinbt1nbSkpKlJKyTVFt2pb7TFR0tFK2b7dp277tK0VFR0uSGgQHy2QKUErK1THz8/OVnvZthWMCAKoH8g4AwF7IOQCcgYuB67dezoCtiipZYmKievXqpZCQEOXl5Wn58uXavHmz1q9fb+1z6NAhbd26VWvWrLmmMT09y25LVHj5hoYNOJ3BQ4fr+WcmqlWrSEW2jtLSJYtVUFCg/ncOkCQ9m/iUAgODNHb8E5KkhAeGaMSwwVr8zkJ17NhJ69au0d49e/T85JckSQaDQQmDh2jB/HlqFNJIDYKDNWfWDAUEBqpL124OmycAoGog7wAA7IWcAwBwBAoHlSwjI0NDhgzR6dOn5efnp6ioKK1fv17du3e39lm4cKGCg4PVo0cPB0YKOLeevXorOytLc2fPlNl8VuEtWmru/LdkvLLU9szp03IxXF1kFd02RklTp2n2zOmaNf0NhTRqrOmz5qhZs+bWPsNHjFRBQYFemvyC8vJy1TamnebOf4vzRAAA5B0AgN2QcwAAjmCwWCwWRweB348VBwAAAAAAAMD18+IT6+sy7L00R4fgdN65L8rRIfwqzjgAAAAAAAAAAABWFA4AAAAAAAAAAIAVC3AAAAAAAAAAANfFYDA4OgRUAlYcAAAAAAAAAAAAKwoHAAAAAAAAAADAisIBAAAAAAAAAACwonAAAAAAAAAAAACsKBwAAAAAAAAAAAArN0cHAAAAAAAAAABwTgZHB4BKwYqDSjZv3jxFRUXJ19dXvr6+iouL09q1a633z5w5o8GDB6tu3bqqWbOmYmJi9OGHHzowYsB5JS9fpl7du+imtq2VcO/dSk9L+8X+n61fq35/6qmb2rbWwP599cXWLTb3LRaL5syaoa6dbtXNMVEaNWKYjh8/VokzAAA4E/IOAMBeyDkAAHujcFDJgoODNWXKFO3cuVPffPONunTpon79+mnv3r2SpCFDhmj//v36+OOPlZ6ergEDBmjQoEHavXu3gyMHnMu6tWs0bWqSRj8yRskfrFJ4eAs9PHqEMjMzy+2funuXnn7yCd054C6tWLlanbt01bjHxujgwQPWPoveXqD3li3Rc5Mma+l778vb21sPjxqhoqIie00LAFBFkXcAAPZCzgEAOILBYrFYHB1EdVOnTh29/vrrGjFihGrVqqV58+Zp8ODB1vtGo1GvvfaaHnrooWses/ByZUQKOI+Ee+9Wq8jWeua5FyRJJSUl6tG1k+67f7BGjBxVpv+TT4xTQUGBZs+db2174L5BCm/RQs9PekkWi0Xdbr9NQ4YN19DhIyRJeXl56tIxXi+9MkW9evexz8QAAFUSeQcAYC/kHMB+vNjU/bo8mJzu6BCczsJ7Wzs6hF/FigM7Ki4uVnJyss6fP6+4uDhJUnx8vFasWKGsrCyVlJQoOTlZhYWFuv322x0bLOBELl28qO+/26vYuHhrm4uLi2Jj45X2bfmrd9JSUxUbG2fTFn/LrUpLTZUk/XjypMzms+oQe3VMHx8ftY5qU+GYAIDqgbwDALAXcg4AwFGoo9lBenq64uLiVFhYqFq1amnVqlWKiIiQJL3//vu65557ZDQa5ebmpho1amjVqlUKCwtzcNSA88g+l63i4mIZjUabdqPRqKNHj5T7jNlsltFoKtPfnGm+cv9saZup7Jhms/lGhQ4AcELkHQCAvZBzAACOQuHADsLDw5WamqqcnBytXLlSQ4cO1ZYtWxQREaHnn39e586d08aNG2UymbR69WoNGjRIX3zxhVq3Ln/JSlFRUZl9By2unvL09LTHdAAAAAAAAABAkuRiMDg6BFQCtiqyAw8PD4WFhaldu3ZKSkpSmzZtNGPGDB0+fFizZ8/WwoUL1bVrV7Vp00aTJk1S+/btNWfOnArHS0pKkp+fn831+mtJdpwRULX41/aXq6trmcPBMjMzZTKZyn3GZDIpM9Nctv+VL3NMpoDSNvO1jwkAqB7IOwAAeyHnAAAchcKBA5SUlKioqEgXLlyQVLo/4f9ydXVVSUlJhc8nJiYqJyfH5npyYmKlxgxUZe4eHmoZ0Uop27dZ20pKSpSSsk1RbdqW+0xUdLRStm+3adu+7StFRUdLkhoEB8tkClBKytUx8/PzlZ72bYVjAgCqB/IOAMBeyDkAAEdhq6JKlpiYqF69eikkJER5eXlavny5Nm/erPXr16tFixYKCwvT6NGjNW3aNBmNRq1evVobNmzQv/71rwrH9PQsuy1R4eXKnglQtQ0eOlzPPzNRrVpFKrJ1lJYuWayCggL1v3OAJOnZxKcUGBikseOfkCQlPDBEI4YN1uJ3Fqpjx05at3aN9u7Zo+cnvyRJMhgMShg8RAvmz1OjkEZqEBysObNmKCAwUF26dnPYPAEAVQN5BwBgL+QcAIAjUDioZBkZGRoyZIhOnz4tPz8/RUVFaf369erevbskac2aNXr66afVt29f5efnKywsTIsXL1bv3r0dHDngXHr26q3srCzNnT1TZvNZhbdoqbnz35LxylLbM6dPy8VwdXVPdNsYJU2dptkzp2vW9DcU0qixps+ao2bNmlv7DB8xUgUFBXpp8gvKy8tV25h2mjv/Lc4TAQCQdwAAdkPOAQA4gsFisVgcHQR+P1YcAAAAAAAAANfPi0+sr8tDK/Y4OgSn89Y9kY4O4Vfx1wEAAAAAAAAAcF0MBkdHgMrA4cgAAAAAAAAAAMCKwgEAAAAAAAAAALCicAAAAAAAAAAAAKwoHAAAAAAAAAAAACsKBwAAAAAAAAAAwMrN0QEAAAAAAAAAAJyTwWBwdAioBKw4AAAAAAAAAAAAVhQOAAAAAAAAAACAFYUDAAAAAAAAAABgReHAzqZMmSKDwaBx48ZZ2woLCzVmzBgZjUbVqlVLAwcO1E8//eS4IAEnlbx8mXp176Kb2rZWwr13Kz0t7Rf7f7Z+rfr9qaduattaA/v31Rdbt9jct1gsmjNrhrp2ulU3x0Rp1IhhOn78WCXOAADgTMg7AAB7IecAAOyNwoEd7dixQ/Pnz1dUVJRN+/jx4/XJJ5/ogw8+0JYtW3Tq1CkNGDDAQVECzmnd2jWaNjVJox8Zo+QPVik8vIUeHj1CmZmZ5fZP3b1LTz/5hO4ccJdWrFytzl26atxjY3Tw4AFrn0VvL9B7y5bouUmTtfS99+Xt7a2HR41QUVGRvaYFAKiiyDsAAHsh5wAAHIHCgZ3k5+crISFBCxYskL+/v7U9JydHb7/9tt544w116dJF7dq106JFi/TVV19p+/btDowYcC5LFi/SgLsGqf+dAxUaFqbnJr0oLy8vrf7ow3L7L1v6ruJvvU3DHnxITUND9ejj49QyIkLJy5dKKv0CZ9mSdzVy9MPq3KWbmoe30MtJU3U2I0Ofb9poz6kBAKog8g4AwF7IOQCqOoOB67dezoDCgZ2MGTNGffr0Ubdu3Wzad+7cqUuXLtm0t2jRQiEhIdq2bZu9wwSc0qWLF/X9d3sVGxdvbXNxcVFsbLzSvt1d7jNpqamKjY2zaYu/5ValpaZKkn48eVJm81l1iL06po+Pj1pHtalwTABA9UDeAQDYCzkHAOAobo4OoDpITk7Wrl27tGPHjjL3zpw5Iw8PD9WuXdumPSgoSGfOnLFThIBzyz6XreLiYhmNRpt2o9Goo0ePlPuM2WyW0Wgq09+cab5y/2xpm6nsmGaz+UaFDgBwQuQdAIC9kHMAAI5C4aCSnThxQmPHjtWGDRvk5eV1Q8YsKioqs++gxdVTnp6eN2R8AAAAAAAAAED1xVZFlWznzp3KyMhQTEyM3Nzc5Obmpi1btmjmzJlyc3NTUFCQLl68qHPnztk899NPP6lu3brljpmUlCQ/Pz+b6/XXkuwwG6Bq8q/tL1dX1zKHg2VmZspkMpX7jMlkUmamuWz/K1/mmEwBpW3max8TAFA9kHcAAPZCzgEAOAqFg0rWtWtXpaenKzU11Xq1b99eCQkJ1v/t7u6uTZs2WZ/Zv3+/fvjhB8XFxZU7ZmJionJycmyuJycm2mtKQJXj7uGhlhGtlLL96rkgJSUlSknZpqg2bct9Jio6Wik/O4B8+7avFBUdLUlqEBwskylAKSlXx8zPz1d62rcVjgkAqB7IOwAAeyHnAAAcha2KKpmPj48iIyNt2mrWrCmj0WhtHzFihCZMmKA6derI19dXjz32mOLi4hQbG1vumJ6eZbclKrxcOfEDzmLw0OF6/pmJatUqUpGto7R0yWIVFBSo/50DJEnPJj6lwMAgjR3/hCQp4YEhGjFssBa/s1AdO3bSurVrtHfPHj0/+SVJksFgUMLgIVowf54ahTRSg+BgzZk1QwGBgerStVuFcQAAqgfyDgDAXsg5AKo6F4PB0SGgElA4qAL+/ve/y8XFRQMHDlRRUZHuuOMOzZ0719FhAU6lZ6/eys7K0tzZM2U2n1V4i5aaO/8tGa8stT1z+rRcDFcXWUW3jVHS1GmaPXO6Zk1/QyGNGmv6rDlq1qy5tc/wESNVUFCglya/oLy8XLWNaae589/iPBEAAHkHAGA35BwAgCMYLBaLxdFB4PdjxQEAAAAAAABw/bz4xPq6PPzhd44OwenMGxjh6BB+FWccAAAAAAAAAAAAKwoHAAAAAAAAAADAisIBAAAAAAAAAACwYucuAAAAAAAAAMB1MRgcHQEqAysOAAAAAAAAAACAFYUDAAAAAAAAAABgReEAAAAAAAAAAABYUTgAAAAAAAAAAABWFA4AAAAAAAAAAICVm6MDAAAAAAAAAAA4J4PB4OgQUAlYcWBHU6ZMkcFg0Lhx46xt//jHP3T77bfL19dXBoNB586dc1h8gLNLXr5Mvbp30U1tWyvh3ruVnpb2i/0/W79W/f7UUze1ba2B/fvqi61bbO5bLBbNmTVDXTvdqptjojRqxDAdP36sEmcAAHAm5B0AgL2QcwAA9kbhwE527Nih+fPnKyoqyqb9woUL6tmzp5555hkHRQb8Maxbu0bTpiZp9CNjlPzBKoWHt9DDo0coMzOz3P6pu3fp6Sef0J0D7tKKlavVuUtXjXtsjA4ePGDts+jtBXpv2RI9N2mylr73vry9vfXwqBEqKiqy17QAAFUUeQcAYC/kHACAI1A4sIP8/HwlJCRowYIF8vf3t7k3btw4Pf3004qNjXVQdMAfw5LFizTgrkHqf+dAhYaF6blJL8rLy0urP/qw3P7Llr6r+Ftv07AHH1LT0FA9+vg4tYyIUPLypZJKv8BZtuRdjRz9sDp36abm4S30ctJUnc3I0OebNtpzagCAKoi8AwCwF3IOAMARKBzYwZgxY9SnTx9169bN0aEAf0iXLl7U99/tVWxcvLXNxcVFsbHxSvt2d7nPpKWmKjY2zqYt/pZblZaaKkn68eRJmc1n1SH26pg+Pj5qHdWmwjEBANUDeQcAYC/kHACAo3A4ciVLTk7Wrl27tGPHjhs2ZlFRUZnlgxZXT3l6et6wnwE4k+xz2SouLpbRaLRpNxqNOnr0SLnPmM1mGY2mMv3NmeYr98+WtpnKjmk2m29U6AAAJ0TeAQDYCzkHAOAorDioRCdOnNDYsWO1bNkyeXl53bBxk5KS5OfnZ3O9/lrSDRsfAAAAAAAAAK6FC9dvvpyBs8TplHbu3KmMjAzFxMTIzc1Nbm5u2rJli2bOnCk3NzcVFxdf17iJiYnKycmxuZ6cmHiDowech39tf7m6upY5HCwzM1Mmk6ncZ0wmkzIzzWX7X/kyx2QKKG0zX/uYAIDqgbwDALAXcg4AwFEoHFSirl27Kj09Xampqdarffv2SkhIUGpqqlxdXa9rXE9PT/n6+tpcbFOE6szdw0MtI1opZfs2a1tJSYlSUrYpqk3bcp+Jio5WyvbtNm3bt32lqOhoSVKD4GCZTAFKSbk6Zn5+vtLTvq1wTABA9UDeAQDYCzkHAOAonHFQiXx8fBQZGWnTVrNmTRmNRmv7mTNndObMGR06dEiSlJ6eLh8fH4WEhKhOnTp2jxlwVoOHDtfzz0xUq1aRimwdpaVLFqugoED97xwgSXo28SkFBgZp7PgnJEkJDwzRiGGDtfidherYsZPWrV2jvXv26PnJL0mSDAaDEgYP0YL589QopJEaBAdrzqwZCggMVJeuHHQOANUdeQcAYC/kHACAI1A4cLA333xTL774ovXPHTt2lCQtWrRIw4YNc1BUgPPp2au3srOyNHf2TJnNZxXeoqXmzn9LxitLbc+cPi0Xw9VFVtFtY5Q0dZpmz5yuWdPfUEijxpo+a46aNWtu7TN8xEgVFBTopckvKC8vV21j2mnu/LdY4QMAIO8AAOyGnAMAcASDxWKxODoI/H6Flx0dAQAAAAAAAOC8vPjE+ro8tup7R4fgdGbd2dLRIfwq/joAAAAAAAAAAK6LwWBwdAioBByODAAAAAAAAAAArCgcAAAAAAAAAAAAKwoHAAAAAAAAAADAisIBAAAAAAAAAACw4nDkPwj/P73h6BAAANWFh7ejIwAAVCfFlxwdAQCgmij49HFHhwBUGRQOAAAAAAAAAADXxcXg6AhQGdiqCAAAAAAAAAAAWFE4AAAAAAAAAAAAVhQO7GzKlCkyGAwaN26cJCkrK0uPPfaYwsPD5e3trZCQED3++OPKyclxbKCAExrdt432LR6h7I8f19bp96l987oV9nVzdVHi/bHau/BBZX/8uFLmDlb3do1t+twS2UArJ/fTkWWjVLBugvrGhVbyDAAAzmR071batyBB2StHauvrA9S+WeAv9n/0z1H6du59yvpgpA6+PVhTR8TL093Ver+Wt7tef+gW7X/rAWV9MFL/fu1OtQsLqOxpAACcwOg+Udq3cJiyVz2irW8MUvvmQRX2dXN1UeJ9N2vvW0OVveoRpcy6T93bNfpdYwIAqh8KB3a0Y8cOzZ8/X1FRUda2U6dO6dSpU5o2bZr27Nmjd955R+vWrdOIESMcGCngfO7q2FyvjeykV5ZuV9yjS5V25Kw+fmWAAvzKP8R18tBb9FDvKE2Y92+1HbVYb336rVa88Ge1Cb36C5qaXu5KP3pW4+Z8bq9pAACcxF23huq1EbfoleRvFDd+pdKOZerjF/9UYd65p2Mz/XVIB72a/I2ixyTr/2b9W3fdGqaXBnew9pn36O3qEh2sB/++Se0fX6GNqSf06V/7qn6dmvaaFgCgCrrrtmZ6beRtemV5iuIeT1baUbM+/mu/it91hsTqoZ6RmvDmZrV9eKneWrtHK57tozZNA657TABA9UPhwE7y8/OVkJCgBQsWyN/f39oeGRmpDz/8UH379lVoaKi6dOmiV155RZ988okuX77swIgB5/L4gHZatG6PlmzYq30/ZOmxWRtVUHRZQ++ILLf//V1bauqKFK3fcVTHzuRowadpWr/jqMYObG/t89k3x/Ti4q/08VeH7DUNAICTeLxfGy367Dst2bRf+05k67G5W1RQdElDu7Uot39syyBt+/6MVmw9qB8y8rQp9aTe/+Kg2jcvXaXg5eGq/vFN9ew72/Sfvad15HSuXnnvGx0+nauRvVrZc2oAgCrm8Tvblr7rbPxe+05k6bHZn6ug8LKG9ogot//9nVto6vvfaP03x3XsTK4WrEnX+m+OaeyAttc9JgCg+qFwYCdjxoxRnz591K1bt1/tm5OTI19fX7m5udkhMsD5ubu5qG2zIH2++7i1zWKRPt99XDe3rFfuMx7uriq8WGzTVnDxsuJb1a/UWAEAzs/dzUVtwwL0eepJa5vFIn3+7Y+6uUX52zxs//4ntQ0NsG5n1DjIR3e0a6R1O3+QVLqthJurS5ncVHjxsuIjKt56DwDwx1aacwL1eeoJa5vFIn2eekI3t/iFd51Lth8iFly8rPiI+tc9JgD8EhcD12+9nAG/mbaD5ORk7dq1Szt27PjVvmazWX/96181atQoO0QG/DGYfL3l5uqijHMXbNozzl1QeMM65T6zcedxPT4gRl+mn9SR0+fUOTpE/eLD5Oos//UGADiMydfrSt4psGnPOHdB4Q1ql/vMiq0HZfT10qYp/WUwSO5urvrH2r16/YNdkqT8gkva/v0ZJd7TTvtPZuuncwUa1DFMHcKDdPh0bmVPCQBQRf3yu45/uc9s3PWDHu/fVl/u+VFHTueoc5uG6hcXKldXl+seEwBQ/VA4qGQnTpzQ2LFjtWHDBnl5ef1i39zcXPXp00cRERGaPHlyhf2KiopUVFRk02YpuSyDC/86gWv1lzf/rblju+vbBcNkkXTk9Dm9u2GvhvYof2sjAAB+j9si6+vJu2M09s0vtOPATwqt56dpI2/R6XvaacqKnZKkB/++SfMf76wj7wzV5eISpR4+q/e/OKS2oRyQDAC4dn+Zv1VzH++ib98cfOVdJ0fvbvxeQ7uzDREA4Nrxm+ZKtnPnTmVkZCgmJsbaVlxcrK1bt2r27NkqKiqSq6ur8vLy1LNnT/n4+GjVqlVyd3evcMykpCS9+OKLNm2uoT3kHnZHpc0DqMrMuQW6XFyiwNo1bNoDa9fQmezz5T+TU6BBL30sT3dXGX29dSozXy8/eJuOnjlnh4gBAM7MnFt4Je/YHiAZWLuGzvzs683/mpRws9779wG9s+F7SdLe41mq4eWmOWM66bX3d8pikY6eyVWPZ/6pGp5u8q3hoTPZF7Tkye46eoYVBwBQXf3yu075OcecW6BBL3965V3HS6cyz+vl4fE6eibnuscEAFQ/nHFQybp27ar09HSlpqZar/bt2yshIUGpqalydXVVbm6uevToIQ8PD3388ce/ujIhMTFROTk5Npdb0652mhFQ9Vy6XKLdB39S5+gQa5vBIHWODtHX35/+xWeLLhXrVGa+3Fxd1P/WZvrXtsOVHS4AwMldulyi3YfOqnObYGubwSB1jmqgr/f9VO4z3p5uKrFYbNpKSixXnrXdJu9C0WWdyb6g2jU91K1tQ/3r66M3eAYAAGdRmnMy1Dm6obWt9F2nob7edy3vOudL33Xiw/Sv7Ud+95gAgOqDFQeVzMfHR5GRtluf1KxZU0ajUZGRkdaiwYULF7R06VLl5uYqN7f0q7KAgAC5urqWGdPT01Oenp42bWxThOpu5kc7teAvPbXz4E/6Zv8ZPXpnjGp4uevdz/ZKkt76S0+dyszXC4u+lCTdFF5X9U219O3hs2pgrKVnH4iTi0F644NvrGPW9HJXaP3a1j83ruunqKYBys4r1ImzeXadHwCgapn5z2+1YFwX7Tx0Vt8c+EmP/jmqNO9s2idJemtcF53KOq8X3k2RJK3ZcUyP92ujb4+Y9fWVrYpeSLhZa74+bi0gdGvbUAaDdODHcwqt56dXh8XpwI/n9O7G/Q6bJwDA8Wau2q0FE7qXvusc+EmP9otWDS83vbvhO0nSWxO661Tmeb2w+CtJ0k3hQapvrKVvj1x517m/g1xcDHrjw53XPCYAAPy22cF27dqllJTSF8qwsDCbe0ePHlXjxo0dEBXgfFZuPSCTXw29MDheQf41lHbkrPo995H1wK+GgT42X3p6erhp0pBb1KSen/ILLmn9jqMa8fpa5Zy/en5ITPMgfTZ1kPXPU0ffLklasmGvRv1tvX0mBgCoklZ+eVgmP2+9cP9NV/KOWf0m/8t6YHLDgFo2eWfKitLtiCY9cLPq16kpc26BPv36uCYvTbH28avhoZeGdFADUy1l5RXqn9uOaNKSr3W5uMTu8wMAVB0rvzhYmnMeiFWQf83Sd50X/vk/Oedn7zrubpo0OE5N6vqWvut8c0wj/vaZcs5fvOYxAeC3+PkKWvwxGCyWn62ZhlPy7vmGo0MAAFQXHt6/3gcAgBul+JKjIwAAVBMFnz7u6BCc0hOfsEL2t/pb33BHh/CrOOMAAAAAAAAAAABYUTgAAAAAAAAAAABWFA4AAAAAAAAAAIAVhQMAAAAAAAAAAGDl5ugAAAAAAAAAAADOycXg6AhQGSgc/EFk/2uCo0MAAAAAAAAAAPwBsFURAAAAAAAAAACwonAAAAAAAAAAAACsKBwAAAAAAAAAAAArCgcAAAAAAAAAAMCKwoGdTZkyRQaDQePGjbO2jR49WqGhofL29lZAQID69eunffv2OS5IwEklL1+mXt276Ka2rZVw791KT0v7xf6frV+rfn/qqZvattbA/n31xdYtNvctFovmzJqhrp1u1c0xURo1YpiOHz9WiTMAADgT8g4AwF7IOQCqMoOB67dezoDCgR3t2LFD8+fPV1RUlE17u3bttGjRIn3//fdav369LBaLevTooeLiYgdFCjifdWvXaNrUJI1+ZIySP1il8PAWenj0CGVmZpbbP3X3Lj395BO6c8BdWrFytTp36apxj43RwYMHrH0Wvb1A7y1boucmTdbS996Xt7e3Hh41QkVFRfaaFgCgiiLvAADshZwDAHAECgd2kp+fr4SEBC1YsED+/v4290aNGqWOHTuqcePGiomJ0csvv6wTJ07o2LFjjgkWcEJLFi/SgLsGqf+dAxUaFqbnJr0oLy8vrf7ow3L7L1v6ruJvvU3DHnxITUND9ejj49QyIkLJy5dKKv0CZ9mSdzVy9MPq3KWbmoe30MtJU3U2I0Ofb9poz6kBAKog8g4AwF7IOQAAR6BwYCdjxoxRnz591K1bt1/sd/78eS1atEhNmjRRw4YN7RQd4NwuXbyo77/bq9i4eGubi4uLYmPjlfbt7nKfSUtNVWxsnE1b/C23Ki01VZL048mTMpvPqkPs1TF9fHzUOqpNhWMCAKoH8g4AwF7IOQAAR3FzdADVQXJysnbt2qUdO3ZU2Gfu3Ll66qmndP78eYWHh2vDhg3y8PAot29RUVGZ5YMWV095enre0LgBZ5F9LlvFxcUyGo027UajUUePHin3GbPZLKPRVKa/OdN85f7Z0jZT2THNZvONCh0A4ITIOwAAeyHnAAAchRUHlezEiRMaO3asli1bJi8vrwr7JSQkaPfu3dqyZYuaN2+uQYMGqbCwsNy+SUlJ8vPzs7lefy2psqYAAAAAAAAAAKhGWHFQyXbu3KmMjAzFxMRY24qLi7V161bNnj1bRUVFcnV1tRYAmjVrptjYWPn7+2vVqlW67777yoyZmJioCRMm2LRZXFltgOrLv7a/XF1dyxwOlpmZKZPJVO4zJpNJmZnmsv2vfJljMgWUtpkzFRAQaNMnvEWLGxk+AMDJkHcAAPZCzgHgDFwMBkeHgErAioNK1rVrV6Wnpys1NdV6tW/fXgkJCUpNTZWrq2uZZywWiywWS5ntiP7L09NTvr6+NhfbFKE6c/fwUMuIVkrZvs3aVlJSopSUbYpq07bcZ6Kio5WyfbtN2/ZtXykqOlqS1CA4WCZTgFJSro6Zn5+v9LRvKxwTAFA9kHcAAPZCzgEAOAorDiqZj4+PIiMjbdpq1qwpo9GoyMhIHTlyRCtWrFCPHj0UEBCgkydPasqUKfL29lbv3r0dFDXgfAYPHa7nn5moVq0iFdk6SkuXLFZBQYH63zlAkvRs4lMKDAzS2PFPSJISHhiiEcMGa/E7C9WxYyetW7tGe/fs0fOTX5IkGQwGJQweogXz56lRSCM1CA7WnFkzFBAYqC5df/mQcwDAHx95BwBgL+QcAIAjUDhwMC8vL33xxReaPn26srOzFRQUpI4dO+qrr75SYGDgrw8AQJLUs1dvZWdlae7smTKbzyq8RUvNnf+WjFeW7545fVouhquLrKLbxihp6jTNnjlds6a/oZBGjTV91hw1a9bc2mf4iJEqKCjQS5NfUF5ertrGtNPc+W+xwgcAQN4BANgNOQcA4AgGi8VicXQQ+P0KLzs6AgAAAAAAAMB5efGJ9XV5es0BR4fgdKb0bv7rnRyMMw4AAAAAAAAAAIAVdTQAAAAAAAAAwHXhy/Q/Jv69AgAAAAAAAAAAKwoHAAAAAAAAAADAisIBAAAAAAAAAACw4oyDP4ixq/c6OgQAQDXhYjA4OgQAQDVSYrE4OgQAQDUx/65Wjg4BqDJYcQAAAAAAAAAAAKxYcQAAAAAAAAAAuC4sSv9jYsUBAAAAAAAAAACwYsWBnU2ZMkWJiYkaO3aspk+fLkm6/fbbtWXLFpt+o0eP1ptvvumACAHndXtoHXVvbpSfl5tO5hQqefcZHcsuKLdvXKPaGnZTA5u2S8UlenTV95IkF4PUPzJIkXVryVTTQwWXivV9xnmtSv9JOYWXK30uAICqr1NTf3VvbpSvl5tO5hRpReppHc8uLLdvbCM/DW1fNu88vnqf9c/R9X10W1N/hdT2Ui1PN72y8bBO5hRV6hwAAM7hRr7rSFLb+j7qGFrHmnP+uuGwTuaUn8MAANUThQM72rFjh+bPn6+oqKgy90aOHKmXXnrJ+ucaNWrYMzTA6bUP9tVdUUFavuu0jmYVqGuzOnr8tkaatP6g8oqKy32m4FKxXlh3yPpni64evOfh6qKGtb306fdndfJcoWp4uOqe6LoaEx+iVz8/UunzAQBUbe2CfTUwKkjv7S7NO12aGfX4rY00+bNDv5h3Jq//37xjy8PNRYfNF7TrZK4eaFe/EqMHADiTG/2uI5XmnEPmC/rmRI6G/KywDQCAxFZFdpOfn6+EhAQtWLBA/v7+Ze7XqFFDdevWtV6+vr4OiBJwXt2aG/Xl0Wx9dfycTucVadmu07pYXKL4xmX/vv2XxSLlFl22Xv/7f7oLL5doxhfHtfNkrn7Kv6ijWQV6b/dpNarjLX9vd3tMCQBQhXVtZtR/jp3TtuM5OpN3Ue9dyTtxjWpX+Exp3im2Xj//Zc/XP+RozT6zvs84X8nRAwCcyY1+15GklB9y9On3Z7WPnAMAqACFAzsZM2aM+vTpo27dupV7f9myZTKZTIqMjFRiYqIuXLhg5wgB5+VqMCiktrfNL1oskvb9dF5Njd4VPufp5qJXezVTUu/meji+oer5ev7iz/F2d1WJxaKCS+V/1QMAqB5cDVJIbS+bX7ZYJO3LOK+mxopXjXq6uejlnmF6pVcz/V9cQ9Xz+eW8AwCAvd51AAD4ObYqsoPk5GTt2rVLO3bsKPf+/fffr0aNGql+/fpKS0vTxIkTtX//fn300Ud2jhRwTrU8XeXqYlDez84eyC26rLq+5f8C56e8Ir37zY86mVMkb3cX9Whu0sTOTTT5s0M6V1D2DAM3F4MGtA7SjhM5KrxcUinzAAA4h1qebnJ1MSj353mn8LKCKigG/JR3UUt2ntKPOYXydndVt+ZGPdm5sV7acLjcvAMAgGSfdx0A+L1cDAZHh4BKQOGgkp04cUJjx47Vhg0b5OXlVW6fUaNGWf9369atVa9ePXXt2lWHDx9WaGhomf5FRUUqKrI9KK/40kW5unvc2OCBP7AjWQU6knX1MLHDmT/oxTvC1LFpHX28N8Omr4tBGhUbLIOk5btO2zlSAMAfwdGsAh21yTsXNKlHmG5r4q9PvjvrwMgAAH80v+VdBwCAirBVUSXbuXOnMjIyFBMTIzc3N7m5uWnLli2aOXOm3NzcVFxcdsuTDh06SJIOHTpU5p4kJSUlyc/Pz+bavWpBpc4DqMryi4pVXGKRj5dtLdTX0005hdf2RU2JRTpxrlABNW0LcKVFg4aqU8ND0784zmoDAIDyiy6ruMQi35/nHS+3MqsQKmLNO7X48AMAULHKfNcBAOCXUDioZF27dlV6erpSU1OtV/v27ZWQkKDU1FS5urqWeSY1NVWSVK9evXLHTExMVE5Ojs3V9s6RlTkNoEortlj0w7kCtQysaW0zSGoRWFNHMgsqfvB/GCQ18PVSbuEla9t/iwaBtTw0fesxnb/I2QYAAKnYIv1wrlDhAbZ5Jzygpo5kXts5VQZJDfw8r/mXPgCA6qmy3nUAAPg1bFVUyXx8fBQZGWnTVrNmTRmNRkVGRurw4cNavny5evfuLaPRqLS0NI0fP14dO3ZUVFRUuWN6enrK09N2/1y2KUJ1t/FApobd1EDHsgt0LKtAXZsZ5eHmoq+OZUuSht3UQOcKLmn1ntKluX1aBuhI1gWdzb8ob3dX9WhuUp2a7vry6DlJpUWD0XENFVLbW3P+c1wuBoN8PUv/k3n+YrGKLRaHzBMAUDVsOpipoe3r64fsAh3LLlCXMKM83Vy07fg5SdLQ9vV1ruCy/nllS4jeLUw6mlWgs+dL80735kbVqeGu/xzNto5Zw91FdWq4y8/bXZKs5yXkFl5WbhHFawCorm70u44k1XB3VZ0a7qrtXfqOU9en9HcKpTmHojYAgMKBw3l4eGjjxo2aPn26zp8/r4YNG2rgwIF67rnnHB0a4FS+OZmrWp5u+nNEoHy93HQyp1AzvzyuvCu/aKlTw12W//llfw0PVw2OqS9fLzdduFSsH7ILNfXfR3U6r/T8EH9vd0XX95UkPd89zOZn/W3LUR04e21flAIA/ph2nsxVLU9X/Ski4EreKdKsL3/4Wd652r+Gh6sSYupdyTsl+iG7QK//+5jO5F209omq76Oh7RtY//xQh2BJ0r++O6tPv+ccBACorm70u44ktanvo2E3Xc05I2MbSpI++S5D/+LsHQCAJIPFwmezfwSjV+51dAgAgGrCxWBwdAgAgGqkhFdWAICdzL+rlaNDcEovrD/o6BCczkt3NHN0CL+KMw4AAAAAAAAAAIAVhQMAAAAAAAAAAGBF4QAAAAAAAAAAAFhROAAAAAAAAAAAAFYUDgAAAAAAAAAAgJWbowPAjTGjP6e+AwAAAAAAALAvF4OjI0BlYMUBAAAAAAAAAACwonAAAAAAAAAAAACsKBwAAAAAAAAAAAArCgcAAAAAAAAAAMCKwoEdTZkyRQaDQePGjbNp37Ztm7p06aKaNWvK19dXHTt2VEFBgWOCBJxY8vJl6tW9i25q21oJ996t9LS0X+z/2fq16vennrqpbWsN7N9XX2zdYnPfYrFozqwZ6trpVt0cE6VRI4bp+PFjlTgDAIAzIe8AAOyFnAMAsDcKB3ayY8cOzZ8/X1FRUTbt27ZtU8+ePdWjRw99/fXX2rFjhx599FG5uPCvBvgt1q1do2lTkzT6kTFK/mCVwsNb6OHRI5SZmVlu/9Tdu/T0k0/ozgF3acXK1ercpavGPTZGBw8esPZZ9PYCvbdsiZ6bNFlL33tf3t7eenjUCBUVFdlrWgCAKoq8AwCwF3IOgKrOxWDg+o2XM+C303aQn5+vhIQELViwQP7+/jb3xo8fr8cff1xPP/20WrVqpfDwcA0aNEienp4OihZwTksWL9KAuwap/50DFRoWpucmvSgvLy+t/ujDcvsvW/qu4m+9TcMefEhNQ0P16OPj1DIiQsnLl0oq/QJn2ZJ3NXL0w+rcpZuah7fQy0lTdTYjQ59v2mjPqQEAqiDyDgDAXsg5AABHoHBgB2PGjFGfPn3UrVs3m/aMjAylpKQoMDBQ8fHxCgoKUqdOnfTll186KFLAOV26eFHff7dXsXHx1jYXFxfFxsYr7dvd5T6Tlpqq2Ng4m7b4W25VWmqqJOnHkydlNp9Vh9irY/r4+Kh1VJsKxwQAVA/kHQCAvZBzAACOQuGgkiUnJ2vXrl1KSkoqc+/IkSOSpMmTJ2vkyJFat26dYmJi1LVrVx08eLDCMYuKipSbm2tzsZwQ1Vn2uWwVFxfLaDTatBuNRpnN5nKfMZvNMhpNZftnmq/cP1vaZrr2MQEA1QN5BwBgL+QcAICjUDioRCdOnNDYsWO1bNkyeXl5lblfUlIiSRo9erSGDx+utm3b6u9//7vCw8O1cOHCCsdNSkqSn5+fzfX6a2ULEwAAAAAAAAAA/FYUDirRzp07lZGRoZiYGLm5ucnNzU1btmzRzJkz5ebmpqCgIElSRESEzXMtW7bUDz/8UOG4iYmJysnJsbmenJhYqXMBqjL/2v5ydXUtczhYZmamTCZTuc+YTCZlZprL9r/yZY7JFFDaZr72MQEA1QN5BwBgL+QcAICjUDioRF27dlV6erpSU1OtV/v27ZWQkKDU1FQ1bdpU9evX1/79+22eO3DggBo1alThuJ6envL19bW5OEwZ1Zm7h4daRrRSyvZt1raSkhKlpGxTVJu25T4TFR2tlO3bbdq2b/tKUdHRkqQGwcEymQKUknJ1zPz8fKWnfVvhmACA6oG8AwCwF3IOAGdgMHD91ssZuDk6gD8yHx8fRUZG2rTVrFlTRqPR2v7kk09q0qRJatOmjaKjo7V48WLt27dPK1eudETIgNMaPHS4nn9molq1ilRk6ygtXbJYBQUF6n/nAEnSs4lPKTAwSGPHPyFJSnhgiEYMG6zF7yxUx46dtG7tGu3ds0fPT35JkmQwGJQweIgWzJ+nRiGN1CA4WHNmzVBAYKC6dO1WYRwAgOqBvAMAsBdyDgDAESgcONi4ceNUWFio8ePHKysrS23atNGGDRsUGhrq6NAAp9KzV29lZ2Vp7uyZMpvPKrxFS82d/5aMV5banjl9Wi6Gq4usotvGKGnqNM2eOV2zpr+hkEaNNX3WHDVr1tzaZ/iIkSooKNBLk19QXl6u2sa009z5b7HCBwBA3gEA2A05BwDgCAaLxWJxdBD4/QovOzoCAAAAAAAAwHl58Yn1dfnrxkOODsHpPN8tzNEh/CrOOAAAAAAAAAAAAFYUDgAAAAAAAAAAgBWFAwAAAAAAAAAAYMXOXQAAAAAAAACA6+JicHQEqAysOAAAAAAAAAAAAFYUDgAAAAAAAAAAgBWFAwAAAAAAAAAAYEXhAAAAAAAAAAAAWFE4AAAAAAAAAAAAVhQO7GzKlCkyGAwaN26cJOnYsWMyGAzlXh988IFjgwWcTPLyZerVvYtuattaCfferfS0tF/s/9n6ter3p566qW1rDezfV19s3WJz32KxaM6sGera6VbdHBOlUSOG6fjxY5U4AwCAMyHvAADshZwDoCoz8M9v/scZUDiwox07dmj+/PmKioqytjVs2FCnT5+2uV588UXVqlVLvXr1cmC0gHNZt3aNpk1N0uhHxij5g1UKD2+hh0ePUGZmZrn9U3fv0tNPPqE7B9ylFStXq3OXrhr32BgdPHjA2mfR2wv03rIlem7SZC197315e3vr4VEjVFRUZK9pAQCqKPIOAMBeyDkAAEegcGAn+fn5SkhI0IIFC+Tv729td3V1Vd26dW2uVatWadCgQapVq5YDIwacy5LFizTgrkHqf+dAhYaF6blJL8rLy0urP/qw3P7Llr6r+Ftv07AHH1LT0FA9+vg4tYyIUPLypZJKv8BZtuRdjRz9sDp36abm4S30ctJUnc3I0OebNtpzagCAKoi8AwCwF3IOAMARKBzYyZgxY9SnTx9169btF/vt3LlTqampGjFihJ0iA5zfpYsX9f13exUbF29tc3FxUWxsvNK+3V3uM2mpqYqNjbNpi7/lVqWlpkqSfjx5UmbzWXWIvTqmj4+PWke1qXBMAED1QN4BANgLOQcA4Chujg6gOkhOTtauXbu0Y8eOX+379ttvq2XLloqPj//VvgBKZZ/LVnFxsYxGo0270WjU0aNHyn3GbDbLaDSV6W/ONF+5f7a0zVR2TLPZfKNCBwA4IfIOAMBeyDkAAEehcFDJTpw4obFjx2rDhg3y8vL6xb4FBQVavny5nn/++V/sV1RUVGbfQYurpzw9PX93vAAAAAAAAACA6o2tiirZzp07lZGRoZiYGLm5ucnNzU1btmzRzJkz5ebmpuLiYmvflStX6sKFCxoyZMgvjpmUlCQ/Pz+b6/XXkip7KkCV5V/bX66urmUOB8vMzJTJZCr3GZPJpMxMc9n+V77MMZkCStvM1z4mAKB6IO8AAOyFnAPAGbgYuH7r5QwoHFSyrl27Kj09Xampqdarffv2SkhIUGpqqlxdXa193377bf35z39WQEDAL46ZmJionJwcm+vJiYmVPRWgynL38FDLiFZK2b7N2lZSUqKUlG2KatO23GeioqOVsn27Tdv2bV8pKjpaktQgOFgmU4BSUq6OmZ+fr/S0byscEwBQPZB3AAD2Qs4BADgKWxVVMh8fH0VGRtq01axZU0aj0ab90KFD2rp1q9asWfOrY3p6lt2WqPDyjYkXcFaDhw7X889MVKtWkYpsHaWlSxaroKBA/e8cIEl6NvEpBQYGaez4JyRJCQ8M0Yhhg7X4nYXq2LGT1q1do7179uj5yS9JkgwGgxIGD9GC+fPUKKSRGgQHa86sGQoIDFSXrr98yDkA4I+PvAMAsBdyDgDAESgcVBELFy5UcHCwevTo4ehQAKfUs1dvZWdlae7smTKbzyq8RUvNnf+WjFeW2p45fVouhquLrKLbxihp6jTNnjlds6a/oZBGjTV91hw1a9bc2mf4iJEqKCjQS5NfUF5ertrGtNPc+W9xnggAgLwDALAbcg4AwBEMFovF4ugg8Pux4gAAAAAAAAC4fl58Yn1dpnx+2NEhOJ2nu4Q6OoRfxRkHAAAAAAAAAADAijoaAAAAAAAAAOC6uBgcHQEqAysOAAAAAAAAAACAFYUDAAAAAAAAAABgReEAAAAAAAAAAABYUTgAAAAAAAAAAABWFA4AAAAAAAAAAICVm6MDAAAAAAAAAAA4J4PB4OgQUAlYcQAAAAAAAAAAAKwoHAAAAAAAAAAAACsKB3Y0ZcoUGQwGjRs3ztp25swZDR48WHXr1lXNmjUVExOjDz/80HFBAk4sefky9ereRTe1ba2Ee+9WelraL/b/bP1a9ftTT93UtrUG9u+rL7ZusblvsVg0Z9YMde10q26OidKoEcN0/PixSpwBAMCZkHcAAPZCzgEA2BuFAzvZsWOH5s+fr6ioKJv2IUOGaP/+/fr444+Vnp6uAQMGaNCgQdq9e7eDIgWc07q1azRtapJGPzJGyR+sUnh4Cz08eoQyMzPL7Z+6e5eefvIJ3TngLq1YuVqdu3TVuMfG6ODBA9Y+i95eoPeWLdFzkyZr6Xvvy9vbWw+PGqGioiJ7TQsAUEWRdwAA9kLOAQA4AoUDO8jPz1dCQoIWLFggf39/m3tfffWVHnvsMd18881q2rSpnnvuOdWuXVs7d+50ULSAc1qyeJEG3DVI/e8cqNCwMD036UV5eXlp9Uflr+BZtvRdxd96m4Y9+JCahobq0cfHqWVEhJKXL5VU+gXOsiXvauToh9W5Szc1D2+hl5Om6mxGhj7ftNGeUwMAVEHkHQCAvZBzAACOQOHADsaMGaM+ffqoW7duZe7Fx8drxYoVysrKUklJiZKTk1VYWKjbb7/d/oECTurSxYv6/ru9io2Lt7a5uLgoNjZead+Wv3onLTVVsbFxNm3xt9yqtNRUSdKPJ0/KbD6rDrFXx/Tx8VHrqDYVjgkAqB7IOwAAeyHnAHAGLgau33o5AzdHB/BHl5ycrF27dmnHjh3l3n///fd1zz33yGg0ys3NTTVq1NCqVasUFhZW4ZhFRUVllg9aXD3l6el5Q2MHnEX2uWwVFxfLaDTatBuNRh09eqTcZ8xms4xGU5n+5kzzlftnS9tMZcc0m803KnQAgBMi7wAA7IWcAwBwFFYcVKITJ05o7NixWrZsmby8vMrt8/zzz+vcuXPauHGjvvnmG02YMEGDBg1Senp6heMmJSXJz8/P5nr9taTKmgYAAAAAAAAAoBphxUEl2rlzpzIyMhQTE2NtKy4u1tatWzV79mzt379fs2fP1p49e9SqVStJUps2bfTFF19ozpw5evPNN8sdNzExURMmTLBps7iy2gDVl39tf7m6upY5HCwzM1Mmk6ncZ0wmkzIzzWX7X/kyx2QKKG0zZyogINCmT3iLFjcyfACAkyHvAADshZwDAHAUVhxUoq5duyo9PV2pqanWq3379kpISFBqaqouXLggqXR/wv/l6uqqkpKSCsf19PSUr6+vzcU2RajO3D081DKilVK2b7O2lZSUKCVlm6LatC33majoaKVs327Ttn3bV4qKjpYkNQgOlskUoJSUq2Pm5+crPe3bCscEAFQP5B0AgL2QcwAAjsKKg0rk4+OjyMhIm7aaNWvKaDQqMjJSly5dUlhYmEaPHq1p06bJaDRq9erV2rBhg/71r385KGrAOQ0eOlzPPzNRrVpFKrJ1lJYuWayCggL1v3OAJOnZxKcUGBikseOfkCQlPDBEI4YN1uJ3Fqpjx05at3aN9u7Zo+cnvyRJMhgMShg8RAvmz1OjkEZqEBysObNmKCAwUF26lj3oHABQvZB3AAD2Qs4BADgChQMHcnd315o1a/T000+rb9++ys/PV1hYmBYvXqzevXs7OjzAqfTs1VvZWVmaO3umzOazCm/RUnPnvyXjleW7Z06flovh6uqe6LYxSpo6TbNnTtes6W8opFFjTZ81R82aNbf2GT5ipAoKCvTS5BeUl5ertjHtNHf+W6zwAQCQdwAAdkPOAVDVGQyOjgCVwWCxWCyODgK/X+FlR0cAAAAAAAAAOC8vPrG+Lm9sPeLoEJzOhI5NHR3Cr+KMAwAAAAAAAAAAYEXhAAAAAAAAAAAAWFE4AAAAAAAAAAAAVhQOAAAAAAAAAACAFUd+AAAAAAAAAACui4vB4OgQUAkoHPxBzP2K08sBAPaRcjTH0SEAAKqREGMNR4cAAKgmXv9TuKNDAKoMtioCAAAAAAAAAABWFA4AAAAAAAAAAIAVhQMAAAAAAAAAAGDFGQd2NGXKFCUmJmrs2LGaPn26JOnw4cP6y1/+oi+//FJFRUXq2bOnZs2apaCgIMcGCzihPf/+RN+uX6mCnGwZGzbVLfc9rMAmv74/4aGvN2vTgtfUODpOd4x5QZJUfPmydqxerBN7vlHu2dPy8K6pBi3bqsPA4apZ21jZUwEAOIEe4Sb1jQxUbW93Hc8q0KKvT+qw+UK5fTuF1tEjtzayabtYXKLBS7+1/nnF0LblPrv0mx/1yd6MGxc4AMDpHP3yUx3avEpFednyrd9Ere8cJf+Q5r/63I+7t2rn0mmq26qDbn7wWWv75aICfffpYp3Zk6KL5/NUwxikprf+SY3je1XmNAAAToTCgZ3s2LFD8+fPV1RUlLXt/Pnz6tGjh9q0aaPPP/9ckvT888+rb9++2r59u1xcWBACXKtDO7Zo2/v/0G0PPKagJuFK27han05/Tvf+dYG8fWtX+Fye+Sdt/+At1W0WadN++WKRzD8cVkyf+2Rs2FRF5/P01Yr5Wjf7RQ18bmYlzwYAUNXFNa6tITc10FvbT+jg2QvqHRGgZ7qFavzq75VbeLncZy5cLNa4Vd9VOOaoFek2f24b7KvR8SFKOX7uRoYOAHAyP+7+Qns/fltRdz0i/5DmOvLFx9r+j0nqMnGePH1qV/jchayftPeTRarTNKLMvb0fv62zB9MUc/8E1agTqIz9u5X+0Zvy8q2jupEdKnE2AP6IXAyOjgCVgd9M20F+fr4SEhK0YMEC+fv7W9v/85//6NixY3rnnXfUunVrtW7dWosXL9Y333xjLSQAuDbpG1ap5W291OKWHvKv30gdH3hMbh6e2vefzyp8pqSkWJvemqr2fx4sX1Ndm3ueNWrqTxNeVehNHVW7brCCQlvqlvselvn4QeVl8tUnAFR3fSICtelgpjYfytKPOYV6a9sJXSwuUeewilelWWRRTuFlm+t//fxe+4Z+2nsmXxn5Fyt7OgCAKuzw1n8qJLaHQm7uJp+6IYoa+Ihc3T31w9cbK3zGUlKsncv+pvA77lPNOnXL3M86tk8Nb+oiU1hr1agTpMZxPeVbv4myTxyszKkAAJwIhQM7GDNmjPr06aNu3brZtBcVFclgMMjT09Pa5uXlJRcXF3355Zf2DhNwWsWXL+ns8YNq0DLa2mZwcVFwy2j9dPj7Cp/b+clyefv4qcVtd1zTz7lYcEEyGORZo+bvDRkA4MRcXQxqaqyh9FN51jaLpPRTeWoWUKPC57zcXDV7YCvNuauV/tK5iYJre1XY18/LTW2D/fTvg5k3MnQAgJMpuXxJOScPKaBZtLXN4OIiU/M2yj6+r8Ln9n+2Qp61aqtRhx7l3q/TuIV+2vu1CnIyZbFYZD6UpvyzpxTYPLrc/gCA6oetiipZcnKydu3apR07dpS5Fxsbq5o1a2rixIl69dVXZbFY9PTTT6u4uFinT592QLSAcyrMz5WlpETevv427d6+/jp35mS5z5w+uEf7v1yvgS/MuaafcfnSRaV8uFBhN3WShzeFAwCoznw9XeXqYlBO4SWb9pzCy6rvV34x4FRuod78zw86nl2gGh6u6tsqUH/t1VxP/PN7ZV24VKZ/p9A6KrxUrK/ZpggAqrWL50vfdX6+JZFnrdrKz/ix3Gcyj3ynH77eoE4TZlQ4buSdo/XtB7O14aXhMri4ymAwqM2gR2UMjazwGQBA9cKKg0p04sQJjR07VsuWLZOXV9mXyICAAH3wwQf65JNPVKtWLfn5+encuXOKiYn5xfMNioqKlJuba3NdvlhUmVMB/lAuFl7Qv9+epo5Dxsrbx+9X+xdfvqyN81+VZNFtDzxa+QECAP5wDp69oK1HsnQ8u0Df/5Svv/37iHILL6tbc1O5/W9vZtSXR7J1qcRi50gBAM7scuEF7X7vDbW5+1F51vKtsN/RL/6l7OMHdPODz6nj+DfU6s8PKu2j+Tp7INV+wQIAqjRWHFSinTt3KiMjQzExMda24uJibd26VbNnz1ZRUZF69Oihw4cPy2w2y83NTbVr11bdunXVtGnTCsdNSkrSiy++aNPWY9jjumP42EqbC1CVedXylcHFRQW52TbtBbnZZVYhSFJuxmnlZf6kdbMnW9ssltJfzPxjdB/d89cF8gusL+lq0SAvM0N9n5jCagMAgHKLilVcYpGfl7tNu5+Xm84VlF09UJ5ii3Qs64Lq+nqWudcisKYa+HlpxpZjNyJcAIAT86hZ+q5TlHfOpr0o/5y8yjkY+XzmGV3IytDXC/9qbfvvu84nT/ZXl4nz5OVXR9+vXaKbhyUqKOImSZJf/SbK+fGoDm1epQC2KwIAiMJBperatavS09Nt2oYPH64WLVpo4sSJcnV1tbabTKVfm33++efKyMjQn//85wrHTUxM1IQJE2za3vy6/CWKQHXg6uaugEbN9OP3qWrSNl6SZCkp0Y/fp6pVl7J/l2rXa6i7J8+zadux+l1dLLygW+79P9WqEyDpatEgJ+OU+v5lirx+4YsdAED1UVxi0ZHMC2pdz0ffnMiRJBkkRdbz0fp95msaw2CQGvp7a/fJ3DL3Ojcz6rD5go5nF9zIsAEATsjFzV1+wWEyH/xW9VrHSip91zEfTFOTW/qU6V8rMFi3/2WWTdu+tUt1uahAkf1Hyru2ScWXL8lSfFky2O50YHBxkSysdAPw2xkMjo4AlYHCQSXy8fFRZKTt/oA1a9aU0Wi0ti9atEgtW7ZUQECAtm3bprFjx2r8+PEKDw+vcFxPT0+bA5Ulyc3j2l5SgT+q1t3v1OaFf1NA42YKbBKu9I2rdelikcJv6S5J+vztaarpb1SHAcPl5u6hOg0a2zz/35UE/20vvnxZG958ReYfDqnXYy/KUlKiCzlZkiTPmj5ydbP9yhQAUL18+l2GHrm1kQ5nXtBh83n1bhkoTzcXbT5UepjxmFsbKevCRb23q/TcqoFRdXXQfF5ncotU08NVfSODFFDTQ5//7PBjb3cXxTaqrSXf8FEIAKBUaMd+2p08XX4Nw+Qf0lxHtn6s4ouFanhzV0nSruV/l5dfHUX0GSpXdw/51mtk87z7lXed/7a7uLnLGBqp7/61SK7uHvL2D1Dm4b068c2/1arfg/adHACgyqJw4GD79+9XYmKisrKy1LhxYz377LMaP368o8MCnE7YTZ1UmJejb/65VBdys2RqGKreY/+qGle2KsrPypDhN5TAL5zL1PFvt0uSVr40xuZe37+8pvrhUTcueACA09l27Jx8vdw0KLqeanu76VhWgZI2HlZO4WVJkrGmu0r+56vNmp6uGhUXotrebjp/sVhHMi/o+bUH9GNOoc248Y39ZTAY9J+jttvvAQCqrwZtb9PF8znav365inKz5dugqWJHTpaXT+m7TsG5s7/pXUeS2j3wpL5f8652LfubLl7IVw3/ALXs/YAax/WqjCkAAJyQwWJhHdofwRtbjzg6BABANZFyNMfRIQAAqpEQYw1HhwAAqCZe/1PFO4CgYrP+c9TRITidx25p4ugQfpXLr3cBAAAAAAAAAADVBYUDAAAAAAAAAACqqDlz5qhx48by8vJShw4d9PXXX1/Tc8nJyTIYDOrfv/9v/pkUDgAAAAAAAAAA18VFBq7feP0WK1as0IQJEzRp0iTt2rVLbdq00R133KGMjIxffO7YsWP6y1/+ottuu+06/70CAAAAAAAAAIAq54033tDIkSM1fPhwRURE6M0331SNGjW0cOHCCp8pLi5WQkKCXnzxRTVt2vS6fi6FAwAAAAAAAAAA7KSoqEi5ubk2V1FRUZl+Fy9e1M6dO9WtWzdrm4uLi7p166Zt27ZVOP5LL72kwMBAjRgx4rpjdLvuJ1GldG0c4OgQAADVRKcQk6NDAABUIy6G37acHwAAoKpLSkrSiy++aNM2adIkTZ482abNbDaruLhYQUFBNu1BQUHat29fuWN/+eWXevvtt5Wamvq7YqRwAAAAAAAAAACAnSQmJmrChAk2bZ6enr973Ly8PA0ePFgLFiyQyfT7PvqjcAAAAAAAAAAAgJ14enpeU6HAZDLJ1dVVP/30k037Tz/9pLp165bpf/jwYR07dkx9+/a1tpWUlEiS3NzctH//foWGhl5TjBQOAAAAAAAAAADXhV0FK4+Hh4fatWunTZs2qX///pJKCwGbNm3So48+WqZ/ixYtlJ6ebtP23HPPKS8vTzNmzFDDhg2v+WdTOAAAAAAAAAAAoAqaMGGChg4dqvbt2+vmm2/W9OnTdf78eQ0fPlySNGTIEDVo0EBJSUny8vJSZGSkzfO1a9eWpDLtv4bCQSWbPHlymYMuwsPDrYdXFBYW6oknnlBycrKKiop0xx13aO7cuWUOvADw69b983198sESncvKVKPQZnpwzJMKa1H+fxQ3rlmlrRs+1YljhyVJTZu11H0PPmLT32Kx6P3F87Vp7Sqdz89Xi1Zt9NDjT6tecIhd5gMAqNo++/h9/WvlUuVkZSqkaTMNfeRJhbVoVW7fz9es0hcb1+jE8dK80ySshe4ZPsba//Lly/rgnXlK3fEfZZz+Ud41aymy7c26b8Sj8jcG2G1OAICqaf3Hpe86/805w3/hXWfTmlXauvFTnbzyrtOkWUvdO9z2XefrLz/Xhn99qKMH9yk/L0dT5i1T49Bwu8wFAPDb3HPPPTp79qxeeOEFnTlzRtHR0Vq3bp3198c//PCDXFxcbvjPvfEjooxWrVrp9OnT1uvLL7+03hs/frw++eQTffDBB9qyZYtOnTqlAQMGODBawDl9tfkzvTv/77rrgZF6bd5SNWraXK8kPqac7Kxy+3/37U7d0vkOTXr9Tb08Y5GMAUF6+elHlWXOsPb554rFWrs6WSPHJurVWe/I08tLryQ+posXi+w1LQBAFbVt82da+o/pGpDwkF6Zs0QhTZtpyrOPKedcBXknbafiO/fQc1Pn6cW/L5QxIEhTnrmady4WFerooX268/4RemXOEo1/YapOnzyuaZOesOe0AABV0FebP9OSK+86SXNL33WSnvmVd53b79Dzr7+pl6aXvuu8mmj7rlNYWKAWkdG6/6HH7DUNAMDv8Oijj+r48eMqKipSSkqKOnToYL23efNmvfP/7N13eFTFGsfxbzY9kN4D6ZWE3ruIiqAiWEARKwjYQEFQsFFUuGJDqWKhiEgHEaWKBVRAmjRpoRNaeu97/wBXVxLxekk2S34fn/M8yZz3DO9cL745mZ2ZmTPLfXbmzJksW7bsf/4zbYxGo/Ff5Cr/0KhRo1i2bBk7d+687F5GRga+vr7MnTuXu+++G4D9+/dTp04dfv75Z1q2bPmP/5xfT2RdrZRFrNILAx8iMiaevgOfBy7u9/b4fbfSpfs9dL/34Ss+X1pSwiN3dqTPU8O47qbbMBqNDLi3M7fdfT+393gAgNycbPr16MQTw0bS5vqbK3I4IlVacal+dBB5edDDRMTE88hTzwEX687A+2/j5m49uf2eh6/4fGlJCf3uvoGHnhhG+5tuLTMm8cBeXh70MO9/+iU+fpcffCZSXRi0cbJUcy8OfIjI2Hj6PPXHu86TvW+lc7d76PYP33X63tWRR54cRvubbjO7d/5sEoMevF0rDkQuaRTqaukUrNKUn45ZOgWr80TrMEuncEVacVAJDh06RFBQEBEREfTu3ZsTJ04AsG3bNoqKirjxxhtNsXFxcYSEhPDzzz9bKl0Rq1NcVMSRg/up1/iP2VaDwUC9xs05uG/XP+qjoCCf4uJiarq6A3D+7GnSU1Oo36i5KcalRk2i4upycN/u8roREZFqoLioiKOH9lO38R81wmAwULdRcw79wxrxR91xKzcmNycbGxsbXGrU/L9zFhER6/R7zanX6C/vOo2ac/C3/+1dp8aldx0REZF/QmccVLAWLVowc+ZMYmNjOXPmDKNHj6Zdu3bs2bOHs2fP4uDgYDqg4nf+/v6cPXvWMgmLWKHMjHRKS0vw8PQya/fw9CLp5LF/1MdnH03Ey9uHepd+CZSemgKAu6e3WZy7pxfpaSn/f9IiImK1sjIv1h13D/O64/4/1J3PP56Ip7eP2eTDnxUWFvD5x5No1aGTJg5ERKqxzN9rjuflNef0P6w5cz+6WHPqlVNzRET+XwYtDrwmaeKggnXp0sX0df369WnRogWhoaEsWLAAZ2fnf9VnQUEBBQXme6wXFhTi4Oj4f+UqUl0tmzeTH79bw6i3PsDBQX+PRESkYi2fP5Ofv1vLy29OK7PuFBcX8/7rIwAjfQYOr/wERUTkmvHFvJn89P0aXnlT7zoiIvK/0VZFlczDw4OYmBgOHz5MQEAAhYWFpKenm8WcO3eOgIDy97EdN24c7u7uZtfHU96u4MxFqi43dw8MBlvS/3I4WHpaKh5/WTHwV8sXfsqyeTN5adwkQiOiTe0eXhefy/jL6oKMf9CniIhc21zdLtadvx6E/E9qxIqFn7J8/ixGjJtIyJ/qzu9+nzRIPneWEeMmabWBiEg15/Z7zUkro+Z4/X3N+XLhp3wxfyYv/OVdR0RE5J/QxEEly87OJjExkcDAQJo0aYK9vT3ffPON6f6BAwc4ceIErVq1KrePESNGkJGRYXb1feLZykhfpEqys7cnIiaOPTu2mNpKS0vZs+MXYuLrl/vcF/NnsXjOR7wwdiKRsfFm9/wCauHh5c3uHb+Y2nJzsjm8fw8x8fWu/iBERMRq2NnbEx4dx94/1YjS0lL27vyF6L+pEV8umM3SuR/z/OvvExETf9n93ycNzp4+wQv/mYyrm0dFpC8iIlbk95qzZ+df3nV2/kJMnfLfdZYvmMWSzz5ixNiJRJZRc0RERK5EWxVVsKFDh9K1a1dCQ0NJSkpi5MiR2Nra0qtXL9zd3enbty9DhgzBy8sLNzc3Bg4cSKtWrWjZsmW5fTo6OuL4l22JHNKzKnooIlXabXf1ZvL4UUTExBMVm8DXS+dSkJ9Hh5u7AjDpjVfw8vHjvr5PARe3J1ow+wMGjXgNv4BA0lOTAXBydsHJ2QUbGxtuuaMXS+Z+TGCtYPwCazFv5lQ8vX1p1qaDpYYpIiJVxC133se0t0YTEVOHyNgEVi79nPz8PK7rdLHuTBk/Ei8fX+7tc7HuLJ8/i0WffsBTz7+Gr//ldae4uJj3Xn2eo4f3M2zMu5SWlphiarq6Y2dvb5mBioiIxd16V2+mvjmKiOh4ouIS+HrJxXed6y6960we/wpe3n70uvSu88X8mSyc/QEDh5ddcwCyMzNIvnCWtJQLACSdPA6Ah6c3Hl4+lT1EERGpgjRxUMFOnTpFr169SElJwdfXl7Zt27Jp0yZ8fX0BePfddzEYDNx1110UFBRw8803M2XKFAtnLWJ9WnfoRGZ6GgtmTSM9LYWwyBheGDvRtGVE8vmz2Nj8schq7YrFFBcV8c6Y5836ufuBfvR8cAAA3e55iIL8fD6YMJbc7Czi6jbkhXHva29QERGhVYdOZGaks2j2B6SnpRAaEcPw19/H/VLdSblwFsOfTolb99XFujPhNfO6c+f9/bj7gf6kJZ9n26YfABjxRG+zmJfGTyO+QZMKHpGIiFRVrTt0IjMjjYWzp/2p5lz5XefdV81rzl3396PHpXedrZt+YNpbo0333h/7wmUxIiJSvdkYjUajpZOQ/9+vJ7TiQEREKkdxqX50EBGRymOwsblykIiIyFXQKNTV0ilYpembjls6BavTv2WopVO4Ip1xICIiIiIiIiIiIiIiJpo4EBERERERERERERERE00ciIiIiIiIiIiIiIiIiSYORERERERERERERETERBMHIiIiIiIiIiIiIiJiYmfpBOTqeHrJbkunICIi1USYf01LpyAiItVIek6hpVMQEZFqYtmjTS2dglWysbF0BlIRtOJARERERERERERERERMNHEgIiIiIiIiIiIiIiImmjgQERERERERERERERETnXFQwUaNGsXo0aPN2mJjY9m/fz8A06dPZ+7cuWzfvp2srCzS0tLw8PCwQKYi1q97/QDubRqEl4sDh5NzeP/bo+w/l11ufE1HW/q2DqF9lDeujnacyypg0vdH2XwsHYDb6/vTrV4AAW6OABxLzWPW5pNsuXRfRESqtxuivekS54u7sx0n0vKZs+00R1PzyoxtG+7Joy2DzdqKSkrpt2BPmfEPNa3F9dHezN2exJoDyVc9dxERsS5d6vhyR/0APJztOZaay4c/n+TQhZwyYztGezPounCztsLiUnrO3G763snOwAPNatMizANXRzvOZxWwYu95Vu+/UKHjEBER66GJg0qQkJDAunXrTN/b2f3xP3tubi6dO3emc+fOjBgxwhLpiVwTro/x5on2Ybyz/gi/nc3i7kaBvHlHPA/M2kF6XtFl8XYGG966I4G0vCJGrjhAck4h/q6OZBcUm2IuZBUy/cfjnErPxwa4Od6P17vG0e+zXzlWzi+GRESkemge4s69jQKZ9ctpjqTk0inWh6HXhzN8xQGyCkrKfCa3sIQRXx0wfW8sp+/Gtd2I9HEhLffy+iUiItVPmwhP+rQMZurG4xy8kMPtdf0Z2TmaJxfuISO/uMxncgqLeXLhH5PTf605fVoGUy/QlQnfHeV8VgENa7kxoE0oqbmF/HIiowJHIyIi1kITB5XAzs6OgICAMu8988wzAHz33XeVl5DINahH4yC+2nOOVfvOA/DON0doGe7JLQl+zN16+rL4WxL8cHWy48kFuykpvfhj9NnMArOYn4+mmX3/8U8n6Fbfn/hAV00ciIhUczfH+vJ9YiobL9WKWb+cpkGQG+0jvPjqt/I/rVneL3h+5+Fsx/1Ngnjr26MM+cunRUVEpHrqVtefNfuTWX8oBYCpG4/TJNidG2J8WLLrbNkPGSE9r/yaE+tXk28PpbDnTBYAaw4kc3MdX6J9a2jiQET+ZwYbG0unIBVAEweV4NChQwQFBeHk5ESrVq0YN24cISEhlk5L5JphZ7Ah1q8mc3/5Y4LACGw7kUF8oGuZz7SO8GLfmSyeuT6cNhFeZOQVs+7ABT7feprSMj4CarCBDtHeONnZsvfSD9ciIlI92RpsCPNy5qtLk9Vwse7sPZdFpI9Luc852hl46/Y4bIDjaXks+vUsSX+atLYB+rcKYeVvF8zaRUSk+rIz2BDpU4PFv/4xQWAEfj2dSax/jXKfc7K3Zfo99TDY2JCYksOcX05zMj3fdP/A+WyahXqw7mAyqblF1A10JcjNiY9Pn6zI4YiIiBXRxEEFa9GiBTNnziQ2NpYzZ84wevRo2rVrx549e3B1LfsXmiLyv3F3tsPWYENqbqFZe1puESFezmU+E+TuSECwO2v3X2D4F79Ry8OJZ66PwM5gw6zNp0xx4d4uTLmnHg52BvKKSnh5xX6Oa7WBiEi15upoi63B5rLVA5n5xQS6OpX5zJnMAj7efJJT6fk429vSpY4vL90UxYtfHyTt0pZ6t8T7UlpqZO3BlAofg4iIWAdXp4vvOn/dfjUjv5jaHmXXnNMZ+Uz84RjHU3NxcbCle/0A/nN7HIMW7SXl0jZ40386wRNtQ/nkvgYUl5ZiNMLkDcfZd7b8M+JERKR60cRBBevSpYvp6/r169OiRQtCQ0NZsGABffv2/Vd9FhQUUFBg/im00uJCDHYO/1euItWJjY0NablFvP1NIqVGOHg+B58aDtzbtJbZxMHJtDwe/exXajjacl20NyM6RfP0oj2aPBARkf9JYkouiSm5pu8PJ+cw9tZYro/yYsnuc4R6OtMpxoeRqw9ZMEsREbkWHDifw4HzfxycvP9cIpPuTuDmOr7M3ZYEwK0JfsT61eT1NYc4n11IQkBNBrQOITW3kF1JWmEtIiKaOKh0Hh4exMTEcPjw4X/dx7hx4xg9erRZW+jNfQjr/O8mIkSsXUZeMSWlRrxczCfPPF3sSc0p+2DJlJxCSkqNZtsSHU/Lw7uGA3YGG4ov3SguNXI64+KS3oPnc4jzr8ldjQJ555sjFTMYERGp8rIKSigpNeLuZP6jtJuTHRn5/+xA4xIjnEjLw8/VEYBYvxq4Otnx9u11TDG2BhvubRhIpxgfhn65/+oNQERErEZW/sV3HQ9ne7N2dyc704q1KykxGjmSkkuA28Wa42Brw/1Na/GfdYlsO3nxPIPjqXmEe7vQvV6AJg5ERAQAg6UTqG6ys7NJTEwkMDDwX/cxYsQIMjIyzK6QGx+4ilmKWJfiUiMHzmfTONjd1GYDNAl2Z1855xHsScqilocTfz6+J9jDmeTsQtOkQVlsbGxwsNV/OkVEqrOSUiPHUvOID6hparMB4v1rkpicW/6Df2JjA7U9nExbT/x4NI2XVx7klVV/XGm5Razcf4G3vjtaEcMQERErUFxqJDE5h/pBf2x1bAPUr+XGgXM55T/4JwYbCPVyJu3SNkW2BhvsbQ0YjebvPaWlF2NFRERAKw4q3NChQ+natSuhoaEkJSUxcuRIbG1t6dWrFwBnz57l7NmzphUIu3fvxtXVlZCQELy8vMrs09HREUdHR7M2bVMk1d3C7UmM6BTNgXPZ/HY2m7sbB+Jkb8vKSwdXjugURXJOIR/+eAKAL3ad5Y4GAQzsEM6SnWeo7eFM72a1WLLzjKnPfm1C2HwsnfNZBTjb23JjnA8Na7sxbOk+i4xRRESqjtUHLtCvZTBHU/M4kpJLp1gfHO0MbDiaBkC/lsGk5RWx6NJhlrcn+JGYksv5rEJcHC6eceDt4sAPiakA5BSWkFNYYvZnlJQaycgv5myWDkoWEanOvthzjqfbh3M4OZdDF3LomuCPk52Bbw4lA/D0dWGk5BQxZ+tpAHo2CuTg+RzOZOZTw8GO7vX98a3pyNoDF+PzikrZcyaLh5oHU1hygvNZBdQNdKVDtDczNutwZBH539lo0vGapImDCnbq1Cl69epFSkoKvr6+tG3blk2bNuHr6wvAtGnTzLYdat++PQAzZszg4YcftkTKIlbp24MpeDjb80irELxc7DmcnMNzy/aZPlXj7+bInz9PcyG7kGHL9vFU+3A+ub8hF7ILWbzzDJ9f+mEbwMPZnhdujsLLxYGcwhKOJOcwbOk+tp3IqOTRiYhIVbPlRAaujnbcUc8fdyc7TqTl8/Z3R8m8dGCyt4u92Sc5azjY8kjz2rg72ZFbWMKx1DxeW3eYpExNCoiIyN/78Uga7k529GochKeLPUdTchm96hAZeRdrjm9NR/68eKCmgx1PtA3F08We7IISEpNzGP7lb5xKzzfFvLU+kQea1WZwh3BqOtpxIbuAz7aeZtVvFyp7eCIiUkXZGP+6Nk2sUocJP1k6BRERqSbC/GteOUhEROQqSc8ptHQKIiJSTSx7tKmlU7BKn/xywtIpWJ0+zUIsncIVaaNuEREREREREREREREx0cSBiIiIiIiIiIiIiIiYaOJARERERERERERERERMdDiyiIiIiIiIiIiIiPwr+mT6tUn/XkVERERERERERERExEQrDq4Rg64Pt3QKIiJSTdSq6WLpFEREpBrJKSq2dAoiIiIi1Y5WHIiIiIiIiIiIiIiIiIkmDkRERERERERERERExEQTByIiIiIiIiIiIiIiYqIzDkRERERERERERETkX7GxsbF0ClIBNHFQwUaNGsXo0aPN2mJjY9m/fz+pqamMHDmSNWvWcOLECXx9fenevTuvvvoq7u7uFspYxHr9vGopP3w5j+z0VAJCo7i9zyCCo+qUGbtn8w98t3QOKWdPU1JSgk9ALdp2vYfG7TuZYtYtmMGun9aTnnIBWzs7akXE0OneRwmJjq+sIYmISBW27suFfL14DhlpKQSHR/PA40OJjE0oM/bbVcv48ZuvOHX8CABhUXH0eOiJcuNnTBzHtyuXcl//wXTu3qvCxiAiItbhu68Ws3bZZ2SmpVI7LIp7+g8hLKbs95KNa75g07erSLpUc0IiY+n+wGNm8fl5uSybPZVfN/9ATlYG3n5BXH9bD9p3uaNSxiMiIlWfJg4qQUJCAuvWrTN9b2d38X/2pKQkkpKSeOutt4iPj+f48eM89thjJCUlsWjRIkulK2KVdv20nq9mT6F7vyEER9fhx68W8cnrw3h2wqfUdPe8LN6lpivX3/kAvkEh2NrZsX/7zyye8h9qunkQ07A5AD5Bwdze52m8/IMoKixg41cL+eS1YQyd+Bk13TwqeYQiIlKVbPp+LXM/nMDDTw0nMi6B1cvm8ebLgxg/fSFuHl6Xxe/ftY2W191MdJ362Ds48NXC2bz50kDGTp2Hl4+fWezWn74l8cAePL19K2s4IiJShW3dsI7Fn7xPr8eHER6TwPov5/P+qMGMmvJ5mTXn4O4dNGt3IxH96mHv4MCaxXN4f9QzvDLxMzwu1ZbFn7zPgV3beGTwSLz9Atm3czPzpr2Nu5cPDVq0q+whiohIFaQzDiqBnZ0dAQEBpsvHxweAunXrsnjxYrp27UpkZCQdO3bk9ddf58svv6S4uNjCWYtYlw0rFtLshltpen0X/GuH0b3fEBwcnNj67ddlxkckNCKheTv8aofiHVCLNrfcTUBoJMf27zbFNGx7I1H1m+LlH4R/cDi3PvgkBXk5nD2eWFnDEhGRKmrV0rl06Nyd9p26UiskgoefGo6joxPfr/myzPjHn3uVG2+7m9DIGIKCw+j79IuUlhrZ9+svZnGpyef5dOrbPDZsDLa2+oyPiIjAN1/Mo02n22l9420EhoTT6/HncHB05Od1K8qM7/PsKK675S6CI2IIqB3G/U+NwFhayv5ft5piEvfvpmXHW4ip1xhv/0Da3dydWuFRHDu0r7KGJSIiVZwmDirBoUOHCAoKIiIigt69e3PixIlyYzMyMnBzczOtShCRKysuLiLpyAGi6jUxtRkMBiLrNeHEwSv/4Gs0Gjm8exsXkk4SHt+g3D9jy7ovcXKpQWBo5FXLXURErE9xURHHDu8noWEzU5vBYCC+YTMO/2kC+u8UFORTUlJMjZpuprbS0lI+eGskt9x1P7VVa0REhIs150TiAeIaNDW1GQwG4ho048iBPf+oj8Lfa47rHzUnMq4eu7ZsID3lAkajkQO7tnH+9EniGzW/6mMQERHrpN9OV7AWLVowc+ZMYmNjOXPmDKNHj6Zdu3bs2bMHV1dXs9jk5GReffVV+vfvb6FsRaxTbmYGpaWl1PzLMl1XD08uJJU/UZefm824AXdTXFyEwWCgW9/BRNdvahbz27afmDdhDEWFBbh6eNPnpbepoW2KRESqtazMdEpLS3DzNK877h5enDl5/B/1MX/GJDy9fEj40y9ovlo4G1tbOzp1u+eq5isiItYr+/ea85d3HTcPL86d+mc1Z+nsKbh7+ZhNPvTsP4TPJr/BiD7dMNjaYrAx0PvJ4UQnNLqq+YuIiPXSxEEF69Kli+nr+vXr06JFC0JDQ1mwYAF9+/Y13cvMzOTWW28lPj6eUaNG/W2fBQUFFBQUmLUVFRZg7+B4VXMXudY5OLkw8M2PKMzPI3H3dr6aPRkv/0Ai/vTDcmRCIwa++RG5mRn88s1XfP7uKJ4YO7XMcxNERET+iS8XzGLz92sZ8cZUHC79/Hb00G+sWT6PMe9/io2NjYUzFBGRa8XqRbPZumEdg1+fbPY7g+9WLOLogb08/uJ4vPwCOLx3J/M+uHjGQZ0/ragTEfkn9NPrtUlbFVUyDw8PYmJiOHz4sKktKyuLzp074+rqytKlS7G3t//bPsaNG4e7u7vZteTjiRWdukiV5eLmjsFgIDs91aw9Kz0N1zIOC/udwWDAJ6A2QWHRtOt6D3VbXsd3y+aaxTg4OeMTUJuQmATuevw5DLa2bF1f9rkJIiJSPbi6eWAw2JKZZl53MtJTcffy/ttnv148h68WzmLYa+8TEh5taj+wdyeZ6WkMfuh2Hr6tFQ/f1ork82f4/KP3GPJwtwoZh4iIVH01f685f3nXyUxPvWzl21+tXTqX1UvmMGjUBGqHRZnaCwsK+GLONO7uO5D6zdtSOyyKDrfeTZO2N7DuL+9DIiJSfWnFQSXLzs4mMTGRBx54ALi40uDmm2/G0dGR5cuX4+TkdMU+RowYwZAhQ8zaVh5ILSda5NpnZ2dPUEQsiXu2k9C8HXBxn+jEPdto1fmOf9yPsdRIcVHh38cYrxwjIiLXNjt7e8Ki4tj76y80ad0BuFh39u3cyo1de5T73FcLZ7N8/gyGvfY+ETHxZvfadOxC3Ybm+0q/+fIgWnfsQvubul71MYiIiHWws7cnJDKWA7u20bDldcDFmnNg11Y63HJXuc+tWTKHlQtnMXDUu4RG1zG7V1JSTElxMTY25p8lNdgaMBpLr/4gRETEKmnioIINHTqUrl27EhoaSlJSEiNHjsTW1pZevXqRmZlJp06dyM3NZc6cOWRmZpKZmQmAr68vtra2Zfbp6OiIo6P5tkT2DjkVPhaRqqzdbT1YOHkctSJiCY6qw49fL6KwIJ8mHS5uF7Zg0ljcvHzofN/FM0S+W/oZtSJj8fYPorioiAM7NrFjwxq6PzoYgML8PL5dMoc6TVvj6ulNblYGP69aRmbqBeq16mCpYYqISBXR+Y77+PCd0YRH1yEiJoE1X8yjoCCP9jfdBsAHb43E09uPno88CcCKhbNY8ul0Hn/uVXz8AklPTQbAydkFJ2cXXN08cP3LGTq2tna4e3oTWDu0UscmIiJVyw3d7mXWe68REhVHWHQ867+cT0F+Pq1uvFhzZr47Bg9vX7o/+DgAqxd/yoq5H/HIs6Pw9gskIy0FAEcnZ5ycXXB2qUF03UYsmTkJBwdHvPwCOLRnB5u/XcldfQZZbJwiIlK1aOKggp06dYpevXqRkpKCr68vbdu2ZdOmTfj6+vLdd9+xefNmAKKiosyeO3r0KGFhYRbIWMQ61W/dkezMdNYtmEFWeiqBYVE88sJ401ZF6cnnzPaMLizI44uP3iUj5QL2Do741grhnoEvUr91RwBsDAYuJJ1g+9urycnKwMXVjdqRcfQfPRH/4HCLjFFERKqOltfdRFZmGks+nU5GWgohETEMG/Me7p4XtypKuXAOG8Mfn+Rc/9USiouLmDh2uFk/3e97lDvv71+puYuIiHVp2u5GsjPTWTH3QzLTUqkdHs3Ake+YDkxOTTavOT+sWkpxcREfvvGiWT+33tuH23o9CkDfoWP4YvZUPnlnFLnZmXj5BnD7/QNo/z+s2BYRkWubjdFoNFo6Cfn/Lfn1jKVTEBGRaqJWTRdLpyAiItVITlGxpVMQEZFqomPc359XJWWbvfWkpVOwOg82DbZ0ClekFQciIiIiIiIiIiIi8q8Y/rTDg1w7DFcOERERERERERERERGR6kITByIiIiIiIiIiIiIiYqKJAxERERERERERERERMdHEgYiIiIiIiIiIiIiImOhw5GtEWkGRpVMQEZFq4kx2mqVTEBGRasRWH3cTEZFK0hFvS6cgUmVo4kBERERERERERERE/hUbSycgFUKf3RARERERERERERERERNNHIiIiIiIiIiIiIiIiIm2Kqpgo0aNYvTo0WZtsbGx7N+/H4ABAwawbt06kpKSqFmzJq1bt+aNN94gLi7OEumKWLXta79gy9cLyclIxS84khsffJLAyLL/Lh38ZQM/f/k56eeSKC0uwTMgiGZd7iah7U2mmML8PL6f/xGHtv1EfnYm7r4BNO7UnUY3dK2sIYmISBX26zfL2b5qEbkZqfgER3Bd7ycIiLjyz3AHN3/Hqg/GEdGoFbcNHGVqNxqNbF42mz0/rKIgN5ugqHiuf3AQHv61KnAUIiJiDXauW862lYvIyUjFNySC6+8vv+Yc2rqRLSvmkXEuiZKSYjz9a9G4813Et7nRFJOTkcbGBR9zfO82CnJzqBVTl+vvfxLPANUcERG5SBMHlSAhIYF169aZvrez++N/9iZNmtC7d29CQkJITU1l1KhRdOrUiaNHj2Jra2uJdEWs0m+bvuPbuR/Q6ZFBBEbWYeuqJSwYP4JHx39CDXfPy+KdarrR6vb78A4MxmBnT+LOTXz94Vu4uHkQXr8ZAOs/m8aJfTu57fHhuPv4c3T3NtbOep+ant5EN25d2UMUEZEq5OCW79gwfzodHxiIf0QcO9cu5Yt3XuSBsR/j4uZR7nOZyWfZsOBDgmLqXnZv28oF7Fz3BTc9OhR3nwB+XjqLZW+/wP2vf4idvUMFjkZERKqyA5u/44d507nhoYEERMSxfc1Slrz1Ig//p+ya41TDlRZde+EZGIytnR1Hdm5mzcdv4+LmQVi9phiNRr58fzQGW1tuHzQKB2cXtq9ewuI3h/PQ2A+xd3Sq/EGKiEiVo62KKoGdnR0BAQGmy8fHx3Svf//+tG/fnrCwMBo3bsxrr73GyZMnOXbsmOUSFrFCW1cupn6HLtRr3xmfWqHc/MjT2Ds6svuH1WXGh9RpQEzTtnjXCsXTP4imN9+Jb3AEpw7uNcUkHdpH3XY3EVKnAe6+ATTseCt+IZGcTTxQWcMSEZEqasfqJdRt35n4djfjXSuUjg8Ows7BkX0byq47AKWlJaye/gYtuz2Au2+g2T2j0cjOtcto3rUXkY1a4xMcQadHnyMnPYUj23+q6OGIiEgVtn31Eupe15mESzXnxocu1pw95bzrBNdpQFSTNngHheDhF0TjTnfgGxxB0qV3nfRzpzmT+BsdHxpIQEQsXoHB3PDgQIoLC9i/6dvKHJqIiFRhmjioBIcOHSIoKIiIiAh69+7NiRMnyozLyclhxowZhIeHExwcXMlZilivkuIizh47SFhCY1ObjcFAaEJjkg7vu+LzRqOR43u3k3bmFMGx9UztQdHxHN7+M1mpyRdj9u0k9ewpwuo1qZBxiIiIdSgpLuL88UMEx5vXneD4RpxJLL/ubFn+Gc6uHiS073zZvcwLZ8nNSDXr09GlBv4RcZxJ/O3qDkBERKxGSXER544dIuQvNSck4e9rzu+MRiMn9u0g9cxJasVeXO1WUlQEYLaazcZgwNbe3jS5ICLyv7Cx0fW/XtZAWxVVsBYtWjBz5kxiY2M5c+YMo0ePpl27duzZswdXV1cApkyZwnPPPUdOTg6xsbGsXbsWBwctRxf5p3KzMjCWluLyly2Jarh5kpp0stznCnJzmDLoXkqKi7AxGLjpoUFmkwI3Pvgkqz+ZwNSne2GwtcXGxsDNfQcTHFe/wsYiIiJVX15W5sW685ftIVzcPEk7U3bdSTq4h70bVnPfqCll3s/NTL3Ux1/79CA3I/X/zllERKyTqea4e5i1/13NgYvvOh8Ovu/iu46NgY4PDiS07sV3Hc/AYFy9/di48BNufPhp7B2d2L56CdmpyeSo5oiIyCWaOKhgXbp0MX1dv359WrRoQWhoKAsWLKBv374A9O7dm5tuuokzZ87w1ltv0bNnT3788UecnMreV7CgoICCggKztqLCAuwdHCtuICLXIAcnZx5+fRqF+Xkc37uDb+dOw8MvkJA6DQDYvuYLkg7/xp2Dx+Dm48+pA7tYO2siNT28Cavb+Aq9i4iIXFSYl8uaj8Zzw0PP4Ozqbul0RESkGnBwcub+MVMozM/n5L4d/PD5B7j7BhBcpwG2dnZ0HfgKaz9+h6lP3n1xBUN8I8LqNwOj0dKpi4hIFaGJg0rm4eFBTEwMhw8fNrW5u7vj7u5OdHQ0LVu2xNPTk6VLl9KrV68y+xg3bhyjR482a+v66DN06ze4QnMXqapcXN2xMRjIzUgza8/JTKOGx+UHI//OxmDA078WAP6hUaQknWDTl58TUqcBRYUF/LDwE+54ZhSRDVsA4BcSwbnjifzy9UJNHIiIVGPOrm4X605mull7bmbaZavfADIunCEz+Rxfvv+Kqc146RczEx/tculAZa9LfaRTw8P7T32m4xsSWQGjEBERa2CqORnpZu3l1Zzf2RgMeFx61/ELjST1zEl++Wo+wZc+JOUfFs39r06lIDeHkuIiXNw8+HzMIPzDYipsLCIiYl10xkEly87OJjExkcDAwDLvG41GjEbjZSsK/mzEiBFkZGSYXbc89ERFpSxS5dna2RMQFsPxfTtMbcbSUo7v3UFQVPw/78hoNO33WVpSTGlJMTZ/2XjOYLDFaCy9KnmLiIh1srWzxy80mpO/mdedk7/tJDDy8rrjGRhM7zEfcN+oqaYromFLasc14L5RU3H18sXNNwAXdy9O/qmWFeTlcO7IfgIj61TKuEREpOqxtbPHPyzarD4YS0s5ua/smlMeo7HU9K7zZ44uNXBx8yDt7GnOHT1EZONWVyVvERGxflpxUMGGDh1K165dCQ0NJSkpiZEjR2Jra0uvXr04cuQI8+fPp1OnTvj6+nLq1Cn+85//4OzszC233FJun46Ojjg6mm9LZO+QXsEjEanamna5i6+njycgPIbAiFi2rl5KUUE+9drfDMBX096gpqcP191zcYuwTcs/JyA8Bg//IEqKCkn8dQt7f1zHTQ8PAsDRuQbBcfX57vMPsXNwxM3bj5P7d7F341quv+8xi41TRESqhkY338naj97CPywG//BYdq5dSnFBPvFtOwGw5sPx1PD0oc3dfbCzd8C7dpjZ844uNQHM2hve1J1fVnyOh38t3HwD2LR0FjU8vIlo3LqyhiUiIlVQ45vvZPWHb+EXHkNARCw71lx810lod7HmrJo+npqePrTt0QeALSvm4R8WjbtfECXFRRz7dQu//fQNHR8caOrz4JYfcHZ1x9Xbj5RTR/nus2lENm5lOgdBREREEwcV7NSpU/Tq1YuUlBR8fX1p27YtmzZtwtfXl6KiIjZs2MCECRNIS0vD39+f9u3b89NPP+Hn52fp1EWsSp2WHcjLSmfj4lnkZKThFxJJj2FjqXFp+W5mynmz1QNFBfmsmfU+2anJ2Dk44hUYzK2PDadOyw6mmK5PvsgPCz5mxdRx5Gdn4ebjT7sej9Dwhtsqe3giIlLFxDTvQF5WBpuWzSYnIw3f4Ai6DX7dtG1EVuoFbAz/2+LeJl16UlyQz/pZ71GQm01QdALdhryOnb1DRQxBRESsRGyLizXn56Wzyc1Iwzckgjuefd30rpOVcgEbmz9qTlFBPus/nURWajJ2Dg54BQbTuf9zxLboYIrJyUjl+3kfkJuRTg0PL+Jb30iLbvdV9tBE5Brx190a5NpgYzTq5JtrwcdbTlg6BRERqSbyi7Rdl4iIVB5bbbArIiKV5LFWYZZOwSp9vuO0pVOwOr0a1bJ0ClekH8FERERERERERERERMREEwciIiIiIiIiIiIiImKiiQMRERERERERERERETHRxIGIiIiIiIiIiIiIiJjYWToBEREREREREREREbFO+mT6tUkTB9eINsE+lk5BRESqCXs7G0unICIi1UhpqaUzEBEREal+NCEkIiIiIiIiIiIiIiImmjgQERERERERERERERETTRyIiIiIiIiIiIiIiIiJJg5ERERERERERERERMREEwcVbNSoUdjY2JhdcXFxl8UZjUa6dOmCjY0Ny5Ytq/xERa4BXy2dT797buHum1ow9PEHOPjbnnJjTxxN5D+vPEu/e26hW4dGLF/4WZlxKRfO885rL3L/7R3o0aklgx7pwaH9eytqCCIiYkW+XDyPh+/uQreOzXmm3/0c2Le73NjjRw7z2ovP8vDdXbilbUOWLZjzt30v+PQTbmnbkA/eG3+10xYRESu0Ysk8+vTswh03NmfIgCvUnKOHGfvSs/Tp2YXb2jfkizJqzmefTOW29g3Nrsfu716BIxCRa9lff/ep68qXNdDEQSVISEjgzJkzpmvjxo2XxUyYMMFq/k8jUhVtWL+aT6a8zT0PD+CdD+cSHhnDqGFPkJ6WWmZ8QUE+/oG1eaD/IDy9fMqMyc7KZPhTD2NrZ8crb0xi0qzFPPLEEGq6ulXkUERExAp8/81qPpz0Nvc9MoCJH39ORFQMLw/5+7oTGFSLRx57Gk/vsuvO7w7+toeVyxcRHhlTEamLiIiV+eGb1Xw0+W16PTyA9z76nPCoGF4Z+jc1Jz+fgKBaPDTg6XLfdQBCwiP5dOk60/XGpBkVNQQREbFCmjioBHZ2dgQEBJguHx/zwr1z507efvttPvnkEwtlKGL9vlg4h0633smNXboREhbJ40NexNHJiXVfLyszPjougUceH0z7Gzpjb29fZsziuTPw8Qvg6eGjialTF//AWjRq1orAWsEVOBIREbEGS+d9Sueud9Lp1u6EhEfy1LCXcHRyYs2KZWXGx9SpS98nh3DdjeXXHYC83FzGj36BQc+9Qk1X1wrKXkRErMmyBZ9y8213ctMt3QkJi+TJZy/WnLVfLSszPqZOXfo8MYTrbuiMvUP5NcfW1hZPbx/T5e7hWUEjEBERa6SJg0pw6NAhgoKCiIiIoHfv3pw4ccJ0Lzc3l/vuu4/JkycTEBBgwSxFrFdRURGJB36jQZMWpjaDwUCDJi04sG/Xv+53y0/fExkbzxsjh/Fg94488+i9rFmx5GqkLCIiVqyoqIjDB3+jYVPzutOwaQv27/33dQdgyjtjad66HY2atfx/0xQRkWtAuTWnyf9fc5JOneDBO26i7z238uaYEZw/d+b/TVdERK4hmjioYC1atGDmzJmsWrWKqVOncvToUdq1a0dWVhYAgwcPpnXr1nTr1s3CmYpYr8yMNEpLS/Dw8jJr9/D0Ji015V/3ey7pNKu+WEhQ7RBGvTmFLt168OH741m/avn/m7KIiFixzIw0SktK8PTyNmv38PImNSX5X/f7/bpVHD64n4cHDPp/UxQRkWvE7zXHw/PympOW+u9rTmx8PQaPGMPotybzxLMvcu7MaZ5/qg+5uTn/b8oiInKNsLN0Ate6Ll26mL6uX78+LVq0IDQ0lAULFuDr68v69evZsWPH/9RnQUEBBQUFZm2FBSU4ODpelZxF5CKjsZTI2Hge6DcQgIjoOI4fPcyq5Yvo2Pl2C2cnIiLXkgvnzvLBe+N5/d1p+plOREQqXNOWbU1fh0fGEFunLn163sLG9WvodNsdFsxMRESqCq04qGQeHh7ExMRw+PBh1q9fT2JiIh4eHtjZ2WFnd3Ee56677qJDhw7l9jFu3Djc3d3NrukT36qkEYhUPW7unhgMtqSnmh8Olp6WctmnQf8Xnt4+BIdGmLUFh4Zz4fzZf92niIhYPzd3Twy2tpetaktPTcHrCgcfl+fQgX2kp6UysG8vbruuCbdd14TdO7exfNHn3HZdE0pKSq5G6iIiYmV+rznpaZfXnL87+Ph/VdPVjVrBISSdPnnV+hSR6sNG1/98WQNNHFSy7OxsEhMTCQwMZPjw4ezatYudO3eaLoB3332XGTNmlNvHiBEjyMjIMLv6DxxaSSMQqXrs7e2JjK3Dru2bTW2lpaXs2raF2Pj6/7rfOnUbknTyuFnb6ZMn8PUP/Nd9ioiI9bO3tycqpg6/bttiaistLWXnti3EJfy7utOwaQumzF7EpBnzTVd0XDwdOt3CpBnzsbW1vVrpi4iIFSmv5vy6/d/XnLLk5eZy5vSpfz0BLiIi1x5tVVTBhg4dSteuXQkNDSUpKYmRI0dia2tLr1698PX1LfNA5JCQEMLDw8vt09HREce/LGF3yMm96rmLWJNuPe7nvXGvEBUbT3Sduny5aC75+Xnc2OXi+SHvjn0Jbx8/Hux/cd/ooqIiTh47cvHr4iJSks9z5NABnJ2dCawdAsDtPe7n+ScfZuGcj2nb4SYO7t/LmhWLeeLZly0zSBERqTLuuPcB3nn9ZaLj4ompU5cvFnxGQV4eN916se689epLePv68chjf9SdE8cSASguKiblwnkSD+3H2dmFoNohuLjUICwiyuzPcHJyxs3N/bJ2ERGpXrr3fIB3x71MdOylmrPwM/Lz8rjxlos15+3XL77r/H5GzsV3nT/VnOTzHDm0H6dLNQfg48nv0LxNe/z8A0lNvsBnM6ZiMNhy3Y2dLTNIERGpcjRxUMFOnTpFr169SElJwdfXl7Zt27Jp0yZ8fX0tnZrINaVdx5vJTE9j7oyppKWmEB4Vy8jxk/G4tFVR8rmzGGz+WGSVmnyBwf3uNX2/bP5sls2fTd0GTXj9vY8AiI5LYMSrb/PphxOZP2s6/oG1ePSpYXS46ZbKHZyIiFQ5191wse58+tFU0lKTiYiKZczbU0xb5F04dwaD4Y9FyKnJ5xn4yB91Z/Hns1n8+WzqNWzCG5M+rvT8RUTEerS/4WYy0tOY88mfas5bf6k5NuY1Z1DfP2rOknmzWTJvNnUbNuE/71+sOckXzvHm6BFkZqbj7uFJfL1GvD1tNu4eXpU7OBERqbJsjEaj0dJJyP9v/xmtOBARkcphb2ctOzKKiMi1oLTU0hmIiEh1Ee3vbOkUrNLCnUmWTsHq9GgYZOkUrkhnHIiIiIiIiIiIiIiIiIm2KhIRERERERERERGRf8XGRqvSr0VacSAiIiIiIiIiIiIiIiaaOBARERERERERERERERNNHIiIiIiIiIiIiIiIiInOOLhGnEzPtXQKIiJSTTQJ8bR0CiIiUo0UFJdYOgURERGRakcrDkRERERERERERERExEQrDkRERERERERERETkX9En069N+vcqIiIiIiIiIiIiIiImWnFQwUaNGsXo0aPN2mJjY9m/fz8AHTp04Pvvvze7P2DAAKZNm1ZpOYpcK77/ejHfLJ1LZnoqtcKi6NFvMGEx8WXG/rhmOVu+XUnSiaMAhETG0vX+AWbxmempfDFrCr/t3EJeTjZRCQ3p0W8wfkHBlTIeERGp2hbNn8tnsz8hNSWZqJhYhjz3Igl165cb/83aVUyfOpGzSaepHRLKk4OG0Lrtdab7r458ga+/XGb2TItWbZkweXpFDUFERKzE0oWfM2/OzIs1JzqWQUNHUCehXrnx361bzccfTOLsmSRqB4cw4KnBtGzT3nQ/NSWZDya9y9bNP5OdlUX9Rk14eugIaoeEVsZwRETECmjFQSVISEjgzJkzpmvjxo1m9/v162d2f/z48RbKVMR6bdu4jqWfTKTLvX14/p1PqBUWxeTRQ8hKTysz/tCe7TRpdxNPv/o+z77xAR4+fkweNZj0lAsAGI1Gpo8bTvK5JAa88AbD352Bl28AE0c+TUF+XmUOTUREqqB1q1fy/jtv0Lf/E8ycu4jo6DgGP9mf1NSUMuN3/bqDkS8Mo2u3O5k1dzHtO9zA80MGknj4kFlcy9ZtWbHme9M1ZtyblTEcERGpwtavXcWUCW/y8KOP8eHsBURGxzBs0ADSyqk5e3btZMzLz3Pr7Xfy0acLaXtdR14a9jRHEi/WHKPRyEvDnubM6VO8/tb7fDhnAQGBgTz7VD/y8nIrc2giIlKFaeKgEtjZ2REQEGC6fHx8zO67uLiY3Xdzc7NQpiLWa/0X82ndqSutbriVwOBw7n18GA6Ojvz8zYoy4x8eMor2t9xJ7YgYAmqH0vvJ4RiNpRzYtRWA80knOXZgL/c+NpTQ6Dr41wrlnseGUlRYwLYNaytxZCIiUhV9/tlMbr+jB7d1u5PwiCiee3Ekjk5OrPhiSZnxC+Z+SotWbbn/ob6ERUQy4IlBxMbFs2j+Z2ZxDg4OePv4mi43N/fKGI6IiFRhC+fO5tbud9Gl6x2ERUQyZPgrODk58/WXS8uMXzxvDs1btuHeBx4hNDyCvo8NJDounqULPgfg1Inj7Nuzi8HPv0xcfF1CQsMZ/PzLFBQU8M3qlZU5NBERqcI0cVAJDh06RFBQEBEREfTu3ZsTJ06Y3f/ss8/w8fGhbt26jBgxgtxczfCL/C+Ki4o4mXiA2PrNTG0Gg4HYBk05emDPP+qjsDCfkpJiXGq6mfoEsLN3MOvTzs6BxH27rmL2IiJibYqKCjnw2z6atWhpajMYDDRr0Yo9u3aW+cye3Ttp1qKVWVuLVm3Ys+tXs7btW3/hlhvacs8dtzB+7Ggy0tOvdvoiImJFioqKOLB/H02amdecJs1asm/3r2U+s3f3rzRp3tKsrXnL1qb4oqJCABwcHc36tLe3Z/ev26/2EERExErpjIMK1qJFC2bOnElsbCxnzpxh9OjRtGvXjj179uDq6sp9991HaGgoQUFB7Nq1i+eff54DBw6wZEnZn1YTkctlZ6VTWlqCq4eXWbubuxfnTp0o5ylzX8yairunD3ENmgIQUDsUT19/ln/6Ab2eGIaDozPffjmf9JTzZKSVvSRYRESqh/T0dEpKSvDyMl9F6uXlzfFjR8p8JiU5GS9vb/N4bx9SUpJN37ds3ZYOHW8kMKg2p0+dYNqkCQweOIAPZ87F1tb26g9ERESqvIz0NEpLSvDyMq8hnl7enDh+tMxnUlOSy4xPTb1Yc0LCwvEPCOTDyRN4dsQrODm7sHDubC6cP0dqcnJZXYqI/C0bGxtLpyAVQBMHFaxLly6mr+vXr0+LFi0IDQ1lwYIF9O3bl/79+5vu16tXj8DAQG644QYSExOJjIwss8+CggIKCgrM2goLC3BwcCwzXkT+3prFn7Jt4zqefm0S9pf+Htna2dHv+bF8Nmkcz93fBYPBltgGTYlv3PIKvYmIiPw7N918i+nrqOgYoqJjufv2m9m+dctlqxVERET+LTs7e8a88S7jXxtJ1xvbYrC1pUmzlrRo3Raj0Wjp9EREpIrQxEEl8/DwICYmhsOHD5d5v0WLFgAcPny43ImDcePGMXr0aLO2+58YxoNPPXd1kxWxEjVdPTAYbMlKTzVrz8xIxc3Tq5ynLlq3bC5rF8/hqTETqBUWZXYvJCqOERNmkZeTTXFxEa7unrw5rB8hUXFXfQwiImI9PDw8sLW1NX1y83epqSl4e/uU+Yy3jw+pKeYr1lJTksuNB6hVOxgPD09OnTyhiQMRkWrK3cMTg60tqX85CDktNeWylWy/8/L2KTv+TyvlYusk8PFni8jOzqK4qAgPTy8ef+Q+YuvEX/1BiIiIVdIZB5UsOzubxMREAgMDy7y/c+dOgHLvA4wYMYKMjAyz697+T1dEuiJWwc7enuDIWNPBxgClpaUc3LWN8Ni65T63dslnrFowkydGvk1oVJ1y45xr1MTV3ZPzSSc5kbif+s3bXtX8RUTEutjbOxBbJ56tWzaZ2kpLS9m6ZRN16zcs85m69RqaxQNs2fwzdes3KPfPOX/uLBkZ6fj4+l6VvEVExPrY29sTGxfP9l82m9pKS0vZtnUT8fXKriEJ9RqYxQNs3fxzmfE1a7ri4enFqRPHOfDbXtq073h1ByAiIlZLKw4q2NChQ+natSuhoaEkJSUxcuRIbG1t6dWrF4mJicydO5dbbrkFb29vdu3axeDBg2nfvj3169cvt09HR0ccHc23JXJwKKzooYhUaR273cOn771OSFQcYdHxfPvlAgry82l5w60AzJ7wKu7ePnR74HEA1i6Zw1dzP+KhISPx9gsk89K5BY5Ozjg6uwCw/cf11HTzwMvXn6TjR1j00QTqN29HnUYtLDNIERGpMnr1fphXR44gLr4uCQn1mDd3Nvl5edx2+x0AjH55OL5+fjwxcAgAPe97gCf6PcTcT2fQuu11rFv9Nfv37WH4SxdXkebm5vDxB1O4/oZOePv4cOrkCSa/9za1g0No0UoT1iIi1VmP+x5k3OgXia2TQJ2Eeiya9yn5eXl0ua07AGNHvoCPnx/9n3wGgLvuvZ+nBzzC/M9m0bJNO9avWcWB3/by7AsjTX1+t2417p5e+AcEcOTwISa+8wZtr+tIs5atLTBCERGpijRxUMFOnTpFr169SElJwdfXl7Zt27Jp0yZ8fX3Jz89n3bp1TJgwgZycHIKDg7nrrrt46aWXLJ22iNVp0vZGsjPS+erzj8hKS6VWeDRPjnwbt0sHJqdeOGd2WM+GlUspLi7i4/Hmf9+63NOHW3v1BSAzLYUln0wkKyMVN09vWnToTOeej1TeoEREpMq68eYupKWl8tHUiaSkJBMdG8e7kz7A69LWQ+fOnsFg+GNxb/0GjRj9+nimT3mfaZMmEBwSyhvvTCQyKhoAg8GWxEMHWbniC7KyMvHx9aNFyzb0f2IgDg4OFhmjiIhUDR1v6kx6Wiozpk8mNSWZqJg4xr837Y+ac+4MNoY/3nXq1m/Iy6/+h4+nTeKjKe9RKziU1958j4jIaFNMSkoykye8SVpqCt4+vnS6pSsP9n2s0scmIiJVl41RJ99cE9b+lnzlIBERkaugSYinpVMQEZFqpKC4xNIpiIhINRHorg9s/BvLdp21dApWp3v9AEuncEU640BEREREREREREREREw0cSAiIiIiIiIiIiIiIiaaOBARERERERERERERERNNHIiIiIiIiIiIiIiIiIkmDkRERERERERERERExMTO0gnI1VHTXv8qRUSkchSVlFo6BRERqUYKilV3REREqjIbG0tnIBVBKw5ERERERERERERERMREEwciIiIiIiIiIiIiImKiiQMRERERERERERERETHRxIGIiIiIiIiIiIiIiJjoRN0KNmrUKEaPHm3WFhsby/79+03f//zzz7z44ots3rwZW1tbGjZsyOrVq3F2dq7sdEWs2roVC1m5+DMy0lIICY/m/seeJSI2oczY71Yt46f1X3Pq2BEAwqLiuPuhx83iP3xnDD9+85XZc3Ubt2Toq+9V3CBERMRqLFnwOfPmzCA1JZnI6FieHvYC8Qn1yo3/dt1qPp42ibNnTlMrOJTHBg6mVZv2pvu5ubl8MOldNn6/noyMdAKDanH3Pb3pdtc9lTEcERGpwpYvnseiz2aRmppMRFQMTwwZTlx82TXn2JHDzP5oCof3/8a5s0kMeHoYd95zv1nMvNkf8+N333DyxFEcHByJr9eQvk88Q3BoWCWMRkRErIFWHFSChIQEzpw5Y7o2btxouvfzzz/TuXNnOnXqxJYtW/jll1946qmnMBj0r0bkf7H5h7XM+/A9ut/Xl9HvzyI4PIq3Xn6azPTUMuP3795Oi/adeH7cFF56+yO8fP148+VBpCWfN4ur16QVEz792nQ9/tyrlTEcERGp4r5Zs5LJE8bz8KOP89GnC4mKjmXowAGkpaaUGb/71x2Meek5bu12Bx/NWUi76zry4tBBHDl8yBQz+d3xbPl5Iy+NGcenC5bT494HmPDmWDZ+/21lDUtERKqg79atYvr7b9G7zwAmz5hHRFQsLw5+nPRyak5Bfj6BQbXp8/ggvLx9yozZtWMrXe+6hwnTP2Xcex9QUlzMC888Rn5ebkUORUSuUQZsdP2PlzXQb6crgZ2dHQEBAabLx+ePwj148GAGDRrE8OHDSUhIIDY2lp49e+Lo6GjBjEWsz+qln3Nd5260u6krtUIieOip4Tg4OfHDmi/LjH9s2BhuuO1uQiNjCAoOo8+gFzGWlrLv161mcXb29nh4eZuuGq5ulTEcERGp4hbMnc1t3e/mltvvICwikmdHvIKTkxNfLV9aZvyieXNo3qoNvR7oQ1h4JI8+PpCYuHiWLJxritmzayedb+1GoybNCQyqxe139iAyOpbf9u2urGGJiEgVtGTep3S+/U5uvq07oeGRDHruJRwdnVi9YlmZ8bHxden31BA63NQFe3uHMmPGvjuVTrd2IywiisjoWJ59aQznz53h0P7fKnAkIiJiTTRxUAkOHTpEUFAQERER9O7dmxMnTgBw/vx5Nm/ejJ+fH61bt8bf35/rrrvObEWCiFxZcVERxw7vJ75hc1ObwWAgoWEzEvf/s1+2FBTkU1JSctnEwP7d2xl4X2eG9+/BrMlvkJ2ZcVVzFxER61NUVMTB/fto2rylqc1gMNCkeUv27v61zGf27v6VJs1ambU1b9naLL5u/Yb8+MO3XDh/DqPRyPatWzh54hjNWrSumIGIiEiVV1RUxKEDv9G4qXnNadSsJfv27Lpqf05OTjYArm76oJSIiFykiYMK1qJFC2bOnMmqVauYOnUqR48epV27dmRlZXHkyMW91UeNGkW/fv1YtWoVjRs35oYbbuDQoUNX6FlEfpeVmU5paQnuHl5m7W4eXmSklb1V0V8tnDEZDy8f4hs2M7XVa9KS/kNG8tzYSfR45CkO7N7O2yOfobSk5KrmLyIi1iUjPY2SkhI8vbzN2r28vElNSS7zmdSUZLy8zeM9vXzM4p8e9gKhEZHcdesNdGzViGGDBjD4uRdp2Ljp1R+EiIhYhcz0NEpLSvDw+msN8SYtteya878qLS1l2oTxJNRvSFhk9FXpU0RErJ8OR65gXbp0MX1dv359WrRoQWhoKAsWLKBOnToADBgwgEceeQSARo0a8c033/DJJ58wbty4MvssKCigoKDArK2woAAHbW8k8q+sWDCLzT+sZfh/puDg8Mffo5bXdTJ9HRwWRXBYFM89eif7d283m2AQERG5GhbP/4x9u3cx7u1JBAQGsnPHNt4d/zo+Pn40bdHqyh2IiIj8C5PeHsvxI4m8PW2mpVMREZEqRCsOKpmHhwcxMTEcPnyYwMBAAOLj481i6tSpY9rOqCzjxo3D3d3d7Jr9wbsVmrdIVebq5oHBYEvGXw5CzkxPxd3Tq5ynLlq5eA5fLZrN0NfeJzj87z9d4xdYC1c3D86dOfl/5ywiItbL3cMTW1vbyw5CTk1NKfcQSi9vH1JTzOPTUpNN8QX5+Xw45T2eGjyMNu07EBkdy10976PjTZ2ZN2dmhYxDRESqPjcPTwy2tpcdhJyWmoKnV9k1538x6e2xbP7xB8ZP+hBfP///uz8REbl2aOKgkmVnZ5OYmEhgYCBhYWEEBQVx4MABs5iDBw8SGhpabh8jRowgIyPD7HpwwOCKTl2kyrKztycsKo59O38xtZWWlrJv5y9ExtUr97mvF33K8nmf8OyYCYRH17nin5OafI7srAw8PP//H9BFRMR62dvbExMXz7ZfNpvaSktL2f7LZhLqNSjzmYR6Ddj+yyaztl82/2yKLy4upri4GBsb8x/PDQZbSo2lV3kEIiJiLezt7YmOrcOObeY1Z+fWzcTXrf+v+zUajUx6eyw/fb+e8RM/JCCo9tVIV0SqKRsbXf/rZQ20VVEFGzp0KF27diU0NJSkpCRGjhyJra0tvXr1wsbGhmHDhjFy5EgaNGhAw4YNmTVrFvv372fRokXl9uno6IjjX7YlcnDUC6VUbzff0YsP3xlDeHQdImLiWfPFPAry82l3020ATH97FJ7evvR4+EkAvlo4m6VzpjPguTH4+AWZPsHj5OyMk7ML+Xm5LJv7EU3bXI+7pzcXzpxm/icT8QusTd0mLcvNQ0REqoee9z3IuNEvElsngToJdVn4+Rzy8vK4pWt3AF4fOQIfXz8GPHXxwx1333s/gwY8wrw5M2nVtj3frFnJgd/2MuyFUQDUqFmTho2bMvX9t3F0csQ/IIhft29l9dfLeeqZYRYapYiIVAV33vsAb732MjFxCcTG12Xp/Dnk5+fR6bbuAIwf8yI+vn70efxp4OKByieOJl78uriIlAvnSTy4HycXF2rVDgFg0ltj+XbtSka9MQFnlxqmM3dq1KyJo6NT5Q9SRESqHE0cVLBTp07Rq1cvUlJS8PX1pW3btmzatAlfX18AnnnmGfLz8xk8eDCpqak0aNCAtWvXEhkZaeHMRaxLi/Y3kZWRztI508lISyEkIoZnx0zA3fPiIWIpF86ZfYpz/ddLKC4uYvLYEWb9dLvvUe7o3Q+DwcCpY4f58Zuvyc3JwsPLl7qNmnPnAwOwt3eo1LGJiEjVc0OnLqSnp/HJB5NITUkmKiaOt96fZtp66NzZM2Z1p16DRrzy2ht8NHUiH055j9rBobz+1vtERP2xTd7I199i+uQJvPrycDIzMwgICKLf44Podtc9lT4+ERGpOjrc2JmM9DRmfziFtNRkIqJjef2dKXheOjD5wrmzGAx/1JyU5PM88fAftWPR3FksmjuL+o2a8ubkjwFYsXQBAMOe7Gv2Zz374hg63dqtoockIiJWwMZoNBotnYT8/34+nG7pFEREpJqI8Kth6RRERKQaySsqsXQKIiJSTYR5a8XNv7FizzlLp2B1bqtb9c+V0RkHIiIiIiIiIiIiIiJiookDEREREREREREREREx0RkHIiIiIiIiIiIiIvKv2GBj6RSkAmjFgYiIiIiIiIiIiIiImGjiQERERERERERERERETLRV0TUiu6jY0imIiEg1cTo1z9IpiIhINVJYXGrpFEREpJoI83aydAoiVYZWHIiIiIiIiIiIiIiIiIkmDkRERERERERERERExERbFYmIiIiIiIiIiIjIv2JjY+kMpCJoxYGIiIiIiIiIiIiIiJhoxUEFGzVqFKNHjzZri42NZf/+/QCcPXuWYcOGsXbtWrKysoiNjeXFF1/krrvuskS6Ilbt+68X883SuWSmp1IrLIoe/QYTFhNfZuyPa5az5duVJJ04CkBIZCxd7x9gFp+ZnsoXs6bw284t5OVkE5XQkB79BuMXFFwp4xERkaptzfIFfLloDhmpKYRERPPwE8OIiksoM/abr5eyYd3XnDqeCEB4VBz3PPKkKb64uJgFM6ey85cfOX/mNM41alKvUXPu7fsUXt6+lTYmERGpmtatWMjKxZ+RkZZCcHg09z/2LJGxZdec71Yt48f1X3Pq2BEAwqLiuPuhx83iP3xnDBu/+crsuXqNWzL01fcqbhAiImJVtOKgEiQkJHDmzBnTtXHjRtO9Bx98kAMHDrB8+XJ2797NnXfeSc+ePdmxY4cFMxaxPts2rmPpJxPpcm8fnn/nE2qFRTF59BCy0tPKjD+0ZztN2t3E06++z7NvfICHjx+TRw0mPeUCAEajkenjhpN8LokBL7zB8Hdn4OUbwMSRT1OQn1eZQxMRkSro5+/W8On0CdzV+1HGTv6U0Iho/vPiQDLSU8uM/23XNlpf34mXxk9l9Luf4O3rz7gXniI1+TwAhQX5HD28nzvu68vYyZ8y5JXxJJ06zlsjn63MYYmISBW0+Ye1fP7he3S7ry+j359FcHgUb738NJnl1Jz9u7fTsn0nho+bwstvf4SXrx9vvTzIVHN+V69JK9779GvT9fhzr1bGcERExEpo4qAS2NnZERAQYLp8fHxM93766ScGDhxI8+bNiYiI4KWXXsLDw4Nt27ZZMGMR67P+i/m07tSVVjfcSmBwOPc+PgwHR0d+/mZFmfEPDxlF+1vupHZEDAG1Q+n95HCMxlIO7NoKwPmkkxw7sJd7HxtKaHQd/GuFcs9jQykqLGDbhrWVODIREamKvloyl46du9Ph5tupHRpB30EjcHB04rvVy8uMf2r4a3Tq2oOwyFhqhYTRf/BLGI1G9uz4BQCXGjV58T+TaXXdTQQFhxFdpx6PPDmMo4d+I/n82cocmoiIVDGrln7OdZ270f6mrtQKieDhp4bj4OTED2u+LDP+sWFjuOG2uwmNjCEoOIy+g16ktLSUfb9uNYuzt7fHw8vbdNVwdauM4YiIiJXQxEElOHToEEFBQURERNC7d29OnDhhute6dWvmz59PamoqpaWlzJs3j/z8fDp06GC5hEWsTHFREScTDxBbv5mpzWAwENugKUcP7PlHfRQW5lNSUoxLTTdTnwB29g5mfdrZOZC4b9dVzF5ERKxNcVERRw/tp27j5qY2g8FA3UbNObRv9z/qo6Agn+LiYmr+zS9pcnOysbGxwaVGzf87ZxERsU7FRUUcO7yfhIbmNSehYTMO7//nNaekpOSymrN/93aeuq8zz/fvwczJb5CdmXFVcxcREeumMw4qWIsWLZg5cyaxsbGcOXOG0aNH065dO/bs2YOrqysLFizgnnvuwdvbGzs7O1xcXFi6dClRUVHl9llQUEBBQYFZW2FhAQ4OjhU9HJEqKTsrndLSElw9vMza3dy9OHfqRDlPmfti1lTcPX2Ia9AUgIDaoXj6+rP80w/o9cQwHByd+fbL+aSnnCcjLeWqj0FERKxHZubFuuP+l7rj7ulF0slj/6iPuR9PxNPbx2zy4c8KCwv4/ONJtO7QSRMHIiLVWFZ5NcfDizMnj/+jPhbMmIyHlw/xDf/4oFW9Ji1p0roDvgFBnD9zmkWzpvDWyGd45a2PMNjaXtUxiMi1z4CNpVOQCqAVBxWsS5cu9OjRg/r163PzzTfz9ddfk56ezoIFCwB4+eWXSU9PZ926dWzdupUhQ4bQs2dPdu8u/5MD48aNw93d3eyaN10HGIn8W2sWf8q2jevoN2Ic9pcm4Gzt7Oj3/FjOJ53gufu7MOSeGzi4ezvxjVtiMOg/nSIi8u99MX8mP3+3liGvvFnmBz+Ki4t57/URGDHSZ+BwC2QoIiLXihULZrH5h7UMeukNs5rT8rpONG7ZnuCwKJq0uo7BI9/h6MF9/LZ7uwWzFRGRqkQrDiqZh4cHMTExHD58mMTERCZNmsSePXtISEgAoEGDBmzYsIHJkyczbdq0MvsYMWIEQ4YMMWvbcDSrwnMXqapqunpgMNiS9ZfDwTIzUnHz9CrnqYvWLZvL2sVzeGrMBGqFma/0CYmKY8SEWeTlZFNcXISruydvDutHSFTcVR+DiIhYDze3i3XnrwchZ6Sl4uHp/bfPrlj4Kcvnz+KF/0wmNCL6svu/TxoknzvLS+OnaLWBiEg151pezUlPxf0K7zpfL57DV4tm89zrkwgJv7zm/JlfYC1c3Tw4f+YkCX9amSAiItWXPjZbybKzs0lMTCQwMJDc3FyAyz69bGtrS2lpabl9ODo64ubmZnZpmyKpzuzs7QmOjDUdbAxQWlrKwV3bCI+tW+5za5d8xqoFM3li5NuERtUpN865Rk1c3T05n3SSE4n7qd+87VXNX0RErIudvT3h0XGmg43hYt3Zu/MXouPrlfvc8gWzWTL3Y4a//j6RMfGX3f990uDs6RO8+J/JuLp5VET6IiJiRezs7QmLimPfTvOas2/nL0TFlV9zvlr0KcvnfcKzYyYQHl3+u87vUpPPkZ2Vgbunz1XJW0RErJ9WHFSwoUOH0rVrV0JDQ0lKSmLkyJHY2trSq1cvPDw8iIqKYsCAAbz11lt4e3uzbNky1q5dy4oVKyyduohV6djtHj5973VCouIIi47n2y8XUJCfT8sbbgVg9oRXcff2odsDjwOwdskcvpr7EQ8NGYm3XyCZl84tcHRyxtHZBYDtP66nppsHXr7+JB0/wqKPJlC/eTvqNGphmUGKiEiVceud9zH1rdFExNQhKjaBlUs/pyA/j+s6dQVgyviRePr40qvPUwAsnz+LhZ9+wFPPv4avfyDpqckAODm74OTsQnFxMRNefZ6jh/fz3Jh3KS0tMcXUdHXHzt7eMgMVERGL63xHLz58Zwzh0XWIiIln9RfzKMjPp91NtwHwwduj8PT2pefDTwLw1cLZLJkznceeG4OPXxDpqRffdZycnXFydiE/L5dlcz+iaZvrcff05vyZ08z/ZCJ+gbWp16SlxcYpIiJViyYOKtipU6fo1asXKSkp+Pr60rZtWzZt2oSvry8AX3/9NcOHD6dr165kZ2cTFRXFrFmzuOWWWyycuYh1adL2RrIz0vnq84/ISkulVng0T458G7dLh4ilXjiHjc0fh/VsWLmU4uIiPh7/klk/Xe7pw629+gKQmZbCkk8mkpWRipunNy06dKZzz0cqb1AiIlJlterQicyMdBbN/oD0tBRCI2IY/vr7pq2Kki+cxcbwR91Z+9ViiouKmPDa82b93HV/P+5+oD9pyefZtukHAIY/0dss5uXx04hv0KSCRyQiIlVVi/Y3kZmRzpI508lISyEkIoahYybgfqnmpF44h8Hmj50M1n+9hOLiIiaNHWHWT/f7HuWO3v0wGAycPHaYjd98TW5OFp5eviQ0as5dDwzA3t6hUscmIiJVl43RaDRaOgn5/639LdnSKYiISDXh7awXShERqTyFxeVv4yoiInI1tYzysHQKVmn1vguWTsHq3Bzva+kUrkhnHIiIiIiIiIiIiIiIiIkmDkRERERERERERERExEQTByIiIiIiIiIiIiIiYqKJAxERERERERERERERMdHEgYiIiIiIiIiIiIiImNhZOgG5Og6mZls6BRERqSbqeLtaOgUREalG0gsKLZ2CiIhUGx6WTsAq2dhYOgOpCFpxICIiIiIiIiIiIiIiJpo4EBERERERERERERERE00ciIiIiIiIiIiIiIiIic44qGCjRo1i9OjRZm2xsbHs378fgMTERIYOHcrGjRspKCigc+fOTJw4EX9/f0ukK2LVfv1mOdtXLSI3IxWf4Aiu6/0EARFxV3zu4ObvWPXBOCIateK2gaNM7Uajkc3LZrPnh1UU5GYTFBXP9Q8OwsO/VgWOQkRErMV3Xy1m7bLPyExLpXZYFPf0H0JYTHyZsRvXfMGmb1eRdPwIACGRsXR/4DGz+Py8XJbNnsqvm38gJysDb78grr+tB+273FEp4xERkarr51VL+eHLeWSnpxIQGsXtfQYRHFWnzNg9m3/gu6VzSDl7mpKSEnwCatG26z00bt/JFLNuwQx2/bSe9JQL2NrZUSsihk73PkpIdNl1TEREqh+tOKgECQkJnDlzxnRt3LgRgJycHDp16oSNjQ3r16/nxx9/pLCwkK5du1JaWmrhrEWsy8Et37Fh/nRa3N6be0dOxic4gi/eeZHczPS/fS4z+SwbFnxIUEzdy+5tW7mAneu+4PoHB3LPS+9h5+jEsrdfoLhIB/SJiFR3WzesY/En73PrPX144Z0Z1A6P4v1Rg8lMTy0z/uDuHTRrdyODX5vIc+M/wMvHj/dHPUN6ygVTzOJP3mff9k08MngkIyd9TsfbezJ/+jv8unlDZQ1LRESqoF0/reer2VO44e6HeeqNDwkMjeST14eRnZFWZrxLTVeuv/MBHn9tCk+/+TFNru/C4in/4eDOLaYYn6Bgbu/zNM+89QmPjZmIp28An7w2jOwrvD+JiEj1oYmDSmBnZ0dAQIDp8vHxAeDHH3/k2LFjzJw5k3r16lGvXj1mzZrF1q1bWb9+vYWzFrEuO1YvoW77zsS3uxnvWqF0fHAQdg6O7NuwutxnSktLWD39DVp2ewB330Cze0ajkZ1rl9G8ay8iG7XGJziCTo8+R056Cke2/1TRwxERkSrumy/m0abT7bS+8TYCQ8Lp9fhzODg68vO6FWXG93l2FNfdchfBETEE1A7j/qdGYCwtZf+vW00xift307LjLcTUa4y3fyDtbu5OrfAojh3aV1nDEhGRKmjDioU0u+FWml7fBf/aYXTvNwQHBye2fvt1mfERCY1IaN4Ov9qheAfUos0tdxMQGsmx/btNMQ3b3khU/aZ4+QfhHxzOrQ8+SUFeDmePJ1bWsETkGmKjf/7nf6yBJg4qwaFDhwgKCiIiIoLevXtz4sQJAAoKCrCxscHR0dEU6+TkhMFgMK1KEJErKyku4vzxQwTHNza12RgMBMc34kxi+b9s2bL8M5xdPUho3/mye5kXzpKbkWrWp6NLDfwj4jiT+NvVHYCIiFiV4qIiTiQeIK5BU1ObwWAgrkEzjhzY84/6KCzIp6SkmBqubqa2yLh67NqygfSUCxiNRg7s2sb50yeJb9T8qo9BRESsQ3FxEUlHDhBVr4mpzWAwEFmvCScOXnli2Wg0cnj3Ni4knSQ8vkG5f8aWdV/i5FKDwNDIq5a7iIhYN51xUMFatGjBzJkziY2N5cyZM4wePZp27dqxZ88eWrZsSY0aNXj++ecZO3YsRqOR4cOHU1JSwpkzZyyduojVyMvKxFhaioubh1m7i5snaWdOlvlM0sE97N2wmvtGTSnzfm5m6qU+/tqnB7kZZW9DISIi1UN2ZjqlpSW4eXiZtbt5eHHu1PF/1MfS2VNw9/Ixm3zo2X8In01+gxF9umGwtcVgY6D3k8OJTmh0VfMXERHrkZuZQWlpKTX/UnNcPTy5kHSi3Ofyc7MZN+BuiouLMBgMdOs7mOj6Tc1iftv2E/MmjKGosABXD2/6vPQ2Nf7y/iMiItWXJg4qWJcuXUxf169fnxYtWhAaGsqCBQvo27cvCxcu5PHHH+f999/HYDDQq1cvGjdujMFQ/mKQgoICCgoKzNqKCguwd3As5wkR+bPCvFzWfDSeGx56BmdXd0unIyIi1czqRbPZumEdg1+fbPbz23crFnH0wF4ef3E8Xn4BHN67k3kfvI27lw91GjazYMYiImJtHJxcGPjmRxTm55G4eztfzZ6Ml38gEX+ajI5MaMTANz8iNzODX775is/fHcUTY6dS093TgpmLiEhVoYmDSubh4UFMTAyHDx8GoFOnTiQmJpKcnIydnR0eHh4EBAQQERFRbh/jxo1j9OjRZm1dHnmaW/s+U5Gpi1RZzq5u2BgMlx2EnJuZhksZP/RmXDhDZvI5vnz/FVOb0WgEYOKjXXhg7Me4uHld6iOdGh7ef+ozHd8QLd8VEanOarp5YDDYXnYQcmZ6Km6eXuU8ddHapXNZvWQOT49+j9phUab2woICvpgzjQEjxlGvaRsAaodFcfLIIdYtm6uJAxGRasrFzR2DwUD2X2pOVnoarh7l1xyDwYBPQG0AgsKiOX/6ON8tm2s2ceDg5HwxJqA2ITEJvDWoN1vXf02HO3pXzGBERMSq6IyDSpadnU1iYiKBgeYHsfr4+ODh4cH69es5f/48t99+e7l9jBgxgoyMDLOr0wOPV3TqIlWWrZ09fqHRnPxth6nNWFrKyd92EhgZf1m8Z2Awvcd8wH2jppquiIYtqR3XgPtGTcXVyxc33wBc3L04ue+PPgvycjh3ZD+BkXUqZVwiIlI12dnbExIZy4Fd20xtpaWlHNi1lYjYuuU+t2bJHL5eMIOnRr5DaLR5LSkpKaakuBgbG/Mfzw22BozG0qs7ABERsRp2dvYERcSSuGe7qa20tJTEPdsIibn8Xac8xlIjxUWFfx9jvHKMiIhUH1pxUMGGDh1K165dCQ0NJSkpiZEjR2Jra0uvXr0AmDFjBnXq1MHX15eff/6Zp59+msGDBxMbG1tun46OjmYHKgPYO2jPdaneGt18J2s/egv/sBj8w2PZuXYpxQX5xLftBMCaD8dTw9OHNnf3wc7eAe/aYWbPO7rUBDBrb3hTd35Z8Tke/rVw8w1g09JZ1PDwJqJx68oaloiIVFE3dLuXWe+9RkhUHGHR8az/cj4F+fm0uvE2AGa+OwYPb1+6P3jxwx2rF3/Kirkf8cizo/D2CyQjLQUARydnnJxdcHapQXTdRiyZOQkHB0e8/AI4tGcHm79dyV19BllsnCIiYnntbuvBwsnjqBURS3BUHX78ehGFBfk06XBxa+QFk8bi5uVD5/v6A/Dd0s+oFRmLt38QxUVFHNixiR0b1tD90cEAFObn8e2SOdRp2hpXT29yszL4edUyMlMvUK9VB0sNU0SsmMHG0hlIRdDEQQU7deoUvXr1IiUlBV9fX9q2bcumTZvw9fUF4MCBA4wYMYLU1FTCwsJ48cUXGTx4sIWzFrE+Mc07kJeVwaZls8nJSMM3OIJug183bVWUlXoBm785O6QsTbr0pLggn/Wz3qMgN5ug6AS6DXkdO3uHihiCiIhYkabtbiQ7M50Vcz8kMy2V2uHRDBz5junA5NTkc2Z154dVSykuLuLDN1406+fWe/twW69HAeg7dAxfzJ7KJ++MIjc7Ey/fAG6/fwDtO99ReQMTEZEqp37rjmRnprNuwQyy0lMJDIvikRfGm7YqSk8+h43NH7+1KyzI44uP3iUj5QL2Do741grhnoEvUr91RwBsDAYuJJ1g+9urycnKwMXVjdqRcfQfPRH/4HCLjFFERKoeG+PvG3uLVZv84zFLpyAiItVEHW9XS6cgIiLVSHqBtk4REZHKcWeDwCsHyWW+2Z9s6RSszg1xPpZO4Yp0xoGIiIiIiIiIiIiIiJho4kBEREREREREREREREw0cSAiIiIiIiIiIiIiIiY6HFlERERERERERERE/hUbbK4cJFZHKw5ERERERERERERERMREKw6uEX1bhFk6BRERERERERERERG5BmjFgYiIiIiIiIiIiIiImGjiQERERERERERERERETDRxICIiIiIiIiIiIiIiJjrjQERERERERERERET+FRsbS2cgFUErDirB6dOnuf/++/H29sbZ2Zl69eqxdetW032j0cgrr7xCYGAgzs7O3HjjjRw6dMiCGYtYp3lzP6PLTR1p1qgeve/twe5du/42fs3qlXS7rTPNGtXjru5d2fDD92b3jUYjkye+xw3XtaV54/r07/swx48fq8ARiIiINVHdERGRyqKaIyIilU0TBxUsLS2NNm3aYG9vz8qVK9m3bx9vv/02np6eppjx48fz/vvvM23aNDZv3kyNGjW4+eabyc/Pt2DmItZl1cqveWv8OAY88STzFi4lNjaOxwf0JSUlpcz4nTu2M3zYs9xx593MX7SM6zvewDMDn+TQoYOmmBkff8jnn33KSyNHMefzBTg7O/N4/74UFBRU1rBERKSKUt0REZHKopojIiKWYGM0Go2WTuJaNnz4cH788Uc2bNhQ5n2j0UhQUBDPPvssQ4cOBSAjIwN/f39mzpzJvffe+4/+nPziq5ayiFXqfW8PEurW44WXXgGgtLSUTjdcR6/7HqBvv/6XxQ979hny8vKYNOUDU9v9vXoSGxfHyyPHYDQaubFDOx58+BEeeqQvAFlZWXRs35oxr/+HLrfcWjkDExGRKkl1R0REKotqjkjlcdKm7v/KtwfKnsiU8l0f623pFK5IKw4q2PLly2natCk9evTAz8+PRo0a8eGHH5ruHz16lLNnz3LjjTea2tzd3WnRogU///yzJVIWsTpFhYX8tm8vLVu1NrUZDAZatmzNrl93lPnMrp07admylVlb6zZt2bVzJwCnT50iOfkCLVr+0aerqyv16jcot08REakeVHdERKSyqOaIiIilaOKggh05coSpU6cSHR3N6tWrefzxxxk0aBCzZs0C4OzZswD4+/ubPefv72+691cFBQVkZmaaXVpOKNVZWnoaJSUleHubz9Z6e3uTnJxc5jPJycl4e/tcHp+SfOn+hYttPv+8TxERqR5Ud0REpLKo5oiIiKVo4qCClZaW0rhxY8aOHUujRo3o378//fr1Y9q0af+6z3HjxuHu7m52vfnGuKuYtYiIiIiIiIiIiMiV2eif//kfa6CJgwoWGBhIfHy8WVudOnU4ceIEAAEBAQCcO3fOLObcuXOme381YsQIMjIyzK5hz4+ogOxFrIOnhye2traXHQ6WkpKCj49Pmc/4+PiQkpJ8efylT+b4+PhebEv+532KiEj1oLojIiKVRTVHREQsRRMHFaxNmzYcOHDArO3gwYOEhoYCEB4eTkBAAN98843pfmZmJps3b6ZVK/M9CX/n6OiIm5ub2eXo6FhxgxCp4uwdHKgTn8DmTX+cC1JaWsrmzT9Tv0GjMp+p37AhmzdtMmvb9PNP1G/YEIBatWvj4+PL5s1/9Jmdnc3uXb+W26eIiFQPqjsiIlJZVHNERMRSNHFQwQYPHsymTZsYO3Yshw8fZu7cuUyfPp0nn3wSABsbG5555hlee+01li9fzu7du3nwwQcJCgqie/fulk1exIo88NAjLFm0gOXLlnIkMZHXxowiLy+P7nfcCcCLI57jvXffNsX3vv9BfvpxA7NmfsLRI4lMnTyRvXv2cO999wMX/272fuBBPvxgKt+t/4ZDBw/w0ojn8PXzo+MNN5aVgoiIVCOqOyIiUllUc0RExBLsLJ3Ata5Zs2YsXbqUESNGMGbMGMLDw5kwYQK9e/c2xTz33HPk5OTQv39/0tPTadu2LatWrcLJycmCmYtYl85dbiEtNZUpk94nOfkCsXF1mPLBR3hfWmp79swZDDZ/zJU2bNSYcePfYtL7E5g44R1CQsOYMHEy0dExpphH+vYjLy+PMaNeISsrk0aNmzDlg4+0wkdERFR3RESk0qjmiIiIJdgYjUajpZOQ/19+saUzEBERERERERERsV5O+oj1v/LdgVRLp2B1OsR6WTqFK9JfBxERERERERERERH5Vww2ls5AKoLOOBARERERERERERERERNNHIiIiIiIiIiIiIiIiIkmDkRERERERERERERExEQTByIiIiIiIiIiIiIiYqLDka8R83acsHQKIiJSTdSq6WLpFEREpBrJKSq2dAoiIlJNdK8fYOkURKoMTRyIiIiIiIiIiIiIyL9ig42lU5AKoK2KRERERERERERERETERBMHIiIiIiIiIiIiIiJioq2KKsHp06d5/vnnWblyJbm5uURFRTFjxgyaNm0KwJIlS5g2bRrbtm0jNTWVHTt20LBhQ8smLWKFtq39gs1fLSQ7IxW/kEg6PfgkQZFxZcYe+GUDPy3/nLRzSZSWlODpH0TzW+6mXtubTDHj7r+pzGevv7cfLW/rWSFjEBER6/H914v5ZulcMtNTqRUWRY9+gwmLiS8z9sc1y9ny7UqSThwFICQylq73DzCLz0xP5YtZU/ht5xbycrKJSmhIj36D8QsKrpTxiIhI1fXTqqX8sHweWempBIZG0q3P0wRH1ykzds/mH1i/ZA4pZ09TUlKMT0Bt2nftSePrbgagpLiY1fM+4sD2TaScP4OTSw2i6zWhS+8BuHn5VOawRESkCtPEQQVLS0ujTZs2XH/99axcuRJfX18OHTqEp6enKSYnJ4e2bdvSs2dP+vXrZ8FsRazXvk3f8c1nH9D5kUEERdXhl1VLmP/GCPq/+Qk13D0vi3eq4Ubr2+/DOygYWzt7Du/YxFfT36KGmwcR9ZsBMHDSfLNnjvy6ha8+eofY5u0qZUwiIlJ1bdu4jqWfTOSex4cRFhPPt8sXMHn0EF6Z/DmuHpfXnUN7ttOk3U30iKuLnYMja5fMYfKowbw4cQ4e3r4YjUamjxuOra0dA154AycXF9Z/MZ+JI5/mpYmf4ejkbIFRiohIVfDrj+tZMWsyd/QfQkhUPBu/WsjHrw9l6HtzqFnGu45zTVc63nk/vrVCsLOz57dtP7NwyhvUcPcktmFzCgvyOX3kIB3vfpCg0Chyc7L4csZEZr7xAoPemG6BEYqISFWkiYMK9sYbbxAcHMyMGTNMbeHh4WYxDzzwAADHjh2rzNRErilbVi6mwfVdqH9dZwA6P/I0h3duZtf3q2l1+72XxYfGNzD7vlnnO9m9YS0nD+w1TRzU9PAyizm4/WdC6zTA0y+wgkYhIiLWYv0X82ndqSutbrgVgHsfH8bebT/x8zcr6HTXA5fFPzxklNn3vZ8czq8/f8eBXVtpcX0Xzied5NiBvbz4/qcEhkQAcM9jQ3nhka5s27CW1jfdXtFDEhGRKmrDigU0v+E2ml1/CwB39H+W/ds38cv6r7n+jt6XxUcmNDL7vu2td7Pt+1Uc27+b2IbNca5Rk36vvGMW063v00wa8RhpF87h6etfcYMRERGroTMOKtjy5ctp2rQpPXr0wM/Pj0aNGvHhhx9aOi2Ra0pJcRFnjx4kPKGxqc3GYCAsoTGnD++74vNGo5Fje7aTevYUIXH1yozJyUgjcedmGnToctXyFhER61RcVMTJxAPEXppoBjAYDMQ2aMrRA3v+UR+FhfmUlBTjUtPN1CeAnb2DWZ92dg4k7tt1FbMXERFrUlxUxOkjB4mu38TUZjAYiKrfhBMH917xeaPRyOHd27iQdJLwOvXLjcvPzcHGxgbnGjWvSt4iUr3Y2Oj6Xy9roBUHFezIkSNMnTqVIUOG8MILL/DLL78waNAgHBwceOihhyydnsg1ITcrA2NpKS5/WaZbw92TlDMny30uPzeHSQPvpaS4CBuDgZsfHkR4vSZlxu7esAYHJxdim7a9qrmLiIj1yc5Kp7S0BNe/rExzc/fi3KkT/6iPL2ZNxd3Th7gGF8+8CqgdiqevP8s//YBeTwzDwdGZb7+cT3rKeTLSUq76GERExDrkZmVQWlpy2ZZEru6eXDhdfs3Jy8lm7IC7KS4uxGCwpfujzxDToFmZsUWFBayc8wEN2tyAk0uNq5q/iIhYL00cVLDS0lKaNm3K2LFjAWjUqBF79uxh2rRp/3rioKCggIKCArO2osIC7B0c/+98RaoTRydn+rw+jaKCPI7t3cE3n03Dwzfwsm2MAH79fjUJrTti5+BQRk8iIiL/3JrFn7Jt4zqefm2S6ec3Wzs7+j0/ls8mjeO5+7tgMNgS26Ap8Y1bWjhbERGxRo7OLjz95kcU5udxeM92Vsyagpd/0GXbGJUUF/PZO6MwYuSOfkMslK2IiFRFmjioYIGBgcTHx5u11alTh8WLF//rPseNG8fo0aPN2ro9+gzd+w/+132KWDMXV3dsDAZyM9LM2nMy0so8LOx3NgYDXgG1APAPjSLl9Al+/vLzyyYOTu7fTeqZk3R/6sWrn7yIiFidmq4eGAy2ZKWnmrVnZqTi5ulVzlMXrVs2l7WL5/DUmAnUCosyuxcSFceICbPIy8mmuLgIV3dP3hzWj5CouKs+BhERsQ4uru4YDLZk/+VdJysj7bKVb39mMBjwCawNQFB4NOdPHefbpZ+ZTRxcnDQYSXryOfqNfFerDURExIzOOKhgbdq04cCBA2ZtBw8eJDQ09F/3OWLECDIyMsyuWx9+4v9NVcRq2drZExAew7G9O0xtxtJSju/dQa2o+L950pzRaKTk0h7Tf/br9ysJCI/GPzTyquQrIiLWzc7enuDIWA7s2mpqKy0t5eCubYTH1i33ubVLPmPVgpk8MfJtQqPqlBvnXKMmru6enE86yYnE/dRvrm3yRESqKzt7e2pFxHB49zZTW2lpKYd3byckJuEf92M0lpq96/w+aZB89jSPvvwONVzdr2reIiJi/bTioIINHjyY1q1bM3bsWHr27MmWLVuYPn0606dPN8WkpqZy4sQJkpKSAEwTDQEBAQQEBFzWp6OjI46O5tsS2TukV9wgRKxA8y53seKD8QSExxAUGcsvq5ZSVJBP/etuBuDLaW/g6ulDh3v6AvDT8s8JDI/Bwz+IkqJCEn/dwp4f13Hzw4PM+i3IzWH/lg10vK9/pY9JRESqro7d7uHT914nJCqOsOh4vv1yAQX5+bS84VYAZk94FXdvH7o98DgAa5fM4au5H/HQkJF4+wWSeencAkcnZxydXQDY/uN6arp54OXrT9LxIyz6aAL1m7ejTqMWlhmkiIhUCe1u68mCyeOoHRlH7ag4Nn61iKKCPJpe3wWA+RNfx83Lly69L76zfLt0DrUiYvEOqEVxUSEHdmxm+w9rTFsRlRQXM+ftVzh99CAPD/8PxtISsi7VJeeabtjZ21tmoCIiUqVo4qCCNWvWjKVLlzJixAjGjBlDeHg4EyZMoHfv3qaY5cuX88gjj5i+v/feewEYOXIko0aNquyURaxSfMsO5Gams2HxLHIy0vALjaTnc2OpcWmroszk89j86dj6ooJ8Vs98n6zUZOwcHPEOCqbr48OJb9nBrN99m77DaDQS36pjZQ5HRESquCZtbyQ7I52vPv+IrLRUaoVH8+TIt3G7tG1E6oVzZnVnw8qlFBcX8fH4l8z66XJPH27tdXFSOzMthSWfTCQrIxU3T29adOhM556PICIi1VuDNh3JyUxnzfxPyEpPJSgsij4vvmnaqig9+Tw2Nn9sKFGYn8+yj94lI+UC9g6O+NYK4d6BL9GgzcV3mozUC+zb+iMA7w3ra/Zn9R814bJzEERErsTmyiFihWyMRqPR0knI/2/mLycsnYKIiFQTtWq6WDoFERGpRnKKii2dgoiIVBPd61++84dc2Y+H0q4cJGbaRJd/JmdVoTMORERERERERERERETERBMHIiIiIiIiIiIiIiJiookDEREREREREREREREx0cSBiIiIiIiIiIiIiIiY2Fk6ARERERERERERERGxTgYbG0unIBVAEwfXiKU7z1s6BRERqSZiAl0tnYKIiFQjKdmFlk5BRESqie71AyydgkiVoa2KRERERERERERERETERBMHIiIiIiIiIiIiIiJiookDEREREREREREREREx0cSBiIiIiIiIiIiIiIiY6HDkSnD69Gmef/55Vq5cSW5uLlFRUcyYMYOmTZtSVFTESy+9xNdff82RI0dwd3fnxhtv5D//+Q9BQUGWTl3EqtwS70v3+gF4OttzLDWX6T+d5NCFnDJjO0Z783SHcLO2wuJSeszYbvre3dmOh5rXplEtN2o42rL3TDbTfzrBmcyCCh2HiIhYh6Mbv+Lwd0spyErDLSicenf0xzMk5orPnd7xA9vmvEVAQgua93nR1F5ckMe+r2Zxds9mCnOycPH2J6LtbYS17lKRwxARESvQMcqLznV8cXey42R6Pp9tS+Joal6ZsW3CPejbItisraiklAEL95q+71bXj+Yh7ni5OFBcauR4ah5Ldp3lSDl9ioj8HRtLJyAVQhMHFSwtLY02bdpw/fXXs3LlSnx9fTl06BCenp4A5Obmsn37dl5++WUaNGhAWloaTz/9NLfffjtbt261cPYi1qNthCd9WgYzdeNxDp7PoWtdf0Z1ieaJBXvIyC8u85mcwmKeWLDH9L3xL/dfuCmKklIjr685TF5RCbfXC2DMLTE8tWgvBcWlFTgaERGp6k7v2MDe5R9T/+4n8AyJ4ciG5WyaPpKOz0/F0dWj3OdyU8+x98sZeEXEX3Zv7/KPuXBoF43vG4KLlx/nD+xg95JpOLl5EVC3RQWORkREqrJmwe7c0yiQT7cmcSQll5tifRjSIZwXvjpAVkFJmc/kFpbwwtcH/2j4y8vO2awCPtuWxIXsQuxtDXS61OeIv+lTRESqF21VVMHeeOMNgoODmTFjBs2bNyc8PJxOnToRGRkJgLu7O2vXrqVnz57ExsbSsmVLJk2axLZt2zhx4oSFsxexHt3q+bNmfzLfHEzhZHo+Uzcep6C4lBtjfcp9xmiE9Lxi05WR98cEQ5C7I3H+NZn643EOJ+dyOqOAaRuP42BnoH2kV2UMSUREqrDEH74gpGUnQprfiGtACPXvegJbe0dObFlX7jPG0hK2ffY2sTf3ooZXwGX3U4/tJ7hZR3yi6uHi5U9Yq864BYWTdvJQRQ5FRESquJvjfPghMY2NR9NIyixg9i+nKSwupV3E37+XZOYX/3EVmH+YavPxDPady+FCThFJmQXM23EGFwdbans4VeRQRETEimjioIItX76cpk2b0qNHD/z8/GjUqBEffvjh3z6TkZGBjY0NHh4elZOkiJWzM9gQ6VODX09nmtqMwK+nM4n1q1Huc872tnx4bz0+7lWfF26KJNjzjx+S7Q0X//NYVPzHR3OMQHGJkToBNa/6GERExHqUFheRceowvtENTW02BgM+MQ1IO76/3OcOrJmPY00PQlt0KvO+V1gc5/ZuIS8jBaPRSPLhXWRfSMIvpmGZ8SIicu2zNdgQ6unMvnPZpjYjsO9cNpHeLuU+52hnYHzXWN66PZaBbUMJcnP82z/jukgvcgtLOJmWfzXTFxERK6atiirYkSNHmDp1KkOGDOGFF17gl19+YdCgQTg4OPDQQw9dFp+fn8/zzz9Pr169cHNzK7PPgoICCgrM91gvKSrE1t6hQsYgUtW5Odlha7AhPa/IrD09r7jcT8yczshn4g/HOJaSi4uDLd3rB/DG7XEMXLSXlJwiTqXncz6rgAea12LKhourF26v549PTQe8XOwrY1giIlJFFeZkYiwtvWxLIseaHmSfP13mMylH9nFiy1quG/Jeuf3WvWMAvy6cxNoxj2BjsMXGxoYGPZ/CO7Lu1UxfRESsiKuDLbYGGzL/sv1qZn4xgeVMBpzNLGTGllOcTM/H2d6WznE+vHBjJC+vPEjan1ZZNwhyZUCrYBzsDGTkFfPWd0fJLtQ2RSIicpFWHFSw0tJSGjduzNixY2nUqBH9+/enX79+TJs27bLYoqIievbsidFoZOrUqeX2OW7cONzd3c2uQytnVuAoRK49B87n8O2hFI6m5rH3bDb/WZtIZl4xN8f5AlBiNPKfdYkEuTsx96FGLHikMfUCXdl6IoPSvx6GICIi8jeK83PZ8fk7NOjxFI41y/5gCMDRDStIO36Q5n1eov3gd0i4vQ+7lnzAhYM7Ky9ZERGxeokpufx0LJ2T6fkcvJDD5I3HySoopkOUt1ncb+eyGbX6MGPXJbLnbBaPtw7B1dHWQlmLiEhVoxUHFSwwMJD4ePPD7+rUqcPixYvN2n6fNDh+/Djr168vd7UBwIgRIxgyZIhZ231z9pQTLXLty8wvpqTUiIez+UoAD2c70nKLynnKXInRyJGUXLNP7SQm5zJ4yT5c7G2xs734KZ83u8Vx+ELuVc1fRESsi0MNN2wMBgqy0s3aC7LTcSrjYOSclLPkpp5nyyevmtqMxouz0F8O607H56fi5O7Fbys/pfnDI/CPbwaAe1A4GaePcvi7pfhquyIRkWopq7CEklIjbk7mv75xc7IzO6Pt75QY4URaPn41zXcpKCwxcj67kPPZcCTlNONujaFdhBdf/3bhquUvItWEjaUTkIqgiYMK1qZNGw4cOGDWdvDgQUJDQ03f/z5pcOjQIb799lu8vb3/2o0ZR0dHHB3NlyRqmyKpzopLjSQm51C/liubj6cDF2tW/SA3vt53/h/1YbCBUC9ntp3MuOxeblEJFEGgmyORPjX4bGvSVcxeRESsjcHOHvfaUSQf+pXAei0BMJaWknxoF+Ftbr0svqZfbToMnWjWtn/lHIoL8qjbvR/OHj6UFBdhLCkGG/MFwTYGAxi11E1EpLoqKTVyPC2POv412HHpTDcboI5/TdYfSvlHfdjYQG0PR3YlZV8xzt5Wv/0TEZGLNHFQwQYPHkzr1q0ZO3YsPXv2ZMuWLUyfPp3p06cDFycN7r77brZv386KFSsoKSnh7NmzAHh5eeHgoAkBkX/ii93nePq6cA5fyOXQhRy61vXHyd7AuoPJADzTIYyUnCI+/eXi3tP3NArkwPkczmTmU8PBjjvq++Nb05G1+5NNfbYO9yQzv5gL2QWEernwaKtgNh9PZ+efDmEWEZHqKbJ9N3bMm4B7cBSeITEc+WE5JYX5BDe/AYDtc9/Fyd2L+FsfwtbeAbfAULPn7Z1rAJjaDXb2eEfWZd+KGdjaO+Ds6UtK4l5Obv2WhG59KndwIiJSpazen8yjLWtzLDWPo6l53BTjjaOdgY1H0gB4tEVt0vKKWLzrHABdE/w4kpLL+awCnB1s6RLni7eLAxuOpALgYGvDbQl+7DydSUZeMTUdbekY7Y2nsz2/nLj8g1QiIlI9aeKggjVr1oylS5cyYsQIxowZQ3h4OBMmTKB3794AnD59muXLlwPQsGFDs2e//fZbOnToUMkZi1injUfScHOy474mQXi62HM0JZfRKw+Zlu/61HA0O5ugpqMdT7YL/S97dx4f89X+f/w9iUhSS8RMYq3EErElRNGI1l5Fq5Y2SoMglqqllluJ2qqttEpL7VRDLVVdqKql6KaW0BKxFaXlppSJJEIjwczvD77jN3dCVZuZjLye9+PzeNzO5/qcXEfrcZlecz5Hvg946FLmdR0zX9aI1Yf039QrtpjiD3goJvxB+dx85dE3R5O1Ys8ZRy8NAJAHlQl7VFmX03R4wzJlXkxR0TIVFN57vLyK+EqSMlLPy2D4e9/afKjLcB1a+4F2L52irD8v6QFfP1Vt3UWB9VvlxhIAAC5i13/TVMSrgNqFlJCPVwH9N/WK3vn2V13MvPFZp3ghD1n+v/hCBd0VXbeMfLwK6M+s6/otJUMTNx3T7xczJUkWq1SqiKcaNAhQYU93Xc66rl+TMxS3+bgtBgAAg9XK3uf7Qdv5Pzo7BQBAPlG5VBFnpwAAyEeSL2U5OwUAQD7xfqcQZ6fgknYcS3V2Ci4nvGIxZ6fwl9z+OgQAAAAAAAAAAOQXvKoIAAAAAAAAAHBPDOJg9fsROw4AAAAAAAAAAIANjQMAAAAAAAAAAGBD4wAAAAAAAAAAANhwxsF94qMedZydAgAAAAAAAADgPsCOAwAAAAAAAAAAYMOOAwAAAAAAAADAPTEYnJ0BcgM7DgAAAAAAAAAAgA2NAwc4ffq0unTpIqPRKG9vb4WEhOjHH3+03R8/fryqVKmiQoUKydfXV82bN1dCQoITMwZc0/JlS9XqsaaqGxaiqE6R2peUdMf4rzasU9snW6puWIiebtdGW77/zu6+1WrVzOnT1KzRI6pXO1R9YrrrxInfcnEFAABXQt0BADgKNQcA4Gg0DnJZSkqKGjRoIA8PD61bt04HDx7UlClT5Ovra4upXLmyZsyYoX379umHH35QYGCgWrRoofPnzzsxc8C1rF+3VpMnxanvC/21/OOVCg6uon59Y5ScnJxjfOKe3Ro5fJjad3hGH32ySk2aNtPggf119OgRW0z8gvn6cOlijR43Xks+XCFvb2/16xOjzMxMRy0LAJBHUXcAAI5CzQEAOIPBarVanZ3E/WzkyJHaunWrtmzZctfPXLx4UT4+Ptq0aZOaNWt2V89cuXavGQL3h6hOkapeI0SjRo+VJFksFrVo1kidn+uqmN59ssUPHzZYGRkZmjFrrm2sS+eOCq5SRWPGTZDValXzxo+qW/ceiu4RI0lKT09X04YRmvD6G2rV+gnHLAwAkCdRdwAAjkLNARzHi9Ng78nO42nOTsHl1Kvg4+wU/hI7DnLZ6tWrVadOHUVGRsrf319hYWGaP3/+beOzsrI0b948+fj4qGbNmg7MFHBdV7OydOjgAYXXj7CNubm5KTw8Qkl79+T4TFJiosLD69uNRTR4REmJiZKk06dOyWw+r4fDb81ZpEgRhYTWvO2cAID8gboDAHAUag4AwFloHOSy48ePa/bs2QoKCtKGDRvUr18/DRo0SIsWLbKLW7NmjQoXLiwvLy+988472rhxo0wmk5OyBlxLSmqKrl+/LqPRaDduNBplNptzfMZsNstoNGWPTzbfvH/jVWFG093PCQDIH6g7AABHoeYAcAUGrr99uQI24OQyi8WiOnXqaOLEiZKksLAw7d+/X3PmzFF0dLQtrkmTJkpMTJTZbNb8+fPVsWNHJSQkyN/fP9ucmZmZ2d47aHX3lKenZ+4uBgAAAAAAAABw32PHQS4rVaqUqlWrZjdWtWpVnTx50m6sUKFCqlSpksLDw7VgwQIVKFBACxYsyHHOuLg4+fj42F1vvRmXa2sA8jrfYr5yd3fPdjhYcnLybXfumEwmJSebs8ff/GaOyeR3Y8x893MCAPIH6g4AwFGoOQAAZ6FxkMsaNGigw4cP240dOXJEAQEBd3zOYrFk21Xwf2JjY5WWlmZ3DR8R+6/lDLgaj4IFVbVadSXs2G4bs1gsSkjYrtCaYTk+E1qrlhJ27LAb27F9m0Jr1ZIklSlbViaTnxISbs156dIl7Uvae9s5AQD5A3UHAOAo1BwAgLPwqqJcNmTIEEVERGjixInq2LGjdu7cqXnz5mnevHmSpMuXL+v111/XU089pVKlSslsNmvmzJk6ffq0IiMjc5zT0zP7a4muXMv1pQB5WtfoHhozaoSqV6+hGiGhWrJ4kTIyMtSufQdJ0suxL8nfv4ReHDJMkhTVpZtiunfVooXvq2HDRlq/bq0O7N+vMeMnSJIMBoOiunbT/LmzFVAuQGXKltXM6dPk5++vps2aO22dAIC8gboDAHAUag4AwBloHOSyunXrauXKlYqNjdWECRNUvnx5TZ06VVFRUZIkd3d3/fzzz1q0aNHNA4yMqlu3rrZs2aLq1as7OXvAdbRs1VopFy5o1ox3ZTafV3CVqpo19z0Zb261PXvmjNwMtzZZ1QqrrbhJkzXj3amaPvVtlQsI1NTpMxUUVNkW0yOmtzIyMjRh/Filp19UWO2HNGvue5wnAgCg7gAAHIaaAwBwBoPVarU6Own8c+w4AAAAAAAAAO6dF1+xvie7fk1zdgoup255H2en8Jc44wAAAAAAAAAAANjQOAAAAAAAAAAAADY0DgAAAAAAAAAAgA2NAwAAAAAAAAAAYEPjAAAAAAAAAAAA2HBWOAAAAAAAAADgnhhkcHYKyAXsOAAAAAAAAAAAADY0DgAAAAAAAAAAgA2NAwAAAAAAAAAAYEPjAAAAAAAAAAAA2NA4cIDTp0+rS5cuMhqN8vb2VkhIiH788cccY59//nkZDAZNnTrVsUkC94Hly5aq1WNNVTcsRFGdIrUvKemO8V9tWKe2T7ZU3bAQPd2ujbZ8/53dfavVqpnTp6lZo0dUr3ao+sR014kTv+XiCgAAroS6AwBwFGoOAMDRaBzkspSUFDVo0EAeHh5at26dDh48qClTpsjX1zdb7MqVK7Vjxw6VLl3aCZkCrm39urWaPClOfV/or+Ufr1RwcBX16xuj5OTkHOMT9+zWyOHD1L7DM/rok1Vq0rSZBg/sr6NHj9hi4hfM14dLF2v0uPFa8uEKeXt7q1+fGGVmZjpqWQCAPIq6AwBwFGoOgLzOYOD6u5croHGQy9588009+OCDio+PV7169VS+fHm1aNFCFStWtIs7ffq0Bg4cqKVLl8rDw8NJ2QKua/GieHV4pqPatX9aFStV0uhxr8jLy0urPvs0x/ilSz5QxCOPqnvPXqpQsaIGDBqsqtWqafmyJZJufANn6eIP1LtvPzVp2lyVg6votbhJOn/unL7evMmRSwMA5EHUHQCAo1BzAADOQOMgl61evVp16tRRZGSk/P39FRYWpvnz59vFWCwWde3aVcOHD1f16tWdlCnguq5mZenQwQMKrx9hG3Nzc1N4eISS9u7J8ZmkxESFh9e3G4to8IiSEhMlSadPnZLZfF4Ph9+as0iRIgoJrXnbOQEA+QN1BwDgKNQcAICz0DjIZcePH9fs2bMVFBSkDRs2qF+/fho0aJAWLVpki3nzzTdVoEABDRo06K7mzMzM1MWLF+0uthMiP0tJTdH169dlNBrtxo1Go8xmc47PmM1mGY2m7PHJ5pv3z98YM939nACA/IG6AwBwFGoOAMBZaBzkMovFotq1a2vixIkKCwtTnz591Lt3b82ZM0eS9NNPP2natGlauHChDHf5gqu4uDj5+PjYXW+9GZebywAAAAAAAAAA5BM0DnJZqVKlVK1aNbuxqlWr6uTJk5KkLVu26Ny5cypXrpwKFCigAgUK6MSJExo2bJgCAwNznDM2NlZpaWl21/ARsbm9FCDP8i3mK3d392yHgyUnJ8tkMuX4jMlkUnKyOXv8zW/mmEx+N8bMdz8nACB/oO4AAByFmgMAcBYaB7msQYMGOnz4sN3YkSNHFBAQIEnq2rWrkpKSlJiYaLtKly6t4cOHa8OGDTnO6enpqaJFi9pdnp6eub4WIK/yKFhQVatVV8KO7bYxi8WihITtCq0ZluMzobVqKWHHDruxHdu3KbRWLUlSmbJlZTL5KSHh1pyXLl3SvqS9t50TAJA/UHcAAI5CzQHgCgxcf/tyBQWcncD9bsiQIYqIiNDEiRPVsWNH7dy5U/PmzdO8efMk3XiH4P++q9DDw0MlS5ZUcHCwM1IGXFLX6B4aM2qEqlevoRohoVqyeJEyMjLUrn0HSdLLsS/J37+EXhwyTJIU1aWbYrp31aKF76thw0Zav26tDuzfrzHjJ0iSDAaDorp20/y5sxVQLkBlypbVzOnT5Ofvr6bNmjttnQCAvIG6AwBwFGoOAMAZaBzksrp162rlypWKjY3VhAkTVL58eU2dOlVRUVHOTg24r7Rs1VopFy5o1ox3ZTafV3CVqpo19z0Zb261PXvmjNwMtzZZ1QqrrbhJkzXj3amaPvVtlQsI1NTpMxUUVNkW0yOmtzIyMjRh/Filp19UWO2HNGvue+zwAQBQdwAADkPNAQA4g8FqtVqdnQT+uSvXnJ0BAAAAAAAA4Lq8+Ir1Pdn920Vnp+ByagcWdXYKf4kzDgAAAAAAAAAAgA2NAwAAAAAAAAAAYMMGHAAAAAAAAADAvTE4OwHkBnYcAAAAAAAAAAAAGxoHAAAAAAAAAADAhsYBAAAAAAAAAACwoXEAAAAAAAAAAABsaBwAAAAAAAAAAACbAs5OAAAAAAAAAADgmgwyODsF5AJ2HDjA6dOn1aVLFxmNRnl7eyskJEQ//vij7X737t1lMBjsrpYtWzoxY8A1LV+2VK0ea6q6YSGK6hSpfUlJd4z/asM6tX2ypeqGhejpdm205fvv7O5brVbNnD5NzRo9onq1Q9UnprtOnPgtF1cAAHAl1B0AgKNQcwAAjkbjIJelpKSoQYMG8vDw0Lp163Tw4EFNmTJFvr6+dnEtW7bUmTNnbNeHH37opIwB17R+3VpNnhSnvi/01/KPVyo4uIr69Y1RcnJyjvGJe3Zr5PBhat/hGX30ySo1adpMgwf219GjR2wx8Qvm68OlizV63Hgt+XCFvL291a9PjDIzMx21LABAHkXdAQA4CjUHAOAMBqvVanV2EvezkSNHauvWrdqyZcttY7p3767U1FStWrXqnn/OlWv3/ChwX4jqFKnqNUI0avRYSZLFYlGLZo3U+bmuiundJ1v88GGDlZGRoRmz5trGunTuqOAqVTRm3ARZrVY1b/younXvoegeMZKk9PR0NW0YoQmvv6FWrZ9wzMIAAHkSdQcA4CjUHMBxvHip+z3ZcyLd2Sm4nLCAIs5O4S+x4yCXrV69WnXq1FFkZKT8/f0VFham+fPnZ4v79ttv5e/vr+DgYPXr1++23xwAkN3VrCwdOnhA4fUjbGNubm4KD49Q0t49OT6TlJio8PD6dmMRDR5RUmKiJOn0qVMym8/r4fBbcxYpUkQhoTVvOycAIH+g7gAAHIWaAwBwFhoHuez48eOaPXu2goKCtGHDBvXr10+DBg3SokWLbDEtW7bUBx98oM2bN+vNN9/Ud999p1atWun69etOzBxwHSmpKbp+/bqMRqPduNFolNlszvEZs9kso9GUPT7ZfPP++RtjprufEwCQP1B3AACOQs0BADgLG3BymcViUZ06dTRx4kRJUlhYmPbv3685c+YoOjpaktSpUydbfEhIiEJDQ1WxYkV9++23atasWbY5MzMzs7130OruKU9Pz1xcCQAAAAAAAADYMxicnQFyAzsOclmpUqVUrVo1u7GqVavq5MmTt32mQoUKMplM+uWXX3K8HxcXJx8fH7vrrTfj/tW8AVfiW8xX7u7u2V7xlZycLJPJlOMzJpNJycnm7PE3v5ljMvndGDPf/ZwAgPyBugMAcBRqDgDAWWgc5LIGDRro8OHDdmNHjhxRQEDAbZ85deqUkpOTVapUqRzvx8bGKi0tze4aPiL2X80bcCUeBQuqarXqStix3TZmsViUkLBdoTXDcnwmtFYtJezYYTe2Y/s2hdaqJUkqU7asTCY/JSTcmvPSpUval7T3tnMCAPIH6g4AwFGoOQAAZ6FxkMuGDBmiHTt2aOLEifrll1+0bNkyzZs3T/3795d0ozgPHz5cO3bs0G+//abNmzerbdu2qlSpkh5//PEc5/T09FTRokXtLl5ThPyua3QPffbJCq1etVLHjx3TaxPGKyMjQ+3ad5AkvRz7kqa9M8UWH9Wlm7Zt3aJFC9/Xr8ePafbM6Tqwf786PddFkmQwGBTVtZvmz52tb7/erKNHDmt07Evy8/dX02bNnbFEAEAeQt0BADgKNQcA4AyccZDL6tatq5UrVyo2NlYTJkxQ+fLlNXXqVEVFRUmS3N3dlZSUpEWLFik1NVWlS5dWixYt9Oqrr9IMAP6Glq1aK+XCBc2a8a7M5vMKrlJVs+a+J+PNrbZnz5yRm+FWr7RWWG3FTZqsGe9O1fSpb6tcQKCmTp+poKDKtpgeMb2VkZGhCePHKj39osJqP6RZc9/jzyYAgLoDAHAYag4AwBkMVqvV6uwk8M9duebsDAAAAAAAAADX5cVXrO9J4sl0Z6fgcmqVK+LsFP4SfxwAAAAAAAAAAPfE4OwEkCs44wAAAAAAAAAAgDxq5syZCgwMlJeXlx5++GHt3LnztrHz58/Xo48+Kl9fX/n6+qp58+Z3jL8dGgcAAAAAAAAAAORBH330kYYOHapx48Zp9+7dqlmzph5//HGdO3cux/hvv/1WnTt31jfffKPt27frwQcfVIsWLXT69Om/9XM54+A+wRkHAAAAAAAAwL3jjIN7s5czDv62mn/jjIOHH35YdevW1YwZMyRJFotFDz74oAYOHKiRI0f+5fPXr1+Xr6+vZsyYoW7dut31z2XHAQAAAAAAAAAADpKZmamLFy/aXZmZmdnisrKy9NNPP6l58+a2MTc3NzVv3lzbt2+/q5/1559/6urVqypevPjfypHGAQAAAAAAAAAADhIXFycfHx+7Ky4uLluc2WzW9evXVaJECbvxEiVK6OzZs3f1s0aMGKHSpUvbNR/uBhtwAAAAAAAAAAD3xuDsBFxPbGyshg4dajfm6en5r/+cN954Q8uXL9e3334rLy+vv/UsjQMAAAAAAAAAABzE09PzrhoFJpNJ7u7u+uOPP+zG//jjD5UsWfKOz06ePFlvvPGGNm3apNDQ0L+dI68qAgAAAAAAAAAgjylYsKAeeughbd682TZmsVi0efNm1a9f/7bPTZo0Sa+++qrWr1+vOnXq3NPPZscBAAAAAAAAAAB50NChQxUdHa06deqoXr16mjp1qi5fvqwePXpIkrp166YyZcrYzkh48803NXbsWC1btkyBgYG2sxAKFy6swoUL3/XPZceBA5w+fVpdunSR0WiUt7e3QkJC9OOPP9rFHDp0SE899ZR8fHxUqFAh1a1bVydPnnRSxoBrWr5sqVo91lR1w0IU1SlS+5KS7hj/1YZ1avtkS9UNC9HT7dpoy/ff2d23Wq2aOX2amjV6RPVqh6pPTHedOPFbLq4AAOBKqDsAAEeh5gBA/vXss89q8uTJGjt2rGrVqqXExEStX7/edmDyyZMndebMGVv87NmzlZWVpWeeeUalSpWyXZMnT/5bP5fGQS5LSUlRgwYN5OHhoXXr1ungwYOaMmWKfH19bTHHjh3TI488oipVqujbb79VUlKSxowZ87cPrADys/Xr1mrypDj1faG/ln+8UsHBVdSvb4ySk5NzjE/cs1sjhw9T+w7P6KNPVqlJ02YaPLC/jh49YouJXzBfHy5drNHjxmvJhyvk7e2tfn1ilJmZ6ahlAQDyKOoOAMBRqDkAgAEDBujEiRPKzMxUQkKCHn74Ydu9b7/9VgsXLrT9+rfffpPVas12jR8//m/9TIPVarX+S/kjByNHjtTWrVu1ZcuW28Z06tRJHh4eWrx48T3/nCvX7vlR4L4Q1SlS1WuEaNTosZJuvO+tRbNG6vxcV8X07pMtfviwwcrIyNCMWXNtY106d1RwlSoaM26CrFarmjd+VN2691B0jxhJUnp6upo2jNCE199Qq9ZPOGZhAIA8iboDAHAUag7gOF681P2eJP33krNTcDmhD979K4OchR0HuWz16tWqU6eOIiMj5e/vr7CwMM2fP99232Kx6Msvv1TlypX1+OOPy9/fXw8//LBWrVrlvKQBF3M1K0uHDh5QeP0I25ibm5vCwyOUtHdPjs8kJSYqPNz+EJmIBo8oKTFRknT61CmZzef1cPitOYsUKaKQ0Jq3nRMAkD9QdwAAjkLNAQA4C42DXHb8+HHNnj1bQUFB2rBhg/r166dBgwZp0aJFkqRz587p0qVLeuONN9SyZUt99dVXat++vTp06KDvvvvuL2YHIEkpqSm6fv26jEaj3bjRaJTZbM7xGbPZLKPRlD0+2Xzz/vkbY6a7nxMAkD9QdwAAjkLNAUxPcdQAAIZnSURBVAA4CxtwcpnFYlGdOnU0ceJESVJYWJj279+vOXPmKDo6WhaLRZLUtm1bDRkyRJJUq1Ytbdu2TXPmzFGjRo2yzZmZmZntvYNWd095enrm8moAAAAAAAAAAPc7dhzkslKlSqlatWp2Y1WrVtXJkyclSSaTSQUKFLhjzP+Ki4uTj4+P3fXWm3G5swDABfgW85W7u3u2w8GSk5NlMplyfMZkMik52Zw9/uY3c0wmvxtj5rufEwCQP1B3AACOQs0BADgLjYNc1qBBAx0+fNhu7MiRIwoICJAkFSxYUHXr1r1jzP+KjY1VWlqa3TV8RGzuLABwAR4FC6pqtepK2LHdNmaxWJSQsF2hNcNyfCa0Vi0l7NhhN7Zj+zaF1qolSSpTtqxMJj8lJNya89KlS9qXtPe2cwIA8gfqDgDAUag5AABn4VVFuWzIkCGKiIjQxIkT1bFjR+3cuVPz5s3TvHnzbDHDhw/Xs88+q4YNG6pJkyZav369vvjiC3377bc5zunpmf21RFeu5eYqgLyva3QPjRk1QtWr11CNkFAtWbxIGRkZate+gyTp5diX5O9fQi8OGSZJiurSTTHdu2rRwvfVsGEjrV+3Vgf279eY8RMkSQaDQVFdu2n+3NkKKBegMmXLaub0afLz91fTZs2dtk4AQN5A3QEAOAo1BwDgDDQOclndunW1cuVKxcbGasKECSpfvrymTp2qqKgoW0z79u01Z84cxcXFadCgQQoODtann36qRx55xImZA66lZavWSrlwQbNmvCuz+byCq1TVrLnvyXhzq+3ZM2fkZri1yapWWG3FTZqsGe9O1fSpb6tcQKCmTp+poKDKtpgeMb2VkZGhCePHKj39osJqP6RZc9/jPBEAAHUHAOAw1BwAeZ3B4OwMkBsMVqvV6uwk8M+x4wAAAAAAAAC4d158xfqe7Dt1ydkpuJyQsoWdncJf4owDAAAAAAAAAABgQ+MAAAAAAAAAAADY0DgAAAAAAAAAAAA2NA4AAAAAAAAAAIANR34AAAAAAAAAAO6JwdkJIFew4wAAAAAAAAAAANjQOAAAAAAAAAAAADY0DgAAAAAAAAAAgA2NAwAAAAAAAAAAYEPjwAFOnz6tLl26yGg0ytvbWyEhIfrxxx9t9w0GQ47XW2+95cSsAdezfNlStXqsqeqGhSiqU6T2JSXdMf6rDevU9smWqhsWoqfbtdGW77+zu2+1WjVz+jQ1a/SI6tUOVZ+Y7jpx4rdcXAEAwJVQdwAAjkLNAQA4Go2DXJaSkqIGDRrIw8ND69at08GDBzVlyhT5+vraYs6cOWN3vf/++zIYDHr66aedmDngWtavW6vJk+LU94X+Wv7xSgUHV1G/vjFKTk7OMT5xz26NHD5M7Ts8o48+WaUmTZtp8MD+Onr0iC0mfsF8fbh0sUaPG68lH66Qt7e3+vWJUWZmpqOWBQDIo6g7AABHoeYAyPMMXH/7cgEGq9VqdXYS97ORI0dq69at2rJly10/065dO6Wnp2vz5s13/cyVa/eSHXD/iOoUqeo1QjRq9FhJksViUYtmjdT5ua6K6d0nW/zwYYOVkZGhGbPm2sa6dO6o4CpVNGbcBFmtVjVv/Ki6de+h6B4xkqT09HQ1bRihCa+/oVatn3DMwgAAeRJ1BwDgKNQcwHG8Cjg7A9e0//QlZ6fgcmqUKezsFP4SOw5y2erVq1WnTh1FRkbK399fYWFhmj9//m3j//jjD3355ZeKiYlxYJaAa7ualaVDBw8ovH6EbczNzU3h4RFK2rsnx2eSEhMVHl7fbiyiwSNKSkyUJJ0+dUpm83k9HH5rziJFiigktOZt5wQA5A/UHQCAo1BzAADOQuMglx0/flyzZ89WUFCQNmzYoH79+mnQoEFatGhRjvGLFi1SkSJF1KFDBwdnCriulNQUXb9+XUaj0W7caDTKbDbn+IzZbJbRaMoen2y+ef/8jTHT3c8JAMgfqDsAAEeh5gAAnIUNOLnMYrGoTp06mjhxoiQpLCxM+/fv15w5cxQdHZ0t/v3331dUVJS8vLxuO2dmZma29w5a3T3l6en57yYPAAAAAAAAAMh32HGQy0qVKqVq1arZjVWtWlUnT57MFrtlyxYdPnxYvXr1uuOccXFx8vHxsbveejPuX80bcCW+xXzl7u6e7XCw5ORkmUymHJ8xmUxKTjZnj7/5zRyTye/GmPnu5wQA5A/UHQCAo1BzAADOQuMglzVo0ECHDx+2Gzty5IgCAgKyxS5YsEAPPfSQatasecc5Y2NjlZaWZncNHxH7r+YNuBKPggVVtVp1JezYbhuzWCxKSNiu0JphOT4TWquWEnbssBvbsX2bQmvVkiSVKVtWJpOfEhJuzXnp0iXtS9p72zkBAPkDdQcA4CjUHACuwMD//vb/XAGNg1w2ZMgQ7dixQxMnTtQvv/yiZcuWad68eerfv79d3MWLF/Xxxx//5W4DSfL09FTRokXtLl5ThPyua3QPffbJCq1etVLHjx3TaxPGKyMjQ+3a3zgv5OXYlzTtnSm2+Kgu3bRt6xYtWvi+fj1+TLNnTteB/fvV6bkukiSDwaCort00f+5sffv1Zh09clijY1+Sn7+/mjZr7owlAgDyEOoOAMBRqDkAAGfgjINcVrduXa1cuVKxsbGaMGGCypcvr6lTpyoqKsoubvny5bJarercubOTMgVcW8tWrZVy4YJmzXhXZvN5BVepqllz35Px5lbbs2fOyM1wq1daK6y24iZN1ox3p2r61LdVLiBQU6fPVFBQZVtMj5jeysjI0ITxY5WeflFhtR/SrLnv0agDAFB3AAAOQ80BADiDwWq1Wp2dBP65K9ecnQEAAAAAAADgurz4ivU9OXD6srNTcDnVyxRydgp/iVcVAQAAAAAAAAAAGxoHAAAAAAAAAADAhg04AAAAAAAAAIB7YjA4OwPkBnYcAAAAAAAAAAAAGxoHAAAAAAAAAADAhsYBAAAAAAAAAACwoXEAAAAAAAAAAABsaBwAAAAAAAAAAACbAs5OAAAAAAAAAADgmgzOTgC5gh0HAAAAAAAAAADAhsaBA5w+fVpdunSR0WiUt7e3QkJC9OOPP9ruX7p0SQMGDFDZsmXl7e2tatWqac6cOU7MGHBNy5ctVavHmqpuWIiiOkVqX1LSHeO/2rBObZ9sqbphIXq6XRtt+f47u/tWq1Uzp09Ts0aPqF7tUPWJ6a4TJ37LxRUAAFwJdQcA4CjUHACAo9E4yGUpKSlq0KCBPDw8tG7dOh08eFBTpkyRr6+vLWbo0KFav369lixZokOHDmnw4MEaMGCAVq9e7cTMAdeyft1aTZ4Up74v9Nfyj1cqOLiK+vWNUXJyco7xiXt2a+TwYWrf4Rl99MkqNWnaTIMH9tfRo0dsMfEL5uvDpYs1etx4Lflwhby9vdWvT4wyMzMdtSwAQB5F3QEAOAo1BwDgDAar1Wp1dhL3s5EjR2rr1q3asmXLbWNq1KihZ599VmPGjLGNPfTQQ2rVqpVee+21u/o5V67941QBlxbVKVLVa4Ro1OixkiSLxaIWzRqp83NdFdO7T7b44cMGKyMjQzNmzbWNdencUcFVqmjMuAmyWq1q3vhRdeveQ9E9YiRJ6enpatowQhNef0OtWj/hmIUBAPIk6g4AwFGoOYDjeHEa7D059PtlZ6fgcqqWLuTsFP4SOw5y2erVq1WnTh1FRkbK399fYWFhmj9/vl1MRESEVq9erdOnT8tqteqbb77RkSNH1KJFCydlDbiWq1lZOnTwgMLrR9jG3NzcFB4eoaS9e3J8JikxUeHh9e3GIho8oqTEREnS6VOnZDaf18Pht+YsUqSIQkJr3nZOAED+QN0BADgKNQcA4Cw0DnLZ8ePHNXv2bAUFBWnDhg3q16+fBg0apEWLFtlipk+frmrVqqls2bIqWLCgWrZsqZkzZ6phw4ZOzBxwHSmpKbp+/bqMRqPduNFolNlszvEZs9kso9GUPT7ZfPP++RtjprufEwCQP1B3AACOQs0B4BIMXH/7cgFswMllFotFderU0cSJEyVJYWFh2r9/v+bMmaPo6GhJNxoHO3bs0OrVqxUQEKDvv/9e/fv3V+nSpdW8efNsc2ZmZmZ776DV3VOenp65vyAAAAAAAAAAwH2NHQe5rFSpUqpWrZrdWNWqVXXy5ElJUkZGhkaNGqW3335bbdq0UWhoqAYMGKBnn31WkydPznHOuLg4+fj42F1vvRmX62sB8irfYr5yd3fPdjhYcnKyTCZTjs+YTCYlJ5uzx9/8Zo7J5HdjzHz3cwIA8gfqDgDAUag5AABnoXGQyxo0aKDDhw/bjR05ckQBAQGSpKtXr+rq1atyc7P/R+Hu7i6LxZLjnLGxsUpLS7O7ho+IzZ0FAC7Ao2BBVa1WXQk7ttvGLBaLEhK2K7RmWI7PhNaqpYQdO+zGdmzfptBatSRJZcqWlcnkp4SEW3NeunRJ+5L23nZOAED+QN0BADgKNQcA4Cy8qiiXDRkyRBEREZo4caI6duyonTt3at68eZo3b54kqWjRomrUqJGGDx8ub29vBQQE6LvvvtMHH3ygt99+O8c5PT2zv5boyrVcXwqQp3WN7qExo0aoevUaqhESqiWLFykjI0Pt2neQJL0c+5L8/UvoxSHDJElRXboppntXLVr4vho2bKT169bqwP79GjN+giTJYDAoqms3zZ87WwHlAlSmbFnNnD5Nfv7+atos+yvEAAD5C3UHAOAo1BwAgDPQOMhldevW1cqVKxUbG6sJEyaofPnymjp1qqKiomwxy5cvV2xsrKKionThwgUFBATo9ddf1/PPP+/EzAHX0rJVa6VcuKBZM96V2XxewVWqatbc92S8udX27JkzcjPc2tlTK6y24iZN1ox3p2r61LdVLiBQU6fPVFBQZVtMj5jeysjI0ITxY5WeflFhtR/SrLnvcZ4IAIC6AwBwGGoOAMAZDFar1ersJPDPseMAAAAAAAAAuHdefMX6nvx85k9np+ByqpR6wNkp/CXOOAAAAAAAAAAAADY0DgAAAAAAAAAAgA2NAwAAAAAAAAAAYEPjAAAAAAAAAAAA2NA4AAAAAAAAAAAANpwVDgAAAAAAAAC4JwaDszNAbmDHAQAAAAAAAAAAsKFxAAAAAAAAAAAAbGgcAAAAAAAAAAAAGxoHDnD69Gl16dJFRqNR3t7eCgkJ0Y8//mi7/8cff6h79+4qXbq0HnjgAbVs2VJHjx51YsaAa1q+bKlaPdZUdcNCFNUpUvuSku4Y/9WGdWr7ZEvVDQvR0+3aaMv339ndt1qtmjl9mpo1ekT1aoeqT0x3nTjxWy6uAADgSqg7AABHoeYAAByNxkEuS0lJUYMGDeTh4aF169bp4MGDmjJlinx9fSXdKNbt2rXT8ePH9fnnn2vPnj0KCAhQ8+bNdfnyZSdnD7iO9evWavKkOPV9ob+Wf7xSwcFV1K9vjJKTk3OMT9yzWyOHD1P7Ds/oo09WqUnTZho8sL+OHj1ii4lfMF8fLl2s0ePGa8mHK+Tt7a1+fWKUmZnpqGUBAPIo6g4AwFGoOQAAZzBYrVars5O4n40cOVJbt27Vli1bcrx/5MgRBQcHa//+/apevbokyWKxqGTJkpo4caJ69ep1Vz/nyrV/LWXAJUV1ilT1GiEaNXqspBt/jlo0a6TOz3VVTO8+2eKHDxusjIwMzZg11zbWpXNHBVepojHjJshqtap540fVrXsPRfeIkSSlp6eracMITXj9DbVq/YRjFgYAyJOoOwAAR6HmAI7jVcDZGbimI2f/dHYKLqdyyQecncJfYsdBLlu9erXq1KmjyMhI+fv7KywsTPPnz7fd/79uvpeXl23Mzc1Nnp6e+uGHHxyeL+CKrmZl6dDBAwqvH2Ebc3NzU3h4hJL27snxmaTERIWH17cbi2jwiJISEyVJp0+dktl8Xg+H35qzSJEiCgmteds5AQD5A3UHAOAo1BwAgLPQOMhlx48f1+zZsxUUFKQNGzaoX79+GjRokBYtWiRJqlKlisqVK6fY2FilpKQoKytLb775pk6dOqUzZ844OXvANaSkpuj69esyGo1240ajUWazOcdnzGazjEZT9vhk883752+Mme5+TgBA/kDdAQA4CjUHAOAsbMDJZRaLRXXq1NHEiRMlSWFhYdq/f7/mzJmj6OhoeXh46LPPPlNMTIyKFy8ud3d3NW/eXK1atdLt3iKVmZmZ7b2DVndPeXp65vp6AAAAAAAAAAD3N3Yc5LJSpUqpWrVqdmNVq1bVyZMnbb9+6KGHlJiYqNTUVJ05c0br169XcnKyKlSokOOccXFx8vHxsbveejMuV9cB5GW+xXzl7u6e7XCw5ORkmUymHJ8xmUxKTjZnj7/5zRyTye/GmPnu5wQA5A/UHQCAo1BzAADOQuMglzVo0ECHDx+2Gzty5IgCAgKyxfr4+MjPz09Hjx7Vjz/+qLZt2+Y4Z2xsrNLS0uyu4SNicyV/wBV4FCyoqtWqK2HHdtuYxWJRQsJ2hdYMy/GZ0Fq1lLBjh93Yju3bFFqrliSpTNmyMpn8lJBwa85Lly5pX9Le284JAMgfqDsAAEeh5gAAnIVXFeWyIUOGKCIiQhMnTlTHjh21c+dOzZs3T/PmzbPFfPzxx/Lz81O5cuW0b98+vfjii2rXrp1atGiR45yentlfS3TlWq4uA8jzukb30JhRI1S9eg3VCAnVksWLlJGRoXbtO0iSXo59Sf7+JfTikGGSpKgu3RTTvasWLXxfDRs20vp1a3Vg/36NGT9BkmQwGBTVtZvmz52tgHIBKlO2rGZOnyY/f381bdbcaesEAOQN1B0AgKNQcwDkeQZnJ4DcQOMgl9WtW1crV65UbGysJkyYoPLly2vq1KmKioqyxZw5c0ZDhw7VH3/8oVKlSqlbt24aM2aME7MGXE/LVq2VcuGCZs14V2bzeQVXqapZc9+T8eZW27NnzsjNcGuTVa2w2oqbNFkz3p2q6VPfVrmAQE2dPlNBQZVtMT1ieisjI0MTxo9VevpFhdV+SLPmvsd5IgAA6g4AwGGoOQAAZzBYb3cCL1wKOw4AAAAAAACAe+fFV6zvyZE//nR2Ci6ncokHnJ3CX+KMAwAAAAAAAAAAYEPjAAAAAAAAAAAA2NA4AAAAAAAAAAAANry5CwAAAAAAAABwTwwyODsF5AJ2HAAAAAAAAAAAABsaBwAAAAAAAAAAwIbGAQAAAAAAAAAAsKFxAAAAAAAAAAAAbGgcAAAAAAAAAAAAmwLOTgAAAAAAAAAA4JoMBmdngNzAjoNcFhgYKIPBkO3q37+/JOnKlSvq37+/jEajChcurKefflp//PGHk7MGXNPyZUvV6rGmqhsWoqhOkdqXlHTH+K82rFPbJ1uqbliInm7XRlu+/87uvtVq1czp09Ss0SOqVztUfWK668SJ33JxBQAAV0LdAQA4CjUHAOBoNA5y2a5du3TmzBnbtXHjRklSZGSkJGnIkCH64osv9PHHH+u7777T77//rg4dOjgzZcAlrV+3VpMnxanvC/21/OOVCg6uon59Y5ScnJxjfOKe3Ro5fJjad3hGH32ySk2aNtPggf119OgRW0z8gvn6cOlijR43Xks+XCFvb2/16xOjzMxMRy0LAJBHUXcAAI5CzQEAOIPBarVanZ1EfjJ48GCtWbNGR48e1cWLF+Xn56dly5bpmWeekST9/PPPqlq1qrZv367w8PC7nvfKtdzKGHANUZ0iVb1GiEaNHitJslgsatGskTo/11Uxvftkix8+bLAyMjI0Y9Zc21iXzh0VXKWKxoybIKvVquaNH1W37j0U3SNGkpSenq6mDSM04fU31Kr1E45ZGAAgT6LuAAAchZoDOI4XL3W/J7+cy3B2Ci6nkr+3s1P4S+w4cKCsrCwtWbJEPXv2lMFg0E8//aSrV6+qefPmtpgqVaqoXLly2r59uxMzBVzL1awsHTp4QOH1I2xjbm5uCg+PUNLePTk+k5SYqPDw+nZjEQ0eUVJioiTp9KlTMpvP6+HwW3MWKVJEIaE1bzsnACB/oO4AAByFmgMAcBYaBw60atUqpaamqnv37pKks2fPqmDBgipWrJhdXIkSJXT27FnHJwi4qJTUFF2/fl1Go9Fu3Gg0ymw25/iM2WyW0WjKHp9svnn//I0x093PCQDIH6g7AABHoeYAAJyFDTgOtGDBArVq1UqlS5f+R/NkZmZme++g1d1Tnp6e/2heAAAAAAAAAPg7DM5OALmCHQcOcuLECW3atEm9evWyjZUsWVJZWVlKTU21i/3jjz9UsmTJ284VFxcnHx8fu+utN+NyK3Ugz/Mt5it3d/dsh4MlJyfLZDLl+IzJZFJysjl7/M1v5phMfjfGzHc/JwAgf6DuAAAchZoDAHAWGgcOEh8fL39/fz3xxK1Dhh566CF5eHho8+bNtrHDhw/r5MmTql+/fk7TSJJiY2OVlpZmdw0fEZur+QN5mUfBgqparboSdtw6G8RisSghYbtCa4bl+ExorVpK2LHDbmzH9m0KrVVLklSmbFmZTH5KSLg156VLl7Qvae9t5wQA5A/UHQCAo1BzAADOwquKHMBisSg+Pl7R0dEqUODWb7mPj49iYmI0dOhQFS9eXEWLFtXAgQNVv359hYeH33Y+T8/sryW6ci3X0gdcQtfoHhozaoSqV6+hGiGhWrJ4kTIyMtSufQdJ0suxL8nfv4ReHDJMkhTVpZtiunfVooXvq2HDRlq/bq0O7N+vMeMnSJIMBoOiunbT/LmzFVAuQGXKltXM6dPk5++vps2a3zYPAED+QN0BADgKNQcA4Aw0Dhxg06ZNOnnypHr27Jnt3jvvvCM3Nzc9/fTTyszM1OOPP65Zs2Y5IUvAtbVs1VopFy5o1ox3ZTafV3CVqpo19z0Zb261PXvmjNwMtzZZ1QqrrbhJkzXj3amaPvVtlQsI1NTpMxUUVNkW0yOmtzIyMjRh/Filp19UWO2HNGvue5wnAgCg7gAAHIaaAwBwBoPVarU6Own8c+w4AAAAAAAAAO6dF1+xvifHzmU4OwWXU9Hf29kp/CX+OAAAAAAAAAAA7o3B2QkgN3A4MgAAAAAAAAAAsKFxAAAAAAAAAAAAbGgcAAAAAAAAAAAAGxoHAAAAAAAAAADAhsOR7xNJJ9OcnQIAIJ8o4s1fHwAAjpN1zeLsFAAA+UTNB4s4OwUgz+CTPwAAAAAAAADgnhhkcHYKyAW8qggAAAAAAAAAANjQOAAAAAAAAAAAADa8qiiXBQYG6sSJE9nGX3jhBc2cOVPz5s3TsmXLtHv3bqWnpyslJUXFihVzfKLAfWDjFx9r7SdLlJaSrAcrBKlbv/+oYnD1HGO/WbdKP2z+UqdOHJckla9URZHdX7htfPz0OH29dqWi+gxRy/adc20NAADXsXblR1q5/AOlXkhWYKXK6j3oJVWuWiPH2JO/HtOy+Nk6dviQzv9xRj37D9NTkVF2Mb2ffULn/ziT7dlW7SLVd3BsrqwBAOAa1n++Ql+sWKzUC8kKqBikngOGq1KVnGvOpi9X6vuNX+q/vx2TJFUIqqrOMS/YxVutVq1YNFeb167U5UuXVKV6TfV6caRKlS3nkPUAAPI+dhzksl27dunMmTO2a+PGjZKkyMhISdKff/6pli1batSoUc5ME3B5O77bqGXzpqp9VC+9Ov0DlSsfpEmjBykt9UKO8YeSflL9xo9r1BuzNe7tBSruV0KTXh6oC+Zz2WJ/3PqNfvl5v3yNfrm9DACAi/jh6w16f9bb6tS9j96ev0yBFYP0yvD+Sk3Jue5kZl5RyVJl1K3PIPkWN+UYM3nuEsV/+pXtemXybElSRKPHcm0dAIC8b9s3X+mDOe/oma699eacJQqoUFmvjxyotNvUnIN7f1KDJo9r3OQ5eu3deBn9S+i1EQPsPut8/tEirVu5XL1fjNXEGQvl6eWl10cOVFZWpqOWBQDI42gc5DI/Pz+VLFnSdq1Zs0YVK1ZUo0aNJEmDBw/WyJEjFR4e7uRMAde2buUyNW7VTg1btFGZgArqMXCkPD299P1XX+QY/8KIV9X8yWcUULGySj8YqF4vviyLxaqDibvs4i6Yz+mD2VPU76UJcndnkxYA4IbPP16qFk+0V7NWbfVgYAX1G/qyPL28tHnt5znGB1Wpru79hujRZo+rgIdHjjE+xXzlazTZrl3bv1fJ0mVVo9ZDubkUAEAet+bTpWrWup2atHxKZQMqqPfgWBX09NI361fnGD9o1Gt6vG2kAisFq0y5QD0/dLSsVqv27d4p6cZug7WffagOUTGq26CxAioEacCICUpJPq9dW7914MoAAHkZjQMHysrK0pIlS9SzZ08ZDJw2Dvxbrl29qt+O/qzqteraxtzc3FS9Vl39cmjfXc2RmXlF169fU6EiRW1jFotFcyaP0xPPdFHZgIr/et4AANd09epVHTt8SKEPPWwbc3NzU82HHtbhg0n/2s/4buM6NWvdlr83AkA+du3qVR0/8rNCatvXnJDa9XTkLmtOZuYVXbt2TYWL+kiSzp05rdQLyQqtXc8W80DhwqpUtYaOHLy7z08A8P8zGLj+7uUKaBw40KpVq5Samqru3bs7OxXgvpJ+MVUWy3X5+Ba3Gy/qW1ypKcl3NcdH78+Qb3GTqofd+svzmo8/kLtbAbVo++y/mi8AwLWlp92oO8WK29cdH9/iSrlwd3XnryT88I0uX0pXs5ZP/SvzAQBc08X/qzn/81mn2N/4rLN0/nQVN5oUcrNR8H/P+fga7eJ8ihVX6r9UxwAAro/3bjjQggUL1KpVK5UuXfofzZOZmanMTPv3DmZlZqqgp+c/mhfIr75YsUg7vtuoUZNmq2DBG3+Ofj16SF99vlyvTl/MNz0BAA63ae0q1X44QsVNnK8DALh3qz5cqK3ffqXxU+baPusAAHA32HHgICdOnNCmTZvUq1evfzxXXFycfHx87K5Fc97+F7IEXFORosXk5uae7XCwiykXVOx/vkXzv778ZInWrFikl15/V+XKB9nGD+9P1MXUFA3u9pSin6iv6Cfqy3zujJa9N01DotvmyjoAAK6hiM+NupN6wb7upKVckG/xO9edu3Hu7O9K+mmnHnui/T+eCwDg2or+X835n886qXfxWWf1isVatXyhRr8xQwEVbn3W+b/n0v5nx0Ja6gUV+xfqGADg/sCOAweJj4+Xv7+/nnjiiX88V2xsrIYOHWo3lnT6yj+eF3BVBTw8FBhURQcTd6lORGNJN84nOJD4ox57KvK2z635+AOtXh6vl157VxUqV7O716BZK7vXFknSW6MHqUHTVmrYos2/vgYAgOvw8PBQxeCqStq9U+GPNpF0o+4k/bRTrdv/89fbbV63Wj7FiqtO+CP/eC4AgGsr4OGhCpWraP/unarXoLGkGzVn/55datm2422f+/yjRfps6ft6+Y0Zqhhs/1nHv1QZFStu1L49uxRYKViS9OflS/rl0H61aPN0rq0FAOBaaBw4gMViUXx8vKKjo1WggP1v+dmzZ3X27Fn98ssvkqR9+/apSJEiKleunIr/z3tz/4+np6c8/+e1RAXN1txJHnARrdo/p3lTXlH5oKqqEFxdG1YtV2Zmhho+9qQkac7kcfI1+uvZHv0lSWtWLNKni+fphRGvylSilFIvmCVJXt4PyMv7ARUpWkxFihaz+xnu7gXk42tUqbIBDl0bACDvaRsZpWlx41QpuJqCqlbXF58s05UrGWrW6saZBFMnjpHR5K+ufQZKunHY8X9/Oy5Junbtqi6Yz+n40cPy9vZWqbLlbPNaLBZ9vX61mjz+pNwL8Fd1AID05NNRmjlpvCoEV1Ol4Opa+9kyZV7JUOOWN77QNOONsSpu8tdzvQZIklYtX6gVi+ZqUOxr8i+Z/bOOwWBQ6w6d9dnSBSpV5kH5lyyj5Qtny9fop7o3mxMAAPBpxAE2bdqkkydPqmfPntnuzZkzR6+88ort1w0bNpR0Y4cChygDdy+80WNKT0vRp0vmKe1CsspVrKzhr06zHfiVfO4PGQy33s62+cvPdO3aVb37+ki7edpH9VKHLn0cmjsAwPU80vRxpaWm6MP42Uq5kKzylYI1btIM2ysezv9x1q7uXDCf19DenW2/XvXRYq36aLGq13xIr0+bbxvf+1OCzv9xVs1a81o8AMANEU1a6GJailYsnKPUlGQFVqysUXHTba8cMp87K4PbrZqz8YtPde3qVb09YYTdPM907a2O0X0lSW2fjVbmlSua+85E/XkpXVVq1NKoN97lHAQA94STIe9PBqvVylfV7wM7j6c5OwUAQD5RxJvvHQAAHCfrmsXZKQAA8omaDxZxdgou6Tczr1D/uwJNXs5O4S9xODIAAAAAAAAAALChcQAAAAAAAAAAAGxoHAAAAAAAAAAAABsaBwAAAAAAAAAAwIbTDQEAAAAAAAAA98bg7ASQG2gc3CdCy/k4OwUAAAAAAAAAwH2AVxUBAAAAAAAAAAAbGgcAAAAAAAAAAMCGxgEAAAAAAAAAALChcQAAAAAAAAAAAGxoHOSywMBAGQyGbFf//v114cIFDRw4UMHBwfL29la5cuU0aNAgpaWlOTttwCUtX7ZUrR5rqrphIYrqFKl9SUl3jP9qwzq1fbKl6oaF6Ol2bbTl++/s7lutVs2cPk3NGj2ierVD1Semu06c+C0XVwAAcCXUHQCAo1BzAORlBv73t//nCmgc5LJdu3bpzJkztmvjxo2SpMjISP3+++/6/fffNXnyZO3fv18LFy7U+vXrFRMT4+SsAdezft1aTZ4Up74v9Nfyj1cqOLiK+vWNUXJyco7xiXt2a+TwYWrf4Rl99MkqNWnaTIMH9tfRo0dsMfEL5uvDpYs1etx4Lflwhby9vdWvT4wyMzMdtSwAQB5F3QEAOAo1BwDgDAar1Wp1dhL5yeDBg7VmzRodPXpUBkP27tLHH3+sLl266PLlyypQoMBdz3vl2r+ZJeB6ojpFqnqNEI0aPVaSZLFY1KJZI3V+rqtievfJFj982GBlZGRoxqy5trEunTsquEoVjRk3QVarVc0bP6pu3XsouseNZl56erqaNozQhNffUKvWTzhmYQCAPIm6AwBwFGoO4Dhed/+f4vD/OZFM0/HvCjB6OjuFv8SOAwfKysrSkiVL1LNnzxybBpKUlpamokWL/q2mAZDfXc3K0qGDBxReP8I25ubmpvDwCCXt3ZPjM0mJiQoPr283FtHgESUlJkqSTp86JbP5vB4OvzVnkSJFFBJa87ZzAgDyB+oOAMBRqDkAAGehceBAq1atUmpqqrp3757jfbPZrFdffVV9+mT/xgCA20tJTdH169dlNBrtxo1Go8xmc47PmM1mGY2m7PHJ5pv3z98YM939nACA/IG6AwBwFGoOAMBZ+Fq7Ay1YsECtWrVS6dKls927ePGinnjiCVWrVk3jx4+/4zyZmZnZ3jtodfeUp2fe3+ICAAAAAAAAAMjb2HHgICdOnNCmTZvUq1evbPfS09PVsmVLFSlSRCtXrpSHh8cd54qLi5OPj4/d9dabcbmVOpDn+Rbzlbu7e7bDwZKTk2UymXJ8xmQyKTnZnD3+5jdzTCa/G2Pmu58TAJA/UHcAAI5CzQHgCgwGrr97uQIaBw4SHx8vf39/PfGE/SFDFy9eVIsWLVSwYEGtXr1aXl5efzlXbGys0tLS7K7hI2JzK3Ugz/MoWFBVq1VXwo7ttjGLxaKEhO0KrRmW4zOhtWopYccOu7Ed27cptFYtSVKZsmVlMvkpIeHWnJcuXdK+pL23nRMAkD9QdwAAjkLNAQA4C68qcgCLxaL4+HhFR0fbHXr8f02DP//8U0uWLNHFixd18eJFSZKfn5/c3d1znM/TM/tria5cy738AVfQNbqHxowaoerVa6hGSKiWLF6kjIwMtWvfQZL0cuxL8vcvoReHDJMkRXXpppjuXbVo4ftq2LCR1q9bqwP792vM+AmSJIPBoKiu3TR/7mwFlAtQmbJlNXP6NPn5+6tps+ZOWycAIG+g7gAAHIWaAwBwBhoHDrBp0yadPHlSPXv2tBvfvXu3EhISJEmVKlWyu/frr78qMDDQUSkCLq9lq9ZKuXBBs2a8K7P5vIKrVNWsue/JeHOr7dkzZ+RmuLXJqlZYbcVNmqwZ707V9Klvq1xAoKZOn6mgoMq2mB4xvZWRkaEJ48cqPf2iwmo/pFlz3+M8EQAAdQcA4DDUHACAMxisVqvV2Ungn2PHAQAAAAAAAHDvvPiK9T05eSHT2Sm4nHLF836jljMOAAAAAAAAAACADX00AAAAAAAAAMA9MTg7AeQKdhwAAAAAAAAAAAAbGgcAAAAAAAAAAMCGxgEAAAAAAAAAALChcQAAAAAAAAAAAGxoHAAAAAAAAAAAAJsCzk4AAAAAAAAAAOCaDAZnZ4DcwI4DAAAAAAAAAABgQ+MAAAAAAAAAAADY0DjIZYGBgTIYDNmu/v37S5L69u2rihUrytvbW35+fmrbtq1+/vlnJ2cNuKbly5aq1WNNVTcsRFGdIrUvKemO8V9tWKe2T7ZU3bAQPd2ujbZ8/53dfavVqpnTp6lZo0dUr3ao+sR014kTv+XiCgAAroS6AwBwFGoOAMDRaBzksl27dunMmTO2a+PGjZKkyMhISdJDDz2k+Ph4HTp0SBs2bJDValWLFi10/fp1Z6YNuJz169Zq8qQ49X2hv5Z/vFLBwVXUr2+MkpOTc4xP3LNbI4cPU/sOz+ijT1apSdNmGjywv44ePWKLiV8wXx8uXazR48ZryYcr5O3trX59YpSZmemoZQEA8ijqDgDAUag5AABnMFitVquzk8hPBg8erDVr1ujo0aMy5HBySFJSkmrWrKlffvlFFStWvOt5r1z7N7MEXE9Up0hVrxGiUaPHSpIsFotaNGukzs91VUzvPtnihw8brIyMDM2YNdc21qVzRwVXqaIx4ybIarWqeeNH1a17D0X3iJEkpaenq2nDCE14/Q21av2EYxYGAMiTqDsAAEeh5gCO41XA2Rm4plMpNB3/rrK+ns5O4S+x48CBsrKytGTJEvXs2TPHpsHly5cVHx+v8uXL68EHH3RChoBrupqVpUMHDyi8foRtzM3NTeHhEUrauyfHZ5ISExUeXt9uLKLBI0pKTJQknT51SmbzeT0cfmvOIkWKKCS05m3nBADkD9QdAICjUHMAuAYD19++8j4aBw60atUqpaamqnv37nbjs2bNUuHChVW4cGGtW7dOGzduVMGCBW87T2Zmpi5evGh3sZ0Q+VlKaoquX78uo9FoN240GmU2m3N8xmw2y2g0ZY9PNt+8f/7GmOnu5wQA5A/UHQCAo1BzAADOQuPAgRYsWKBWrVqpdOnSduNRUVHas2ePvvvuO1WuXFkdO3bUlStXbjtPXFycfHx87K633ozL7fQBAAAAAAAAAPkAjQMHOXHihDZt2qRevXplu+fj46OgoCA1bNhQn3zyiX7++WetXLnytnPFxsYqLS3N7ho+IjY30wfyNN9ivnJ3d892OFhycrJMJlOOz5hMJiUnm7PH3/xmjsnkd2PMfPdzAgDyB+oOAMBRqDkAAGehceAg8fHx8vf31xNP3PmQIavVKqvVesdXD3l6eqpo0aJ2l6dn3j9QA8gtHgULqmq16krYsd02ZrFYlJCwXaE1w3J8JrRWLSXs2GE3tmP7NoXWqiVJKlO2rEwmPyUk3Jrz0qVL2pe097ZzAgDyB+oOAMBRqDkAAGehceAAFotF8fHxio6OVoECt45nP378uOLi4vTTTz/p5MmT2rZtmyIjI+Xt7a3WrVs7MWPA9XSN7qHPPlmh1atW6vixY3ptwnhlZGSoXfsOkqSXY1/StHem2OKjunTTtq1btGjh+/r1+DHNnjldB/bvV6fnukiSDAaDorp20/y5s/Xt15t19MhhjY59SX7+/mrarLkzlggAyEOoOwAAR6HmAACcocBfh+Cf2rRpk06ePKmePXvajXt5eWnLli2aOnWqUlJSVKJECTVs2FDbtm2Tv7+/k7IFXFPLVq2VcuGCZs14V2bzeQVXqapZc9+T8eZW27NnzsjNcKtXWiustuImTdaMd6dq+tS3VS4gUFOnz1RQUGVbTI+Y3srIyNCE8WOVnn5RYbUf0qy577HDBwBA3QEAOAw1B0BeZzA4OwPkBoPVarU6Own8c1euOTsDAAAAAAAAwHV58RXre3I6NcvZKbicMsUKOjuFv8SrigAAAAAAAAAAgA2NAwAAAAAAAAAAYEPjAAAAAAAAAAAA2NA4AAAAAAAAAAAANhz5AQAAAAAAAAC4JwZnJ4BcQePgPvHdkfPOTgEAkE+ULOLl7BQAAPlI5lWLs1MAAOQT9Sr4ODsFIM/gVUUAAAAAAAAAAMCGxgEAAAAAAAAAALChcQAAAAAAAAAAAGw44yCXBQYG6sSJE9nGX3jhBc2cOdP2a6vVqtatW2v9+vVauXKl2rVr58AsgfvD92s/1derPtTF1AsqE1hRz/QaooDK1XKM3fbVau38dr3OnDwuSXqwYrDaRPW1i7+YekGrP5itnxN3KuPyJVWsXlPP9Boi/9IPOmQ9AIC8bf3nK/TFisVKvZCsgIpB6jlguCpVqZFj7KYvV+r7jV/qv78dkyRVCKqqzjEv2MVbrVatWDRXm9eu1OVLl1Slek31enGkSpUt55D1AADyro1ffKy1nyxRWkqyHqwQpG79/qOKwdVzjP1m3Sr9sPlLnTpx47NO+UpVFNn9hdvGx0+P09drVyqqzxC1bN8519YAAHAt7DjIZbt27dKZM2ds18aNGyVJkZGRdnFTp06VwcAZ5MC92v3DZq2Mn6GWz/bQ8CkLVCawkmZNGKr01JQc448e2KOHHm2uga9O19A35srXVEKzXhmq1OQbB41brVa9Fxer5D9+V+/YN/TS2/Eq7ldSM8cPVuaVDEcuDQCQB2375it9MOcdPdO1t96cs0QBFSrr9ZEDlZZyIcf4g3t/UoMmj2vc5Dl67d14Gf1L6LURA3TBfM4W8/lHi7Ru5XL1fjFWE2cslKeXl14fOVBZWZmOWhYAIA/a8d1GLZs3Ve2jeunV6R+oXPkgTRo9SGmpOdecQ0k/qX7jxzXqjdka9/YCFfcroUkvD7SrOf/nx63f6Jef98vX6JfbywBwHzMYuP7u5QpoHOQyPz8/lSxZ0natWbNGFStWVKNGjWwxiYmJmjJlit5//30nZgq4tm9WL1fEY20U3uwJlXqwvDo+P1wFPb20Y/OaHOOjh4zTo606qGz5IJUoG6DOL4yQxWrRkaQfJUnnf/+vfjtyQB37DlNAUFWVKFNOHfv+R1czM/XTlk2OXBoAIA9a8+lSNWvdTk1aPqWyARXUe3CsCnp66Zv1q3OMHzTqNT3eNlKBlYJVplygnh86WlarVft275R0o2G99rMP1SEqRnUbNFZAhSANGDFBKcnntWvrtw5cGQAgr1m3cpkat2qnhi3aqExABfUYOFKenl76/qsvcox/YcSrav7kMwqoWFmlHwxUrxdflsVi1cHEXXZxF8zn9MHsKer30gS5u/NCCgCAPRoHDpSVlaUlS5aoZ8+ett0Ff/75p5577jnNnDlTJUuWdHKGgGu6dvWq/nvsiIJr1rGNubm5KTi0jn49fOCu5sjKypTl+jU9ULjojTmvXZUkFfDwtJuzgEdBHT+U9C9mDwBwNdeuXtXxIz8rpPbDtjE3NzeF1K6nIwfvrkZkZl7RtWvXVLiojyTp3JnTSr2QrNDa9WwxDxQurEpVa+jIwX3/7gIAAC7j2tWr+u3oz6peq65tzM3NTdVr1dUvh+6uPmRmXtH169dUqEhR25jFYtGcyeP0xDNdVDag4r+eNwDA9dE4cKBVq1YpNTVV3bt3t40NGTJEERERatu2rfMSA1zc5fQ0WSzXVcSnuN14kWLFlZ6afFdzrP5glor6mmzNhxJlAuTrV0JfLJmjPy9d1LWrV7XxsyVKTT6niyl3NycA4P50MS1VFst1FfO1rzvFfIsr9S5rxNL501XcaFLIzUbB/z3n42u0i/MpVlypF6g7AJBfpV+8UXN8/qfmFP0bNeej92fIt7hJ1cNuNafXfPyB3N0KqEXbZ//VfAEA9w/2ojnQggUL1KpVK5UuXVqStHr1an399dfas2fP35onMzNTmZn277rNyspUwYKet3kCwJ1s/HSxdv+wWQNfnS6Pm3+O3AsUUMyI1/XhjDc0smtrubm5q3LNh1StdrisVquTMwYAuLJVHy7U1m+/0vgpc/n7GwAgV32xYpF2fLdRoybNttWcX48e0lefL9er0xdz1iIA4LZoHDjIiRMntGnTJn322We2sa+//lrHjh1TsWLF7GKffvppPfroo/r2229znCsuLk6vvPKK3VjUC/9R1/4v/dtpAy6hUBEfubm5Kz3N/nCw9NQLKlLMeJunbti8apk2fbZU/V+ZqjKBlezulatYRSPeWaiMy5d07dpVFfHx1ZSXeuvBilX+9TUAAFxHUZ9icnNzV+r/HIScmnJBxXzvXHdWr1isVcsXasykWQqoEGQb/7/n0lKS5Ws02cbTUi8osGLlfzF7AIArKVL0Rs1J+5+ac/Euas6XnyzRmhWLNGLiDJUrf6vmHN6fqIupKRrc7SnbmMVyXcvem6YNq5brnUWf/7uLAAC4JBoHDhIfHy9/f3898cQTtrGRI0eqV69ednEhISF655131KZNm9vOFRsbq6FDh9qNfXf84r+bMOBCCnh46MGKlXUk6SeFPtxQ0o13dh7e95Matupw2+c2rVyqrz75QP3GTlG5SrdvBngXKixJOvf7f3Xy2GG1fq73v7sAAIBLKeDhoQqVq2j/7p2q16CxpBt1Z/+eXWrZtuNtn/v8o0X6bOn7evmNGaoYXM3unn+pMipW3Kh9e3YpsFKwJOnPy5f0y6H9atHm6VxbCwAgbyvg4aHAoCo6mLhLdSIaS7pRcw4k/qjHnoq87XNrPv5Aq5fH66XX3lWFyvY1p0GzVnavLZKkt0YPUoOmrdSwxe3/WwQA3I5B7F66H9E4cACLxaL4+HhFR0erQIFbv+UlS5bM8UDkcuXKqXz58redz9PTU56e9tvaCxbMvE00kD80eaqTlrz7uh6sWEUBQVX17ZoVyrqSoYeb3WjWLZ72qnyK++mprs9LkjZ+tkRrP1yg6KHjZPQvZTu3wNPLW57eD0iS9mz9WoV9isnXVEK/nziuzxZMU2i9R1W1Vr2ckwAA5BtPPh2lmZPGq0JwNVUKrq61ny1T5pUMNW554z+4zHhjrIqb/PVcrwGSpFXLF2rForkaFPua/EuWUuoFsyTJy/sBeXk/IIPBoNYdOuuzpQtUqsyD8i9ZRssXzpav0U91bzYnAAD5U6v2z2nelFdUPqiqKgRX14ZVy5WZmaGGjz0pSZozeZx8jf56tkd/SdKaFYv06eJ5emHEqzKVyF5zihQtpiJFi9n9DHf3AvLxNapU2QCHrg0AkHfROHCATZs26eTJk+rZs6ezUwHuW7UfaaZLF1O1dvl7uphyQWXLV1K/sVNUtNiNQ8RSzv8hg+HWefBb16/S9WtX9f6k0XbztHy2h1p3ipEkXUxJ1sr4GUpPu6CivkbVa9xSj0d2d9iaAAB5V0STFrqYlqIVC+coNSVZgRUra1TcdNtrI8znzsrgdqvubPziU127elVvTxhhN88zXXurY3RfSVLbZ6OVeeWK5r4zUX9eSleVGrU06o13OQcBAPK58EaPKT0tRZ8umae0C8kqV7Gyhr86TT43a07yOfvPOpu//EzXrl3Vu6+PtJunfVQvdejSx6G5AwBcl8HKKZ/3hQ0Hzzs7BQBAPlGyiJezUwAA5COZVy3OTgEAkE/Uq+Dj7BRc0tm0q85OweWU9PFwdgp/ye2vQwAAAAAAAAAAQH5B4wAAAAAAAAAAANhwxgEAAAAAAAAA4N4YnJ0AcgM7DgAAAAAAAAAAgA2NAwAAAAAAAAAAYGOwWq1WZyeBf+7KNWdnAAAAAAAAALguL17qfk/OXrzq7BRcTsmiHs5O4S+x4wAAAAAAAAAAANjQOAAAAAAAAAAAADZswAEAAAAAAAAA3BODsxNArmDHAQAAAAAAAAAAsKFxkMsCAwNlMBiyXf3795ckNW7cONu9559/3slZA65p+bKlavVYU9UNC1FUp0jtS0q6Y/xXG9ap7ZMtVTcsRE+3a6Mt339nd99qtWrm9Glq1ugR1asdqj4x3XXixG+5uAIAgCuh7gAAHIWaAwBwNBoHuWzXrl06c+aM7dq4caMkKTIy0hbTu3dvu5hJkyY5K13AZa1ft1aTJ8Wp7wv9tfzjlQoOrqJ+fWOUnJycY3zint0aOXyY2nd4Rh99skpNmjbT4IH9dfToEVtM/IL5+nDpYo0eN15LPlwhb29v9esTo8zMTEctCwCQR1F3AACOQs0BADgDjYNc5ufnp5IlS9quNWvWqGLFimrUqJEt5oEHHrCLKVq0qBMzBlzT4kXx6vBMR7Vr/7QqVqqk0eNekZeXl1Z99mmO8UuXfKCIRx5V9569VKFiRQ0YNFhVq1XT8mVLJN34Bs7SxR+od99+atK0uSoHV9FrcZN0/tw5fb15kyOXBgDIg6g7AABHoeYAAJyBxoEDZWVlacmSJerZs6cMhlvHhixdulQmk0k1atRQbGys/vzzTydmCbieq1lZOnTwgMLrR9jG3NzcFB4eoaS9e3J8JikxUeHh9e3GIho8oqTEREnS6VOnZDaf18Pht+YsUqSIQkJr3nZOAED+QN0BADgKNQcA4CwFnJ1AfrJq1Sqlpqaqe/futrHnnntOAQEBKl26tJKSkjRixAgdPnxYn3322W3nyczMzLZ90OruKU9Pz9xKHcjTUlJTdP36dRmNRrtxo9GoX389nuMzZrNZRqMpW7w52Xzz/vkbY6bsc5rN5n8rdQCAC6LuAAAchZoDwBX8f9+Pxn2ExoEDLViwQK1atVLp0qVtY3369LH9/5CQEJUqVUrNmjXTsWPHVLFixRzniYuL0yuvvGI39vKYcRo9dnyu5A0AAAAAAAAAyD94VZGDnDhxQps2bVKvXr3uGPfwww9Lkn755ZfbxsTGxiotLc3uGj4i9l/NF3AlvsV85e7unu1wsOTkZJlMphyfMZlMSk42Z4+/+c0ck8nvxpj57ucEAOQP1B0AgKNQcwAAzkLjwEHi4+Pl7++vJ5544o5xiTffOViqVKnbxnh6eqpo0aJ2F68pQn7mUbCgqlarroQd221jFotFCQnbFVozLMdnQmvVUsKOHXZjO7ZvU2itWpKkMmXLymTyU0LCrTkvXbqkfUl7bzsnACB/oO4AAByFmgMAcBZeVeQAFotF8fHxio6OVoECt37Ljx07pmXLlql169YyGo1KSkrSkCFD1LBhQ4WGhjoxY8D1dI3uoTGjRqh69RqqERKqJYsXKSMjQ+3ad5AkvRz7kvz9S+jFIcMkSVFduimme1ctWvi+GjZspPXr1urA/v0aM36CJMlgMCiqazfNnztbAeUCVKZsWc2cPk1+/v5q2qy509YJAMgbqDsAAEeh5gAAnIHGgQNs2rRJJ0+eVM+ePe3GCxYsqE2bNmnq1Km6fPmyHnzwQT399NMaPXq0kzIFXFfLVq2VcuGCZs14V2bzeQVXqapZc9+T8eZW27NnzsjNcGuTVa2w2oqbNFkz3p2q6VPfVrmAQE2dPlNBQZVtMT1ieisjI0MTxo9VevpFhdV+SLPmvscOHwAAdQcA4DDUHACAMxisVqvV2Ungn7tyzdkZAAAAAAAAAK7Li69Y35Pz6fyHyb/Lr0je/5eNMw4AAAAAAAAAAIANjQMAAAAAAAAAAGBD4wAAAAAAAAAAANjQOAAAAAAAAAAAADY0DgAAAAAAAAAAgE3eP74ZAAAAAAAAAJA3GZydAHIDOw4AAAAAAAAAAIANjQMAAAAAAAAAAGBD4wAAAAAAAAAAANjQOMhlgYGBMhgM2a7+/fvbYrZv366mTZuqUKFCKlq0qBo2bKiMjAwnZg24puXLlqrVY01VNyxEUZ0itS8p6Y7xX21Yp7ZPtlTdsBA93a6Ntnz/nd19q9WqmdOnqVmjR1Svdqj6xHTXiRO/5eIKAACuhLoDAHAUag4AwNFoHOSyXbt26cyZM7Zr48aNkqTIyEhJN5oGLVu2VIsWLbRz507t2rVLAwYMkJsb/2iAv2P9urWaPClOfV/or+Ufr1RwcBX16xuj5OTkHOMT9+zWyOHD1L7DM/rok1Vq0rSZBg/sr6NHj9hi4hfM14dLF2v0uPFa8uEKeXt7q1+fGGVmZjpqWQCAPIq6AwBwFGoOAMAZDFar1ersJPKTwYMHa82aNTp69KgMBoPCw8P12GOP6dVXX/1H81659i8lCLioqE6Rql4jRKNGj5UkWSwWtWjWSJ2f66qY3n2yxQ8fNlgZGRmaMWuubaxL544KrlJFY8ZNkNVqVfPGj6pb9x6K7hEjSUpPT1fThhGa8PobatX6CccsDACQJ1F3AACOQs0BHMergLMzcE3mS/yHyb/LVDjv/8vG19odKCsrS0uWLFHPnj1lMBh07tw5JSQkyN/fXxERESpRooQaNWqkH374wdmpAi7lalaWDh08oPD6EbYxNzc3hYdHKGnvnhyfSUpMVHh4fbuxiAaPKCkxUZJ0+tQpmc3n9XD4rTmLFCmikNCat50TAJA/UHcAAI5CzQEAOAuNAwdatWqVUlNT1b17d0nS8ePHJUnjx49X7969tX79etWuXVvNmjXT0aNHnZgp4FpSUlN0/fp1GY1Gu3Gj0Siz2ZzjM2azWUajKXt8svnm/fM3xkx3PycAIH+g7gAAHIWaAwBwlry/J+I+smDBArVq1UqlS5eWdGN7oST17dtXPXr0kCSFhYVp8+bNev/99xUXF5fjPJmZmdneO2h195Snp2cuZg8AAAAAAAAAyA/YceAgJ06c0KZNm9SrVy/bWKlSpSRJ1apVs4utWrWqTp48edu54uLi5OPjY3e99WbOTQYgP/At5it3d/dsh4MlJyfLZDLl+IzJZFJysjl7/M1v5phMfjfGzHc/JwAgf6DuAAAchZoDAHAWGgcOEh8fL39/fz3xxK1DhgIDA1W6dGkdPnzYLvbIkSMKCAi47VyxsbFKS0uzu4aPiM213IG8zqNgQVWtVl0JO7bbxiwWixIStiu0ZliOz4TWqqWEHTvsxnZs36bQWrUkSWXKlpXJ5KeEhFtzXrp0SfuS9t52TgBA/kDdAQA4CjUHAOAsvKrIASwWi+Lj4xUdHa0CBW79lhsMBg0fPlzjxo1TzZo1VatWLS1atEg///yzPvnkk9vO5+mZ/bVEVzi8HPlc1+geGjNqhKpXr6EaIaFasniRMjIy1K59B0nSy7Evyd+/hF4cMkySFNWlm2K6d9Wihe+rYcNGWr9urQ7s368x4ydIuvHnM6prN82fO1sB5QJUpmxZzZw+TX7+/mrarLnT1gkAyBuoOwAAR6HmAMjrDAZnZ4DcQOPAATZt2qSTJ0+qZ8+e2e4NHjxYV65c0ZAhQ3ThwgXVrFlTGzduVMWKFZ2QKeC6WrZqrZQLFzRrxrsym88ruEpVzZr7now3t9qePXNGboZbm6xqhdVW3KTJmvHuVE2f+rbKBQRq6vSZCgqqbIvpEdNbGRkZmjB+rNLTLyqs9kOaNfc9zhMBAFB3AAAOQ80BADiDwWq1Wp2dBP45dhwAAAAAAAAA986Lr1jfk+TL/IfJv8tYKO//y8YZBwAAAAAAAAAAwIbGAQAAAAAAAAAAsKFxAAAAAAAAAAAAbPL+y5QAAAAAAAAAAHmSQQZnp4BcwI4DAAAAAAAAAABgw46D+4Rvg+HOTgEAkF9cy3J2BgCA/MTN3dkZAADyiYxdbzs7BSDPYMcBAAAAAAAAAACwoXEAAAAAAAAAAABsaBwAAAAAAAAAAAAbzjgAAAAAAAAAANwTg8HZGSA3sOMglwUGBspgMGS7+vfvL0k6e/asunbtqpIlS6pQoUKqXbu2Pv30UydnDbimvs9E6OeVsUr5fqK+XzBQdao9eNvYAu5uio1prgOfjlTK9xOVsGSIHgsPtotxczNobN/HdWhlrC58N1EHPh2pkT2b5/YyAAAuom/kI/r5i7FK2TZZ3y8aojrVy902tkABN8X2flwHPh+jlG2TlfDhS3qsfhW7mMIPeOqtYe11eM04Xdj6lr55f7Aeqnb7OQEA+UffyAb6+fPRSvnhTX0f/6Lq3KE+FHB3U2yvFjqwcpRSfnhTCUv/k63muLkZNPb5ljq06mVd2PKmDqwcpZExj+X2MgAALoTGQS7btWuXzpw5Y7s2btwoSYqMjJQkdevWTYcPH9bq1au1b98+dejQQR07dtSePXucmTbgcp5pXlNvvthGry/YqPrRU5X0y+9aPa2X/HwL5Rg//vmW6tUuXEOnrFJYp8l677Md+ujNaNWsXNoWM6xrE/XuUF9DJq9UrU5vafTMLzW0SyO90LGBo5YFAMijnnksTG8Oba/X521Q/ai3lHTkd62e0U9+voVzjB/f7wn16hChoZM+VVhknN77dKs+mhyjmsFlbDGzx3RS04eD1XPMEtV59k1t2vGzvpz9gkr7+ThqWQCAPOiZx2rpzcFt9fp7G1S/69tKOvq7Vk/vc4ea01q92tfX0LdWKuzZN/XeZ9v00aQeqln5Vs0Z1q2pej8doSFvfaZaHd/Q6OlrNLRrE73w7KOOWhYAII+jcZDL/Pz8VLJkSdu1Zs0aVaxYUY0aNZIkbdu2TQMHDlS9evVUoUIFjR49WsWKFdNPP/3k5MwB1zKoc0PFf56gxWt+1M+/ntPANz5TxpWrim5TL8f451rV1qRFX2vDtp/12+8XNP+z7dqw/We9+FwjW0x4aIDWfH9A67f+rJNnUrTy633avPPoHb/dAwDIHwZ1aaz4ldu0+IsE/fzrHxo4cYUyrmQpum14jvHPPVFXk97fqA1bD+q308ma/8lWbdh6SC92aSpJ8vL0ULumNfXyu6u1dc8xHT9l1uvz1uvYf83q/QwNawDIzwY910jxq3Zo8Re7btScuE9ufNZ56jafdVo/pEkLN2nDtkP67fQFzf90mzZsO6QXuzS2xYSHBmrNdwe0fuuhm591krQ54cgdd88BAPIXGgcOlJWVpSVLlqhnz54y3Hz5V0REhD766CNduHBBFotFy5cv15UrV9S4cWPnJgu4EI8C7gqrUkZf7zxqG7Narfp611HVCwnI8ZmCBQvoSuZVu7GMK1cVUTPQ9usdSSfUpE4lVXrQJEkKCSql+jUD9dX2n//9RQAAXMaNuvOgvt55xDZmtVr19c4jqhcSmOMzBT0K6ErWNbuxjMyriqhVXtKN10oUKOCuK5n2MVcyryqiVoV/dwEAAJdxo+aU/fs1JzOHmlOzvO3XO5J+U5O6QapUzk+SFBJUWvVrltdX2w79+4sAALgkDkd2oFWrVik1NVXdu3e3ja1YsULPPvusjEajChQooAceeEArV65UpUqVbjtPZmamMjMz7caslmsyuPGPE/mTqVghFSjgrnMXLtmNn7twScEB/jk+s2nHEQ16rqF+SPxVx08lq0ndSmrbpIbc3W71Uyd/8I2KFvLU3hXDdd1ilbubQePmrNfyDbxKDADyM1vdSU63Gz+XnK7gwNvVnZ81KKqxfth9YzdBk3qV1bZpqK3uXPozUzv2/qrYXi10+Nez+uNCujo+/pAeDgnUsf+ez/U1AQDyplufdf6n5ly4U805rEFRjfTDnmM3P+sEqW2TEPvPOou+VtHCXtr78Yhbn3Vmr9Py9btzdT0AANfBf2l2oAULFqhVq1YqXfrWO9THjBmj1NRUbdq0SSaTSatWrVLHjh21ZcsWhYSE5DhPXFycXnnlFbsx99L15VGWbezA3frP259r1qhntPej4bJarTp+OlkfrPlR0U/WtcU80zxUnVrWVvexy3Tw+B8KrVxabw15SmfOX9TStbxODABw9/7z1qeaNaaT9n466kbdOWXWB6sTFP3Uw7aYnmMXa+7Y53R8w6u6du26En8+pRUbdiusalknZg4AcDX/mbJSs17uqL0fj7z1WeeLnYpuc6vmPNO85o3POqOX3PqsM7SdzpxP09Ivf3Ri9gCAvILGgYOcOHFCmzZt0meffWYbO3bsmGbMmKH9+/erevXqkqSaNWtqy5YtmjlzpubMmZPjXLGxsRo6dKjdmH+zcbmXPJDHmVMv69q16/Ivbn84mH/xwjr7P9/M+f+f6fjSInkWLCCjzwP6/fxFvda/tX79PdkWM3Hgk5r8wTf6eONeSdKBY2dVrqSvhkc3pXEAAPmYre4Yi9iN+xuL6Kz5DnVn2IKbdaeQfj+fptcGttGvp2/VnV9PJatFn+l6wKugihb20lnzRS2Oi7aLAQDkL7c+6/xPzSleRGeT71Bzhsfb15wBT9p/1nmxjSYv+lofb0yUJB04dkblSvlqePdmNA4AAJI448Bh4uPj5e/vryeeeMI29ueff0qS3Nzs/zG4u7vLYrHcdi5PT08VLVrU7uI1RcjPrl67rj0/n1aTurde8WUwGNSkbiXt3Hfijs9mZl3T7+cvqoC7m9o1CdGa7w/Y7nl7echisdrFX7dY5OZm+HcXAABwKTfqzn/VpG5l29iNulNZO/f9dsdnb9SdNBUo4KZ2zWpqzXf7s8X8eSVLZ80XVayIt5rXr6I13+77t5cAAHARN2rOKTWpG2Qbu1Fzgu6+5ri7qV3TULua4+1ZMIfPOla5GfisAwC4gf/a7AAWi0Xx8fGKjo5WgQK3fsurVKmiSpUqqW/fvpo8ebKMRqNWrVqljRs3as2aNU7MGHA97374veaPfVY/HTqlHw/+VwM6PaoHvArqgzW7JEnvjeuk38+naeysdZKkutUfVGk/H+098rvK+Pvo5V6Pyc3NoLcXf2ubc+2WQxrRo6n++0eKDh7/Q7Uql9Ggzg31wRe7nLBCAEBe8u6SbzX/lSj9dOikftx/UgOea6QHvAvqg9UJkqT3Xom6UXdm3Pg7Xd0aATfrzmmV8fPRy31byc1g0NuLNtvmbF6/igySjpw4p4oP+mnii0/pyG/n9MEXCc5YIgAgj3h32XeaP66zfjr0X/144KQGdL5Zc77YKUl6b3xn/X7+osbO/FKSVLd6OZX2//9qTp/Hb3zW+eBr25xrfzigET2a679nU3Tw+FnVCi6rQc810gerdzpljQCAvIfGgQNs2rRJJ0+eVM+ePe3GPTw8tHbtWo0cOVJt2rTRpUuXVKlSJS1atEitW7d2UraAa/pk016ZihXS2D6Pq4SxiJKO/K62g9+zHZj8YIlidt+o8SzooXHPt1T50sV1KSNLG7b9rJjxy5V26YotZuiUVRrX93FNG95Bfr6FdcZ8UQtW7tDEBZscvj4AQN7yycY9MvkW1tjnW6uEsaiSjpxS24FzbIdXPljSVxbr/193CmjcC0+ofBmjLmVkasMPBxUzZrHSLmXYYnwKe2nCgDYq419MFy5e1ueb92rcrC917drtd6ICAO5/n2xMlKlYYY3t2/JmzTmttoPm3fqs8781x9ND455vdavmbD2kmLHL7D/rvLVS455vpWkjnpafbxGdMadpwWfbNfG9rxy+PgBA3mSwWq3Wvw5DXuf98HBnpwAAyC+uZTk7AwBAfuLm7uwMAAD5RMaut52dgktK+fO6s1NwOb4P5P2/37DjAAAAAAAAAABwTzge5f7E4cgAAAAAAAAAAMCGxgEAAAAAAAAAALChcQAAAAAAAAAAAGxoHAAAAAAAAAAAABsOR75fFPZ1dgYAAAAAAAAAgPsAjQMAAAAAAAAAwD0xyODsFJALeFURAAAAAAAAAACwoXEAAAAAAAAAAABseFURgPtG37YPaUjHh1WieGHtO/aHhk7/Sj8ePpNjbAF3Nw1/LkJdWoSotKmIjvw3WaPnf6ONu47bYnq3qa3eT9VWQAkfSdKhE+c1cfEP+mrn8RznBADkL9QdAICjUHMAAI5msFqtVmcn4aquXr0qDw8PZ6chSfJuNtHZKQBO9UzjqnpvRBsNnLpeu37+XQM61FWHRlVUs/tcnU/9M1v8a72bqHPzGnphylod/m+yHqtTQW/2a6Ymgz7Q3l/+kCS1rl9J169b9cvpCzIYDOrSIkRDOoYrvO8CHTphdvQSAQB5CHUHAOAo1BzAcTI2j3J2Ci4pLcPi7BRcjo933n8RUN7P8P+zfv16PfLIIypWrJiMRqOefPJJHTt2zHb/1KlT6ty5s4oXL65ChQqpTp06SkhIsN3/4osvVLduXXl5eclkMql9+/a2ewaDQatWrbL7ecWKFdPChQslSb/99psMBoM++ugjNWrUSF5eXlq6dKmSk5PVuXNnlSlTRg888IBCQkL04Ycf2s1jsVg0adIkVapUSZ6enipXrpxef/11SVLTpk01YMAAu/jz58+rYMGC2rx587/x2wbkC4Oeqaf4tYlavCFJP58wa+DUdcrIvKboljVzjH+ueQ1NWrZNG3Ye029nUjX/i93akHBML0Y+bItZu/0Xbdh5TMdOp+iXUxc0/v3vdCkjS/WqlXHUsgAAeRR1BwDgKNQcAIAzuFTj4PLlyxo6dKh+/PFHbd68WW5ubmrfvr0sFosuXbqkRo0a6fTp01q9erX27t2rl156SRbLjY7Xl19+qfbt26t169bas2ePNm/erHr16v3tHEaOHKkXX3xRhw4d0uOPP64rV67ooYce0pdffqn9+/erT58+6tq1q3bu3Gl7JjY2Vm+88YbGjBmjgwcPatmyZSpRooQkqVevXlq2bJkyMzNt8UuWLFGZMmXUtGnTf/g7BuQPHgXcFFa5lL7e/ZttzGqVvt79623/4luwoLuuZF2zG8vIuqaIGmVzjHdzMyiySTUV8vJQwsHT/1ruAADXQ90BADgKNQeAKzAYuP7u5Qpc6oyDp59+2u7X77//vvz8/HTw4EFt27ZN58+f165du1S8eHFJUqVKlWyxr7/+ujp16qRXXnnFNlazZs7d+TsZPHiwOnToYDf2n//8x/b/Bw4cqA0bNmjFihWqV6+e0tPTNW3aNM2YMUPR0dGSpIoVK+qRRx6RJHXo0EEDBgzQ559/ro4dO0qSFi5cqO7du8vgKv8WAU5m8nlABdzddC7lst34uZTLCn7QmOMzm3b9qkHP1NMPSSd1/PcUNakdqLaPBMvdzf7PXfXyfvp2erS8ChbQpYwsPTvuU/3M1l0AyNeoOwAAR6HmAACcxaV2HBw9elSdO3dWhQoVVLRoUQUGBkqSTp48qcTERIWFhdmaBv8rMTFRzZo1+8c51KlTx+7X169f16uvvqqQkBAVL15chQsX1oYNG3Ty5ElJ0qFDh5SZmXnbn+3l5aWuXbvq/ffflyTt3r1b+/fvV/fu3W+bQ2Zmpi5evGh3WS3XbhsPILv/zNyoY6cvaG98X13cMFLvDHxcH2xIkuV/jn058t9kPdxngRr2X6j5q3dr/og2qhJgclLWAABXRd0BADgKNQcA8G9wqR0Hbdq0UUBAgObPn6/SpUvLYrGoRo0aysrKkre39x2f/av7BoNB/3tO9NWrV7PFFSpUyO7Xb731lqZNm6apU6cqJCREhQoV0uDBg5WVlXVXP1e68bqiWrVq6dSpU4qPj1fTpk0VEBBw2/i4uDi7nROS5B7YVB4V/nljBHBF5rQ/de26Rf6+9n8+/X0L6eyFy7d9puPYT+Xp4S6jj7d+N1/Sa72b6NczqXZxV69ZdPz3FEnSnqNn9VBwKfXvUFcD31mXK2sBAOR91B0AgKNQcwAAzuIyOw6Sk5N1+PBhjR49Ws2aNVPVqlWVkpJiux8aGqrExERduHAhx+dDQ0PveNiwn5+fzpw5Y/v10aNH9eeff/5lXlu3blXbtm3VpUsX1axZUxUqVNCRI0ds94OCguTt7X3Hnx0SEqI6depo/vz5WrZsmXr27HnHnxkbG6u0tDS7q0Bgo7/MFbhfXb1m0Z4jZ9QkLNA2ZjBITcICtfMv3tGZefW6fjdfUgF3N7V7NFhrth25Y7ybm0GeHu7/RtoAABdF3QEAOAo1BwDgLC6z48DX11dGo1Hz5s1TqVKldPLkSY0cOdJ2v3Pnzpo4caLatWunuLg4lSpVSnv27FHp0qVVv359jRs3Ts2aNVPFihXVqVMnXbt2TWvXrtWIESMkSU2bNtWMGTNUv359Xb9+XSNGjJCHh8df5hUUFKRPPvlE27Ztk6+vr95++2398ccfqlatmqQbryIaMWKEXnrpJRUsWFANGjTQ+fPndeDAAcXExNjm6dWrlwYMGKBChQqpffv2d/yZnp6e8vT0tBszuLnMP0ogV7z7yU7NH9FGPx05ox9//l0Dnq6nB7w89MGGJEnSeyPa6HdzusYu+FaSVLdKaZU2FdHeY3+ojKmIXu72qNwMBr29fIdtzgkxjbVh5zH999xFFXmgoJ5tWl0NawaozcgPnbFEAEAeQt0BADgKNQcA4Awu81+b3dzctHz5cg0aNEg1atRQcHCw3n33XTVu3FiSVLBgQX311VcaNmyYWrdurWvXrqlatWqaOXOmJKlx48b6+OOP9eqrr+qNN95Q0aJF1bBhQ9v8U6ZMUY8ePfToo4+qdOnSmjZtmn766ae/zGv06NE6fvy4Hn/8cT3wwAPq06eP2rVrp7S0NFvMmDFjVKBAAY0dO1a///67SpUqpeeff95uns6dO2vw4MHq3LmzvLy8/oXfMSB/+eTbQzL5PKCx3RuqhG8hJR37Q21HfmQ7ROxB/6J27/T0LFhA43o2UvlSxXQpI0sbEo4p5o3VSrucaYvx831AC0a2UcnihZV2OVP7j59Tm5Ef6uuffnP08gAAeQx1BwDgKNQcAHmd4a9D4IIM1v99sT+c4rffflPFihW1a9cu1a5d+28/791sYi5kBQAAAAAAAOQPGZtHOTsFl5R+xeLsFFxOEa+8f4KAy+w4uF9dvXpVycnJGj16tMLDw++paQAAAAAAAAAAwL8l77c27nNbt25VqVKltGvXLs2ZM8fZ6QAAAAAAAAAA8jl2HDhZ48aNxduiAAAAAAAAAAB5BTsOAAAAAAAAAACADTsOAAAAAAAAAAD3xuDsBJAbDFbek3Nf2P3bRWenAADIJzw93J2dAgAgH+EjKwDAUWqULezsFFxSeqbF2Sm4nCKeef9FQHk/QwAAAAAAAAAA4DA0DgAAAAAAAAAAgA2NAwAAAAAAAAAAYEPjAAAAAAAAAAAA2BRwdgIA8G/5avUKffHJEqVdSFa5CkHq/sJwVapSPcfYzWtXasumtTp14pgkqXylKnq2R39b/LVr17Ri4Wwl7tqqc2dOy7tQYYWE1VOnmAEqbvRz2JoAAHnXulUfadVHHyj1QrICK1ZWr4EvKahqjRxjT/56TMsXztaxI4d0/o8z6vHCMLV5Jsou5vr16/po0Vx9v2mtUi8ky9fopyYt2yiySy8ZDAZHLAkAkEetW7VCn6/4v5oTpJiBLymoym1qzm/HtHzhHB3//2rOk08/ZxeT8edlfRg/Wwk/fKOLqSkqXylYPfv/57afnwDgTgzi76r3I3YcSLp69aqzUwDwD23/9istnjdVT0f10sSZixVQIUhvvDxQaakXcow/lPSTIpq00OhJs/XKO+/L6FdCcaMG6IL5nCQpK/OKfv3lZ7V/LkYTZy7W0LGT9PupE5o8bpgjlwUAyKN++GaD4me/rY7d+mjy3GUKrBikCSP6KzUl57qTmXlFJUqVUdfeg1SsuCnHmJXLF2rD6k/Ua9AIvbvwU3XtM0irli/S2pXLc3MpAIA8bus3X2nhnBs15605SxVQsbJeHTFAabepOVlXbtScLr0GqlhxY44xs6a8qr0/JWhQ7Kt6+72PVLNOuF55qZ+Sz5/LzaUAAFyIUxsHjRs31sCBAzV48GD5+vqqRIkSmj9/vi5fvqwePXqoSJEiqlSpktatW2d75vr164qJiVH58uXl7e2t4OBgTZs2Ldvc77//vqpXry5PT0+VKlVKAwYMsN0zGAyaPXu2nnrqKRUqVEivv/66JGn27NmqWLGiChYsqODgYC1evPiO+e/atUuPPfaYTCaTfHx81KhRI+3evdt2/7nnntOzzz5r98zVq1dlMpn0wQcfSJLS09MVFRWlQoUKqVSpUnrnnXfUuHFjDR48+G//fgL52ZefLVPTlu3U+PGnVDaggmIGxaqgp5e+3bA6x/gBI19TizaRCqwYrDLlAtVnyGhZrVbt37NLkvRAocJ6+Y2Zqt/oMZV+MFBBVUPUo/9w/Xr0kMznzjpyaQCAPOiLj5fqsdbt1axVWz0YWEF9h7wsT08vfb3u8xzjg6pUV/TzQ/RI08fl4eGRY8zhA3tVr0Ej1Ql/VP4lSyuiUXPVqhOuoz/vz82lAADyuC8+WaLmrduracunbtScwaPk6emlzetzrjmVqlRXdN/BN2tOwWz3MzOvaMf3X6tbn0GqHlpbpco8qGej+6pk6Qe14YtPcns5AAAX4fQdB4sWLZLJZNLOnTs1cOBA9evXT5GRkYqIiNDu3bvVokULde3aVX/++ackyWKxqGzZsvr444918OBBjR07VqNGjdKKFStsc86ePVv9+/dXnz59tG/fPq1evVqVKlWy+7njx49X+/bttW/fPvXs2VMrV67Uiy++qGHDhmn//v3q27evevTooW+++ea2uaenpys6Olo//PCDduzYoaCgILVu3Vrp6emSpKioKH3xxRe6dOmS7ZkNGzbozz//VPv27SVJQ4cO1datW7V69Wpt3LhRW7ZssWs+APhr165e1a9Hf1aN2vVsY25ubqoRVk9HD+67qzkyM6/o2rVrKlyk6G1j/rx8SQaDQQ8UKvyPcwYAuK6rV6/q2P9r787jas7+P4C/bmkvJVEyKUubpUShQmVQM4QZu4zsSyqGSEPKzmCSnRhhNGXGWMcwGPUdFUKJnzYVGYMmQ6lpLrr390d8zNWiLK2v5+NxHw/3fN6f8znnzvJ27rnnnNQkWHTuKpTJycnBonNXpNxIfOt6TdtZIvHKRfx55zYAIDM9FUnXE2DVxf6d20xERLVTcc5JhsVrYx2LTl2QWsGxzuskRUWQSIqgoKgkU66opITk6wnv0lwiIqpDqv2MA0tLSyxYsAAA4Ofnh5UrV0JHRweTJk0CACxcuBBbtmxBYmIiunXrBgUFBSxatEi4v2XLloiNjcX+/fsxbNgwAMDSpUsxe/ZszJgxQ4izsbGRee6oUaMwbtw44f3IkSMxduxYeHh4ACj+Qv/8+fNYs2YNnJycSm17r169ZN5v374dWlpaiIqKQv/+/eHs7Aw1NTUcPHgQX3zxBQAgLCwMAwYMgIaGBp48eYLdu3cjLCwMH3/8MQBg165d0NfXL/czE4vFEIvFMmVPxWIoKimVcQdR3ZaX9xgSSRE0tbRlyjUbaePPO7cqVEfYzg1o1FhHZvLhv54+FeP7nRth59iXEwdERPXck9zivKPVSDbvaDXSxt2sW29d7+cjx6GwoABeYz+HnJw8JJIijJowHQ69P33HFhMRUW31KufIbjmk2agx7lZwrPM6FVU1mLa1wI/f7cBHLVpCs5E2zv12Eqk3rkFP3+A9tJqIiOqCal9xYGFhIfxZXl4ejRs3RocOHYQyXV1dAEB29qt99jZt2oTOnTujSZMmUFdXx/bt25GVlSXE/fnnn8IX8WWxtraWeZ+UlAR7e9lfc9nb2yMpKanMOh48eIBJkybB2NgYmpqaaNiwIfLz84W2NGjQAMOGDcO+ffsAAAUFBTh8+DDc3IoPwsvIyMCzZ8/QpcurLyo1NTVhampabttXrFgBTU1NmdeuLd+Uew8Rle1wRChiI09h1sLVUFQsOQH3/PlzBC/zgxRSjPeaVw0tJCKi+iAm8hT+d+YXfDl/OdZs2wcv30U4vH8vzp48Wt1NIyKiOsbbbzGkUikmDXfBCBdbHD8Yju5OzhDJ8YBTIiIqVu0rDl7f41UkEsmUiUTFSUsikQAAwsPD4ePjg7Vr18LW1hYaGhpYvXo1Lly4AABQUVGp0HPV1NTeue3u7u54+PAhgoODYWhoCCUlJdja2uLp06dCjJubGxwcHJCdnY1Tp05BRUUFLi4u7/RcPz8/zJo1S6bsxj1xGdFEdV/DhlqQk5MvcRBy7qO/S/wy53XHftiLIxG78dXKTTBsZVzi+stJg5wH97Hg681cbUBERNDQLM47rx+E/PjR32UeQlkRu7etw+cjx6J7L2cAgGErY/z14D5+CtsFJ2fXd2ozERHVTq9yzkOZ8txHD6GlrfPW9erpG2BJUAj+LSxE4T/5aNS4CdYumQfdZs3ftclEVA+JOOdYJ1X7ioPKio6Ohp2dHTw8PGBlZYU2bdogPT1duK6hoQEjIyOcOXOmUvWam5sjOjq6xLPatm1bblu8vb3x6aefCgcx5+TkyMTY2dnBwMAAERER2LdvH4YOHSpMjLRq1QoKCgqIi4sT4nNzc5GamlpuW5WUlNCwYUOZF7cpovqsgYICWhqbCQcbA8WTjf+XEAfjth3KvO/I/j34KWwn5i1bj9YmJf9bfzlpcP9uFuav3ASNhlofovlERFTLKCgooLWJORKvXBTKJBIJEq9chGlbi3LuLJ9Y/C9EItm/nsvJy0Eilbx1nUREVLsV5xwzXHttrJMYHweTcsY6FaWsooJGjZsg/0keEuJiYWPn+M51EhFR3VDtKw4qy9jYGHv27MHJkyfRsmVL7N27F3FxcWjZsqUQExgYiKlTp6Jp06b45JNP8OTJE0RHR8PLy6vMeufMmYNhw4bBysoKvXv3xtGjR/HTTz/h9OnT5bZl7969sLa2Rl5eHubMmVPqiodRo0Zh69atSE1NlTlsWUNDA+7u7pgzZw60tbXRtGlTBAQEQE5OTlhpQUQV0+/zUdiyZhFamZijjWk7/HLwe4j/LYRD3+JfaG7+OgCNdJpg5HhPAMCRiN34Ye82ePouRRPdZnj8d/Gkn7KKKpRVVPH8+XOsW+KLzJvJmLs4CBJJkRCjrqGJBq+tliIiovrFdagbNqwMQBvTtjA2a4ejB8Ig/rcQvVwGAACCV/ijsU5TjJ5U/PfPZ8+e4Y/bGQCA58+f4e+cbGTeTIGyigqaNW8BALCx7Ykf9+2Ejq4eWhi1RkZaMo7+8B16fTKwejpJREQ1guuQ0diwKgCtTcxhbNYex17mHOfinLN+5UJo6zTB6Iml55yHQs5RRbPmxWcYxMfFAFJA38AQ9+/ewZ7twWjewgi9XLjCjYiIitW6iYMpU6YgPj4ew4cPh0gkwsiRI+Hh4YFffvlFiHF3d8e///6LoKAg+Pj4QEdHB0OGDCm33kGDBiE4OBhr1qzBjBkz0LJlS+zatQuOjo5l3rNz505MnjwZnTp1goGBAZYvXw4fH58ScW5ubli2bBkMDQ1LnKPwzTffYOrUqejfvz8aNmyIuXPn4s6dO1BWVq7cB0NUz9k69kVe7mP8uGcbHj96CMNWJpi3bL2wVVHOX/dl9us89fMBPH/2DOuW+srUM3j0JAz5YjIe5WTj8vn/AQDmebjJxPh/vRVtLTt/4B4REVFN1t3JGXmPH+H7XVvw+NFDtGxtCv9VG4WtinKy70NO7tXqgUcP/8LsySOF94f378Xh/XvRzrIzlgSFAAAmes1F2LebsX3dCuQ9foRGjZugb//BGDpmctV2joiIahR7p77IzX2E8NCtL3KOCRas3CCTc/7748NHD/+Cz5RRwvsj+/fiyIucs/ib7QCAfwrysW/HRjzMyYa6RkN06/ExRo33QIMG/IEUEREVE0mlUml1N4JeKSgoQPPmzbF27VpMmDChwvdduZX3AVtFRET0ipKCfHU3gYiI6hEOWYmIqKq0/4jnGr6NgqfM1ZWlpljzd5updSsO6pr4+HgkJyejS5cuyM3NxeLFiwEAAwdySToRERERERERERERVT1OHNQAa9asQUpKChQVFdG5c2f8/vvv0NHRqe5mEREREREREREREZWr5v92nt4GtyqqI7hVERERVRVuVURERFWJQ1YiIqoq3Kro7fzDrYoqTbUWbFUk9+YQIiIiIiIiIiIiIiKqLzhxQEREREREREREREREAm5VVEeo9FlV3U0gIqL6QlJU3S0gIqL6RMTfuxERUdUoPD2vuptQK3GrosrjVkVERERERERERERERFSrNKjuBhARERERERERERFRLVXzfzxPb6FaVxwYGRlh3bp1FY6/desWRCIREhISPlib/is0NBRaWlpV8iwiIiIiIiIiIiIiopqgWlccxMXFQU1N7b3WGRoaipkzZ+Lx48fvtV4iqvmmDLDCl0O7QldbDdfSszFr02lcSrlXamwDeTnMGdkNo/u0h76OBlLv/I0FOyJx6lKmEOMzohsGdTeBiYE2CsXPceHGXczfEYW0P/6uqi4REVENNmVgZ3w5rCt0tdVxLf0BZm34tfy8M8oOo/t2eJF3HmJByFmcissQYia5dsKkAZ1gqKsJAEi6/ReW7z2HXy9mlFonERHVH1MGdHqRc16MdTaeesNYxxaj+/53rHMWp+JejXUmuVphkqvVf3JODpbvjcavccw5RERUrFpXHDRp0gSqqqrV2QQiqiOGOJhh1ZReWPZdNGynhSIxIxtHVgxDE63S/x8TOK4HJvbriFmbTsNqwg7sOBaPiMDPYNm6qRDTw8IAW49cgYP3d+g/LwINGsjj2MphUFVWqKpuERFRDTXE0Ryrpn6MZXvOwXbqt0hMz8aRVSPKzjvjHTCxvxVmbfgVVuO3Y8fReEQsGgzLNrpCzN2cPPiHnIXdtG9h77ELkfG38cPioTA31KmqbhERUQ00xNEMq6b2wrK952A7dVfxWGfl8HLGOj0xsX9HzNp4ClYTQl6MdT6XzTl/PYH/jkjYeYTC3iP0Rc4ZzJxDRESCCk8cHDt2DFpaWigqKgIAJCQkQCQSYd68V6eNT5w4EaNHjxbenzt3Dj169ICKigoMDAzg7e2NgoIC4frrWxUlJyeje/fuUFZWRtu2bXH69GmIRCIcOnRIpi0ZGRlwcnKCqqoqLC0tERsbCwCIjIzEuHHjkJubC5FIBJFIhMDAQACAWCyGj48PmjdvDjU1NXTt2hWRkZEy9YaGhqJFixZQVVXFZ599hocPH77xc/H19YWJiQlUVVXRqlUr+Pv749mzZwCA1NRUiEQiJCcny9wTFBSE1q1bC++PHDkCY2NjKCsrw8nJCbt374ZIJOKqCaJK8B5sg12/XMXek9eQnPUQXsEnUSh+BnfnDqXGj+rdDl9/H4uTFzNw634uQo4l4OTFDMwY0kWIGfjVD/ju1+tIup2Daxl/YfLqn9FCVxNWxrql1klERPWH95Au2HU8AXtPJiL5dg681v2CQvFzuLtYlho/qnd7fB0Wg5MX03Hr3mOEHL2CkxfSMWNoVyHmeOxNnLyYjvS7j3Dzj78R+G0U8gufokvb5lXVLSIiqoG8B3fBruP/GeusO1E81nGxKDV+VO92+DrsxVjnXi5Cjsa/GOvYCDHHz9/EyYsZxTnn7iME7vpfcc4x16+qbhERUQ1X4YmDHj164MmTJ4iPjwcAREVFQUdHR+bL96ioKDg6OgIA0tPT4eLigsGDByMxMRERERE4d+4cPD09S62/qKgIgwYNgqqqKi5cuIDt27dj/vz5pcbOnz8fPj4+SEhIgImJCUaOHInnz5/Dzs4O69atQ8OGDXHv3j3cu3cPPj4+AABPT0/ExsYiPDwciYmJGDp0KFxcXJCWlgYAuHDhAiZMmABPT08kJCTAyckJS5cufePnoqGhgdDQUNy4cQPBwcEICQlBUFAQAMDExATW1tbYt2+fzD379u3DqFGjAACZmZkYMmQIBg0ahKtXr2LKlCll9puISqfQQA5WJnr47cptoUwqBX67cqvML1sUFRrg36dFMmWF4uewa/9Rmc9pqKYEAHj05N/30GoiIqqtivNOM/x25ZZQVpx3MsvOO4ry+Pfpc5mywqdl5x05ORGGOrWFmrICLty4+97aTkREtcursc4toeyNYx3FBiVzjvgZ7NoblBovJyfCUEdz5hwiIpJR4TMONDU10bFjR0RGRsLa2hqRkZH48ssvsWjRIuTn5yM3Nxc3b96Eg4MDAGDFihVwc3PDzJkzAQDGxsZYv349HBwcsGXLFigrK8vUf+rUKaSnpyMyMhJ6enoAgGXLlqFPnz4l2uLj44N+/foBABYtWoR27drh5s2bMDMzg6amJkQikVAHAGRlZWHXrl3IysqCvr6+UMeJEyewa9cuLF++HMHBwXBxccHcuXMBFH/pHxMTgxMnTpT7uSxYsED4s5GREXx8fBAeHi7U4+bmho0bN2LJkiUAilchXL58Gd999x0AYNu2bTA1NcXq1asBAKamprh+/TqWLVv2pn8kRPSCjqYqGsjLIftRgUx59qN/YGrQuNR7Tl/KhPdgG5y7dgcZfz6Ck5URBnY3gbycqNR4kQhYPe1jxFz/Azdu5bz3PhARUe1Rdt4pKDvvxGXCe0gXnEvMKs47nYwwsLtpibzTrmUTRG5wh7JiA+QXPsXwgANIvs28Q0RUX71VzrmUAe8hr491ysg56794lXMCf0Jy1pt3XiAiep0IpX+XQrVbpc44cHBwQGRkJKRSKX7//Xd8/vnnMDc3x7lz5xAVFQV9fX0YGxsDAK5evYrQ0FCoq6sLL2dnZ0gkEmRmZpaoOyUlBQYGBjJf+Hfp0qVEHABYWLxajtesWTMAQHZ2dpntvnbtGoqKimBiYiLTnqioKKSnpwMAkpKS0LVrV5n7bG1t3/iZREREwN7eHnp6elBXV8eCBQuQlZUlXB8xYgRu3bqF8+fPAyhebdCpUyeYmZkJ/baxsZGps6x+vyQWi5GXlyfzkkqel3sPEcny2Xwa6Xf/xtWdE5H3yxwEefbGnl+vQSKVlhq/zqsv2hk1wZhlR6q4pUREVBf4bDpVnHd2TUHeyXkI8nLGnpOJJfJO6p2H6Dp5J3pOD0XIkSsI8XWFGfebJiKiSvDZdBrpdx/h6reTkHdiLoK8+pSdc6Z8i56euxFyNB4hc/vDrEXpkxFERFT/VHjFAQA4Ojri22+/xdWrV6GgoAAzMzM4OjoiMjISjx49ElYbAEB+fj6mTJkCb2/vEvW0aNHinRqtoPDqYFKRqHhGSyKRlBmfn58PeXl5XL58GfLy8jLX1NXV37odsbGxcHNzw6JFi+Ds7AxNTU2Eh4dj7dq1Qoyenh569eqFsLAwdOvWDWFhYZg2bdpbPxMoXs2xaNEimTL5lh9DoXXJ1RlE9UFO7j94XiRB00ZqMuVNG6ni/mu/zHl1TyGGBR6EkoI8GjdUwZ8P87F0ogMy7+WWiA3y7I1Pu7ZG79lhuJvz5IP0gYiIao+y844a7v9dVt75B8MWHijOO5oq+DMnH0snOSHz3mOZuGfPJcj48xEAID7tPjqbNsP0z23gFfTLB+kLERHVbOXmnPLGOgE/vTbWcSwj5xSXxac9eJFzrOG17uSH6AoREdUylVpx8PKcg6CgIGGS4OXEQWRkpHC+AQB06tQJN27cQJs2bUq8FBUVS9RtamqKO3fu4MGDB0JZXFxcpTukqKgoHOD8kpWVFYqKipCdnV2iLS9XOJibm+PChQsy971cJVCWmJgYGBoaYv78+bC2toaxsTFu375dIs7NzQ0RERGIjY1FRkYGRowYIdPvS5cuycS/qd9+fn7Izc2VeTVo6VTuPUR12bPnEsSn3oeTlaFQJhIBTlZGuPiGPTrFz4rw58N8NJCXw6DupjgWmyZzPcizNwbYm8Blbjhu3y85qUBERPVPcd65BycrI6GsUnkn50Xe6WGKYzGp5cbLyYmgpCBfbgwREdVdwlink5FQVpxzDCs31ulhimMxaeXGy4lEUFKo1O9LiYioDqvUxEGjRo1gYWGBffv2CZMEPXv2xJUrV5Camiqz4sDX1xcxMTHCYcNpaWk4fPhwmYcj9+nTB61bt4a7uzsSExMRHR0tnB/wclVBRRgZGSE/Px9nzpxBTk4O/vnnH5iYmMDNzQ1jxozBTz/9hMzMTFy8eBErVqzAzz//DADw9vbGiRMnsGbNGqSlpWHjxo1vPN/A2NgYWVlZCA8PR3p6OtavX4+DBw+WiPv888/x5MkTTJs2DU5OTsI5CwAwZcoUJCcnw9fXF6mpqdi/fz9CQ0PL7beSkhIaNmwo8xLJMblT/bb+QBzGfWoJtz7tYdqiMdZ7O0NVWQF7Tl4DAOyY2w+Lx/cU4m3MmmFgdxMY6WnCvv1HOLJiKOTkRPgm4tUE4jqvPhjxcTu4rziK/H+eQreRGnQbqUFZkf+9ERHVd+t/vIhx/TrCrW+H4rwz85MXeScRALDD1xWLJzgK8TZm+hjY3RRGzbRg38EAR1aOgJxIhG/CX/1QZfEER9h3MEALXU20a9kEiyc4oqelIcLPXK/q7hERUQ2y/sBF2bHODGeoKitiz4mXOac/Fk949X2MMNZp9nKsM6zEWGfxBIfXco4Delq2QPiZ/6vy/hERUc1U6W+/HBwckJCQIEwcaGtro23btnjw4AFMTU2FOAsLC0RFRWH+/Pno0aMHpFIpWrdujeHDh5dar7y8PA4dOoSJEyfCxsYGrVq1wurVq+Hq6lriIOXy2NnZYerUqRg+fDgePnyIgIAABAYGYteuXVi6dClmz56Nu3fvQkdHB926dUP//v0BAN26dUNISAgCAgKwcOFC9O7dGwsWLBAONS7NgAED8OWXX8LT0xNisRj9+vWDv78/AgMDZeI0NDTg6uqK/fv349tvv5W51rJlS/z444+YPXs2goODYWtri/nz52PatGlQUlKqcL+J6rsfo5Kho6WKhe7dodtIDYnp2Rj41X5kP/4HAGDQtKHMnp5Kig0QMLYHWjbTQn7hU5y8mIEJq35GboFYiJkyoBMA4NTaUTLPmrT6Z3z3K7/EISKqz36MTIKOpioWju35Iu88wMB5EcLhlaXmnfEOr/LOhXRMWHlEJu80aaSKnfNcoaetjtwCMa5nZMN13vf47fKtqu4eERHVID9GJr/IOT1ejXX8ImTHOpLXcs64nq+NdY7J5hwtVez07Q89bbXinJP5F1znReC3K7equntERFRDiaTSMk4CrQGio6PRvXt33Lx5E61bt67u5lSZZcuWYevWrbhz506F71Hps+oDtoiIiOg/JEVvjiEiInpfRJVaKE9ERPTWCk/Pq+4m1Er/Pq/uFtQ+yrVgM4sa1cSDBw9CXV0dxsbGuHnzJmbMmAF7e/s6P2mwefNm2NjYoHHjxoiOjsbq1avL3NKJiIiIiIiIiIiIiOhDqlE/3Xjy5AmmT58OMzMzjB07FjY2Njh8+HB1N+uDS0tLw8CBA9G2bVssWbIEs2fPLrHdERERERERERERERHVP5s2bYKRkRGUlZXRtWtXXLx4sdz4H374AWZmZlBWVkaHDh1w/PjxSj+zRm9VRBXHrYqIiKjKcKsiIiKqStyqiIiIqgi3Kno73Kqo8iqzVVFERATGjBmDrVu3omvXrli3bh1++OEHpKSkoGnTpiXiY2Ji0LNnT6xYsQL9+/dHWFgYVq1ahStXrqB9+/YVfi4nDuoIThwQEVGV4cQBERFVJU4cEBFRFeHEwdvhxEHlVWbioGvXrrCxscHGjRsBABKJBAYGBvDy8sK8eSX/nR0+fDgKCgpw7Ngxoaxbt27o2LEjtm7dWuHn8m9gRERERERERERERERVRCwWIy8vT+YlFotLxD19+hSXL19G7969hTI5OTn07t0bsbGxpdYdGxsrEw8Azs7OZcaXpUYdjkxvr/CUb3U3gajWEYvFWLFiBfz8/KCkpFTdzSEiojqMOYeIiKoKcw4RVbXK/HqeigUuXYFFixbJlAUEBJQ49zYnJwdFRUXQ1dWVKdfV1UVycnKpdd+/f7/U+Pv371eqjVxxQET1llgsxqJFi0qd0SUiInqfmHOIiKiqMOcQEdV8fn5+yM3NlXn5+flVd7NkcD6IiIiIiIiIiIiIiKiKKCkpVWhVmI6ODuTl5fHgwQOZ8gcPHkBPT6/Ue/T09CoVXxauOCAiIiIiIiIiIiIiqmEUFRXRuXNnnDlzRiiTSCQ4c+YMbG1tS73H1tZWJh4ATp06VWZ8WbjigIiIiIiIiIiIiIioBpo1axbc3d1hbW2NLl26YN26dSgoKMC4ceMAAGPGjEHz5s2xYsUKAMCMGTPg4OCAtWvXol+/fggPD8elS5ewffv2Sj2XEwdEVG8pKSkhICCAB4YREdEHx5xDRERVhTmHiKhuGT58OP766y8sXLgQ9+/fR8eOHXHixAnhAOSsrCzIyb3aWMjOzg5hYWFYsGABvvrqKxgbG+PQoUNo3759pZ4rkkql0vfaEyIiIiIiIiIiIiIiqrV4xgEREREREREREREREQk4cUBERERERERERERERAJOHBARERERERERERERkYATB0RUb0VGRkIkEuHx48fvNZaIiOhdBQYGomPHjsL7sWPHYtCgQdXWHiIiej+kUikmT54MbW1tiEQiJCQkVHeTiIiISsWJAyKqt+zs7HDv3j1oamq+11giIiIiIqLSnDhxAqGhoTh27Bju3buHvLw8uLq6Ql9fHyKRCIcOHaruJhIREQHgxAER1VJPnz595zoUFRWhp6cHkUj0XmOJiKhuex85iIiI6qf09HQ0a9YMdnZ20NPTQ0FBASwtLbFp06bqblqZmPeIiOonThwQUY3g6OgIT09PeHp6QlNTEzo6OvD394dUKgUAGBkZYcmSJRgzZgwaNmyIyZMnAwDOnTuHHj16QEVFBQYGBvD29kZBQYFQr1gshq+vLwwMDKCkpIQ2bdpg586dAEpuP3T79m24urqiUaNGUFNTQ7t27XD8+PFSYwHgwIEDaNeuHZSUlGBkZIS1a9fK9MnIyAjLly/H+PHjoaGhgRYtWmD79u0f6iMkIqIP5GWOmjlzJnR0dODs7Izr16/jk08+gbq6OnR1dfHFF18gJydHuEcikeDrr79GmzZtoKSkhBYtWmDZsmXCdV9fX5iYmEBVVRWtWrWCv78/nj17Vh3dIyKiKjJ27Fh4eXkhKysLIpEIRkZG+OSTT7B06VJ89tlnFa5HKpUiMDAQLVq0gJKSEvT19eHt7S1cL28MBABRUVHo0qULlJSU0KxZM8ybNw/Pnz8XrpeW9wC8MfcREVHdwokDIqoxdu/ejQYNGuDixYsIDg7GN998gx07dgjX16xZA0tLS8THx8Pf3x/p6elwcXHB4MGDkZiYiIiICJw7dw6enp7CPWPGjMH333+P9evXIykpCdu2bYO6unqpz58+fTrEYjH+97//4dq1a1i1alWZsZcvX8awYcMwYsQIXLt2DYGBgfD390doaKhM3Nq1a2FtbY34+Hh4eHhg2rRpSElJefcPi4iIqtTu3buhqKiI6OhorFy5Er169YKVlRUuXbqEEydO4MGDBxg2bJgQ7+fnh5UrV8Lf3x83btxAWFgYdHV1hesaGhoIDQ3FjRs3EBwcjJCQEAQFBVVH14iIqIoEBwdj8eLF+Oijj3Dv3j3ExcW9VT0HDhxAUFAQtm3bhrS0NBw6dAgdOnQQrpc3Brp79y4+/fRT2NjY4OrVq9iyZQt27tyJpUuXyjzjv3lv69atePz48RtzHxER1TFSIqIawMHBQWpubi6VSCRCma+vr9Tc3FwqlUqlhoaG0kGDBsncM2HCBOnkyZNlyn7//XepnJyctLCwUJqSkiIFID116lSpzzx79qwUgPTRo0dSqVQq7dChgzQwMLBCsaNGjZL26dNHJmbOnDnStm3bCu8NDQ2lo0ePFt5LJBJp06ZNpVu2bCnnkyAioprGwcFBamVlJbxfsmSJtG/fvjIxd+7ckQKQpqSkSPPy8qRKSkrSkJCQCj9j9erV0s6dOwvvAwICpJaWlsJ7d3d36cCBA9+6D0REVDMEBQVJDQ0NS70GQHrw4ME31rF27VqpiYmJ9OnTpyWuvWkM9NVXX0lNTU1lxl2bNm2SqqurS4uKiqRSacm8J5W+OfcREVHdwxUHRFRjdOvWTeYMAVtbW6SlpaGoqAgAYG1tLRN/9epVhIaGQl1dXXg5OztDIpEgMzMTCQkJkJeXh4ODQ4We7+3tjaVLl8Le3h4BAQFITEwsMzYpKQn29vYyZfb29jLtBQALCwvhzyKRCHp6esjOzq5Qe4iIqObo3Lmz8OerV6/i7NmzMvnHzMwMQPHe1UlJSRCLxfj444/LrC8iIgL29vbQ09ODuro6FixYgKysrA/eDyIiql2WL18uk2+ysrIwdOhQFBYWolWrVpg0aRIOHjwobDX0pjFQUlISbG1tZcZd9vb2yM/Pxx9//CGU/TfvAW/OfUREVPdw4oCIag01NTWZ9/n5+ZgyZQoSEhKE19WrV5GWlobWrVtDRUWlUvVPnDgRGRkZ+OKLL3Dt2jVYW1tjw4YN79RmBQUFmfcikQgSieSd6iQioqr33xyUn58PV1dXmfyTkJCAtLQ09OzZ8435JzY2Fm5ubvj0009x7NgxxMfHY/78+Tx8koiISpg6dapMrtHX14eBgQFSUlKwefNmqKiowMPDAz179sSzZ88qPQYqS2ljr/JyHxER1T0NqrsBREQvXbhwQeb9+fPnYWxsDHl5+VLjO3XqhBs3bqBNmzalXu/QoQMkEgmioqLQu3fvCrXBwMAAU6dOxdSpU+Hn54eQkBB4eXmViDM3N0d0dLRMWXR0NExMTMpsLxER1Q2dOnXCgQMHYGRkhAYNSv512tjYGCoqKjhz5gwmTpxY4npMTAwMDQ0xf/58oez27dsftM1ERFQ7aWtrQ1tbu0S5iooKXF1d4erqiunTp8PMzAzXrl174xjI3NwcBw4cgFQqFVYdREdHQ0NDAx999FGZ7XhT7iMiorqHKw6IqMbIysrCrFmzkJKSgu+//x4bNmzAjBkzyoz39fVFTEwMPD09hV+7HD58WDgc2cjICO7u7hg/fjwOHTqEzMxMREZGYv/+/aXWN3PmTJw8eRKZmZm4cuUKzp49C3Nz81JjZ8+ejTNnzmDJkiVITU3F7t27sXHjRvj4+Lz7B0FERDXa9OnT8ffff2PkyJGIi4tDeno6Tp48iXHjxqGoqAjKysrw9fXF3LlzsWfPHqSnp+P8+fPYuXMngOKJhaysLISHhyM9PR3r16/HwYMHq7lXRERUHfLz84Vf7wMQtlwtb/u60NBQ7Ny5E9evX0dGRga+++47qKiowNDQ8I1jIA8PD9y5cwdeXl5ITk7G4cOHERAQgFmzZkFOruyviN6U+4iIqO7hxAER1RhjxoxBYWEhunTpgunTp2PGjBmYPHlymfEWFhaIiopCamoqevToASsrKyxcuBD6+vpCzJYtWzBkyBB4eHjAzMwMkyZNQkFBQan1FRUVYfr06TA3N4eLiwtMTEywefPmUmM7deqE/fv3Izw8HO3bt8fChQuxePFijB079p0+AyIiqvn09fURHR2NoqIi9O3bFx06dMDMmTOhpaUlfOni7++P2bNnY+HChTA3N8fw4cOFM24GDBiAL7/8Ep6enujYsSNiYmLg7+9fnV0iIqJqcunSJVhZWcHKygoAMGvWLGFcUxYtLS2EhITA3t4eFhYWOH36NI4ePYrGjRsDKH8M1Lx5cxw/fhwXL16EpaUlpk6digkTJmDBggXltrMiuY+IiOoWkVQqlVZ3I4iIHB0d0bFjR6xbt666m0JERERERERERFSvcVqYiIiIiIiIiIiIiIgEnDggIiIiIiIiIiIiIiIBtyoiIiIiIiIiIiIiIiIBVxwQEREREREREREREZGAEwdERERERERERERERCTgxAEREREREREREREREQk4cUBERERERERERERERAJOHBARERERERERERERkYATB0REREREREREREREJODEARERERERERERERERCThxQEREREREREREREREAk4cEBERERERERERERGR4P8Bku0lqC/Q2a8AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2000x2000 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import seaborn as sns\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"report = classification_report(test_labels_labels.reshape(-1), y_pred_labels.reshape(-1), zero_division=0, output_dict=True)\n",
"plt.subplots(figsize=(20, 20))\n",
"sns.heatmap(pd.DataFrame(report).iloc[:-1, :].T, annot=True, cmap='Blues', fmt='.2f')\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "387f0c9d",
"metadata": {},
"source": [
"In the case of NER task, all three metrics - precision, recall, and F1 score - are important.\n",
"\n",
"* Precision measures the proportion of predicted entities that are actually correct. In NER, precision means how many of the predicted named entities are actually true named entities.\n",
"\n",
"* Recall measures the proportion of actual entities that are correctly identified by the model. In NER, recall means how many true named entities are correctly identified by the model.\n",
"\n",
"* F1 score is the harmonic mean of precision and recall. It is a balanced metric that takes into account both precision and recall. F1 score is commonly used in NER evaluation as it takes into account both false positives and false negatives.\n",
"\n",
"A high precision score means that the model is making very few false predictions, while a high recall score means that the model is identifying a high proportion of the true named entities. A high F1 score indicates that the model is both precise and recallful."
]
},
{
"cell_type": "markdown",
"id": "ccbe2961",
"metadata": {},
"source": [
"## Save the model as an .h5 file"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "0f6a25b7",
"metadata": {},
"outputs": [],
"source": [
"model.save(os.path.join(model_dir, 'model_2.h5'))"
]
},
{
"cell_type": "markdown",
"id": "10695d43",
"metadata": {},
"source": [
"## Load the model "
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "16c6c34f",
"metadata": {},
"outputs": [],
"source": [
"# Register the custom metric function\n",
"tf.keras.utils.get_custom_objects()[precision.__name__] = precision\n",
"tf.keras.utils.get_custom_objects()[recall.__name__] = recall\n",
"tf.keras.utils.get_custom_objects()[f1_score.__name__] = f1_score"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "ff528d2b",
"metadata": {},
"outputs": [],
"source": [
"model_2 = tf.keras.models.load_model(os.path.join(model_dir, 'model_2.h5'))"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "50dda26b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"28/28 [==============================] - 1s 14ms/step - loss: 0.4709 - accuracy: 0.9320 - precision: 0.9558 - recall: 0.9253 - f1_score: 0.9403\n",
"Test loss: 0.470919132232666\n",
"Test accuracy: 0.9319677948951721\n",
"Test precision: 0.9558389782905579\n",
"Test recall: 0.9253436923027039\n",
"Test f1_score: 0.940338671207428\n"
]
}
],
"source": [
"# Evaluate the model on the test set\n",
"test_loss, test_accuracy, test_precision, test_recall, test_f1_score = model_2.evaluate(test_sequences_padded, test_labels)\n",
"\n",
"# Print the test loss and accuracy\n",
"print('Test loss:', test_loss)\n",
"print('Test accuracy:', test_accuracy)\n",
"print('Test precision:', test_precision)\n",
"print('Test recall:', test_recall)\n",
"print('Test f1_score:', test_f1_score)\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "8602ba7c",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-04-16 13:35:47.732562: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"1/1 [==============================] - 1s 649ms/step\n",
"Predicted Named Entities:\n",
"patient: O\n",
"underwent: O\n",
"electrophysiologic: Diagnostic_procedure\n",
"study: Diagnostic_procedure\n",
"mapping: Diagnostic_procedure\n",
"accessory: Biological_structure\n",
"pathway: Biological_structure\n",
"followed: Sign_symptom\n",
"radiofrequency: Therapeutic_procedure\n",
"ablation: O\n",
"interruption: O\n",
"pathway: O\n",
"using: O\n",
"heat: O\n",
"generated: Therapeutic_procedure\n",
"electromagnetic: Therapeutic_procedure\n",
"waves: O\n",
"tip: O\n",
"ablation: O\n",
"catheter: O\n"
]
},
{
"data": {
"text/html": [
"<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">The patient underwent an \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" electrophysiologic\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" study\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
" with \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" mapping\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
" of the \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" accessory\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" pathway\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
", \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" followed\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" by \n",
"<mark class=\"entity\" style=\"background: #e6ccb2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" radiofrequency\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Therapeutic_procedure</span>\n",
"</mark>\n",
" ablation (interruption of the pathway using the heat \n",
"<mark class=\"entity\" style=\"background: #e6ccb2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" generated\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Therapeutic_procedure</span>\n",
"</mark>\n",
" by \n",
"<mark class=\"entity\" style=\"background: #e6ccb2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" electromagnetic\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Therapeutic_procedure</span>\n",
"</mark>\n",
" waves at the tip of an ablation catheter).</div></span>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"predict(\n",
" \"The patient underwent an electrophysiologic study with mapping of the accessory pathway, followed by radiofrequency ablation (interruption of the pathway using the heat generated by electromagnetic waves at the tip of an ablation catheter).\",\n",
" model_2, \n",
" index_to_label,\n",
" acronyms_to_entities, \n",
" MAX_LENGTH\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "1f5e8611",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1/1 [==============================] - 1s 633ms/step\n",
"Predicted Named Entities:\n",
"57: Age\n",
"year: Age\n",
"old: Age\n",
"man: Sex\n",
"presented: Nonbiological_location\n",
"emergency: Nonbiological_location\n",
"department: History\n",
"2: Date\n",
"day: O\n",
"history: Sign_symptom\n",
"worsening: Sign_symptom\n",
"shortness: Biological_structure\n",
"breath: Sign_symptom\n",
"chest: O\n",
"pain: Nonbiological_location\n",
"reported: History\n",
"recent: History\n",
"travel: History\n",
"sick: History\n",
"contacts: History\n",
"medical: Nonbiological_location\n",
"history: Nonbiological_location\n",
"significant: History\n",
"hypertension: Nonbiological_location\n",
"dyslipidemia: Nonbiological_location\n",
"type: Nonbiological_location\n",
"2: Biological_structure\n",
"diabetes: Diagnostic_procedure\n",
"mellitus: Diagnostic_procedure\n",
"examination: Lab_value\n",
"tachycardic: Detailed_description\n",
"tachypneic: Detailed_description\n",
"oxygen: Biological_structure\n",
"saturation: Diagnostic_procedure\n",
"88: Detailed_description\n",
"room: O\n",
"air: Biological_structure\n",
"chest: Sign_symptom\n",
"radiography: O\n",
"revealed: Biological_structure\n",
"bilateral: Biological_structure\n",
"opacities: Biological_structure\n",
"consistent: O\n",
"pulmonary: Detailed_description\n",
"edema: Distance\n",
"patient: Therapeutic_procedure\n",
"admitted: Medication\n",
"intensive: Medication\n",
"care: Medication\n",
"unit: Medication\n",
"management: Dosage\n",
"acute: Dosage\n",
"decompensated: History\n",
"heart: Date\n",
"failure: Nonbiological_location\n",
"started: History\n",
"intravenous: History\n",
"diuretics: Duration\n",
"inotropic: O\n",
"support: O\n",
"dobutamine: O\n",
"next: O\n",
"several: O\n",
"days: O\n",
"symptoms: O\n",
"improved: O\n",
"discharged: O\n",
"home: O\n",
"instructions: O\n",
"follow: O\n",
"primary: O\n",
"care: O\n",
"provider: O\n",
"1: O\n",
"week: O\n"
]
},
{
"data": {
"text/html": [
"<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">A \n",
"<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" 57\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
"</mark>\n",
"-\n",
"<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" year\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
"</mark>\n",
"-\n",
"<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" old\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" man\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sex</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" presented\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" to the \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" emergency\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" department\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" with a \n",
"<mark class=\"entity\" style=\"background: #f1f0d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" 2\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Date</span>\n",
"</mark>\n",
"-day \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" history\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" of \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" worsening\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" shortness\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" of \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" breath\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" and chest \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" pain\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
". He \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" reported\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" no \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" recent\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" travel\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" or \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" sick\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" contacts\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
". His \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" medical\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" history\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" was \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" significant\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" for \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" hypertension\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
", \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" dyslipidemia\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
", and \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" type\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" 2\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" diabetes\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" mellitus\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
". On \n",
"<mark class=\"entity\" style=\"background: #f4b3c2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" examination\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Lab_value</span>\n",
"</mark>\n",
", he was \n",
"<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" tachycardic\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
"</mark>\n",
" and \n",
"<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" tachypneic\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
"</mark>\n",
", with \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" oxygen\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" saturation\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
" of \n",
"<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" 88\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
"</mark>\n",
"% on room \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" air\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
". \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" Chest\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" radiography \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" revealed\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" bilateral\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" opacities\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" consistent with \n",
"<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" pulmonary\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" edema\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
"</mark>\n",
". The \n",
"<mark class=\"entity\" style=\"background: #e6ccb2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" patient\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Therapeutic_procedure</span>\n",
"</mark>\n",
" was \n",
"<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" admitted\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
"</mark>\n",
" to the \n",
"<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" intensive\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" care\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" unit\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
"</mark>\n",
" for \n",
"<mark class=\"entity\" style=\"background: #b9e8d8; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" management\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Dosage</span>\n",
"</mark>\n",
" of \n",
"<mark class=\"entity\" style=\"background: #b9e8d8; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" acute\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Dosage</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" decompensated\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f1f0d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" heart\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Date</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" failure\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
". He was \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" started\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" on \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" intravenous\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #ffdfba; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" diuretics\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Duration</span>\n",
"</mark>\n",
" and inotropic support with dobutamine. Over the next several days, his symptoms improved and he was discharged to home with instructions to follow up with his primary care provider in 1 week.</div></span>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"predict(\n",
" \"A 57-year-old man presented to the emergency department with a 2-day history of worsening shortness of breath and chest pain. He reported no recent travel or sick contacts. His medical history was significant for hypertension, dyslipidemia, and type 2 diabetes mellitus. On examination, he was tachycardic and tachypneic, with oxygen saturation of 88% on room air. Chest radiography revealed bilateral opacities consistent with pulmonary edema. The patient was admitted to the intensive care unit for management of acute decompensated heart failure. He was started on intravenous diuretics and inotropic support with dobutamine. Over the next several days, his symptoms improved and he was discharged to home with instructions to follow up with his primary care provider in 1 week.\",\n",
" model_2, \n",
" index_to_label,\n",
" acronyms_to_entities, \n",
" MAX_LENGTH\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "df05127c",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1/1 [==============================] - 0s 19ms/step\n",
"Predicted Named Entities:\n",
"57: Age\n",
"year: Age\n",
"old: Age\n",
"man: Sex\n",
"presented: Nonbiological_location\n",
"emergency: Nonbiological_location\n",
"department: History\n",
"2: Date\n",
"day: O\n",
"history: Sign_symptom\n",
"worsening: Sign_symptom\n",
"shortness: Biological_structure\n",
"breath: Sign_symptom\n",
"chest: O\n",
"pain: O\n",
"\n",
"\n",
"\n",
"\n",
"reported: Clinical_event\n",
"recent: Nonbiological_location\n",
"travel: Date\n",
"sick: O\n",
"contacts: O\n",
"\n",
"\n",
"\n",
"\n",
"medical: O\n",
"history: History\n",
"significant: History\n",
"hypertension: History\n",
"dyslipidemia: History\n",
"type: History\n",
"2: History\n",
"diabetes: History\n",
"mellitus: Nonbiological_location\n",
"\n",
"\n",
"\n",
"\n",
"examination: Diagnostic_procedure\n",
"tachycardic: Sign_symptom\n",
"tachypneic: Diagnostic_procedure\n",
"oxygen: Diagnostic_procedure\n",
"saturation: Lab_value\n",
"88: Detailed_description\n",
"room: Sign_symptom\n",
"air: O\n",
"\n",
"\n",
"\n",
"\n",
"chest: Biological_structure\n",
"radiography: Diagnostic_procedure\n",
"revealed: Detailed_description\n",
"bilateral: O\n",
"opacities: Biological_structure\n",
"consistent: Sign_symptom\n",
"pulmonary: O\n",
"edema: O\n",
"\n",
"\n",
"\n",
"\n",
"patient: O\n",
"admitted: Biological_structure\n",
"intensive: Biological_structure\n",
"care: Biological_structure\n",
"unit: O\n",
"management: Sign_symptom\n",
"acute: Distance\n",
"decompensated: Distance\n",
"heart: O\n",
"failure: O\n",
"\n",
"\n",
"\n",
"\n",
"started: Medication\n",
"intravenous: Medication\n",
"diuretics: Medication\n",
"inotropic: Medication\n",
"support: O\n",
"dobutamine: O\n",
"\n",
"\n",
"\n",
"\n",
"next: History\n",
"several: History\n",
"days: History\n",
"symptoms: History\n",
"improved: Nonbiological_location\n",
"discharged: Nonbiological_location\n",
"home: History\n",
"instructions: Duration\n",
"follow: O\n",
"primary: O\n",
"care: O\n",
"provider: O\n",
"1: O\n",
"week: O\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"data": {
"text/html": [
"<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">A \n",
"<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" 57\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
"</mark>\n",
"-\n",
"<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" year\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
"</mark>\n",
"-\n",
"<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" old\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" man\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sex</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" presented\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" to the \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" emergency\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" department\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" with a \n",
"<mark class=\"entity\" style=\"background: #f1f0d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" 2\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Date</span>\n",
"</mark>\n",
"-day \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" history\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" of \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" worsening\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" shortness\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" of \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" breath\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" and chest pain. He \n",
"<mark class=\"entity\" style=\"background: #77c5d5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" reported\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Clinical_event</span>\n",
"</mark>\n",
" no \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" recent\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f1f0d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" travel\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Date</span>\n",
"</mark>\n",
" or sick contacts. His medical \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" history\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" was \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" significant\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" for \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" hypertension\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
", \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" dyslipidemia\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
", and \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" type\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" 2\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" diabetes\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" mellitus\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
". On \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" examination\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
", he was \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" tachycardic\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" and \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" tachypneic\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
", with \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" oxygen\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f4b3c2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" saturation\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Lab_value</span>\n",
"</mark>\n",
" of \n",
"<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" 88\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
"</mark>\n",
"% on \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" room\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" air. \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" Chest\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" radiography\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" revealed\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
"</mark>\n",
" bilateral \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" opacities\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" consistent\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" with pulmonary edema. The patient was \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" admitted\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" to the \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" intensive\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" care\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
"</mark>\n",
" unit for \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" management\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
"</mark>\n",
" of \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" acute\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" decompensated\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
"</mark>\n",
" heart failure. He was \n",
"<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" started\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
"</mark>\n",
" on \n",
"<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" intravenous\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" diuretics\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
"</mark>\n",
" and \n",
"<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" inotropic\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
"</mark>\n",
" support with dobutamine. Over the \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" next\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" several\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" days\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
", his \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" symptoms\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" improved\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" and he was \n",
"<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" discharged\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
"</mark>\n",
" to \n",
"<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" home\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
"</mark>\n",
" with \n",
"<mark class=\"entity\" style=\"background: #ffdfba; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
" instructions\n",
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Duration</span>\n",
"</mark>\n",
" to follow up with his primary care provider in 1 week.</div></span>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"predict_multi_line_text(\n",
" \n",
" \"A 57-year-old man presented to the emergency department with a 2-day history of worsening shortness of breath and chest pain. He reported no recent travel or sick contacts. His medical history was significant for hypertension, dyslipidemia, and type 2 diabetes mellitus. On examination, he was tachycardic and tachypneic, with oxygen saturation of 88% on room air. Chest radiography revealed bilateral opacities consistent with pulmonary edema. The patient was admitted to the intensive care unit for management of acute decompensated heart failure. He was started on intravenous diuretics and inotropic support with dobutamine. Over the next several days, his symptoms improved and he was discharged to home with instructions to follow up with his primary care provider in 1 week.\",\n",
" model_2, \n",
" index_to_label,\n",
" acronyms_to_entities, \n",
" MAX_LENGTH\n",
" \n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7589ef46",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}