[c0f169]: / notebooks / 04_MODEL_1___bidirectional_lstm.ipynb

Download this file

1592 lines (1591 with data), 416.6 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "f8302cf8",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import re\n",
    "import pickle\n",
    "\n",
    "import numpy as np\n",
    "\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "6851f1a6",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[nltk_data] Error loading punkt: <urlopen error [SSL:\n",
      "[nltk_data]     CERTIFICATE_VERIFY_FAILED] certificate verify failed:\n",
      "[nltk_data]     unable to get local issuer certificate (_ssl.c:1131)>\n",
      "[nltk_data] Error loading stopwords: <urlopen error [SSL:\n",
      "[nltk_data]     CERTIFICATE_VERIFY_FAILED] certificate verify failed:\n",
      "[nltk_data]     unable to get local issuer certificate (_ssl.c:1131)>\n"
     ]
    }
   ],
   "source": [
    "import sys\n",
    "sys.path.append('../scripts')\n",
    "from utils import predict, predict_multi_line_text, load_data\n",
    "\n",
    "sys.path.append('../')\n",
    "from config import entity_to_acronyms, acronyms_to_entities"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "89395fb0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# from importlib import reload\n",
    "\n",
    "# import utils\n",
    "# reload(utils)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "55b67971",
   "metadata": {},
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow.keras.preprocessing.text import Tokenizer\n",
    "from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
    "from tensorflow.keras.utils import to_categorical\n",
    "from tensorflow.keras.layers import Input, Embedding, Bidirectional, LSTM, Dense"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "aae668e2",
   "metadata": {},
   "outputs": [],
   "source": [
    "data_dir = '../data'\n",
    "model_dir = '../models'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "f86da10e",
   "metadata": {},
   "outputs": [],
   "source": [
    "(train_sequences_padded, train_labels), (val_sequences_padded, val_labels), (test_sequences_padded, test_labels), label_to_index, index_to_label = load_data(data_dir)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "c7ad2170",
   "metadata": {},
   "outputs": [],
   "source": [
    "if train_sequences_padded.shape[1] != train_labels.shape[1]:\n",
    "    print('Sequence length mismatch')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "36c1529c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load the tokenizer from file\n",
    "with open('../data/tokenizer.pickle', 'rb') as handle:\n",
    "    tokenizer = pickle.load(handle)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "2fb48161",
   "metadata": {},
   "outputs": [],
   "source": [
    "INPUT_DIM = len(tokenizer.word_index)+1\n",
    "EMBEDDING_DIM = 216\n",
    "NUM_CLASSES = len(label_to_index)\n",
    "MAX_LENGTH = train_sequences_padded.shape[1]\n",
    "LSTM_UNITS = 64\n",
    "DROPOUT = 0.2\n",
    "BATCH_SIZE = 32\n",
    "EPOCHS = 20"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "e828b34f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((3038, 100), (3038, 100, 79))"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "train_sequences_padded.shape, train_labels.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08ff4d01",
   "metadata": {},
   "source": [
    "train_sequences_padded is a 2D NumPy array with shape (3038, 100), which represents the padded training sequences. It has 3038 rows, where each row represents a sequence of maximum length 100 with padded zeros.\n",
    "\n",
    "train_labels is a 3D NumPy array with shape (3038, 100, 79), which represents the one-hot encoded training labels. It has 3038 samples, 100 timesteps, and 79 classes (including the padding class)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "47692a34",
   "metadata": {},
   "source": [
    "## Building Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "770388cb",
   "metadata": {},
   "outputs": [],
   "source": [
    "from keras import backend as K\n",
    "\n",
    "def precision(y_true, y_pred):\n",
    "    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n",
    "    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))\n",
    "    _precision = true_positives / (predicted_positives + K.epsilon())\n",
    "    return _precision\n",
    "\n",
    "def recall(y_true, y_pred):\n",
    "    \"\"\"Compute recall metric\"\"\"\n",
    "    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n",
    "    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))\n",
    "    return true_positives / (possible_positives + K.epsilon())\n",
    "\n",
    "def f1_score(y_true, y_pred):\n",
    "    \"\"\"Compute f1-score metric\"\"\"\n",
    "    _precision = precision(y_true, y_pred)\n",
    "    _recall = recall(y_true, y_pred)\n",
    "    f1_score = 2 * ((_precision * _recall) / (_precision + _recall + K.epsilon()))\n",
    "    return f1_score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "d662fe53",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential\"\n",
      "_________________________________________________________________\n",
      " Layer (type)                Output Shape              Param #   \n",
      "=================================================================\n",
      " embedding (Embedding)       (None, 100, 216)          1505304   \n",
      "                                                                 \n",
      " bidirectional (Bidirectiona  (None, 100, 128)         143872    \n",
      " l)                                                              \n",
      "                                                                 \n",
      " dense (Dense)               (None, 100, 79)           10191     \n",
      "                                                                 \n",
      "=================================================================\n",
      "Total params: 1,659,367\n",
      "Trainable params: 1,659,367\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "# Define the model architecture\n",
    "model = tf.keras.models.Sequential([\n",
    "    Embedding(INPUT_DIM, EMBEDDING_DIM, input_length=MAX_LENGTH),\n",
    "    Bidirectional(LSTM(units=LSTM_UNITS, return_sequences=True)),\n",
    "    Dense(NUM_CLASSES, activation='softmax')\n",
    "])\n",
    "\n",
    "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy', precision, recall, f1_score])\n",
    "\n",
    "model.summary()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "b8db2244",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/20\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-04-09 11:17:46.056238: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "95/95 [==============================] - 24s 221ms/step - loss: 0.9078 - accuracy: 0.8874 - precision: 0.8346 - recall: 0.7405 - f1_score: 0.7834 - val_loss: 0.3780 - val_accuracy: 0.9129 - val_precision: 0.9896 - val_recall: 0.8872 - val_f1_score: 0.9356\n",
      "Epoch 2/20\n",
      "95/95 [==============================] - 15s 163ms/step - loss: 0.3853 - accuracy: 0.9065 - precision: 0.9963 - recall: 0.8789 - f1_score: 0.9339 - val_loss: 0.3665 - val_accuracy: 0.9129 - val_precision: 0.9868 - val_recall: 0.8928 - val_f1_score: 0.9374\n",
      "Epoch 3/20\n",
      "95/95 [==============================] - 17s 181ms/step - loss: 0.3640 - accuracy: 0.9080 - precision: 0.9961 - recall: 0.8872 - f1_score: 0.9384 - val_loss: 0.3618 - val_accuracy: 0.9150 - val_precision: 0.9840 - val_recall: 0.8985 - val_f1_score: 0.9393\n",
      "Epoch 4/20\n",
      "95/95 [==============================] - 14s 152ms/step - loss: 0.3408 - accuracy: 0.9136 - precision: 0.9955 - recall: 0.8945 - f1_score: 0.9422 - val_loss: 0.3536 - val_accuracy: 0.9179 - val_precision: 0.9818 - val_recall: 0.9014 - val_f1_score: 0.9399\n",
      "Epoch 5/20\n",
      "95/95 [==============================] - 16s 163ms/step - loss: 0.3044 - accuracy: 0.9221 - precision: 0.9951 - recall: 0.8983 - f1_score: 0.9442 - val_loss: 0.3316 - val_accuracy: 0.9240 - val_precision: 0.9816 - val_recall: 0.9040 - val_f1_score: 0.9412\n",
      "Epoch 6/20\n",
      "95/95 [==============================] - 17s 179ms/step - loss: 0.2613 - accuracy: 0.9340 - precision: 0.9942 - recall: 0.9049 - f1_score: 0.9475 - val_loss: 0.3181 - val_accuracy: 0.9302 - val_precision: 0.9789 - val_recall: 0.9075 - val_f1_score: 0.9418\n",
      "Epoch 7/20\n",
      "95/95 [==============================] - 17s 177ms/step - loss: 0.2216 - accuracy: 0.9438 - precision: 0.9928 - recall: 0.9130 - f1_score: 0.9512 - val_loss: 0.3114 - val_accuracy: 0.9328 - val_precision: 0.9752 - val_recall: 0.9132 - val_f1_score: 0.9432\n",
      "Epoch 8/20\n",
      "95/95 [==============================] - 17s 177ms/step - loss: 0.1861 - accuracy: 0.9530 - precision: 0.9908 - recall: 0.9242 - f1_score: 0.9563 - val_loss: 0.3041 - val_accuracy: 0.9358 - val_precision: 0.9709 - val_recall: 0.9198 - val_f1_score: 0.9447\n",
      "Epoch 9/20\n",
      "95/95 [==============================] - 17s 181ms/step - loss: 0.1566 - accuracy: 0.9608 - precision: 0.9898 - recall: 0.9358 - f1_score: 0.9620 - val_loss: 0.3032 - val_accuracy: 0.9378 - val_precision: 0.9673 - val_recall: 0.9241 - val_f1_score: 0.9452\n",
      "Epoch 10/20\n",
      "95/95 [==============================] - 16s 170ms/step - loss: 0.1336 - accuracy: 0.9664 - precision: 0.9890 - recall: 0.9458 - f1_score: 0.9669 - val_loss: 0.3085 - val_accuracy: 0.9384 - val_precision: 0.9644 - val_recall: 0.9269 - val_f1_score: 0.9453\n",
      "Epoch 11/20\n",
      "95/95 [==============================] - 17s 174ms/step - loss: 0.1164 - accuracy: 0.9701 - precision: 0.9892 - recall: 0.9537 - f1_score: 0.9711 - val_loss: 0.3149 - val_accuracy: 0.9394 - val_precision: 0.9616 - val_recall: 0.9298 - val_f1_score: 0.9454\n",
      "Epoch 12/20\n",
      "95/95 [==============================] - 16s 170ms/step - loss: 0.1028 - accuracy: 0.9731 - precision: 0.9893 - recall: 0.9599 - f1_score: 0.9744 - val_loss: 0.3211 - val_accuracy: 0.9394 - val_precision: 0.9597 - val_recall: 0.9313 - val_f1_score: 0.9453\n",
      "Epoch 13/20\n",
      "95/95 [==============================] - 16s 173ms/step - loss: 0.0912 - accuracy: 0.9759 - precision: 0.9900 - recall: 0.9645 - f1_score: 0.9771 - val_loss: 0.3223 - val_accuracy: 0.9391 - val_precision: 0.9586 - val_recall: 0.9314 - val_f1_score: 0.9448\n",
      "Epoch 14/20\n",
      "95/95 [==============================] - 17s 174ms/step - loss: 0.0812 - accuracy: 0.9786 - precision: 0.9908 - recall: 0.9685 - f1_score: 0.9796 - val_loss: 0.3348 - val_accuracy: 0.9399 - val_precision: 0.9569 - val_recall: 0.9330 - val_f1_score: 0.9448\n",
      "Epoch 15/20\n",
      "95/95 [==============================] - 16s 174ms/step - loss: 0.0731 - accuracy: 0.9807 - precision: 0.9915 - recall: 0.9718 - f1_score: 0.9815 - val_loss: 0.3455 - val_accuracy: 0.9401 - val_precision: 0.9554 - val_recall: 0.9335 - val_f1_score: 0.9443\n",
      "Epoch 16/20\n",
      "95/95 [==============================] - 17s 174ms/step - loss: 0.0657 - accuracy: 0.9827 - precision: 0.9921 - recall: 0.9746 - f1_score: 0.9833 - val_loss: 0.3530 - val_accuracy: 0.9398 - val_precision: 0.9551 - val_recall: 0.9336 - val_f1_score: 0.9442\n",
      "Epoch 17/20\n",
      "95/95 [==============================] - 17s 175ms/step - loss: 0.0595 - accuracy: 0.9842 - precision: 0.9927 - recall: 0.9771 - f1_score: 0.9849 - val_loss: 0.3645 - val_accuracy: 0.9398 - val_precision: 0.9540 - val_recall: 0.9344 - val_f1_score: 0.9441\n",
      "Epoch 18/20\n",
      "95/95 [==============================] - 17s 179ms/step - loss: 0.0539 - accuracy: 0.9859 - precision: 0.9934 - recall: 0.9791 - f1_score: 0.9862 - val_loss: 0.3704 - val_accuracy: 0.9402 - val_precision: 0.9532 - val_recall: 0.9348 - val_f1_score: 0.9439\n",
      "Epoch 19/20\n",
      "95/95 [==============================] - 17s 182ms/step - loss: 0.0488 - accuracy: 0.9875 - precision: 0.9940 - recall: 0.9814 - f1_score: 0.9877 - val_loss: 0.3789 - val_accuracy: 0.9398 - val_precision: 0.9525 - val_recall: 0.9349 - val_f1_score: 0.9436\n",
      "Epoch 20/20\n",
      "95/95 [==============================] - 17s 178ms/step - loss: 0.0439 - accuracy: 0.9891 - precision: 0.9946 - recall: 0.9832 - f1_score: 0.9888 - val_loss: 0.3874 - val_accuracy: 0.9397 - val_precision: 0.9520 - val_recall: 0.9354 - val_f1_score: 0.9436\n"
     ]
    }
   ],
   "source": [
    "# Train the model\n",
    "history = model.fit(\n",
    "    train_sequences_padded, \n",
    "    train_labels, \n",
    "    epochs=EPOCHS, \n",
    "    validation_data=(val_sequences_padded, val_labels)\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "c744592c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "def plot_graphs(history):\n",
    "    fig, axs = plt.subplots(2, 2, figsize=(12, 8))\n",
    "    \n",
    "    axs[0, 0].plot(history.history['accuracy'])\n",
    "    axs[0, 0].plot(history.history['val_accuracy'])\n",
    "    axs[0, 0].set_title('Model Accuracy')\n",
    "    axs[0, 0].set_ylabel('Accuracy')\n",
    "    axs[0, 0].legend(['train', 'val'], loc='best')\n",
    "    \n",
    "    axs[0, 1].plot(history.history['loss'])\n",
    "    axs[0, 1].plot(history.history['val_loss'])\n",
    "    axs[0, 1].set_title('Model Loss')\n",
    "    axs[0, 1].set_ylabel('Loss')\n",
    "    axs[0, 1].legend(['train', 'val'], loc='best')\n",
    "    \n",
    "    axs[1, 0].plot(history.history['recall'])\n",
    "    axs[1, 0].plot(history.history['val_recall'])\n",
    "    axs[1, 0].set_title('Model Recall')\n",
    "    axs[1, 0].set_ylabel('Recall')\n",
    "    axs[1, 0].legend(['train', 'val'], loc='best')\n",
    "    \n",
    "    axs[1, 1].plot(history.history['f1_score'])\n",
    "    axs[1, 1].plot(history.history['val_f1_score'])\n",
    "    axs[1, 1].set_title('Model F1 Score')\n",
    "    axs[1, 1].set_ylabel('F1 Score')\n",
    "    axs[1, 1].legend(['train', 'val'], loc='best')\n",
    "    \n",
    "    plt.tight_layout()\n",
    "    plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "4e14092b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTZf/H8XfSvfegpQMQKLNsBLeiKIqKIjhBXI+Kk+fxERyIOHAiKk4UJyoKyM9HFJQ6kaUgWza0UOimg+4m5/dH2tDSAi20TcfndV25kpycJN9EhHM+ue/vbTIMw0BERERERERERKQRmR1dgIiIiIiIiIiItD4KpUREREREREREpNEplBIRERERERERkUanUEpERERERERERBqdQikREREREREREWl0CqVERERERERERKTRKZQSEREREREREZFGp1BKREREREREREQanUIpERERERERERFpdAqlRKRJMplMTJkypc7P27t3LyaTiQ8//LDeaxIRERFpTXQ8JiINTaGUiBzThx9+iMlkwmQysWzZsmqPG4ZBVFQUJpOJyy67zAEV1o/vvvsOk8lEREQEVqvV0eWIiIiI2LXk47FffvkFk8nEvHnzHF2KiDiIQikROSF3d3c+++yzatt//fVX9u/fj5ubmwOqqj9z5swhNjaWgwcP8tNPPzm6HBEREZFqWvrxmIi0TgqlROSEhg0bxldffUVZWVmV7Z999hl9+/YlPDzcQZWduvz8fP7v//6PCRMm0Lt3b+bMmePoko4pPz/f0SWIiIiIg7Tk4zERab0USonICV133XVkZmby448/2reVlJQwb948rr/++hqfk5+fz7///W+ioqJwc3Ojc+fOvPTSSxiGUWW/4uJiHnzwQUJCQvDx8eHyyy9n//79Nb5mcnIyt9xyC2FhYbi5udGtWzdmz559Sp/t66+/prCwkGuuuYZrr72WBQsWUFRUVG2/oqIipkyZQqdOnXB3d6dNmzZcddVV7Nq1y76P1Wrl1VdfpUePHri7uxMSEsLFF1/MX3/9BRy/v8LRPRumTJmCyWRiy5YtXH/99QQEBHDmmWcCsGHDBm6++Wbat2+Pu7s74eHh3HLLLWRmZtb4nd16661ERETg5uZGu3btuOuuuygpKWH37t2YTCZeeeWVas9bvnw5JpOJzz//vK5fqYiIiDSAlnw8diK7d+/mmmuuITAwEE9PT04//XQWLVpUbb/XX3+dbt264enpSUBAAP369asyuiwvL48HHniA2NhY3NzcCA0N5cILL2Tt2rUNWr+IHJuzowsQkaYvNjaWQYMG8fnnn3PJJZcA8P3335OTk8O1117La6+9VmV/wzC4/PLL+fnnn7n11lvp1asXS5Ys4aGHHiI5OblKCHLbbbfx6aefcv311zN48GB++uknLr300mo1pKamcvrpp2MymbjnnnsICQnh+++/59ZbbyU3N5cHHnjgpD7bnDlzOO+88wgPD+faa69l4sSJ/O9//+Oaa66x72OxWLjssstISEjg2muv5f777ycvL48ff/yRTZs20aFDBwBuvfVWPvzwQy655BJuu+02ysrK+P3331m5ciX9+vU7qfquueYaOnbsyLPPPms/gPzxxx/ZvXs348aNIzw8nM2bN/Puu++yefNmVq5ciclkAuDAgQMMGDCA7Oxs7rjjDuLi4khOTmbevHkUFBTQvn17zjjjDObMmcODDz5Y7Xvx8fHhiiuuOKm6RUREpH615OOx40lNTWXw4MEUFBRw3333ERQUxEcffcTll1/OvHnzGDFiBACzZs3ivvvuY+TIkdx///0UFRWxYcMGVq1aZQ/t7rzzTubNm8c999xD165dyczMZNmyZfzzzz/06dOn3msXkVowRESO4YMPPjAA488//zRmzpxp+Pj4GAUFBYZhGMY111xjnHfeeYZhGEZMTIxx6aWX2p+3cOFCAzCefvrpKq83cuRIw2QyGTt37jQMwzDWrVtnAMbdd99dZb/rr7/eAIwnnnjCvu3WW2812rRpY2RkZFTZ99prrzX8/Pzsde3Zs8cAjA8++OCEny81NdVwdnY2Zs2aZd82ePBg44orrqiy3+zZsw3AmD59erXXsFqthmEYxk8//WQAxn333XfMfY5X29Gf94knnjAA47rrrqu2b8Vnrezzzz83AOO3336zbxszZoxhNpuNP//885g1vfPOOwZg/PPPP/bHSkpKjODgYGPs2LHVniciIiKNqyUfj/38888GYHz11VfH3OeBBx4wAOP333+3b8vLyzPatWtnxMbGGhaLxTAMw7jiiiuMbt26Hff9/Pz8jPHjxx93HxFpXJq+JyK1MmrUKAoLC/n222/Jy8vj22+/PeZQ8e+++w4nJyfuu+++Ktv//e9/YxgG33//vX0/oNp+R//KZhgG8+fPZ/jw4RiGQUZGhv0ydOhQcnJyTmrY9RdffIHZbObqq6+2b7vuuuv4/vvvOXTokH3b/PnzCQ4O5t577632GhWjkubPn4/JZOKJJ5445j4n484776y2zcPDw367qKiIjIwMTj/9dAD792C1Wlm4cCHDhw+vcZRWRU2jRo3C3d29Si+tJUuWkJGRwY033njSdYuIiEj9a4nHYyfy3XffMWDAAHsbAwBvb2/uuOMO9u7dy5YtWwDw9/dn//79/Pnnn8d8LX9/f1atWsWBAwfqvU4ROTkKpUSkVkJCQhgyZAifffYZCxYswGKxMHLkyBr3TUxMJCIiAh8fnyrbu3TpYn+84tpsNtunv1Xo3Llzlfvp6elkZ2fz7rvvEhISUuUybtw4ANLS0ur8mT799FMGDBhAZmYmO3fuZOfOnfTu3ZuSkhK++uor+367du2ic+fOODsfe8bzrl27iIiIIDAwsM51HE+7du2qbcvKyuL+++8nLCwMDw8PQkJC7Pvl5OQAtu8sNzeX7t27H/f1/f39GT58eJV+C3PmzCEyMpLzzz+/Hj+JiIiInKqWeDx2IomJidVqqelzPPzww3h7ezNgwAA6duzI+PHj+eOPP6o854UXXmDTpk1ERUUxYMAApkyZwu7du+u9ZhGpPfWUEpFau/7667n99ttJSUnhkksuwd/fv1He12q1AnDjjTcyduzYGvfp2bNnnV5zx44d9l/SOnbsWO3xOXPmcMcdd9Sx0uM71ogpi8VyzOdUHhVVYdSoUSxfvpyHHnqIXr164e3tjdVq5eKLL7Z/V3UxZswYvvrqK5YvX06PHj345ptvuPvuuzGb9buFiIhIU9OSjsfqU5cuXdi2bRvffvstixcvZv78+bz55ptMnjyZJ598ErAdQ5111ll8/fXX/PDDD7z44os8//zzLFiwwN6nS0Qal0IpEam1ESNG8K9//YuVK1cyd+7cY+4XExPD0qVLycvLq/Lr3NatW+2PV1xbrVb7SKQK27Ztq/J6FSvBWCwWhgwZUi+fZc6cObi4uPDJJ5/g5ORU5bFly5bx2muvkZSURHR0NB06dGDVqlWUlpbi4uJS4+t16NCBJUuWkJWVdczRUgEBAQBkZ2dX2V7xC19tHDp0iISEBJ588kkmT55s375jx44q+4WEhODr68umTZtO+JoXX3wxISEhzJkzh4EDB1JQUMBNN91U65pERESk8bSk47HaiImJqVYLVP8cAF5eXowePZrRo0dTUlLCVVddxTPPPMOkSZNwd3cHoE2bNtx9993cfffdpKWl0adPH5555hmFUiIOop/BRaTWvL29eeutt5gyZQrDhw8/5n7Dhg3DYrEwc+bMKttfeeUVTCaT/R/9iuujV4uZMWNGlftOTk5cffXVzJ8/v8aQJT09vc6fZc6cOZx11lmMHj2akSNHVrk89NBDAHz++ecAXH311WRkZFT7PIB9Rbyrr74awzDsv8TVtI+vry/BwcH89ttvVR5/8803a113RYBmHLWU89Hfmdls5sorr+R///sff/311zFrAnB2dua6667jyy+/5MMPP6RHjx4O/aVTREREjq0lHY/VxrBhw1i9ejUrVqywb8vPz+fdd98lNjaWrl27ApCZmVnlea6urnTt2hXDMCgtLcVisdjbHFQIDQ0lIiKC4uLiBqldRE5MI6VEpE6ONVy7suHDh3Peeefx6KOPsnfvXuLj4/nhhx/4v//7Px544AF7z4JevXpx3XXX8eabb5KTk8PgwYNJSEhg586d1V7zueee4+eff2bgwIHcfvvtdO3alaysLNauXcvSpUvJysqq9WdYtWoVO3fu5J577qnx8cjISPr06cOcOXN4+OGHGTNmDB9//DETJkxg9erVnHXWWeTn57N06VLuvvturrjiCs477zxuuukmXnvtNXbs2GGfSvf7779z3nnn2d/rtttu47nnnuO2226jX79+/Pbbb2zfvr3Wtfv6+nL22WfzwgsvUFpaSmRkJD/88AN79uyptu+zzz7LDz/8wDnnnMMdd9xBly5dOHjwIF999RXLli2rMtx/zJgxvPbaa/z88888//zzta5HREREGl9LOB6rbP78+faRT0d/zokTJ/L5559zySWXcN999xEYGMhHH33Enj17mD9/vr3dwEUXXUR4eDhnnHEGYWFh/PPPP8ycOZNLL70UHx8fsrOzadu2LSNHjiQ+Ph5vb2+WLl3Kn3/+ycsvv3xSdYtIPXDMon8i0hxUXoL4eI5egtgwbEv1Pvjgg0ZERITh4uJidOzY0XjxxRcNq9VaZb/CwkLjvvvuM4KCggwvLy9j+PDhxr59+6otQWwYhpGammqMHz/eiIqKMlxcXIzw8HDjggsuMN599137PrVZgvjee+81AGPXrl3H3GfKlCkGYKxfv94wDMMoKCgwHn30UaNdu3b29x45cmSV1ygrKzNefPFFIy4uznB1dTVCQkKMSy65xFizZo19n4KCAuPWW281/Pz8DB8fH2PUqFFGWlpatc/7xBNPGICRnp5erbb9+/cbI0aMMPz9/Q0/Pz/jmmuuMQ4cOFDjd5aYmGiMGTPGCAkJMdzc3Iz27dsb48ePN4qLi6u9brdu3Qyz2Wzs37//mN+LiIiINK6WejxmGIbx888/G8AxL7///rthGIaxa9cuY+TIkYa/v7/h7u5uDBgwwPj222+rvNY777xjnH322UZQUJDh5uZmdOjQwXjooYeMnJwcwzAMo7i42HjooYeM+Ph4w8fHx/Dy8jLi4+ONN99887g1ikjDMhnGUXNARESkVerduzeBgYEkJCQ4uhQREREREWkF1FNKRET466+/WLduHWPGjHF0KSIiIiIi0kpopJSISCu2adMm1qxZw8svv0xGRga7d++2r04jIiIiIiLSkDRSSkSkFZs3bx7jxo2jtLSUzz//XIGUiIiIiIg0Go2UEhERERERERGRRqeRUiIiIiIiIiIi0ugUSomIiIiIiIiISKNzdnQBTZHVauXAgQP4+PhgMpkcXY6IiIg4kGEY5OXlERERgdms3/OOR8dQIiIiArU/flIoVYMDBw4QFRXl6DJERESkCdm3bx9t27Z1dBlNmo6hREREpLITHT8plKqBj48PYPvyfH19HVyNiIiIOFJubi5RUVH24wM5Nh1DiYiICNT++EmhVA0qhpv7+vrqgEpEREQANB2tFnQMJSIiIpWd6PhJjRFERERERERERKTRKZQSEREREREREZFGp1BKREREREREREQanXpKnQKLxUJpaamjy2iWXFxccHJycnQZIiIiIiIi0kpZrVZKSkocXUazVF/n9AqlToJhGKSkpJCdne3oUpo1f39/wsPD1ThWREREREREGlVJSQl79uzBarU6upRmqz7O6RVKnYSKQCo0NBRPT0+FKnVkGAYFBQWkpaUB0KZNGwdXJCIiIiIiIq2FYRgcPHgQJycnoqKiMJvV2agu6vOcXqFUHVksFnsgFRQU5Ohymi0PDw8A0tLSCA0N1VQ+ERERERERaRRlZWUUFBQQERGBp6eno8tplurrnF5xYB1V9JDSH9xTV/Edqi+XiIiIiIiINBaLxQKAq6urgytp3urjnF6h1EnSlL1Tp+9QREREREREHEXnpKemPr4/hVIiIiIiIiIiItLoFErJSYmNjWXGjBmOLkNERERERERE6qipnNOr0Xkrcu6559KrV696+YP3559/4uXldepFiYiInISSMis70w6z5WAuWw7ksjczn/fH9tMw/BaqzGLlqW+3kJRVwBs39MHTVYewIiLS+rTEc3r9iy52hmFgsVhwdj7xH4uQkJBGqEhERARyi0r550CuPYDafCCXHWl5lFqMKvslZxfSNkALkbREzk5mFq47QE5hKfuyCukc7uPokkRERJqc5nhOr+l7rcTNN9/Mr7/+yquvvorJZMJkMvHhhx9iMpn4/vvv6du3L25ubixbtoxdu3ZxxRVXEBYWhre3N/3792fp0qVVXu/ooX4mk4n33nuPESNG4OnpSceOHfnmm28a+VOKiEhzZhgGB7ILWbolldcSdnDnJ2s464Wf6DnlB0a/u5In/7eFr9bsZ8vBXEotBj7uzgxsF8gtZ7TjpWvi8XF3cfRHkAYUHWgLHBMz8x1ciYiISONrqef0GilVDwzDoLDU0ujv6+HiVOtpCq+++irbt2+ne/fuTJ06FYDNmzcDMHHiRF566SXat29PQEAA+/btY9iwYTzzzDO4ubnx8ccfM3z4cLZt20Z0dPQx3+PJJ5/khRde4MUXX+T111/nhhtuIDExkcDAwFP/sCIi0qKUWazsSs9ny8EctlQaBXWooOYlhSP9PejSxpduEb50jfClaxtf2gZ4aLpeKxId5MnG5BySsgocXYqIiLQwjjqnh9qf17fUc3qFUvWgsNRC18lLGv19t0wdWuueCn5+fri6uuLp6Ul4eDgAW7duBWDq1KlceOGF9n0DAwOJj4+333/qqaf4+uuv+eabb7jnnnuO+R4333wz1113HQDPPvssr732GqtXr+biiy+u82cTEZGWI7+4jK0ptml3FQHU1pQ8Ssqs1fZ1MpvoGOpN1zbl4VN5AOXv6eqAyqUpibGPlFIoJSIi9ctR5/RQ+/P6lnpOr1BK6NevX5X7hw8fZsqUKSxatIiDBw9SVlZGYWEhSUlJx32dnj172m97eXnh6+tLWlpag9QsIiJNU1pe0ZHwqTyA2puZj2FU39fL1ckeOnWN8KVbhB+nhXrj7uLU+IVLkxcTZAulNFJKRESkquZ8Tq9Qqh54uDixZepQh7xvfTi64/5//vMffvzxR1566SVOO+00PDw8GDlyJCUlJcd9HReXqr08TCYTVmv1X8FFRKT5s1oN9mbm2wKog0dGQWUcLq5x/3Bf9yoBVNc2vkQHemI2a/qd1E5UoEIpERFpGI46p69471PVnM/pFUrVA5PJ1CyWJnZ1dcViOfE82T/++IObb76ZESNGALaUde/evQ1cnYiINFVFpRa2p+ZVmX73z8FcCkqq/5tiNkH7EO9Ko5986dLGl2BvNwdULi1JTJDtgHv/oQIsVgMnBZoiIlJPdE7vOE3/W5d6Exsby6pVq9i7dy/e3t7HTDw7duzIggULGD58OCaTiccff1wjnkREWonsghJ78FQRQu1MP4zFWn3+nZuzmbiK5uPl153DfZrFQZ00P+G+7rg6mSmxWDmQXWgfOSUiItJatMRzeh01tiL/+c9/GDt2LF27dqWwsJAPPvigxv2mT5/OLbfcwuDBgwkODubhhx8mNze3kasVEZGGZBgGB3KK2JRsW/1u8wHb6Kfk7MIa9w/wdKFbhF+V1e/aBXvh7GRu5MqltXIym2gb6MHu9Hz2ZRUolBIRkVanJZ7TmwyjptajrVtubi5+fn7k5OTg6+tb5bGioiL27NlDu3btcHd3d1CFLYO+SxGRxmEYBsnZhWxKzmFjcg4bk3PZnJxDZn7NfQWiAj3o1sbPPv2ua4Qv4b7utVquuCU63nGBVNXQ39W4D1bz87Z0pl3Vg+sGHHtJaxERkePRuWj9ON73WNtjAo2UEhERaUEMw2D/ocoBVA6bknM4VFBabV8ns4mOod50j/Sz94Dq0sYXPw+XGl5ZxPGiy0dHJWaq2bmIiEhLoFBKRESkmTIMg31Zhbbg6UCOPYjKriGAcjab6BTmQ49IP7q39aNHpB9x4T6419NKriKNIbq82XlSVr6DKxEREZH6oFBKRESkGTAMg6SsgiqjnzYl55JTWD2AcnGqFEBF2gKozgqgpAWI0UgpERGRFkWhlIiISBNjsRrsycjnn4O59tFPm5JzyC0qq7avi5OJuHBfukf6Vgmg3JwVQEnLExNkC6WSMgswDKPV9jkTERFpKRRKiYiIOFBOYSlbD9pWvvvnYB7/pOSyLSWP4rLqy/a6OpmJa+NjD596RPrRKcwHV2etgCetQ8WKe3nFZWQXlBLg5ergikRERORUKJQSERFpBFarQWJWQXn4dCSESs4urHF/DxcnOof70C3C1z4NTwGUtHbuLk6E+bqRmltMYlaBQikREZFmTqGUiIhIPcsrKmVbSh7/HMxly0Hb9baUPApLLTXuH+nvQZc2PnRp42u/RAd64mTW1CSRo8UEetlCqcx8ekX5O7ocEREROQUKpURERE6S1Wqw71CBbdpdxeinlFz2ZdU8+snN2UzncB+6hPvaQ6i4Nr74ebg0cuUizVd0kCer92axL0vNzkVERJo7hVIiIiK1VFBSxtrEbFbvyWTVniw2H8jlcHH15uMA4b7u1UY/xQZ54uyk6Xcip0Ir8ImIiLQcCqWk1mJjY3nggQd44IEHHF2KiEijyCko5a/ELFbvyWLVniw2JedQZjWq7OPqZKZjmHel8Mk2Ekq9bkQaRnT5CnyJGiklIiJSJ03xnF6hlIiISLn0vGL+3HskhNqakotRNYMiws+dge2DGNAukD7RAbQP8cJFo59EGk10+UipJI2UEhERafYUSomISKu1/1BBlRBqd3p+tX3ah3gxIDaQAe1sl7YBng6oVEQqxAR5AZCSW0RRqQV3FycHVyQiIiInS6FUK/Huu+8yZcoU9u/fj9l85Bf9K664gqCgIB599FEmTJjAypUryc/Pp0uXLkybNo0hQ4Y4sGoRkfpjGAa7M/JZvSfLfknOrtqQ3GSCuHBfBpYHUP1jAwnxcXNQxSJSkwBPF3zcnMkrLmP/oQJOC/VxdEkiIiINrqWe0zt8vsEbb7xBbGws7u7uDBw4kNWrVx9z39LSUqZOnUqHDh1wd3cnPj6exYsXV9nHYrHw+OOP065dOzw8POjQoQNPPfUUxtHzL+qTYUBJfuNf6vCZrrnmGjIzM/n555/t27Kysli8eDE33HADhw8fZtiwYSQkJPD3339z8cUXM3z4cJKSkhriGxMRaXBWq8GWA7l8+Mce7p6zhv7PLOWCl39l0oKNfP13MsnZhTiZTfSK8udfZ7fn/bH9WPf4RXx//1lMubwbw3q0USAl0gSZTCai1OxcRETqk6PO6etwXt9Sz+kdOlJq7ty5TJgwgbfffpuBAwcyY8YMhg4dyrZt2wgNDa22/2OPPcann37KrFmziIuLY8mSJYwYMYLly5fTu3dvAJ5//nneeustPvroI7p168Zff/3FuHHj8PPz47777muYD1JaAM9GNMxrH88jB8DVq1a7BgQEcMkll/DZZ59xwQUXADBv3jyCg4M577zzMJvNxMfH2/d/6qmn+Prrr/nmm2+45557GqR8EZH6ZLUabDmYy8rdmazcncnqPVnkFlVdGc/V2UzvKP/ykVBB9I72x8tNg4ZFmpuYIE+2HMxVKCUiIvXDUef0UOvz+pZ6Tu/QI/Hp06dz++23M27cOADefvttFi1axOzZs5k4cWK1/T/55BMeffRRhg0bBsBdd93F0qVLefnll/n0008BWL58OVdccQWXXnopYOsu//nnnx93BFZrccMNN3D77bfz5ptv4ubmxpw5c7j22msxm80cPnyYKVOmsGjRIg4ePEhZWRmFhYVNPlUVkdbLajXYlprHil22EGrVnixyCkur7OPt5kzfmAB7P6iebf1wc1b/GZHmrmIFviStwCciIq1ISzynd1goVVJSwpo1a5g0aZJ9m9lsZsiQIaxYsaLG5xQXF+Pu7l5lm4eHB8uWLbPfHzx4MO+++y7bt2+nU6dOrF+/nmXLljF9+vRj1lJcXExxcbH9fm5ubt0+jIunLd1sbC51a7Y7fPhwDMNg0aJF9O/fn99//51XXnkFgP/85z/8+OOPvPTSS5x22ml4eHgwcuRISkpKGqJyEZE6MwyDHWmH7SHUyt2ZHCqoHkL1jw1gUIcgTm8fRNc2vjhrZTyRFicm0PaLskIpERGpF446p69471pqief0DgulMjIysFgshIWFVdkeFhbG1q1ba3zO0KFDmT59OmeffTYdOnQgISGBBQsWYLFY7PtMnDiR3Nxc4uLicHJywmKx8Mwzz3DDDTccs5Zp06bx5JNPnvyHMZlqPY3Okdzd3bnqqquYM2cOO3fupHPnzvTp0weAP/74g5tvvpkRI0YAcPjwYfbu3evAakWktTMMg13ph1mxO4uV5UFUZn7Vf1Q9XZ3oFxvIoPZBDOoQRPcIhVAirUG0vadU9RUzRURE6kzn9A7TrBppvPrqq9x+++3ExcVhMpno0KED48aNY/bs2fZ9vvzyS+bMmcNnn31Gt27dWLduHQ888AARERGMHTu2xtedNGkSEyZMsN/Pzc0lKiqqwT+PI9xwww1cdtllbN68mRtvvNG+vWPHjixYsIDhw4djMpl4/PHHsVqtDqxURFobwzDYk5HPit2ZrNydxcrdmaTnFVfZx93FTP/YQE5vbxsJ1bOtHy4KoURanZjy6Xv7DhVitRqYzSYHVyQiItI4Wto5vcNCqeDgYJycnEhNTa2yPTU1lfDw8BqfExISwsKFCykqKiIzM5OIiAgmTpxI+/bt7fs89NBDTJw4kWuvvRaAHj16kJiYyLRp044ZSrm5ueHm1jpWWDr//PMJDAxk27ZtXH/99fbt06dP55ZbbmHw4MEEBwfz8MMP130ao4hIHRiGQVJWASt2ZZYHUZmk5lYNodyczfSNCWBQ+yBO7xBEfFt/XJ0VQom0dm383HE2mygps5KSW0SEv4ejSxIREWkULe2c3mGhlKurK3379iUhIYErr7wSAKvVSkJCwgk7w7u7uxMZGUlpaSnz589n1KhR9scKCgowm6uesDg5OTWLhLAxmM1mDhyoPlc2NjaWn376qcq28ePHV7nfHIb+iUjTdri4jF+2pfHT1jRW7srkQE5Rlcddncz0jvZnUIcgBrUPole0vxqTi0g1zk5m2gZ4sDezgMTMAoVSIiLSarS0c3qHTt+bMGECY8eOpV+/fgwYMIAZM2aQn59vX41vzJgxREZGMm3aNABWrVpFcnIyvXr1Ijk5mSlTpmC1Wvnvf/9rf83hw4fzzDPPEB0dTbdu3fj777/tiaGIiDS+jMPFLN2SypLNKfyxM5MSy5EfCVycTPSOCuD09oGc3iGIPtEBuLsohBKRE4sO8mJvZgH7sgoY1CHI0eWIiIjISXBoKDV69GjS09OZPHkyKSkp9OrVi8WLF9ubnyclJVUZ9VRUVMRjjz3G7t278fb2ZtiwYXzyySf4+/vb93n99dd5/PHHufvuu0lLSyMiIoJ//etfTJ48ubE/nohIq5WUWcAPW1JYsjmFvxIPYRhHHmsX7MVFXcM4q2MIfWMC8HBVCCUidRcdaBsdlZilZuciIiLNlcMbnd9zzz3HnK73yy+/VLl/zjnnsGXLluO+no+PDzNmzGDGjBn1VKGIiJyIYRhsOZjLD5ttI6K2puRVebxHpB9Du4UxtFs4p4V6YzKpKbGInJqYQNsqSYmZBQ6uRERERE6Ww0MpERFpnixWg7/2ZvHDllR+2JLCvqxC+2NOZhMD2wVyUdcwLuoWrn4vIg7yxhtv8OKLL5KSkkJ8fDyvv/46AwYMOOb+M2bM4K233iIpKYng4GBGjhzJtGnTcHd3b8Sqaye6fAW+pCyFUiIiIs2VQikREam1olILf+zM4IfNqSz9J5XM/BL7Y+4uZs7uGMJF3cK5IC6UAC9XB1YqInPnzmXChAm8/fbbDBw4kBkzZjB06FC2bdtGaGhotf0/++wzJk6cyOzZsxk8eDDbt2/n5ptvxmQyMX36dAd8guOLUSglIiLS7CmUOklaze/U6TsUaR5yi0r5eWsaSzan8Mu2dApKLPbH/DxcuKBLKEO7hXN2xxD1hxJpQqZPn87tt99uX0Dm7bffZtGiRcyePZuJEydW23/58uWcccYZ9uWlY2Njue6661i1alWj1l1bUQG2UCq7oJScwlL8PFwcXJGIiDQ3RuXGp1Jn9XFOr1CqjlxdXe1LMIaEhODq6qreKHVkGAYlJSWkp6djNptxddVoCpGmJi23iB/KV8xbuTuTUsuRf7Db+LlzUVdbf6j+7QJxcTIf55VExBFKSkpYs2YNkyZNsm8zm80MGTKEFStW1PicwYMH8+mnn7J69WoGDBjA7t27+e6777jpppuO+T7FxcUUFxfb7+fm5tbfhzgBLzdngr3dyDhcTFJmAT3a+jXae4uISPPm4uKCyWQiPT2dkJAQndPXUX2e0yuUqiOz2Uy7du04ePAgBw4ccHQ5zZqnpyfR0dFVVlgUEcc5mFPIog0H+W7jQdYmZVd57LRQb3uj8h6RfvqHW6SJy8jIwGKx2Fc0rhAWFsbWrVtrfM71119PRkYGZ555JoZhUFZWxp133skjjzxyzPeZNm0aTz75ZL3WXhcxQZ5kHC4mMStfoZSIiNSak5MTbdu2Zf/+/ezdu9fR5TRb9XFOr1DqJLi6uhIdHU1ZWRkWi+XET5BqnJyccHZ21omtiIOl5Rbx3caDfLvhIH8lHqryWO9ofy7qGs5F3cLoEOLtoApFpLH88ssvPPvss7z55psMHDiQnTt3cv/99/PUU0/x+OOP1/icSZMmMWHCBPv93NxcoqKiGqtkYgI9WZN4SCvwiYhInXl7e9OxY0dKS0sdXUqzVF/n9AqlTpLJZMLFxQUXF/UvEJHmJT2vmMWbbEHU6r1ZVJ5K3z82gMt6RnBx93DCfJvealsiUjvBwcE4OTmRmppaZXtqairh4eE1Pufxxx/npptu4rbbbgOgR48e5Ofnc8cdd/Doo4/W+Cuom5sbbm5u9f8BaqliBb59anYuIiInwcnJCScn9UR1JIVSIiKtQFZ+CYs3pfDthgOs3J2JtVIQ1Sfan0t7RnBpjzaE+ymIEmkJXF1d6du3LwkJCVx55ZWArRlpQkIC99xzT43PKSgoqBY8VRyoN9VGsNGBtlBKI6VERESaJ4VSIiItVHZBCUs2p/DthoMs35WJpVISFd/Wj8t6RnBJj3Dalq9gJSIty4QJExg7diz9+vVjwIABzJgxg/z8fPtqfGPGjCEyMpJp06YBMHz4cKZPn07v3r3t0/cef/xxhg8f3mR/RY4pHymVpJFSIiIizZJCKRGRFiS3qJQfNqeyaMMBft+RQVmlIKpbhC+XlY+IqpjyIiIt1+jRo0lPT2fy5MmkpKTQq1cvFi9ebG9+npSUVGVk1GOPPYbJZOKxxx4jOTmZkJAQhg8fzjPPPOOoj3BC0YFeABzIKaS4zIKbc9MMz0RERKRmJqOpjsd2oNzcXPz8/MjJycHX19fR5YiIHFdeUSkJ/6Tx7YYD/LY9gxKL1f5YXLgPl/Vsw6U9I2gX7OXAKkWaLx0X1F5jf1eGYdDtiSUUlFj46d/n0F6LMoiIiDQJtT0m0EgpEZFmKL+4jIStaSzacICft6VTUnYkiDot1JvLerbhsp5tOC3Ux4FViog0LJPJRHSgJ1tT8kjMKlAoJSIi0swolBIRaSaKyyz8vDWNb9Yf4KetaRSVHgmi2gd72UdEdQ5XECUirUdFKJWkZuciIiLNjkIpEZEmzDAM1iYdYv7aZBZtOEhOYan9sehAz/IRURF0aeODyWRyYKUiIo5R0excK/CJiIg0PwqlRESaoKTMAhb8vZ+v/06ucqIV7uvO5b0iGN4zgu6RvgqiRKTViw6y9ctLysp3cCUiIiJSVwqlRESaiJyCUhZtPMiCtfv5K/GQfbunqxMXdw/nqt5tGdQhCCezgigRkQoxgbaRUklZGiklIiLS3CiUEhFxoFKLlV+3pbPg7/0s/SfN3rDcZIIzTwtmRO9IhnYLx8tNf12LiNQkulIoZRiGRpCKiIg0IzrLERFpZIZhsDE5hwVrk/lm/QGy8kvsj3UO8+GqPpFc0SuScD93B1YpItI8RAZ44GQ2UVRqJS2vmDBf/d0pIiLSXCiUEhFpJMnZhSz8O5kFa/ezK/1I75Ngb1eu6BXJVX0i6dpGfaJEROrCxclMhL87+7IKScwsUCglIiLSjCiUEhFpQHlFpXy/KYWv1yazck8mhmHb7uZs5qJu4VzVJ5KzTgvG2cns2EJFRJqxmEAv9mUVkpRVwIB2gY4uR0RERGpJoZSISD0rs1hZtjODr/9OZsnmFIpKrfbHTm8fyFW923Jxj3B83V0cWKWISMsRVdFXKlMr8ImIiDQnCqVEROrJzrQ85v65j4XrDpCeV2zf3j7Ei6t6R3Jl70jaBng6sEIRkZYpJsj2d2uiVuATERFpVhRKiYicAsMw+GNnJu8t280v29Lt2wM8Xbg8PoIRfdoS39ZPfaJERBpQTPlIqcRMhVIiIiLNiUIpEZGTUFxm4f/WHWD2sj1sTckDwGSCC+LCGNWvLed2DsXVWX2iREQaQ3T5SKkkjZQSERFpVhRKiYjUQebhYuasSuLjFYlkHLZN0fN0dWJUvyhuHhxLbLCXgysUEWl9ostHSmXll5BXVIqPevaJiIg0CwqlRERqYUdqHrP/2MOCtckUl9kal7fxc+fmwbFc2z8aP0+dAImIOIqPuwuBXq5k5ZeQlFVAtwg/R5ckIiIitaBQSkTkGAzDYNnODN77fQ+/bj/SL6pnWz9uPbMdw3q0wcVJU/RERJqC6EBPWyiVqVBKRESkuVAoJSJylKJSC9+sP8D7v+9hW+qRflEXdQ3jtrPa0y8mQI3LRUSamJggT9bty9YKfCIiIs2IQikRkXKZh4v5dGUSn6zcS8bhEuBIv6hxZ8QSE6R+USIiTVXFCnxqdi4iItJ8KJQSkVavol/U/LXJlBzdL2pANH4e6hclItLURVWEUpkKpURERJoLhVIi0iodr1/UbWe155Lu4eoXJSLSjFSMZk3MyndwJSIiIlJbCqVEpFUpKrXwzboDvL+sar+ooV3DufWsduoXJSLSTMUE2UZKHcguotRi1Q8LIiIizYBCKRFpFXKLSvlg2V71ixIRaaFCfdxwczZTXGYl+VAhscH6e11ERKSpUyglIi3er9vTmTh/AwdzigCI8HPn5jNiGd1f/aJERFoKk8lEdKAnO9IOk5RVoFBKRESkGVAoJSItVl5RKc9+9w+fr94H2KZ2/PuizuoXJSLSQsUE2UKpRK3AJyIi0iwolBKRFmnZjgwenr+B5OxCAG4eHMt/L+6Mp6v+2hMRaamiA22jo5Iy1excRESkOdDZmYi0KIeLy5j23T/MWZUEQFSgBy+OjOf09kEOrkxERBpaRbPzxEyNlBIREWkOFEqJSIuxfFcG/523gf2HbKOjxgyK4eGL4/By0191IiKtQXR5KJWk6XsiIiLNgs7URKTZyy8u4/nFW/l4RSIAkf4evDiyJ4NPC3ZwZSIi0piiA4+EUoZhYDKZHFyRiIiIHI9CKRFp1lbtzuSheRvsv4rfMDCaScO64K3RUSIirU7bAA9MJigosZBxuIQQHzdHlyQiIiLHobM2EWmWCkssvLBkKx/8sReACD93nh/Zk7M6hji2MBERcRg3Zyci/DxIzi4kKStfoZSIiEgTp1BKRJqdP/dm8dBX69lb3sj22v5RPHppF3zcXRxcmYiIOFp0oCfJ2YUkZhbQNybQ0eWIiIjIcSiUEpFmo6jUwktLtvH+H3swDGjj585zV/fknE4aHSUiIjbRgZ6s2J2pZuciIiLNgEIpEWkW1iQe4qGv1rM7Ix+AUf3a8thlXfHV6CgREanEvgJfpkIpERGRpk6hlIg0aUWlFl75cTuzft+N1YAwXzeeu6on58WFOro0ERFpgmLKQ6lEjZQSERFp8hRKiUiT9XfSIf7z1Xp2pdtGR13VJ5InLuuGn6dGR4mISM1iAr0ASNRIKRERkSZPoZSINDnFZRZmLN3BO7/uwmpAiI8b00b0YEjXMEeXJiIiTVx0oG2kVMbhYvKLy/By0+GuiIhIU6V/pUWkSdmwP5v/fLWe7amHAbiyVwRTLu+Gv6ergysTEZHmwM/TBT8PF3IKS9l3qIC4cF9HlyQiIiLHYHZ0AW+88QaxsbG4u7szcOBAVq9efcx9S0tLmTp1Kh06dMDd3Z34+HgWL15cbb/k5GRuvPFGgoKC8PDwoEePHvz1118N+TFE5BQVl9lW1hvx5nK2px4m2NuVd27qy4xreyuQEhGROrH3ldIUPhERkSbNoaHU3LlzmTBhAk888QRr164lPj6eoUOHkpaWVuP+jz32GO+88w6vv/46W7Zs4c4772TEiBH8/fff9n0OHTrEGWecgYuLC99//z1btmzh5ZdfJiAgoLE+lojU0b6sAq6Y+Qczf96JxWowPD6CHx48h6Hdwh1dmoiINEMVU/i0Ap+IiEjTZjIMw3DUmw8cOJD+/fszc+ZMAKxWK1FRUdx7771MnDix2v4RERE8+uijjB8/3r7t6quvxsPDg08//RSAiRMn8scff/D777+fdF25ubn4+fmRk5ODr6+GfIs0pK0puYx5fzVpecUEebny9JXduaRHG0eXJSJip+OC2msq39WLS7byxs+7uPH0aJ6+sofD6hAREWmtantM4LCRUiUlJaxZs4YhQ4YcKcZsZsiQIaxYsaLG5xQXF+Pu7l5lm4eHB8uWLbPf/+abb+jXrx/XXHMNoaGh9O7dm1mzZjXMhxCRU7Im8RCj3l5BWl4xceE+fHf/WQqkRETklNlHSmUVOrgSEREROR6HhVIZGRlYLBbCwqquphUWFkZKSkqNzxk6dCjTp09nx44dWK1WfvzxRxYsWMDBgwft++zevZu33nqLjh07smTJEu666y7uu+8+Pvroo2PWUlxcTG5ubpWLiDSsX7enc+N7q8gtKqNvTABz7xhEmK/7iZ8oIiJyAtGBXgAkZeY7uBIRERE5Hoc3Oq+LV199lY4dOxIXF4erqyv33HMP48aNw2w+8jGsVit9+vTh2WefpXfv3txxxx3cfvvtvP3228d83WnTpuHn52e/REVFNcbHEWm1/rf+ALd99CeFpRbO6RTCJ7cOwM/TxdFliYhIC1HR6Hz/oULKLFYHVyMiIiLH4rBQKjg4GCcnJ1JTU6tsT01NJTy85ubGISEhLFy4kPz8fBITE9m6dSve3t60b9/evk+bNm3o2rVrled16dKFpKSkY9YyadIkcnJy7Jd9+/adwicTkeP5ZGUi933xN6UWW0PzWWP64enq7OiyRESkBQn3dcfVyUyZ1eBgTpGjyxEREZFjcFgo5erqSt++fUlISLBvs1qtJCQkMGjQoOM+193dncjISMrKypg/fz5XXHGF/bEzzjiDbdu2Vdl/+/btxMTEHPP13Nzc8PX1rXIRkfplGAavJ+zg8YWbMAy48fRoZozuhatzsxqwKSIizYDZbKJtoAcAiVqBT0REpMly6PCECRMmMHbsWPr168eAAQOYMWMG+fn5jBs3DoAxY8YQGRnJtGnTAFi1ahXJycn06tWL5ORkpkyZgtVq5b///a/9NR988EEGDx7Ms88+y6hRo1i9ejXvvvsu7777rkM+o4iA1Wrw9KJ/mP3HHgDuO/80HrywEyaTycGViYhISxUT6Mnu9HySshRKiYiINFUODaVGjx5Neno6kydPJiUlhV69erF48WJ78/OkpKQq/aKKiop47LHH2L17N97e3gwbNoxPPvkEf39/+z79+/fn66+/ZtKkSUydOpV27doxY8YMbrjhhsb+eCIClFmsPDx/I/PX7gdg8mVdueXMdg6uSkREWrqYIC8gncQsNTsXERFpqkyGYRiOLqKpyc3Nxc/Pj5ycHE3lEzkFRaUW7vnsb5b+k4qT2cSLI3tyVZ+2ji5LRKROdFxQe03pu5q9bA9Tv93CJd3DeevGvg6tRUREpLWp7TGBuguLSIPILSrl9o/+YtWeLNyczbxxfR+GdA1zdFkiItJKVKzAp55SIiIiTZdCKRGpdxmHixk7ezWbD+Ti4+bMe2P7MbB9kKPLEhGRViQ60BZK7csqwDAM9TEUERFpghRKiUi92n+ogJveX82ejHyCvFz56JYBdI/0c3RZIiLSykSVh1J5xWUcKigl0MvVwRWJiIjI0bQWu4jUmx2peYx8awV7MvKJ9PfgqzsHKZASERGHcHdxItzXHYDETDU7FxERaYoUSolIvVi3L5tr3llBSm4RHUO9mXfXINqHeDu6LBERacWiy/tKJWWpr5SIiEhTpFBKRE7Zsh0ZXD9rJdkFpcRH+fPlvwbRxs/D0WWJiEgrV9FXSs3ORUREmib1lBKRU/L9xoPc/8U6SixWzjwtmHdu6ouXm/5qERERx4sJ1EgpERGRpkxnjiJy0j5fncSjX2/EasCwHuG8MroXbs5Oji5LREQEqDR9TyOlREREmiSFUiJyUt76ZRfPL94KwHUDonj6yh44mbXctoiINB0xQV4AJGap0bmIiEhTpFBKROrEMAye+34r7/y2G4C7zu3Af4d2xmRSICUiIk1LRU+p1NxiikotuLtoNK+IiEhTokbnIlJrZRYrD8/fYA+kJl0Sx8MXxymQEhFpot544w1iY2Nxd3dn4MCBrF69+rj7Z2dnM378eNq0aYObmxudOnXiu+++a6Rq61+Apws+5X0O96mvlIiISJOjUEpEaqWo1ML4z9by5V/7MZvghat78q9zOji6LBEROYa5c+cyYcIEnnjiCdauXUt8fDxDhw4lLS2txv1LSkq48MIL2bt3L/PmzWPbtm3MmjWLyMjIRq68/phMJntfKa3AJyIi0vRo+p6InNDh4jLu+Pgvlu/KxNXJzGvX9ebi7uGOLktERI5j+vTp3H777YwbNw6At99+m0WLFjF79mwmTpxYbf/Zs2eTlZXF8uXLcXFxASA2NrYxS24QMUGebD6QS6JGSomIiDQ5GiklIsd1uLiMG95bxfJdmXi5OvHhuP4KpEREmriSkhLWrFnDkCFD7NvMZjNDhgxhxYoVNT7nm2++YdCgQYwfP56wsDC6d+/Os88+i8ViaayyG0R0oK3ZeVKmmp2LiIg0NRopJSLHVFxm4V+f/MX6fdkEeLrw4bgBxEf5O7osERE5gYyMDCwWC2FhYVW2h4WFsXXr1hqfs3v3bn766SduuOEGvvvuO3bu3Mndd99NaWkpTzzxRI3PKS4upri42H4/Nze3/j5EPalodq6RUiIiIk2PRkqJSI2sVoN/f7meP3baRkh9fMtABVIiIi2Y1WolNDSUd999l759+zJ69GgeffRR3n777WM+Z9q0afj5+dkvUVFRjVhx7cSU95RKUiglIiLS5CiUEpFqDMNg6rdb+HbDQVycTLx9U196tPVzdFkiIlJLwcHBODk5kZqaWmV7amoq4eE1T8Fu06YNnTp1wsnJyb6tS5cupKSkUFJSUuNzJk2aRE5Ojv2yb9+++vsQ9aRipNT+rEIsVsPB1YiIiEhlCqVEpJo3f9nFh8v3AvDSNfGc1THEsQWJiEiduLq60rdvXxISEuzbrFYrCQkJDBo0qMbnnHHGGezcuROr1Wrftn37dtq0aYOrq2uNz3Fzc8PX17fKpamJ8PfA2WyixGIlJbfI0eWIiIhIJQqlRKSKL//ax4tLtgEw+bKuXNGr+S4FLiLSmk2YMIFZs2bx0Ucf8c8//3DXXXeRn59vX41vzJgxTJo0yb7/XXfdRVZWFvfffz/bt29n0aJFPPvss4wfP95RH6FeOJlNtA3wACBRzc5FRESaFDU6FxG7pVtSmbRgIwB3nduBW85s5+CKRETkZI0ePZr09HQmT55MSkoKvXr1YvHixfbm50lJSZjNR36fjIqKYsmSJTz44IP07NmTyMhI7r//fh5++GFHfYR6Ex3kxd7MAvZlFUAHR1cjIiIiFRRKiQgAaxKzGP/ZWixWg5F92/LfoZ0dXZKIiJyie+65h3vuuafGx3755Zdq2wYNGsTKlSsbuKrGF1OxAl+mmp2LiIg0JZq+JyJsT83jlg//orjMyvlxoUy7qgcmk8nRZYmIiNSLihX4ErUCn4iISJOiUEqklTuQXcjY2avJKSyld7Q/b1zfBxcn/dUgIiItR8UKfEkaKSUiItKk6MxTpBXLLihhzOzVHMwp4rRQb2aP7Y+Hq9OJnygiItKMRFeMlFKjcxERkSZFoZRIK1VYYuGWD/9kZ9phwn3d+fiWAQR41bzkt4iISHNWMVIqt6iMnIJSB1cjIiIiFRRKibRCZRYr93y2lrVJ2fi6O/PxrQOI8PdwdFkiIiINwtPVmRAfNwASszRaSkREpKlQKCXSyhiGwaQFG0nYmoabs5nZN/enU5iPo8sSERFpUFqBT0REpOlRKCXSyry4ZBtfrdmPk9nEG9f3oV9soKNLEhERaXD2ZudagU9ERKTJUCgl0orMXraHN3/ZBcCzI7ozpGuYgysSERFpHBXNzrUCn4iISNNR51AqNjaWqVOnkpSU1BD1iEgD+Wb9AaZ+uwWAh4Z2ZnT/aAdXJCIi0nhiKlbgU08pERGRJqPOodQDDzzAggULaN++PRdeeCFffPEFxcXFDVGbiNST33ek8+8v1wFw8+BY7j63g2MLEhERaWTRgV6ARkqJiIg0JScVSq1bt47Vq1fTpUsX7r33Xtq0acM999zD2rVrG6JGETkFG/fncOcnayi1GFzasw2TL+uKyWRydFkiIiKNqqKn1MHcIorLLA6uRkREROAUekr16dOH1157jQMHDvDEE0/w3nvv0b9/f3r16sXs2bMxDKM+6xSRk7AnI5+bP1hNfomFM04LYvqoeMxmBVIiItL6BHu74unqhGHAvqxCR5cjIiIinEIoVVpaypdffsnll1/Ov//9b/r168d7773H1VdfzSOPPMINN9xQn3WKSB2l5RUxZvYqMvNL6Bbhy9s39sXN2cnRZYmIiDiEyWSyj5bapxX4REREmgTnuj5h7dq1fPDBB3z++eeYzWbGjBnDK6+8QlxcnH2fESNG0L9//3otVERqL6+olJtn/8m+rEJigjz5cNwAfNxdHF2WiIiIQ8UEebI1JY/ETDU7FxERaQrqHEr179+fCy+8kLfeeosrr7wSF5fqJ7rt2rXj2muvrZcCRaRuisss3PHxGrYczCXY25WPbxlAiI+bo8sSERFxuJggW7PzRI2UEhERaRLqHErt3r2bmJiY4+7j5eXFBx98cNJFicjJsVgNHpy7jhW7M/FydeLDcQPsB+AiIiKtXVT59D2twCciItI01LmnVFpaGqtWraq2fdWqVfz111/1UpSI1J1hGDz5v818tzEFFycT747pR/dIP0eXJSIi0mTEVIRSGiklIiLSJNQ5lBo/fjz79u2rtj05OZnx48fXS1EiUnczf9rJxysSMZngldG9OOO0YEeXJCIi0qTEBB0JpaxWrRQtIiLiaHUOpbZs2UKfPn2qbe/duzdbtmypl6JEpG6+WJ3Eyz9uB+CJy7pyWc8IB1ckIiLS9ET4e+BkNlFcZiUtr9jR5YiIiLR6dQ6l3NzcSE1Nrbb94MGDODvXuUWViJyiHzan8MjXGwEYf14Hbj6jnYMrEhERaZpcnMxE+LsDaAU+ERGRJqDOodRFF13EpEmTyMnJsW/Lzs7mkUce4cILL6zX4kTk+Nbvy+a+L/7GasCofm35z0WdHV2SiIhIkxYTqBX4REREmoo6D2166aWXOPvss4mJiaF3794ArFu3jrCwMD755JN6L1BEapacXchtH/9FUamVczqF8OyIHphMJkeXJSIi0qRFB3nCTtinUEpERMTh6hxKRUZGsmHDBubMmcP69evx8PBg3LhxXHfddbi4uDREjSJylLyiUm798E/S84qJC/dh5vW9cXaq88BHERGRVqdiBb7ETIVSIiIijnZSTaC8vLy444476rsWEamFMouVez//m60peQR7u/H+zf3xcVcgLCIiUhsVK/Bp+p6IiIjjnXRn8i1btpCUlERJSUmV7ZdffvkpFyUix/b0on/4ZVs67i5m3h/bj0h/D0eXJCIi0mxElY+USlKjcxEREYercyi1e/duRowYwcaNGzGZTBiGAWDvZWOxWOq3QhGx+/CPPXy4fC8AM0b3Ij7K36H1iIhI/du3bx8mk4m2bdsCsHr1aj777DO6du2qker1ICbI1uj8UEEpuUWl+Gq0sYiIiMPUuQnN/fffT7t27UhLS8PT05PNmzfz22+/0a9fP3755ZcGKFFEAH7amsrUb7cAMPGSOC7u3sbBFYmISEO4/vrr+fnnnwFISUnhwgsvZPXq1Tz66KNMnTrVwdU1f95uzgR5uQKQpL5SIiIiDlXnUGrFihVMnTqV4OBgzGYzZrOZM888k2nTpnHfffedVBFvvPEGsbGxuLu7M3DgQFavXn3MfUtLS5k6dSodOnTA3d2d+Ph4Fi9efMz9n3vuOUwmEw888MBJ1SbSFGw5kMu9n/2N1YDR/aL419ntHV2SiIg0kE2bNjFgwAAAvvzyS7p3787y5cuZM2cOH374oWOLayGiy/tKJamvlIiIiEPVOZSyWCz4+PgAEBwczIEDBwCIiYlh27ZtdS5g7ty5TJgwgSeeeIK1a9cSHx/P0KFDSUtLq3H/xx57jHfeeYfXX3+dLVu2cOeddzJixAj+/vvvavv++eefvPPOO/Ts2bPOdYk0FWm5Rdz60Z/kl1gY3CGIp67sbp8uKyIiLU9paSlubm4ALF261N6vMy4ujoMHDzqytBYjWivwiYiINAl1DqW6d+/O+vXrARg4cCAvvPACf/zxB1OnTqV9+7qP3pg+fTq3334748aNo2vXrrz99tt4enoye/bsGvf/5JNPeOSRRxg2bBjt27fnrrvuYtiwYbz88stV9jt8+DA33HADs2bNIiAgoM51iTQFBSVl3PrRXxzMKaJDiBdv3dAXV+c6/28rIiLNSLdu3Xj77bf5/fff+fHHH7n44osBOHDgAEFBQQ6urmWIqWh2nqVm5yIiIo5U50bnjz32GPn5tn/Ap06dymWXXcZZZ51FUFAQc+fOrdNrlZSUsGbNGiZNmmTfZjabGTJkCCtWrKjxOcXFxbi7u1fZ5uHhwbJly6psGz9+PJdeeilDhgzh6aefrlNdIk2B1WrwwBfr2JicQ6CXK7Nv7o+fp5qxSgtitYK1FCwlYCktv5SUbzuZ7ZUes5aC1QLO7uDsVulSft+p0m1nd3B2rXrfqdJ9s5Ojv6nqLKVQWgAlBbbr0gIoLYSS/KNuF0Jp+XVJQaXbFY8VQFkROHuAq1f5xbvS7aPvH+u2V9P8npqp559/nhEjRvDiiy8yduxY4uPjAfjmm2/s0/rk1ESXNzvX9D0RERHHqnMoNXToUPvt0047ja1bt5KVlUVAQECdpxRlZGRgsVgICwursj0sLIytW7ce8/2nT5/O2WefTYcOHUhISGDBggVVVv374osvWLt2LX/++Wet6iguLqa4uNh+Pzc3t06fQ6QhPL94Kz9sScXVycy7N/W1rxYk0mQZBpQchsNpcDi1/FLT7TTIz7AFR82B2eUYoZYbmJ2hIafTGgaUFVcKnsqDqKb43R0v2HLxtIVWZicwOdm+N7NzDdvKr03mo+47HdnXft+5+rb254KL+wlLberOPfdcMjIyyM3NrTLa+4477sDT09OBlbUcMUGaviciItIU1CmUKi0txcPDg3Xr1tG9e3f79sDAwHov7FheffVVbr/9duLi4jCZTHTo0IFx48bZp/vt27eP+++/nx9//LHaiKpjmTZtGk8++WRDli1SJ5+vTuKd33YD8OI1PekX23j/j0kdWMrgcArk7IfsfZCzDwoyG/59zc7g4mELSOzXnraTcWePqtcuHlW3ObvVPUQpK4H89OrB0uFU2+evvK30VE7wTLYRSk6u4OR85LbZ+QTbXcov5bfN5bdNZrAU20KdsqLy68q3K11bSqreN6xHyrKWQkmpLXBrakzm8v/2nuDqeeS2i8eRMMj+mAe4eFW9XfHnp6zINnqqJN/2OWu8fYz7RvmPQmWFtktBhuO+j//saBGhVGFhIYZh2AOpxMREvv76a7p06VLlx0E5eRU9pQ5kF1JSZtXUeBEREQepUyjl4uJCdHR0lVFJpyI4OBgnJydSU1OrbE9NTSU8PLzG54SEhLBw4UKKiorIzMwkIiKCiRMn2vtZrVmzhrS0NPr06WN/jsVi4bfffmPmzJkUFxfj5FR1isGkSZOYMGGC/X5ubi5RUVH18hlF6mrZjgweX7gJgAeGdOSKXpEOrqgVKz5sC5xyygMne/i033bJTT5yQt5smGoItDyO2uYGRblHwqbCrLq9has3eIeCd1gN1+W3PYNtYUmVkKmJTP8yDLCWHRVi1RBclRXb9mtozm6VwqajwqeTCRnrU8VIruOFWaX5ttFdhsX2fVmttmv7/Zq2WWyXKvscva38fuXnObk67ruoR1dccQVXXXUVd955J9nZ2QwcOBAXFxcyMjKYPn06d911l6NLbPZCfdxwdzFTVGolObuQdsEajSwiIuIIdZ6+9+ijj/LII4/wySefnPIIKVdXV/r27UtCQgJXXnklAFarlYSEBO65557jPtfd3Z3IyEhKS0uZP38+o0aNAuCCCy5g48aNVfYdN24ccXFxPPzww9UCKQA3Nzf7KjcijrQjNY+75qyhzGowonck91/Q0dEltVxWK+SnlQdNSUeCpsoBVOGhE7+O2Rl8I8E/GvzaglewbfRKQ7KU2UaklBYdua7oDVRaWH591DZ7eGYcmQZWWIf3NDsfP2SquPYKBTfvhvjUjcdkOjL6qrl/loZmMpWPyHMHLzXgri9r167llVdeAWDevHmEhYXx999/M3/+fCZPnqxQqh6YTCaiAz3ZnnqYpKwChVIiIiIOUudQaubMmezcuZOIiAhiYmLw8qr6j/jatWvr9HoTJkxg7Nix9OvXjwEDBjBjxgzy8/MZN24cAGPGjCEyMpJp06YBsGrVKpKTk+nVqxfJyclMmTIFq9XKf//7XwB8fHyqTC0E8PLyIigoqNp2kaYk43Axt3z0J3lFZfSPDeC5q3vUuU9bq2cYUJxrm0KXn2m7Lsgov59hu1QETrnJtpEvJ+LuB35R5Ze2tot/1JFt3qFNZ4TP8VhKKwVWBVUDraODrbIicPOtGjy5+4NZ01tEGkNBQQE+Pj4A/PDDD1x11VWYzWZOP/10EhMTHVxdyxEd6GULpTLzgRBHlyMiItIq1TmUqhjRVF9Gjx5Neno6kydPJiUlhV69erF48WJ78/OkpCTMlU6EioqKeOyxx9i9ezfe3t4MGzaMTz75BH9//3qtS6QxFZVauOPjv9iXVUh0oCfv3NQPN+dmEHQ0NEtpebBUHipV3K5yPwMKso7cr0sDaJMZfCIqBU3loZNf9JHb7r4N9/kaU8XIH1rI5xFpwU477TQWLlzIiBEjWLJkCQ8++CAAaWlp+Prq/+H6ombnIiIijmcyDMNwdBFNTW5uLn5+fuTk5OjgTxqcYRjc98U6/rf+AL7uziy4+wxOC20lU4YMA7ITIXE57FsNeSmVRjZlQnHOyb2uixd4BtmmE3kG2foXVdz3rRRA+bQpD2pERI6tsY8L5s2bx/XXX4/FYuH888/nxx9/BGwLs/z22298//33DV7DyWpOx1AfLd/LE99s5sKuYcwa08/R5YiIiLQotT0mqPNIKRGpX68s3cH/1h/A2Wzi7Zv6tuxAymqFjG2Q+AckrrCFUXkHjv8ckxk8AstDpWDwDKwUMpVfV1wq7rt4NM7nERFpACNHjuTMM8/k4MGDxMfH27dfcMEFjBgxwoGVtSzR5SOlkjRSSkRExGHqHEqZzebj9rmpr5X5RFqDBWv381rCDgCevaoHgzsEO7iiemYphYMbIGm5LYBKWlG9ebjZGSJ6Q/QgCOpw1MimYFtPp+bQs0lEpB6Fh4cTHh7O/v37AWjbti0DBgxwcFUtS0xgeSiVVYBhGOrjKCIi4gB1DqW+/vrrKvdLS0v5+++/+eijj3jyySfrrTCRlm7V7kwenr8BgLvO7cCoflEOrqgelBbC/r9s4VPiH7DvT9ty8JW5eELb/hAz2BZEte0Hrlr1SESkgtVq5emnn+bll1/m8OHDgG0hl3//+988+uijVXptyslrG+CJyQSFpRbSDxcT6uPu6JJERERanTqHUldccUW1bSNHjqRbt27MnTuXW2+9tV4KE2nJ9mbk869P11BqMbikezgPXdTZ0SWdnKIcSFplC6CSVkDy2uqNxt39beFTzCCIOQPaxKuPk4jIcTz66KO8//77PPfcc5xxxhkALFu2jClTplBUVMQzzzzj4ApbBldnMxF+HiRnF5KUWaBQSkRExAHqrafU6aefzh133FFfLyfSYmUXlHDLh3+SXVBKfJQ/00f1wmxuJlMG8lLLp+KtsF2nbAKOWivBp015CDXYdgnpAvpVX0Sk1j766CPee+89Lr/8cvu2nj17EhkZyd13361Qqh5FB3qSnF1IYmYB/WIDHV2OiIhIq1MvoVRhYSGvvfYakZGR9fFyIi1WSZmVOz9dw+6MfCL9PZg1pi8erk24X5JhwL5VsPEr2PUzZO2qvk9g+/KpeINto6EC2oH6coiInLSsrCzi4uKqbY+LiyMrK8sBFbVcMUGerNidSWKWmp2LiIg4Qp1DqYCAgCqNIA3DIC8vD09PTz799NN6LU6kJTEMg0e+3sjK3Vl4uznz/s39mu5UgfTtsGEubPwSspMqPWCCsG5H+kHFDAafcIeVKSLSEsXHxzNz5kxee+21KttnzpxJz549HVRVy1SxAt8+hVIiIiIOUedQ6pVXXqkSSpnNZkJCQhg4cCABAQH1WpxIS/LmL7uYt2Y/ZhPMvL43ceG+ji6pqrxU2DTfFkYdXHdku6s3dLkcul4O0aeDh/4/FxFpSC+88AKXXnopS5cuZdCgQQCsWLGCffv28d133zm4upYlJtC20EZiZv4J9hQREZGGUOdQ6uabb26AMkRatkUbDvLikm0APHl5N87tHOrgisoVH4at39qCqN2/gGG1bTc7w2lDoOco6HQJuHo6tEwRkdbknHPOYfv27bzxxhts3boVgKuuuoo77riDp59+mrPOOsvBFbYc0YG2f9+SNFJKRETEIeocSn3wwQd4e3tzzTXXVNn+1VdfUVBQwNixY+utOJGW4O+kQ0z4ch0At5zRjpsGxTq0HixlsPtnWxC1dRGUVjoQb9sfeo6GbiPAK9hxNYqItHIRERHVGpqvX7+e999/n3fffddBVbU8FdP3Mg6XcLi4DG+3elsDSERERGqhzv/yTps2jXfeeafa9tDQUO644w6FUiKV7D9UwO0f/0VxmZUL4kJ59NIujinEMCB5rS2I2jQfCjKOPBbYwTYiqsc1ENTBMfWJiIg4gJ+HC/6eLmQXlLIvq4AubZrY1HoREZEWrs6hVFJSEu3atau2PSYmhqSkpBqeIdI6lVms3Pv532QcLqFrG19eu643TuZGXpUuazds+MoWRlVeOc8zGLpfbRsVFdlHq+WJiEirFRPoSXZBDomZCqVEREQaW51DqdDQUDZs2EBsbGyV7evXrycoKKi+6hJp9t78ZRd/J2Xj4+7Mu2P64tVYUwLyM2Dz17Ygav+fR7Y7e0DcpbYgqsN54OTSOPWIiIg0YVGBnqzfn0NSlpqdi4iINLY6nyVfd9113Hffffj4+HD22WcD8Ouvv3L//fdz7bXX1nuBIs3R+n3ZvJqwA4CnruhO24AGbhReUgDbv4cNX8LOpWAts203maH9ubYgKu5ScPNp2DpEROSkXXXVVcd9PDs7u3EKaWViyvtKJWaq2bmIiEhjq3Mo9dRTT7F3714uuOACnJ1tT7darYwZM4Znn3223gsUaW4KSsp4cO46LFaDy3q24YpeEQ3zRkU5tgBq2/ewbTGU5B15rE28LYjqfjX4hDfM+4uISL3y8/M74eNjxoxppGpaj5hAL0Ar8ImIiDhCnUMpV1dX5s6dy9NPP826devw8PCgR48exMTENER9Is3OM4v+YXdGPuG+7jxzZQ9M9dmv6dBeWwC17TtI/OPIiCgAv2hbw/KeoyCkc/29p4iINIoPPvjA0SW0ShUr8CmUEhERaXwn3eSmY8eOdOzYsT5rEWn2ftqaypxVtob/L4+Kx8/zFPs2Wa2QvMY2NW/b95C2perjwZ2g8yXQeRi0HQBm86m9n4iISCtTMX0v+VAhZRYrzk76t1RERKSx1DmUuvrqqxkwYAAPP/xwle0vvPACf/75J1999VW9FSfSnGQeLua/8zYCcOuZ7TjjtOCTe6GSfNj9iy2E2r4E8tOOPGZyguhB5UHUJRDU4dQLFxERacXCfNxxdTZTUmblQHaRfeSUiIiINLw6h1K//fYbU6ZMqbb9kksu4eWXX66PmkSaHcMwmLhgIxmHi+kc5sNDQ+s4fS73IGxfbLvs/gXKio485uoDHYfYRkOdNgQ8A+u1dhERkdbMbDYRFeDBrvR8ErPyFUqJiIg0ojqHUocPH8bV1bXadhcXF3Jzc+ulKJHm5su/9vHjllRcncy8MroX7i5Ox3+CYUDqpvIm5d/DgbVVH/eLPjIaKuYMcK7+/5yIiIjUj5ggL3al56uvlIiISCOrcyjVo0cP5s6dy+TJk6ts/+KLL+jatWu9FSbSXCRm5vPk/2y9nv59USe6RvjWvGNZMexdZhsNte17yNlX9fHIftD5YtuIqNCuUJ8N0kVEROSYogPLm51nKpQSERFpTHUOpR5//HGuuuoqdu3axfnnnw9AQkICn332GfPmzav3AkWasjKLlQfnrqOgxMLAdoHcdlb7qjuUFsGW/7OtlrczAUryjjzm7AEdzoNOF0OnoeAT3rjFi4hIi/fGG2/w4osvkpKSQnx8PK+//joDBgw44fO++OILrrvuOq644goWLlzY8IU6WEUolahQSkREpFHVOZQaPnw4Cxcu5Nlnn2XevHl4eHgQHx/PTz/9RGCget1I6/LWL7tYm5SNj5szL4+Kx8lcaXRTxg746mbbNL0K3mG2EKrzJdDuHHBV3woREWkYc+fOZcKECbz99tsMHDiQGTNmMHToULZt20ZoaOgxn7d3717+85//cNZZZzVitY5VsQJfoqbviYiINKqTWvP20ksv5Y8//iA/P5/du3czatQo/vOf/xAfH1/f9Yk0WRv2Z/Nqwg4Apl7ZjbYBlQKmDV/CO+fYAinPYDj7IbjtJ5iwFS5/zRZKKZASEZEGNH36dG6//XbGjRtH165defvtt/H09GT27NnHfI7FYuGGG27gySefpH379sfcr6WpCKWSMvMxDMPB1YiIiLQeJxVKgW0VvrFjxxIREcHLL7/M+eefz8qVK+uzNpEmq7DEwgNz11FmNbi0Zxuu7BVpe6CkAL65FxbcDqX5EHsW3PUHnP8YtO0L5pP+X05ERKTWSkpKWLNmDUOGDLFvM5vNDBkyhBUrVhzzeVOnTiU0NJRbb721McpsMip+WMovsZCVX+LgakRERFqPOk3fS0lJ4cMPP+T9998nNzeXUaNGUVxczMKFC9XkXFqVZ7/7h93p+YT7uvPMld0xmUyQvh2+GgtpWwATnPMwnPNfMJ9gJT4REZF6lpGRgcViISwsrMr2sLAwtm7dWuNzli1bxvvvv8+6detq/T7FxcUUFxfb7zfXlZjdXZwI93UnJbeIxKwCgrzdHF2SiIhIq1DrYRvDhw+nc+fObNiwgRkzZnDgwAFef/31hqxNpEn6eVsan6xMBOCla+Lx93SF9V/Au+faAimvUBizEM6bpEBKRESahby8PG666SZmzZpFcHBwrZ83bdo0/Pz87JeoqKgGrLJhRQdpBT4REZHGVuuRUt9//z333Xcfd911Fx07dmzImkSarKz8Ev47bwMA486I5cwYT1g4HtZ9atuh3dlw1XvgE3acVxEREWlYwcHBODk5kZqaWmV7amoq4eHVV3vdtWsXe/fuZfjw4fZtVqsVAGdnZ7Zt20aHDh2qPW/SpElMmDDBfj83N7fZBlMxgZ6s3pOlFfhEREQaUa1HSi1btoy8vDz69u3LwIEDmTlzJhkZGQ1Zm0iTYhgGkxZsID2vmI6h3kzsC8w63xZImcxw7iNw00IFUiIi4nCurq707duXhIQE+zar1UpCQgKDBg2qtn9cXBwbN25k3bp19svll1/Oeeedx7p1644ZNLm5ueHr61vl0lzZm51rBT4REWkNLKVwaC8cTndoGbUeKXX66adz+umnM2PGDObOncvs2bOZMGECVquVH3/8kaioKHx8fBqyVhGH+mrNfpZsTsXFycSHvXfg9sG1UFoA3mFw9Xu2UVIiIiJNxIQJExg7diz9+vVjwIABzJgxg/z8fMaNGwfAmDFjiIyMZNq0abi7u9O9e/cqz/f39weotr2lig7yAmBnWh6lFisuTlqcREREmrGiHMjeBzn7IWdf+WX/kW15BwEDzn8czv6Pw8qsU6NzAC8vL2655RZuueUWtm3bxvvvv89zzz3HxIkTufDCC/nmm28aok4Rh0rKLODJbzbjQRFft/2ayF//Z3ug/blw1SzwDnVofSIiIkcbPXo06enpTJ48mZSUFHr16sXixYvtzc+TkpIwa1VYu9jykVLr9+fQZ+qPnN05hCFdQjm3UygBXq4Ork5ERKQSq8UWKuXsLw+ako7crgifimux+IiTq22ghQOZDMMwTvVFLBYL//vf/5g9e3aLCKVyc3Px8/MjJyenWQ9Dl/phsRqMfmcFOUkb+cBzJm0tSUem6501Qc3MRURaOB0X1F5z/q6sVoOnFm3hm3UHyMwvsW83m6BfTCAXdAnlgi5hdAjxsq26KyIi0lBK8mse5VQx0ik3GQzLiV/HIxD82oJ/tO3ary34RZVf2oJXCDTQD1S1PSaol1CqpWnOB1RS/974aQd7E95lqvOHeJhKwDscRr4PsWc6ujQREWkEOi6ovQb9rmadD4YVQuIguJPtOqQzBMTW6w9EFqvBun3ZJPyTSsI/aWxLzavyeGyQJxd0CeOCLqH0jw3UND8REakbw4CCLMhJKg+e9lUa7bTPtq0w68SvY3YG34iqIZN/VKXgqS24ejX85zkGhVKnQAefUmHTnmR2zP4XI5x+t23ocD6MeBe8QxxbmIiINBodF9Reg31XllJ4JhysZdUfc3KFoI4Q0qlSYNUZgk4DZ7dTfut9WQX8tDWNpf+ksnJ3JqWWI4fOPu7OnNs5lCFdQjmnUwj+nprmJyLS6lVMrbMHTvuO3K64rs2UOTffY4RN5bd9wpv0rB2FUqdAB58CULR/I6mzryXGuh8rZkznP4bpzAcbbHijiIg0TTouqL0G+66sVsjcCRnbIH0rpG+3XWfsgLLCmp9jMkNAu/IRVZ0guLMtrAruBG7eJ1XG4eIyft+eztJ/0vh5WxpZlab5OZlN9I0JYIh9mt/JvYeIiDRhVisUHoKCDNsUOnvj8IrAKQlyD9T8I8rRvMOOBE3+UeAXXX5dft/dr+E/TwNSKHUKdPDZyhkGrP2Y0m//g4tRQiqBeF73IT6dz3F0ZSIi4gA6Lqi9Rv+urFbbCUD69qMCq21QnHPs5/lFVZoCWCmw8gys9VvbpvkdYuk/aST8k8r21MNVHm8X7MUFcbaAqn9sAM6a5ici0vRYLbaQKT/DFjTlZ0B+OhRkVr9dkGG7bVhP/LpmZ/CNLO/lVHm0U5Rtm28kuLg3/OdzIIVSp0AHn61YcR58+yBs/AqAXyzxuF3zLoN6xjm4MBERcRQdF9Rek/muDAMOpx4JqTK22YKq9G2Qn3bs53mF2E4UPPxtv1C7+5ffrnTt7ldpW4DtvtmJfVkFLC3vQ7VqT9Vpfr7l0/wuKF/Nz8/TpQE/vIhIK1eSb+vPVCVoOsbtwqzahUxHc/e3TZ+zj3KKqtRMPKrJT61rDLU9JnBuxJpEmraUjfDVzZC5kzLMvFQ6iuIB9/CEAikREZHmxWSynRD4hEP7c6s+VpAFGdurB1Y5+2y/iOen1/39XH2I8vBnnLs/4zz8Ke3mS0qJO7tyndh8yExKiTs5G734eqMXH5u8iYxqz8CeXbmoR1tCfE6975WISKtUkGX7+ztjW6W/z7fbRtDWlbu/7YcJr2DwDKp0O9h2Xfm2ZxA46ceF+qJQSsQwYM2H8P3DYCkmyymE2wvuJiekL98O6+ro6kRERKQ+eQZC9Om2S2XFhyFzBxxOg8JsKMqBouzy29k1byspn7JXkme75OwDwAWIKr+cW7GhshQoO2gmdUkAW13DcA2KJrTtaXiHxlZasrut7STJZKr/70BEpLkwDFvT8PRt5T8obDsSRB3vRwR3P/AKrSFQOjpkCrH9u6CQyWEUSknrVpQL3z4Am+YDcCD0bIYl3cBhsy8LR/fC3aV1D7kUERFpNdy8IaJ33Z5jKS0PqnLKg6pDxw+xCrMpy8/CdDgFZ8qIJBNKMyFlC6TU8Pqu3rbphPagKgr8Kt33jayXFQZFRBzOaoHsxEoLWWw/EkQV5x77eb5tbT0BKxayCOls6xPoFdR4tcspUSglrdeBdTDvFsjaBSYnss94lKG/dyUPKw9d2Inukc17tQMRERFpYE4uR35xryVnsDVoz08jbf9ONm7ezL692zGy99HGlEWEKYMIUybBplzbSKyM8hEBx+IdVim4Km+mGxALsWc0+5WbRKQFKsq1rVhXZcrdNtsKq2VFNT/HZIbA9uWLUtTPaqrSdCiUktbHaoWVb8LSKWAtBd+2WK6ezW3fWcgrPkT/2ADuPKeDo6sUERGRlspsBp9wQruEc0GXMwFIySliyeYUPth4kD/3ZuFilBBhyqSNKZN+/vkMDi6kq2cOviWpkFO+DHlZoa2h++FUOLD2qPdwgdgzIe5S6DzMNsJKRKShWC226XS5yZB70DblLvdA9euSw8d+DSc3CO5YfXXUoA4aFdqCafW9GjSZlWOk/h1Og4V3wc6ltvtxl8Hlr/PGqixeXLINbzdnvr//LKICPR1bp4iINBk6Lqg9fVf1Iz2vmB+2pLB4UwrLd2VisR45XD8t1Jth3cO5pHs4cX6lmHL22wKq3GRbT6uc/bbFWzJ3Vn3RNr2OBFRh3dSrSkRqr6TgqHCpIng6cCSAyksBw1K713Pzs4VPlafchXQG/5hWv2JdS1LbYwKFUjXQAVULtTMBvr7TthS0sztcPA36jmPTgVyufOMPyqwGL10Tz8i+bR1dqYiINCE6Lqg9fVf171B+CT9uSeX7TQdZtjODUsuRQ/fYIE8u6dGGS7qH0yPSD1PloCljB2xdBNu+g32rgUqH/P7R0PlSiBsG0YPBSZMnRFq14jzb3xmZOyFzF+Tut4VNuQdswVNRTu1ex2S2TSn2aQO+EbZLxe3K15py1yoolDoFOqBqYcpK4KepsPx12/3QrjByNoR2oajUwmWvL2Nn2mEu6R7Omzf0qXpAJyIirZ6OC2pP31XDyiks5aetqXy3MYVft6dTUma1Pxbp78El3cO5pEcbekf5YzZXOp45nAbbF8PW72D3z1X7trj7Q6ehthFUp10Abj6N94FEpPFYymyNxDN3lgdQO2wBVMYOOFzTSgtHcfEC3zZHhUyR5dsibNdeoQq5xU6h1CnQAVULkrnL1sz84Drb/f63wUVPg4sHAFO+2cyHy/cS6uPGkgfOJsDL1XG1iohIk6TjgtrTd9V4DheX8fPWNL7fdJCft6ZTWHpk2kwbP3duP6s91w+Mrr6ScEk+7PrZNoJq2/dQmHXkMSdXaHeObQRV52HgE95In0ZE6oVhQEFm1eApY6ftOmuPrZ/usXiFQtBpEHwa+EXbQibfiCOBk5uvpv1KnSiUOgU6oGoBDAPWfwGL/g2l+eARAJfPhC6X2Xf5v3XJ3P/FOgA+umUA53QKcVCxIiLSlOm4oPb0XTlGYYmFX7en8d3GFH7amsbh4jIAwn3duef80xjVLwpXZ3P1J1otsG+VbZrf1kVwaE/VxyP7lQdUl9r6veiEVKRpKC2CrN3lo512HgmeMnZAUfaxn+fsbguegjpAUEdbX6egjrb7Hv6NVb20EgqlToEOqJq5olxYNAE2fmW7H3MmXPVulVVn/rf+APd/8TdWA249sx2PX9bVQcWKiEhTp+OC2tN35XhFpRYWrE3m9Z92cDDHNk2vbYAH913Qkat6R+LsVEM4BbYf9NK3HulDlbym6uOB7W2jp+IuhaiBakYs0hjKiiFjO6RugbTNkPYPpG+D7CSq9Ik7ml9U+ainjuUhVPlt37a21T9FGoFCqVOgA6pmbP9fMP9WOLQXTE5w7iQ4a0KVA6dFGw5y3xd/Y7EajOrXlueu6lm174KIiEglOi6oPX1XTUdRqYUvVifxxi+7SM8rBqBdsBf3X9CR4fEROJ3o2Cf3IGz/3taHas+vYCk58phnEHS4ACJ6QXhPCO+hURYip8JqhZykI+FT6hZI22IbBWUtq/k5br41B0+BHcBVK4mL4zWrUOqNN97gxRdfJCUlhfj4eF5//XUGDBhQ476lpaVMmzaNjz76iOTkZDp37szzzz/PxRdfbN9n2rRpLFiwgK1bt+Lh4cHgwYN5/vnn6dy5c63q0QFVM2S1wvJX4aenbX9x+0XD1e9B9MAquy3edJDxn9kCqav7tOXFkQqkRETk+HRcUHv6rpqewhILn65M5K1fd5GVbwuWOoZ68+CFnbi4W3jtjoOK82yrGG/7DrYvqXl6kH8MtOkJ4fHl1z1tPak05U+kqoIsSN1sC50qrtP+gZLDNe/v5gdhXW2LNYV1hZA425Q771D9/yVNWrMJpebOncuYMWN4++23GThwIDNmzOCrr75i27ZthIaGVtv/4Ycf5tNPP2XWrFnExcWxZMkSJkyYwPLly+nduzcAF198Mddeey39+/enrKyMRx55hE2bNrFlyxa8vLxOWJMOqJqZvBT4+l+w+xfb/W4j4LIZ1X6x+2FzCnfPWUuZ1eCq3pG8eE38iX8lFBGRVk/HBbWn76rpOlxcxkfL9/LOr7vILbKNvOjSxpd/X9iJC7qE1n71YUspJK2AxOWQshEObrCN8KiJV4gtnKoIqdrEQ0A7TR+S1qG00DYltmLUU9oW2+1jrXRndrH1bqsIn0K72a59IxU+SbPUbEKpgQMH0r9/f2bOnAmA1WolKiqKe++9l4kTJ1bbPyIigkcffZTx48fbt1199dV4eHjw6aef1vge6enphIaG8uuvv3L22WefsCYdUDUj25fAwrtsq0y4eMIlL0DvG6v9xb10Syp3zVlDqcXgil4RTB/VS4GUiIjUio4Lak/fVdOXU1jK+8v2MHvZHntD9PgofyZc2ImzOwbXPpyqrCDLFlClbLCFVCkbbH1wDGv1fV19ILx71bAqJA6ctQKyNDCrxTajwlJqu664bz3q/jEfL99mOep+5cfzM46MfsraXfP/A2AbWRjWDUK7lIdQ3WzT75xcGvc7EWlAtT0mcG7EmqopKSlhzZo1TJo0yb7NbDYzZMgQVqxYUeNziouLcXd3r7LNw8ODZcuWHfN9cnJyAAgMDDzmaxYXF9vv5+bm1voziIOUFcOPT8Cqt2z3w3vA1bMhpFO1XX/emsbdc9ZSajG4rGcbXtYIKREREWml/DxcmHBhJ8YNjuXd33fz4R97Wb8vm7GzV9M/NoAJF3ZmUIegur2oZyC0P8d2qVBSYDsxP7j+SFiVtgVK8mwjrZIqHeubXWwn55Wn/4V1Bzfv+vnQ0jIZhm0qaX4G5KfbLofTqt6vfCnKafwaPQLLw6dKo59C48DNp/FrEWmiHBpKZWRkYLFYCAsLq7I9LCyMrVu31vicoUOHMn36dM4++2w6dOhAQkICCxYswGKx1Li/1WrlgQce4IwzzqB79+417jNt2jSefPLJU/sw0njSt8O8WyB1o+3+6XfDkCng7FZt11+3p/OvT9ZQYrEyrEc4M0b3OvaqMyIiIiKtRICXKw9fHMctZ7Tj7V938cnKRP7ce4jrZq1kcIcg/n1RJ/rG1PyDbq24ekLbfrZLBUuZbQRV5RFVKRtsYUHFbSpmPpjAp42tb453WKXrMPAJq7rN9cTtOaSZKCupFCRVhEtpVe9XDp6spaf2fiYzmJ2PfXGqfN/JFqBWvu901H03P1voVDH6yTtMU+9ETsChodTJePXVV7n99tuJi4vDZDLRoUMHxo0bx+zZs2vcf/z48WzatOm4I6kmTZrEhAkT7Pdzc3OJioqq99rlFBkG/P0JfP8wlBbYVn658i3oNLTG3X/fkc7tH/9FicXKxd3CefXa3gqkRERERCoJ8XHj8cu6cvtZ7Xnj55188WcSy3dlsvytFZzbOYR/X9iZHm396ufNnJxto0XCukL8tbZthgHZiUdCqorrvIOQd8B2ORFX7/KAKrzmEMs71NZ03TPYVoM0rrLi8jApFQ6XX+en2cKlw2lHHjvZ0UxuvuAVbOthVvniHVp1u2cQOLkeFTzp3EDE0Rz6t3JwcDBOTk6kpqZW2Z6amkp4eHiNzwkJCWHhwoUUFRWRmZlJREQEEydOpH379tX2veeee/j222/57bffaNu27THrcHNzw82t+igbaUIKs+F/98OWhbb77c+FEe/YDjBq8MfODG776C9Kyqxc2DWM167rjYsCKREREZEahfu589SV3fnXOe15PWEn89bu55dt6fyyLZ2Luobx4IWd6NKmAfqEmUwQEGu7dL38yPb8DMhOKg8uUitdpxy5nZcKZYW2VcuyDtt6+Bz/zWwhReXQyifcNiLLJxx8ImzX3mHqcXUi9hFNlcOlSrft91PrHjSZnCqFS8E1BExHhU0u7id+TRFpshwaSrm6utK3b18SEhK48sorAdt0u4SEBO65557jPtfd3Z3IyEhKS0uZP38+o0aNsj9mGAb33nsvX3/9Nb/88gvt2rVryI8hDS1pFcy/zbayi9kZzn8cBt93zF82lu/K4NaP/qS4zMoFcaG8cX0fXJ0VSImIiIicSNsAT54f2ZO7zu3Aawk7+HpdMj9sSeWHLalc2rMNDw7pyGmhjdAPxyvYdjkew7AFUvaQKqWGECv1yCgcw3pkaljq8V8az2BbWOXb5qjgqlKA5RVsm7LV3FV8jwVZUJgFhYfKbx86si0/48j3eDjV9lhdmJ1tYZJ3+aXy7cr3vULA3V8jmERaEYevvjd37lzGjh3LO++8w4ABA5gxYwZffvklW7duJSwsjDFjxhAZGcm0adMAWLVqFcnJyfTq1Yvk5GSmTJnCnj17WLt2Lf7+/gDcfffdfPbZZ/zf//0fnTt3tr+Xn58fHh4eJ6xJK8c0EVYL/P4y/PIcGBbbL2hXz4a2fY/5lFW7M7n5gz8pLLVwXucQ3r6pL27OLeBgQUREHEbHBbWn76rl2ZmWxytLd7Bow0EAzCa4slck9w/pSExQM+rlZLXYVmu2B1VpthArL6V8qmCl27XtU2Ryqj7ayrdN1QDLK/RIXyKTky3Esl83QK+hshJbYFSYdSRQqgiYKt8+etvJ9GYyO1caxXSMwKnitkeAeiuJtDLNYvU9gNGjR5Oens7kyZNJSUmhV69eLF682N78PCkpCXOlpLyoqIjHHnuM3bt34+3tzbBhw/jkk0/sgRTAW2/ZVmQ799xzq7zXBx98wM0339zQH0lOVUEWbPk/WPsxHFhr29ZjFFz6Mrgf+w/zn3uzGPehLZA6u1MIb92oQEpERETkVJwW6sMb1/dh/Lm5vLJ0Oz9uSWXB38n8b8MBbj+rPfecfxqerg4/pTgxs9ORoIQex97ParWFNXkHjgqsDkLuwSP389NsP5rWtu9VjUzlzbMrB1bmSsGVcw3bKvavtM1aCgXlAVPJ4ZOsBXBys62k6BFYfh1Q6X5QpWmP5WGTR4BGNInIKXP4SKmmSL/yOUBRLmz7DjbNh10/gbXMtt3V2xZGVTTDPIY1iVmMeX81+SUWzuoYzKwx/XB3USAlIiKnTscFtafvquXbsD+bF5ds4/cdGQBE+nsweXhXLuoahqk1jYSxlNmmsuUdrHSpFGJVBFiFWQ4ozgQe/pXCpUrXHgHgGVDzYy4eGs0kIvWm2YyUklastBC2L7EFUTt+gLKiI4+F9YDuV9nCKN+I477M2qRDjJ39J/klFgZ3COLdmxRIiYiIiDSEnm39+fiWAfy4JZUn/7eF5OxC/vXJGs6PC2XK8G5EB3k6usTG4eRsm6rn2+b4+1mtthFV1jLbFELDUn5tPca28n3t2yy21zjeNrNz1dFN7n4to9eViLQKCqWkcZWVwO6fbUHU1kVVhxgHnQbdR9rCqJDOx36NStbvy2bs+6s5XFzG6e0DeX9sfzxc9Y+wiIiISEMxmUxc1C2cMzsGM/Onncz6fTc/bU3jj50Z3H3uafzrnPb6gbCC2QyYwcnF0ZWIiDRJCqWk4VktsHcZbJoHW76Bouwjj/lF2UKo7ldDeM86DRneuD+Hm95fRV5xGQNiA5l9swIpERERkcbi6erMfy+O46o+bZn8f5tYviuTV5Zu5+u/9zPl8m6c2znU0SWKiEgTp1BKGoZhwP4/YeM82LLQtspJBa9Q6DYCeoyEyH4n1SBxU3ION76/ityiMvrFBPDBuP7No8mmiIiISAtzWqg3c24byP82HOTpb7ewN7OAmz/4k0u6h/P4ZV2J8D/x6tciItI66Sxe6o9hQMpG24ioTV9DTtKRx9z9oevltul5sWee0jz3LQdyufH9VeQUltIn2p8PbxmAl5v+KIuIiIg4islk4vL4CM7rHMKMpTv4cPlevt+Uwq/b07n/go7ccmY7XJy0UpuIiFSlM3k5denbbT2iNs2HzB1Htrt6Q9yltql57c8DZ9dTfqutKbnc8N5KsgtK6RXlz0e3DMBbgZSIiIhIk+Dj7sLjl3VlZN+2PL5wE38lHmLa91uZt2Y/T13ZndPbBzm6RBERaUJ0Ni91ZxiQsQO2LbIFUSkbjzzm5AadhtqCqI4XgWv9rcCyPTWPG2at4lBBKfFt/fj41gH4uKtppIiIiEhT06WNL1/+axDz1+5n2vdb2ZF2mGvfXcmI3pFMGhZHqI+7o0sUEZEmQKGUnJhhQOZO2Pu7rWH53mVVe0SZnaHD+bYgqvMwcPet9xJ2pOZx/ayVZOaX0D3Sl49vGYivAikRERGRJstsNnFNvygu7BrGi0u28dnqJL7+O5mlW1L5z9DO3Hh6DE7m2i9yIyIiLY9CKanOMCBz11EhVErVfZzcIPp0W8PyrleAZ2CDlbMz7TDXzVpFxuESurbx5dNbB+LnqUBKREREpDnw93TlmRE9GNUviscWbmJjcg5PfLOZL//ax1NXdqdPdICjSxQREQdRKCW2ECprd9UQKu9g1X2c3CBqgK1JeeyZtlXzXBp+2PXu9MNcP2slGYeLiQv3Yc5tA/H3PPXeVCIiIiLSuOKj/Fk4/gw+W53Ei4u3svlALle9uZzrBkTx36FxBHjpGE9EpLVRKNUa2UOoZZVCqANV93FyhbaVQqi2/RslhKpsb0Y+181aSVpeMZ3DbIGUDlZEREREmi8ns4mbTo/hku7hPFfeAP3z1ftYvCmFhy+OY1S/KMya0ici0moolGoNDAMO7akaQuUmV93HydUWPFUJoTwcUy/w6/Z0HvpqPWl5xXQM9WbO7QMJ8nZzWD0iIiIiUn+Cvd146Zp4RveP4vGFm9iaksfEBRuZ+9c+nr6yO90i/BxdooiINAKFUo2ttAhK8hv+fYqyIXF5pRBqf9XHzS5VQ6ioAQ4NoSocLi7jmUVb+Hz1PgA6hXkz57bTCVYgJSIiItLi9I8N5H/3nslHy/fyyo/b+Tspm+GvL2PMoFgmXNRJC9uIiLRwCqUa2+YFsPCuxn9fswu07VceQp1lC6RcPRu/juNYviuDh77aQHJ2IQA3D47l4Yvj8HB1cnBlIiIiItJQXJzM3HZWey7rGcHTi7bw7YaDfLh8L/9bf4AHL+zEtf2jcHYyO7pMERFpAAqlWiqzC0T2tYVQ7c6y9YdqYiFUhYKSMl5YvI0Pl+8FoG2ABy+OjGdQhyDHFiYiIiIijSbcz52Z1/fh2v4ZTP5mE7vT83ls4SY+Wr6XRy7twrmdQjCZ1G9KRKQlMRmGYTi6iKYmNzcXPz8/cnJy8PX1rd8XNwzbpaGZTLZLE/fX3iz+89V69mYWAHD9wGgeGdYFbzflpSIi0jQ06HFBC6PvSupLqcXKZ6uSmLF0O4cKSgE4q2MwjwzrQpc2+rMlItLU1faYQGf+ja2ZhEUNrajUwvQftzPr990YBrTxc+f5q3tydqcQR5cmIiIiIg7m4mRm7OBYruwdyRs/7+TDP/by+44MLn3td0b1i2LCRZ0I9WnclaFFRKT+aXK2NLp1+7K59LXfefc3WyA1sm9bFj9wtgIpEREREanCz8OFR4Z1YemEc7i0RxusBnzx5z7OffEXXkvYQWGJxdEliojIKVAoJY2muMzCi0u2cvVby9mVnk+IjxvvjenHS9fE4+ehlVVEREREpGbRQZ68cUMf5t81iF5R/hSU2Ebdn/fSL8xfsx+rVR1JRESaI4VS0ig2H8jhipl/8MbPu7BYDS6Pj+CHB85mSNcwR5cmIiIiIs1E35hAvr57MK9d15tIfw9Scov491frufyNZazYleno8kREpI7UU0oaVKnFylu/7OK1hB2UWQ0CvVx55sruXNKjjaNLExEREZFmyGQycXl8BBd1DePD5Xt546edbErO5bpZK7mwaxiTLomjfYi3o8sUEZFaUCglDWZ7ah7//nI9G5NzABjaLYxnRvQg2NvNwZWJiIiISHPn7uLEned04Jq+bZmxdAefrU7ixy2p/Lw1jRtPj+H+CzoS4OXq6DJFROQ4NH1P6p3FavD2r7u47LVlbEzOwc/DhVev7cXbN/ZVICUiIiIi9SrI242nruzOkgfO4vy4UMqsBh8u38s5L/7MrN92U1ymZugiIk2VRkpJvdqdfph/f7Wev5OyATivcwjPXd2TMF8t2SsiIiIiDee0UB9m39yfP3Zm8PSif/jnYC7PfPcPn6xMZOIlcVzSPRyTyeToMkVEpBKFUlIvrFaDD5bv5YXFWykus+Lt5szky7pyTb+2+sdfRERERBrNGacF8+29ZzJ/7X5eWrKNpKwC7p6zln4xATx6aRd6Rwc4ukQRESmnUEpOWVJmAf+Zt57Ve7IAOPO0YJ4f2ZNIfw8HVyYiIiIirZGT2cSoflFc2qMN7/62m3d/281fiYcY8eZyLo+P4L8Xd6ZtgKejyxQRafUUSslJMwyDOauSePa7fygoseDp6sSkYV24cWC0RkeJiIiIiMN5uTnz4IWduG5ANC/9sI35a/fzzfoDLN6cwi1ntOPu8zrg6+7i6DJFRFotk2EYhqOLaGpyc3Px8/MjJycHX19fR5fT5BSVWtiWksdLP2zj9x0ZAAxoF8hLI+OJDtIvTiIi0rLouKD29F1JU7f5QA7PLPqH5bsyAfB1d+a2s9pz8xmxCqdEROpRbY8JFErVQAdUNoZhkJJbxD8Hc/nnYB5bU/LYejCX3Rn5WKy2PzZuzmb+e3Ec4wbHYjZrdJSIiLQ8Oi6oPX1X0hwYhkHCP2k8v3grO9IOAwqnRETqW22PCTR9TwAoLLGwPTWPfw7msjXlyHVOYWmN+/t7utAvJoBJw7rQIcS7kasVERERETk5JpOJIV3DOD8ulO82HeTVpTvYkXaY6T9u573fdyucEhFpRAqlWhnDMNh/qNA+6umflFy2HsxjT2Y+NY2ZczKb6BDiRVy4L13a+BLXxocu4b6E+bqpb5SIiIiINFtms4nLekYwrHsbhVMiIg6iUKoFO1xcxraUPLaWB0//HMxlW0oeecVlNe4f5OVqC57CfYhr40uXNj6cFuqNm7NTI1cuIiIi9eGNN97gxRdfJCUlhfj4eF5//XUGDBhQ476zZs3i448/ZtOmTQD07duXZ5999pj7i7QUCqdERBxHoVQL9Mu2NKZ8s5m9mQU1Pu7iZOK0UB+6hPsQ18bHPgoqxMetkSsVERGRhjJ37lwmTJjA22+/zcCBA5kxYwZDhw5l27ZthIaGVtv/l19+4brrrmPw4MG4u7vz/PPPc9FFF7F582YiIyMd8AlEGpfCKRGRxqdG5zVozk06DcPgwld+Y2d508ZQH7cq0+7i2vjQPtgbV2ezgysVERFpHprrccHAgQPp378/M2fOBMBqtRIVFcW9997LxIkTT/h8i8VCQEAAM2fOZMyYMbV6z+b6XYnUxGo1qoRToIboIiK1pUbnrdRvOzLYmXYYbzdnfpxwNm38PBxdkoiIiDSykpIS1qxZw6RJk+zbzGYzQ4YMYcWKFbV6jYKCAkpLSwkMDDzmPsXFxRQXF9vv5+bmnnzRIk2MRk6JiDQ8DZdpYWYv2wPANf3aKpASERFppTIyMrBYLISFhVXZHhYWRkpKSq1e4+GHHyYiIoIhQ4Ycc59p06bh5+dnv0RFRZ1S3SJNUUU4teSBs5l5fW86hnqTW1TG9B+3c+ZzP/Fawg5yi2pesVpERI5PoVQLsjMtj1+3p2Mywc2DYx1djoiIiDRTzz33HF988QVff/017u7ux9xv0qRJ5OTk2C/79u1rxCpFGpfCKRGR+qfpey3IB3/sBWBIlzBigrwcW4yIiIg4THBwME5OTqSmplbZnpqaSnh4+HGf+9JLL/Hcc8+xdOlSevbsedx93dzccHPTQinSumhan4hI/dFIqRYiu6CE+Wv3A3DLGe0cXI2IiIg4kqurK3379iUhIcG+zWq1kpCQwKBBg475vBdeeIGnnnqKxYsX069fv8YoVaTZ0sgpEZFTp5FSLcTnq/dRVGqlaxtfTm9/7IakIiIi0jpMmDCBsWPH0q9fPwYMGMCMGTPIz89n3LhxAIwZM4bIyEimTZsGwPPPP8/kyZP57LPPiI2Ntfee8vb2xtvb22GfQ6SpO9HIqdH9o7hhYAyxwZrJICJyNIVSLUCpxcpHy/cCcMuZ7TCZTI4tSERERBxu9OjRpKenM3nyZFJSUujVqxeLFy+2Nz9PSkrCbD4yaP6tt96ipKSEkSNHVnmdJ554gilTpjRm6SLN0rHCqVm/72HW73s4p1MIN50ew3lxoTiZdbwuIgJgMgzDcHQRTU1ubi5+fn7k5OTg6+vr6HJO6Jv1B7jv878J9nblj4nn4+bs5OiSREREWozmdlzgSPquRI6wWg1+2Z7GJysS+WV7OhVnXZH+Hlw/MJrR/aMI9lZPNhFpmWp7TKCRUi3A7GV7ALjx9BgFUiIiIiIiTYDZbOL8uDDOjwsjKbOAOasSmfvXPpKzC3lxyTZeXbqDYT3CuWlQDH2iAzTbQURaJYVSzdzapEOs25eNq5OZGwbGOLocERERERE5SnSQJ5OGdeHBCzuxaMNBPlmZyLp92Sxcd4CF6w7QtY0vNw2K4YpeEXi66hRNRFoPrb7XzFWMkrqiVwQhPhr+KyIiIiLSVLm7OHF137YsHH8G/7vnTEb1a4ubs5ktB3OZtGAjA59NYMo3m9mVftjRpYqINAqFUs3YgexCvt9kWxln3BntHFyNiIiIiIjUVo+2frwwMp5Vj1zAY5d2ITbIk7yiMj5cvpcLXv6VG95byeJNBymzWB1dqohIg9HY0GbsoxV7sVgNBrUPomuEmomKiIiIiDQ3/p6u3HZWe245ox3LdmbwycpEEv5J5Y+dmfyxM5NwX3euHxjNtf2jCPV1d3S5IiL1SqFUM1VQUsbnq5IAuOVMjZISEREREWnOzGYTZ3cK4exOISRnF/LZqkS+WL2PlNwipv+4ndcSdjC0ezhjTo9hQLtANUYXkRahSUzfe+ONN4iNjcXd3Z2BAweyevXqY+5bWlrK1KlT6dChA+7u7sTHx7N48eJTes3maP7aZHKLyogJ8uT8uFBHlyMiIiIiIvUk0t+Dh4bGsXzS+bx6bS/6xwZQZjVYtOEgo99dydAZv/HJir3kFZU6ulQRkVPi8FBq7ty5TJgwgSeeeIK1a9cSHx/P0KFDSUtLq3H/xx57jHfeeYfXX3+dLVu2cOeddzJixAj+/vvvk37N5sZqNfjgD1uD85sHx+Jk1q8kIiIiIiItjZuzE1f0iuSrOwfz3X1ncf3AaDxdndieepjH/28zpz+bwKQFG/ljZ4Z6T4lIs2QyDMNwZAEDBw6kf//+zJw5EwCr1UpUVBT33nsvEydOrLZ/REQEjz76KOPHj7dvu/rqq/Hw8ODTTz89qdc8Wm5uLn5+fuTk5ODr2/R6Nf28LY1xH/yJj5szKx65AG83zcIUERFpKE39uKAp0Xcl0vByi0r5em0yn6xMZGfakVX6AjxduKhrOBf3COeMDsG4Ojt8/IGItGK1PSZwaJpRUlLCmjVrmDRpkn2b2WxmyJAhrFixosbnFBcX4+5etcGfh4cHy5YtO6XXLC4utt/Pzc096c/UGGYvs42SGt0/SoGUiIiIiEgr4uvuwtjBsYwZFMOK3Zl8s+4AP2xJJSu/hLl/7WPuX/vwcXdmSJcwLu4ezjmdQnB3cXJ02SIiNXJoopGRkYHFYiEsLKzK9rCwMLZu3Vrjc4YOHcr06dM5++yz6dChAwkJCSxYsACLxXLSrzlt2jSefPLJevhEDW97ah6/78jAbOL/2bvz8KbKvH3gd5Jm65Kke5tSugEtlFWWDiCuKIuDy7gCCqKD7zigo+gojAioo4yv/hgcdWScecFtHFd0HEFQKqjIOiwiIFigG93XpE2a/fz+yNKmTUtb2iRt78915UpytjyngfJwn+/zHCyckhro5hARERERUQCIRCJMyYjBlIwY/PFGBw4U1GLb8XJsO16OygYzPjlSgk+OlCBUJsGVmXGYOTIBV2bF8aI2EQWVPvcb6aWXXsLixYuRlZUFkUiEjIwMLFq0CBs3buz2MVesWIFly5Z53uv1eiQnJ/dEc3ucey6pa0ckIDkqNMCtISIiIiKiQAuRiD0B1Zo52ThSXIcvfizHF8fLUVLfhC0/lmHLj2WQhYhx2dBYzBqZgOnD46EOlQa66UQ0wAU0lIqJiYFEIkFFRYXX8oqKCiQkJPjcJzY2Fp9++ilMJhNqamqg1WqxfPlypKend/uYcrkccrm8B86od9UaLNh8uAQAcM+laQFuDRERERERBRuxWITxKVEYnxKFJ64bjh9LdPjCVUGVX23Ajp8qsOOnCoSIRZgyJAazRibg2hHxiA4P/v8PEVH/E9DZ72QyGcaPH4/c3FzPMofDgdzcXEyePLnDfRUKBZKSkmCz2fDxxx/jhhtuuOhjBrt/HSiC2ebAyCQVJqZGBro5REREREQUxEQiEUYP0uDxmVn4+pHLse2hafjd1UORGR8Bm0PAtz9XYcXmHzHx2R244/W9eHNPAcp1pkA3m4gGkIAP31u2bBkWLlyICRMmYNKkSVi/fj0MBgMWLVoEAFiwYAGSkpKwdu1aAMD+/ftRUlKCsWPHoqSkBGvWrIHD4cBjjz3W6WP2RRabA2/tLQAA3HtpGkQiUWAbREREREREfYZIJEJWggpZCSo8fM0wnKtq9FRQ/Viiw75ztdh3rharPzuBSwZrMGtkImaO5JQhRNS7Ah5K3X777aiqqsKqVatQXl6OsWPHYtu2bZ6JyouKiiAWNxd0mUwmrFy5EufOnUN4eDhmz56Nt99+GxqNptPH7Iu+OF6GCr0ZsRFyXDdKG+jmEBERERFRH5YeG44lVw7BkiuHoLjWiO0nnHNQHSqsw+GiehwuqsezW3/CyCQVrsqKxy/SojBucCSUMt7Jj4h6jkgQBCHQjQg2er0earUaOp0OKpUq0M2BIAi44dXvcey8Do9cMwwPXD000E0iIiIaMIKtXxDM+LMi6vsq9CZnQPVjOfbn18DR4n+LUolzOOCktChMSovChJRIRCg4WToRtdXZPkHAK6Xowg4V1uHYeR1kIWLMyxkc6OYQEREREVE/Fa9SYMHkVCyYnIqaRjN2/FSBPWdrsP9cLcr1JhwqrMOhwjq8tussxCJghFaFSanRyEmPwsTUKESFyQJ9CkTUhzCU6gM2fp8PALhpbBLvikFERERERH4RHS7H7RMH4/aJgyEIAs7XNWF/fi0O5Ndgf34tCmuMOF6ix/ESvef/LMPiw12VVNHISYtCvEoR4LMgomDGUCrIna8zYtvxcgDAPZemBbg1REREREQ0EIlEIiRHhSI5KhS3jB8EACjXmXCgwBVSnatFXmUjfq5wPt7ZVwQASI0O9QqpBkUqedMmIvJgKBXk3tpbCIcAXDokBpkJEYFuDhEREREREQAgQa3A9WO0uH6M80ZMNY1mHCyow4H8WhwoqMHJUj0KaowoqDHig/+eBwAkqhWYlBaFnLRoTEqLQkZsGEMqogGMoVQQM5ht+NcB5xWGey5NDWxjiIiIiIiIOhAdLsfMkQmYOTIBAKA3WXGooM4z5O/YeR3KdCb8+2gp/n201LlPmAyT0qIwJlmDbK0K2Vo156UiGkAYSgWxjw+fR4PJhrSYMFwxLC7QzSEiIiIiIuo0lUKKK7PicGWW8/8yRosNR4rqPSHVkaJ61Bgs+OJ4Ob5wTVkCOKupsrUqjNCqXUGVCkkaDvsj6o8YSgUph0PApu8LAACLpqZCLOYvYCIiIiIi6rtCZSGYOiQGU4fEAADMNjt+PK/DgYJanCjR40SpDgU1RpTpTCjTmbDjp0rPvppQKUYkqjzVVNlaFdJjwyHh/5OI+jSGUkFq5+lK5FcboFKE4OZLBgW6OURERERERD1KHiLBhNQoTEiN8ixrMFnxU1kDjpfocKLUGVSdqWxEvdGKPWdrsOdsjWdbhVSMrATvoCozIQIKqSQQp0NE3cBQKki5b6k6d9JghMn5NRERERERUf8XoZC67tbXHFSZbXb8XN6IE6XNQdVPZQ1ostpxtLgeR4vrPdtKxCIMiQ13BlVJatcwQBVUCmkAzoaILoRpRxA6Va7H92dqIBGLsGBKaqCbQ0REREREFDDyEAlGDVJj1CC1Z5ndISC/2oATpTqcLNV7wqo6oxWnKxpwuqIBm4+UeLZPjlJiWFwEhsSHY2hcBIbGhSMjLhzhLAAgCij+DQxCm3YXAABmZicgSaMMbGOIiIiIiIiCjEQswpC4cAyJC8cNY5MAAIIgoExn8gRUJ0r1OFGiQ6nOhOLaJhTXNiH3VKXXcZI0SmTEhWOo+xEfjiGxEVCHsrKKyB8YSgWZmkYzPjnqTPTvuTQ1sI0hIiIiIiLqI0QiEbQaJbQaJa4ZEe9ZXmew4KcyPc5UNSKvohF5lQ04U2lAdaMZJfVNKKlvwrc/V3kdKy5CjiGuoGpIfIQntIoOl/v7tIj6NYZSQeaf+4tgsTkwZpAalwyODHRziIiIiIiI+rTIMBmmDInBFNdd/9zqDBZPUHWm0h1WNaJMZ0JlgxmVDWavidUBIDJUiqGeYYDOoYBD4sIRr5JDJOKdAIm6iqFUEDHb7Hh7XyEA4J5L0/hLjYiIiIiIqJdEhskwMSwKE1vc/Q9w3gHwbJUBeRUNrrDKGVoV1xlRZ7TiQEEtDhTUeu0TIQ9Belw40qJDkRIdhtQY53NadBg0oVL+346oHQylgsiWY2WoajAjXiXH7FGJgW4OERERERHRgBOhkGJssgZjkzVey5ssdpytcgZU7sqqvMpGFNYY0WC24YfievzQ4k6AbipFCFJjwpxhlTu0cj3HhMsYWNGAxlAqSAiCgP/bnQ8AWDA5FVKJOMAtIiIiIiIiIjelTIKRSWqMTFJ7LTfb7CisMeJsZSMKaoworDGgoMaAwhojynQm6E02HDuvw7HzujbHDJNJvCqr3GFVWkwY4iI4JJD6P4ZSQeJgQR1OlOohDxFj3qTBgW4OERERERERdYI8RIJh8REYFh/RZp3JakdRrREF1c6Qyh1WFdQYUFLfBIPFjpNlepws07fZVyEVIzU6DCnRoa7nMAyKVLomc1cgVMb/zlPfxz/FQWKjq0rqV5cMQmSYLMCtISIiIiIiooulkLYfWJltdhTXNrkqq4xez+frmmCyOnCqvAGnyht8HlutlCJRrYBWo/R6TlQ7Q6sEtQLyEElvnyLRRWEoFQSKa4348mQ5AOCeqamBbQwRERERERH1OnmIBEPiwjEkLrzNOqvdgZK6Jq/KqoJqZ3VVWb0JDWYbdE1W6Jqs7YZWABATLkOiWtkmvNJqnOFVXIQcIZw6hgKIoVQQeGNPARwCcNmwWAz1kaATERERERHRwCGViJEaE4bUmDCf6xtMVpTpTCitb0KZzoSy+iaUtnhfWt8Es82B6kYLqhst+LGk7XxWACAWAfEqhbPCSqOEVq1AglqJeJUcCSoF4lUKxKnkrLiiXsNQKsAaTFa8f7AYAKukiIiIiIiI6MIiFFJEKKQ+hwUCzhtp1RmtzaGVrgml9c7nsnoTSnVNKNeZYHMIrvUmoKi+3c+LCpMhXqVAgkqOeFdYlaBWIN71PkGlQFQY7yRIXcdQKsA+OnQejWYbMmLDcNnQ2EA3h4iIiIiIiPo4kUiEqDAZosJkbe4W6OZwCKhuNKO0VaVVhd6ECr0J5XoTKvRmWGwO1BosqDVY8FNZ+58pk4gRGyFHgtoZUsW5qq2c4ZXCE14pZay6omYMpQLI7hDwxp4CAMCiqWkQi5kqExERERERUe8Ti0WIUykQp1JgbLLG5zaCIKDeaEW5K6Sq1JtQrjO7AqvmR3WjBRa7AyX1TSipb+rwcyMUIYgNlyMmXI7ocJnnOTpcjljXs3tZhDyE1Vf9HEOpAPr6VCUKa4xQK6X41SVJgW4OERERERERkYdIJEJkmAyRYTIMT1S1u53F5kBlg7OyqkJvQrnOhIoGEyp0zRVX5ToTmqx2NJhsaDDZcK7acMHPl4WIERPmDqqcz9HhMsS2DLTCnOuiwmSctL0PYigVQBt35wMA5k4ajFAZvwoiIiIiIiLqe2QhYgyKDMWgyNB2txEEAQ1mGypdlVXVjWbUuJ6rGy2oaTQ7lxksqG4ww2Cxw2JzOIcV6kydakdkqNQZXIXJEB0uQ2SoM6yKDG31PkyGqFAZhxIGASYhAXKiVIe952ogEYuwcEpKoJtDRERERERE1GtEIhFUCilUCimGxF14+yaLHTUG78CqZZhVYzCjusH5XGuwwCEAdUYr6oxWnOlkm5RSiSukknoCqyhXYBUZ1jbQ0oRKIWU1Vo9iKBUgm74vAADMHpWIRLUysI0hIiIiIiIiCiJKmQSDZB1XX7nZHQLqjJYWlVdm1Butngnaa40W1Lle1xmdz1a7gCarvVPzYLWkUoR4qq00Sik0rrBKo3Q9h7qWKZtfR8hDOId0OxhKBUBVgxmfHS0FANwzNTWwjSEiIiIiIiLqwyRiEWJcE6RnIuKC2wuCgEazDXUGq8/AqrbVe2cFlgWCAOhNNuhNNhTUGDvdPrEIUCud1VjqUCk0Xq/bhlnudQMhzGIoFQD/3F8Ii92BcYM1GDc4MtDNISIiIiIiIhowRCIRIhRSRCikGBx94UoswFmNpW+yosYVWNUbLahvsjqfjVbv10arZ73RYvcaWtgV7jBLrZRC7Qqs1O4KLNcytVLqqcpybud8lof0jfmyGEr5mdlmxzv7CgEA90xNC3BriIiIiIiIiOhCJOLmOxF2hdlmh84TWjkrrpzvnRVY9UYrdE0W1Bmc2+iMzuVN1lZhVhcqswAgVCbxBFruwMpdlaVu8X5YfDiGxl+4uqy3MJTys//8UIbqRgu0agVmjUwIdHOIiIiIiIiIqJfIQySIU0kQp1J0aT+T1Q59kxW6puZAq95ogc69zNi8TueqynKvEwTAaLHDaLGj7AJ3Lvyfy9KxYvbwiznFi8JQys/iVXKMG6zBjOwEhHDWfiIiIiIiIiJqRSGVQCHtepjlcAhoMNlcgVXz0EKdO7zyCrOsSI8N66Uz6ByGUn42bWgspg2Nhd0hBLopRERERERERNSPiMUi5/C8UCkGo3PzZQUSS3UCRNLPZ9AnIiIiIiIiIuoIQykiIiIiIiIiIvI7hlJEREREREREROR3DKWIiIiIiIiIiMjvGEoREREREREREZHfMZQiIiIiIiIiIiK/YyhFRERERERERER+x1CKiIiIiIiIiIj8jqEUERERERERERH5HUMpIiIiIiIiIiLyO4ZSRERERERERETkdwyliIiIiIiIiIjI70IC3YBgJAgCAECv1we4JURERBRo7v6Au39A7WMfioiIiIDO958YSvnQ0NAAAEhOTg5wS4iIiChYNDQ0QK1WB7oZQY19KCIiImrpQv0nkcDLfm04HA6UlpYiIiICIpGox4+v1+uRnJyM4uJiqFSqHj9+sBqI5z0QzxngefO8Bwae98A5b0EQ0NDQAK1WC7GYMx90pDf7UAPxzx7A8+Z5Dww874Fz3gPxnIGBed6d7T+xUsoHsViMQYMG9frnqFSqAfMHsqWBeN4D8ZwBnvdAw/MeWAbaebNCqnP80YcaaH/23HjeAwvPe2AZiOc9EM8ZGHjn3Zn+Ey/3ERERERERERGR3zGUIiIiIiIiIiIiv2MoFQByuRyrV6+GXC4PdFP8aiCe90A8Z4DnzfMeGHjeA+u8KfAG6p89njfPeyDgeQ+c8x6I5wwM3PPuDE50TkREREREREREfsdKKSIiIiIiIiIi8juGUkRERERERERE5HcMpYiIiIiIiIiIyO8YSvWSV199FampqVAoFMjJycGBAwc63P7DDz9EVlYWFAoFRo0aha1bt/qppT1j7dq1mDhxIiIiIhAXF4cbb7wRp0+f7nCfN954AyKRyOuhUCj81OKesWbNmjbnkJWV1eE+ff27BoDU1NQ25y0SibBkyRKf2/fF7/rbb7/FnDlzoNVqIRKJ8Omnn3qtFwQBq1atQmJiIpRKJaZPn468vLwLHrervxv8raPztlqtePzxxzFq1CiEhYVBq9ViwYIFKC0t7fCY3fl74m8X+r7vvvvuNucwc+bMCx63L3/fAHz+PReJRHjhhRfaPWZf+L4peLH/xP5Te/r6dw0MjP4TwD4U+1Cfeq1nH4p9qAthKNUL3n//fSxbtgyrV6/G4cOHMWbMGMyYMQOVlZU+t9+zZw/mzp2Le++9F0eOHMGNN96IG2+8EcePH/dzy7vvm2++wZIlS7Bv3z589dVXsFqtuPbaa2EwGDrcT6VSoayszPMoLCz0U4t7TnZ2ttc57N69u91t+8N3DQAHDx70OuevvvoKAHDrrbe2u09f+64NBgPGjBmDV1991ef6//3f/8Vf/vIXbNiwAfv370dYWBhmzJgBk8nU7jG7+rshEDo6b6PRiMOHD+PJJ5/E4cOHsXnzZpw+fRrXX3/9BY/blb8ngXCh7xsAZs6c6XUO//rXvzo8Zl//vgF4nW9ZWRk2btwIkUiEm2++ucPjBvv3TcGJ/Sf2n9rTH75rYGD0nwD2odiHaot9KPahOiRQj5s0aZKwZMkSz3u73S5otVph7dq1Pre/7bbbhOuuu85rWU5OjvA///M/vdrO3lRZWSkAEL755pt2t9m0aZOgVqv916hesHr1amHMmDGd3r4/fteCIAi/+93vhIyMDMHhcPhc39e/awDCJ5984nnvcDiEhIQE4YUXXvAsq6+vF+RyufCvf/2r3eN09XdDoLU+b18OHDggABAKCwvb3aarf08Czdd5L1y4ULjhhhu6dJz++H3fcMMNwlVXXdXhNn3t+6bgwf4T+0/t6Y/ftSD0//6TILAP1RH2odrXH79v9qHax0qpHmaxWHDo0CFMnz7ds0wsFmP69OnYu3evz3327t3rtT0AzJgxo93t+wKdTgcAiIqK6nC7xsZGpKSkIDk5GTfccANOnDjhj+b1qLy8PGi1WqSnp2P+/PkoKipqd9v++F1bLBa88847uOeeeyASidrdrj981275+fkoLy/3+i7VajVycnLa/S6787uhL9DpdBCJRNBoNB1u15W/J8Fq165diIuLQ2ZmJu6//37U1NS0u21//L4rKiqwZcsW3HvvvRfctj983+Rf7D85sf/kW3/8rgdi/wlgH6ol9qF864/fN/tQHWMo1cOqq6tht9sRHx/vtTw+Ph7l5eU+9ykvL+/S9sHO4XDgoYcewtSpUzFy5Mh2t8vMzMTGjRvx73//G++88w4cDgemTJmC8+fP+7G1FycnJwdvvPEGtm3bhtdeew35+fmYNm0aGhoafG7f375rAPj0009RX1+Pu+++u91t+sN33ZL7++rKd9md3w3BzmQy4fHHH8fcuXOhUqna3a6rf0+C0cyZM/HWW28hNzcXzz//PL755hvMmjULdrvd5/b98ft+8803ERERgV/96lcdbtcfvm/yP/af2H9i/6mt/vBdt8Y+lBP7UOxD+dIfvu/uCAl0A6j/WbJkCY4fP37B8a+TJ0/G5MmTPe+nTJmC4cOH429/+xueeeaZ3m5mj5g1a5bn9ejRo5GTk4OUlBR88MEHnUrC+4P/+7//w6xZs6DVatvdpj981+TNarXitttugyAIeO211zrctj/8Pbnjjjs8r0eNGoXRo0cjIyMDu3btwtVXXx3AlvnPxo0bMX/+/AtOstsfvm+iQGD/aWD9nmD/aeBiH4p9qPb0h++7O1gp1cNiYmIgkUhQUVHhtbyiogIJCQk+90lISOjS9sFs6dKl+Pzzz7Fz504MGjSoS/tKpVKMGzcOZ86c6aXW9T6NRoNhw4a1ew796bsGgMLCQuzYsQO//vWvu7RfX/+u3d9XV77L7vxuCFbuzlRhYSG++uqrDq/w+XKhvyd9QXp6OmJiYto9h/70fQPAd999h9OnT3f57zrQP75v6n3sP7H/xP7ThfWH75p9KPah2IfqvP7wfXcGQ6keJpPJMH78eOTm5nqWORwO5Obmel3paGny5Mle2wPAV1991e72wUgQBCxduhSffPIJvv76a6SlpXX5GHa7HT/++CMSExN7oYX+0djYiLNnz7Z7Dv3hu25p06ZNiIuLw3XXXdel/fr6d52WloaEhASv71Kv12P//v3tfpfd+d0QjNydqby8POzYsQPR0dFdPsaF/p70BefPn0dNTU2759Bfvm+3//u//8P48eMxZsyYLu/bH75v6n3sP7H/xP7ThfWH75p9KPah2IfqvP7wfXdKYOdZ75/ee+89QS6XC2+88YZw8uRJ4b777hM0Go1QXl4uCIIg3HXXXcLy5cs923///fdCSEiI8OKLLwo//fSTsHr1akEqlQo//vhjoE6hy+6//35BrVYLu3btEsrKyjwPo9Ho2ab1eT/11FPC9u3bhbNnzwqHDh0S7rjjDkGhUAgnTpwIxCl0yyOPPCLs2rVLyM/PF77//nth+vTpQkxMjFBZWSkIQv/8rt3sdrswePBg4fHHH2+zrj981w0NDcKRI0eEI0eOCACEdevWCUeOHPHcIeVPf/qToNFohH//+9/CsWPHhBtuuEFIS0sTmpqaPMe46qqrhJdfftnz/kK/G4JBR+dtsViE66+/Xhg0aJBw9OhRr7/rZrPZc4zW532hvyfBoKPzbmhoEB599FFh7969Qn5+vrBjxw7hkksuEYYOHSqYTCbPMfrb9+2m0+mE0NBQ4bXXXvN5jL74fVNwYv+J/Sf2n/rHd80+FPtQ7EM5sQ/VOQylesnLL78sDB48WJDJZMKkSZOEffv2edZdfvnlwsKFC722/+CDD4Rhw4YJMplMyM7OFrZs2eLnFl8cAD4fmzZt8mzT+rwfeughz88oPj5emD17tnD48GH/N/4i3H777UJiYqIgk8mEpKQk4fbbbxfOnDnjWd8fv2u37du3CwCE06dPt1nXH77rnTt3+vwz7T4vh8MhPPnkk0J8fLwgl8uFq6++us3PIiUlRVi9erXXso5+NwSDjs47Pz+/3b/rO3fu9Byj9Xlf6O9JMOjovI1Go3DttdcKsbGxglQqFVJSUoTFixe36Rj1t+/b7W9/+5ugVCqF+vp6n8foi983BS/2n9h/EoT++V279ff+kyCwD8U+FPtQbuxDdY5IEAShu1VWRERERERERERE3cE5pYiIiIiIiIiIyO8YShERERERERERkd8xlCIiIiIiIiIiIr9jKEVERERERERERH7HUIqIiIiIiIiIiPyOoRQREREREREREfkdQykiIiIiIiIiIvI7hlJEREREREREROR3DKWIiIiIiIiIiMjvGEoREREREREREZHfMZQiIiIiIiIiIiK/YyhFRERERERERER+x1CKiIiIiIiIiIj8jqEUERERERERERH5HUMpIiIiIiIiIiLyO4ZSRERERERERETkdwyliIiIiIiIiIjI7xhKEVG/IRKJsGbNmi7vV1BQAJFIhDfeeKPH2+RvqampuPvuuz3vd+3aBZFIhF27dgWsTUREROR/7BcRUV/AUIqIetQbb7wBkUgEkUiE3bt3t1kvCAKSk5MhEonwy1/+MgAt7D53wON+SCQSxMXF4ZZbbsFPP/0U6OYRERFRkBlI/aKWjzvuuMOz3YEDB/Db3/4W48ePh1QqhUgk6tLnWCwWvPTSSxg3bhxUKhU0Gg2ys7Nx33334dSpUz19WkTkZyGBbgAR9U8KhQLvvvsuLr30Uq/l33zzDc6fPw+5XB6gll28Bx98EBMnToTVasWxY8ewYcMG7Nq1C8ePH0dCQkKgm0dERERBZiD0i1pKTU31vN66dSv+8Y9/YPTo0UhPT8fPP//cpePffPPN+OKLLzB37lwsXrwYVqsVp06dwueff44pU6YgKyurJ06DiAKEoRQR9YrZs2fjww8/xF/+8heEhDT/qnn33Xcxfvx4VFdXB7B1F2fatGm45ZZbPO8zMzNx//3346233sJjjz0WwJYRERFRMBpI/aLW7r//fjz++ONQKpVYunRpl0KpgwcP4vPPP8ezzz6LP/zhD17rXnnlFdTX13e32V1mMpkgk8kgFnOwEVFP4t8oIuoVc+fORU1NDb766ivPMovFgo8++gjz5s3zuY/BYMAjjzyC5ORkyOVyZGZm4sUXX4QgCF7bmc1mPPzww4iNjUVERASuv/56nD9/3ucxS0pKcM899yA+Ph5yuRzZ2dnYuHFjz50onJ0xADh79my3PttkMmHNmjUYNmwYFAoFEhMT8atf/crreC+++CKmTJmC6OhoKJVKjB8/Hh999FGPngcRERH1joHUL2otPj4eSqWyW/u6+0JTp05ts04ikSA6OtprWUlJCe69915otVrI5XKkpaXh/vvvh8Vi8Wxz7tw53HrrrYiKikJoaCh+8YtfYMuWLV7HcQ9NfO+997By5UokJSUhNDQUer0eALB//37MnDkTarUaoaGhuPzyy/H999936xyJBjpWShFRr0hNTcXkyZPxr3/9C7NmzQIAfPHFF9DpdLjjjjvwl7/8xWt7QRBw/fXXY+fOnbj33nsxduxYbN++Hb///e9RUlKCP//5z55tf/3rX+Odd97BvHnzMGXKFHz99de47rrr2rShoqICv/jFLyASibB06VLExsbiiy++wL333gu9Xo+HHnqoR861oKAAABAZGdnlz7bb7fjlL3+J3Nxc3HHHHfjd736HhoYGfPXVVzh+/DgyMjIAAC+99BKuv/56zJ8/HxaLBe+99x5uvfVWfP755z7PnYiIiIJHf+4XNTQ0tKn0ioqK6pGKopSUFADAP//5T0ydOtWryqy10tJSTJo0CfX19bjvvvuQlZWFkpISfPTRRzAajZDJZKioqMCUKVNgNBrx4IMPIjo6Gm+++Sauv/56fPTRR7jpppu8jvnMM89AJpPh0Ucfhdlshkwmw9dff41Zs2Zh/PjxWL16NcRiMTZt2oSrrroK3333HSZNmnTR5000oAhERD1o06ZNAgDh4MGDwiuvvCJEREQIRqNREARBuPXWW4Urr7xSEARBSElJEa677jrPfp9++qkAQPjjH//odbxbbrlFEIlEwpkzZwRBEISjR48KAITf/va3XtvNmzdPACCsXr3as+zee+8VEhMTherqaq9t77jjDkGtVnvalZ+fLwAQNm3a1OG57dy5UwAgbNy4UaiqqhJKS0uFbdu2CUOGDBFEIpFw4MCBLn/2xo0bBQDCunXr2nyew+HwvHZv72axWISRI0cKV111ldfylJQUYeHChW3avHPnzg7PjYiIiHreQOgX+Xrk5+f73GfJkiVCV/4L6nA4hMsvv1wAIMTHxwtz584VXn31VaGwsLDNtgsWLBDEYrFw8OBBn8cRBEF46KGHBADCd99951nX0NAgpKWlCampqYLdbvc6t/T0dK8+mMPhEIYOHSrMmDGjTT8tLS1NuOaaazp9bkTkxOF7RNRrbrvtNjQ1NeHzzz9HQ0MDPv/883ZL1Ldu3QqJRIIHH3zQa/kjjzwCQRDwxRdfeLYD0Ga71lf3BEHAxx9/jDlz5kAQBFRXV3seM2bMgE6nw+HDh7t1Xvfccw9iY2Oh1Woxc+ZM6HQ6vP32255JPrvy2R9//DFiYmLwwAMPtPmclnenaVn2XldXB51Oh2nTpnX7HIiIiMi/+mu/aNWqVfjqq6+8Hj114xeRSITt27fjj3/8IyIjI/Gvf/0LS5YsQUpKCm6//XbPnFIOhwOffvop5syZgwkTJvg8DuD8eU2aNMlrwvnw8HDcd999KCgowMmTJ732W7hwoVcf7OjRo8jLy8O8efNQU1Pj+RkaDAZcffXV+Pbbb+FwOHrk3IkGCg7fI6JeExsbi+nTp+Pdd9+F0WiE3W5vdyLMwsJCaLVaREREeC0fPny4Z737WSwWe4a1uWVmZnq9r6qqQn19PV5//XW8/vrrPj+zsrKyW+e1atUqTJs2DY2Njfjkk0/w3nvveZWod+Wzz549i8zMzA7L0QHg888/xx//+EccPXoUZrPZs7yrt1UmIiKiwOiv/aJRo0Zh+vTp3dq3M+RyOZ544gk88cQTKCsrwzfffIOXXnoJH3zwAaRSKd555x1UVVVBr9dj5MiRHR6rsLAQOTk5bZa3/Lm2PEZaWprXdnl5eQCcYVV7dDqd15QORNQxhlJE1KvmzZuHxYsXo7y8HLNmzYJGo/HL57qvUt15553tdhxGjx7drWO37HzdeOONMBqNWLx4MS699FIkJyf3+Gd/9913uP7663HZZZfhr3/9KxITEyGVSrFp0ya8++673ToHIiIi8r/+2C/yp8TERNxxxx24+eabkZ2djQ8++ABvvPFGr31e6wna3T/HF154AWPHjvW5T3h4eK+1h6g/YihFRL3qpptuwv/8z/9g3759eP/999vdLiUlBTt27EBDQ4PXVcFTp0551rufHQ6Hp8LI7fTp017Hc9+Bxm639+rVOwD405/+hE8++QTPPvssNmzY0KXPzsjIwP79+2G1WiGVSn1u8/HHH0OhUGD79u2Qy+We5Zs2berR8yAiIqLeNRD6Rf4glUoxevRo5OXlobq6GnFxcVCpVDh+/HiH+6WkpLT52QBtf67tcVekqVSqfvFzJAoGnFOKiHpVeHg4XnvtNaxZswZz5sxpd7vZs2fDbrfjlVde8Vr+5z//GSKRyHOnGvdz67vUrF+/3uu9RCLBzTffjI8//thnB6Wqqqo7p+NTRkYGbr75ZrzxxhsoLy/v0mfffPPNqK6ubnPeADy3fJZIJBCJRLDb7Z51BQUF+PTTT3vsHIiIiKj3DYR+UU/Ky8tDUVFRm+X19fXYu3cvIiMjERsbC7FYjBtvvBH/+c9/8N///rfN9u4+1ezZs3HgwAHs3bvXs85gMOD1119HamoqRowY0WF7xo8fj4yMDLz44otobGxssz5Yf45EwYyVUkTU6zoad+82Z84cXHnllXjiiSdQUFCAMWPG4Msvv8S///1vPPTQQ54rU2PHjsXcuXPx17/+FTqdDlOmTEFubi7OnDnT5ph/+tOfsHPnTuTk5GDx4sUYMWIEamtrcfjwYezYsQO1tbU9do6///3v8cEHH2D9+vX405/+1OnPXrBgAd566y0sW7YMBw4cwLRp02AwGLBjxw789re/xQ033IDrrrsO69atw8yZMzFv3jxUVlbi1VdfxZAhQ3Ds2LEeOwciIiLqfQOhX9RSYWEh3n77bQDwBEZ//OMfATgrk+6666529/3hhx8wb948zJo1C9OmTUNUVBRKSkrw5ptvorS0FOvXr4dEIgEAPPfcc/jyyy9x+eWX47777sPw4cNRVlaGDz/8ELt374ZGo8Hy5cvxr3/9C7NmzcKDDz6IqKgovPnmm8jPz8fHH3/sNUeoL2KxGP/4xz8wa9YsZGdnY9GiRUhKSkJJSQl27twJlUqF//znPz3xYyMaOAJ12z8i6p9a3vq4I61vfSwIzlvyPvzww4JWqxWkUqkwdOhQ4YUXXvC65a4gCEJTU5Pw4IMPCtHR0UJYWJgwZ84cobi4uM2tjwVBECoqKoQlS5YIycnJglQqFRISEoSrr75aeP311z3bdPXWxx9++KHP9VdccYWgUqmE+vr6Tn+2IDhvI/zEE08IaWlpnu1uueUW4ezZs55t/u///k8YOnSoIJfLhaysLGHTpk3C6tWr29xWOSUlRVi4cGGbNu/cubPDcyMiIqKeN5D7Ra238/W4/PLLO9y3oqJC+NOf/iRcfvnlQmJiohASEiJERkYKV111lfDRRx+12b6wsFBYsGCBEBsbK8jlciE9PV1YsmSJYDabPducPXtWuOWWWwSNRiMoFAph0qRJwueff96lczty5Ijwq1/9SoiOjhbkcrmQkpIi3HbbbUJubm6H50NEbYkEwVXLSERERERERERE5CecU4qIiIiIiIiIiPyOoRQREREREREREfkdQykiIiIiIiIiIvI7hlJEREREREREROR3DKWIiIiIiIiIiMjvGEoREREREREREZHfMZQiIiIiIiIiIiK/Cwl0A4KRw+FAaWkpIiIiIBKJAt0cIiIiCiBBENDQ0ACtVguxmNfzOsI+FBEREQGd7z8xlPKhtLQUycnJgW4GERERBZHi4mIMGjQo0M0IauxDERERUUsX6j8xlPIhIiICgPOHp1KpAtwaIiIiCiS9Xo/k5GRP/4Daxz4UERERAZ3vPzGU8sFdbq5SqdihIiIiIgDgcLROYB+KiIiIWrpQ/4kTIxARERERERERkd8xlCIiIiIiIiIiIr9jKEVERERERERERH7HOaUugt1uh9VqDXQz+iSpVAqJRBLoZhAREZGfORwOWCyWQDejT2L/iYiI+huGUt0gCALKy8tRX18f6Kb0aRqNBgkJCZw4loiIaICwWCzIz8+Hw+EIdFP6LPafiIioP2Eo1Q3uQCouLg6hoaHsFHSRIAgwGo2orKwEACQmJga4RURERNTbBEFAWVkZJBIJkpOTIRZzFomuYP+JiIj6I4ZSXWS32z2BVHR0dKCb02cplUoAQGVlJeLi4liKTkRE1M/ZbDYYjUZotVqEhoYGujl9EvtPRETU3/ASVRe555BiZ+riuX+GnJeLiIio/7Pb7QAAmUwW4Jb0bew/ERFRf8JQqps4ZO/i8WdIREQ08PDf/4vDnx8REfUnDKWoW1JTU7F+/fpAN4OIiIioz2D/iYiIyBvnlBpArrjiCowdO7ZHOkMHDx5EWFjYxTeKiIjoIljtDtQaLKhqMCNbq2IVCfU49p+IiKi/sdkd0JtsqDdaEK4IQVyEImBtYShFHoIgwG63IyTkwn8sYmNj/dAiIiIaiKx2B2oaLahuNKOq0YzqBvezc1l1oxlVDc7nOmPzvDo/rrkWEQppAFtOAxH7T0REFChWuwO6JivqjRbUG63Oh+u9c7kVdS1e1zc5t2sw2TzHeGj6UDw0fVjAzoGh1ABx991345tvvsE333yDl156CQCwadMmLFq0CFu3bsXKlSvx448/4ssvv0RycjKWLVuGffv2wWAwYPjw4Vi7di2mT5/uOV5qaioeeughPPTQQwCc8xv8/e9/x5YtW7B9+3YkJSXh//2//4frr78+EKdLRERBpnXQ5A6V3EGT532roKkzxCIgKkwOvcnGUIp6FPtPRETkLyarHdWNZtQ0WlBrcPaPWgZJrV/rmqxoNNsufOAORChCIAg9dALdxFCqBwiCgCar3e+fq5RKOj1M4aWXXsLPP/+MkSNH4umnnwYAnDhxAgCwfPlyvPjii0hPT0dkZCSKi4sxe/ZsPPvss5DL5XjrrbcwZ84cnD59GoMHD273M5566in87//+L1544QW8/PLLmD9/PgoLCxEVFXXxJ0tEREHLZLWjTGdCma4JZfXO51KdCeU6E0rrm1ChN3UraIoOlyMmXI6YcBliI+SIdb+PkCE2XIGYCBliwuWIDJVBIuawvb4mUP0noPN9KPafiIiou2x2B+qMVtQYzJ4LczWNlhbvm1/XNJphsHTv30SRCFAppNCESqFRSqEOlSGyxWuN0rUuVAq1Uta8nVKKEEngpxlnKNUDmqx2jFi13e+fe/LpGQiVde4rVKvVkMlkCA0NRUJCAgDg1KlTAICnn34a11xzjWfbqKgojBkzxvP+mWeewSeffILPPvsMS5cubfcz7r77bsydOxcA8Nxzz+Evf/kLDhw4gJkzZ3b53IiIKDhYbA5U6J3hUpnOhFJP8OQKoXQm1BosnTqWRCxCVJjMGS5FuMKmcDliI9zhk5xB0wASqP4T0Pk+FPtPRETkZncI0DVZUWswo9bgfK5utLQKmsyoMThDpvoma5erkGQSMWLCZYgOlyMqTIaoMBnUyubASRPqCpVahE0RCmmf7jMxlCJMmDDB631jYyPWrFmDLVu2oKysDDabDU1NTSgqKurwOKNHj/a8DgsLg0qlQmVlZa+0mYiILp7F5kBVoxll9c7KpjJX8OQOm0rrTahuNHfqWEqpBIkaBRLVCiSqldCqFUjUKJGgdi6LdQVN4j7caSJqif0nIqK+SxAEGCx21DZaUGu0oM7gHDJXa2j/fXdCJpEIiAqVITpchugwOaLDnRffosOcwZPzffO6cHnIgLtpC0OpHqCUSnDy6RkB+dye0PouMI8++ii++uorvPjiixgyZAiUSiVuueUWWCwdXwmXSr3n8RCJRHA4HD3SRiIi6jyT1Y6qBjMqG0yo0JtRqTehssHsfN1gcq0zd7rCSRYidoZMaqUzdNK4gieNAgkq57NaKR1wnSi6OIHqP7k/+2Kx/0REFDwEQYDeZPP0f9zzMtUaLKgzNj/XNDqf6wxWWOzd+12rUoQgKkyGyDCZZ5oBd6gUHS5HTIvAiZXfF8ZQqgeIRKJOD6MLJJlMBrv9wuNUv//+e9x999246aabADiv/BUUFPRy64iI6EKMFhsq9WZUuEKmSlfHq1Lf/FyhN0Fv6vykl1KJyFXNpGyuctK0fK9AVJiMgRP1OPafiIjoQtw3SnGHTe4La77em21dD5nkIWJEuwIm93C5yNDm163fa0KlkAbBPEz9SfD3BKjHpKamYv/+/SgoKEB4eHi7V+GGDh2KzZs3Y86cORCJRHjyySd5xY6IqJdZbA6U6ZpQXNuE83VGnK9zPpe7Ayi9uUt3WJGHiBGnkiMuQoF413NshBzxKgXiIuSedZGhrHAi6gj7T0REPUsQBDSaba0CJu+gyf2oNVq6NGQuQh6CWJXcM0QuMkyGqFDns/d7KaLD5FDKemb0EXUfQ6kB5NFHH8XChQsxYsQINDU1YdOmTT63W7duHe655x5MmTIFMTExePzxx6HX6/3cWiKi/sVmd6BMZ0KxJ3Bqwvla7/DJ0YlOV6hM4gyVIhSeYClOJfcET+51KuXAm5OAqDew/0RE1HlGiw0VrsrtCn1zFXdFg6vSW++cWqArd1+ViEWeO/HGRTjnqYxTyT135o1TyREb7rz4xpCp7xEJQlen6ur/9Ho91Go1dDodVCqV1zqTyYT8/HykpaVBoVAEqIX9A3+WRNSf2B0CKvQmFNc2h07OAMqI4tomlOtNsF8gdVJIxRgUGYpBkUrXIxSJakWL4EmBcDmvJ/lbR/0C8sY+VO/jz5GIAsE9X2WFK1RyBk0tQidXANXQharucHmIM1hyPeI8zwqvwInzMvVNne0/sWdLRETUSY1mGwqqDSisMaKgxoCiGiPO1ztDp9L6JtguEDrJJGIMilQiKVKJ5KhQT/CU7HqOCefcTUREROQ/7gnCS+ubPI+KltVNOmf4VG+0dvqYoTIJElTNF9TcUwe0fB2nkveJeQWp9/FPARERUQsGsw0FNc7gKb/a4Amh8msMqGowd7ivVCKCVqNEcotqp5bhU2y4HGJe6SMiIiI/sdodqNCbUFpvQml9E0pcj+YQytTpOStlIWLEq+SIj3CFS57QybkszvU6XM4pBKjzGEoREdGAY7TYUFDtrHYqqHEGT+73lRcInqLDZEiJDkVqTBhSosKQHOWqdopSIi5CwfJyIiIi8gtBEKBvsjWHTDp34GRqUfXUuTkrI0Ol0GqUnrvvxreocnIHT2olb45CPY+hFBER9UtNFrsncMqvMaCw2lntVFB94eApyhU8pUWHITXG9YgORUp0GNRKqZ/OgIiIiAY6k9XZn8mvcvZnztc1oaSuudLJYLnwhOEyiRiJGgW0aiW0GiWSNApoNcoWDwWH0lHA8E8eERH1aXUGC/IqG3HG9cirbMDZykaU6kwd7hcZKnWFTa5HTKjrmcETERER+Y/F5kBxndF5Ia3Fo6DacMH+DOC8mKZ1hU5JkUoktQqcYsI4fQAFL4ZSREQU9ARBQIXejLzKhhbhUyPOVjaixmBpdz9NqNQVOjmH26W1CKHUoQyeiIiIyD/sDgGl9U3OqqdWwVNxXVOHd+hVKUKQFhuO9JgwJLtumOIJndRKKGUSP54JUc9iKEVEREHD7hBQXGt0Bk9VjcircD6frWzscBLOJI0SQ+LCMTQuHENcj4zYcESGyfzYeiIiIhrIBEFAVYMZ51xhU8vwqbDWCIvN0e6+SqkEqTFhSI9xVm+nxYQjzXVBLTKUczlR/8VQioiI/M5ss6Og2ug15O5MZSPOVRva7bBJxCKkRIdiSGw4hsa7wqfYCGTEhXEeBCIiIvIbm92Bwtrmfoz7ca6qscM5nmQSMQZHO6cLSI91Vm67g6d4lZzBEw1I7MUTEVGvMtvsOF3egGPndfjxvA7HSnT4uaKh3TJ1eYgY6bHhbSqfUqPDIAsR+7n1RERENFCZrHacqzLgTJU7eHJeRCuoNsJi930RTSwCBkWGesKmNNcNU9JjwqDVKHmXXqJWGEpRp6WmpuKhhx7CQw89FOimEFGQstodOF3egB9LdDh2XofjJTqcKtfDam8bQEXIQ5AR1zZ8GhQZyg4bEfUb7D8RBb8GkxVnqwzIq2jwTBuQV9mI4loj2pvqSSmVICMuDEPjIjzTBgyJC8PgKF5EI+oKhlJERNQtNrsDZ6oavSqgfirT+xx+FxkqxahBGoxOUmPUIDVGJqmhVStYpk5ERER+U9No9pq38qzruVzf/h3uVIoQDI2P8EwfkOG6mKZVK3lHO6IewFCKiIguyO4QcM4dQJU4HydKdTBZ2wZQEYoQjB6kxqgkjetZjUGRSgZQRERE5BcOh4D8GgOOl+hwslSP46U6/FTWgNoO7tgbFyH3VG0PjQv3VHPHhnOuJ6LexFBqgHj99dexZs0anD9/HmJxcznpDTfcgOjoaDzxxBNYtmwZ9u3bB4PBgOHDh2Pt2rWYPn16AFtNRIHgcAgoqDF4huD9eF6H46U6GH1M3BkuD8HIJBVGD9JgVJIaowepMTgqlJ03IuoX2H8iCn5WuwN5FY04XuoKoFyV2+1NOD4oUuk1bcAQ1/A7tVLq55YTEcBQqmcIAmA1+v9zpaFAJ//jd+utt+KBBx7Azp07cfXVVwMAamtrsW3bNmzduhWNjY2YPXs2nn32Wcjlcrz11luYM2cOTp8+jcGDB/fmWRBRgDVZ7DhaXI9DhbU4WFCHw0V1aDDZ2mwXKpMgW6tqroAapEZadBhL14moewLVfwI63Ydi/4kouJisdvxUpsfxUj1OlupwvESP0+UNPicdV0jFGJ6oQrZWhZFaNbK1agyJC4dSJglAy4moPQyleoLVCDyn9f/n/qEUkIV1atPIyEjMmjUL7777rqdT9dFHHyEmJgZXXnklxGIxxowZ49n+mWeewSeffILPPvsMS5cu7ZXmE1FgVDea8d+COvy3oBb/LazD8RIdbK1m8ZSHiJGt9a6ASo8N5wTkRNRzAtV/Ajrdh2L/iShw9Carp/LJPQTvbJXB5917IxQhzeFTkvM5LSYMIRJOOE4U7BhKDSDz58/H4sWL8de//hVyuRz//Oc/cccdd0AsFqOxsRFr1qzBli1bUFZWBpvNhqamJhQVFQW62UR0EQRBwLlqgzOAKqjDfwvrkF9taLNdvEqOCalRmJgSiQmpUchKiGBHjogI7D8R+UNNoxnHS/U4UarDiRJnAFVY47uSMiZchmytGiOTVM5nrRrJUZy7kqivYijVE6ShzitugfjcLpgzZw4EQcCWLVswceJEfPfdd/jzn/8MAHj00Ufx1Vdf4cUXX8SQIUOgVCpxyy23wGJpfzJAIgo+Zpsdx0v0niqoQ4V1bSb1FImAYXERmJAaiYmpURifEsmJyInI/wLVf3J/diex/0TU88p1JuzPr8G+c7U4kF+Ds1VtL5gBQJJG6ayASlJ7nuMiOPE4UX/CUKoniESdHkYXSAqFAr/61a/wz3/+E2fOnEFmZiYuueQSAMD333+Pu+++GzfddBMAoLGxEQUFBQFsLRF1hs5oxaEiVxVUQR1+OF8Ps817XgV5iBhjkjWYmBqJCSlRuGRwJNShnMyTiAKM/SeiAeN8nRH7z9Vif34N9ufX+qyCSo8JQ7Y7fNI6nyPDZAFoLRH5E0OpAWb+/Pn45S9/iRMnTuDOO+/0LB86dCg2b96MOXPmQCQS4cknn4TD0XbCQCIKrDJdE/adq8FB15xQP1c0ttkmKkyGCSmRmJDqHIo3UquGLIRD8YiIuov9J6LOEwQBRbXOEGpffg32n6tFSX2T1zZiETBCq0JOWjRy0qIwKS0KmlAGUEQDEUOpAeaqq65CVFQUTp8+jXnz5nmWr1u3Dvfccw+mTJmCmJgYPP7449Dr9QFsKREBzo7d6YoGfHmiAl+eLMfxkrZ/L9NjwjA+xTUULzUS6TFhLGsnIupB7D8RtU8QBJytMjiroM7V4kB+Lcr1Jq9tJGIRRiWpkZMehV+kRWN8aiRUClZtExFDqQFHLBajtLTt/A2pqan4+uuvvZYtWbLE6z3L0Yn8w2Z34L+FdfjqpDOIKq5tvrooEgGjB2kwyVUFNT4lEjHh8gC2loio/2P/iaiZwyEgr7LRE0Ltz69FdaPZaxupRIQxgzTISY9CTlo0xqdEIkzO/3oSUVv8zUBEFASaLHZ8m1eFr05WIPenCtQZrZ518hAxpg2NwbUjEnDV8DiGUEREROQ3doeAn8r02J/vnJT8QH6tVz8FcPZVxg3WOIfjpUdhXHIklDJJgFpMRH0JQykiogCpaTQj91QlvjpZge/yqmCyNs9DogmV4qqsOFw7IgGXDYtBqIy/romIiMg/6gwWfJtXha9PVeKbn6tQ3yqEUkolGJ8SiZy0KOSkR2NMshryEIZQRNR1/F8OEZEfFdYYnMPyTlTgv4W1cAjN6wZFKnHNiHhcOyIBE1MjESLh5ORERETU+wRBwMkyPXaddgZRR4rqvPoo4fIQTEiN9FRCjUpSQ8p+ChH1AIZSRES9SBAEHC/R48uT5fjyRAVOVzR4rc/WqjxB1PDECE5QTkRERH5hMNvw/Zlq7DxdiZ2nqtpMTp6VEIErs+JwVVYcxiVreLGMiHoFQykioh5mtTuw/1wtvjxZjq9OVqBM19zJk4hFyEmLwrUj4jF9RDwGRYYGsKVEREQ0kORXG7DzVCV2nq7E/nO1sNibpw5QSiWYOiQaV2bF4crMOGg1ygC2lIgGCoZS3SQIwoU3og7xZ0j9ic3uwK7TVfjPsVJ8faoSDSabZ12oTILLh8Xi2ux4XJkZB02oLIAtJSIKLP77f3H486OuMNvsOJBfi52nqrDzdCXyqw1e6wdHheKqrDhcmRWHnLQoKKScF4qI/IuhVBdJpVIAgNFohFLJqwcXw2g0Amj+mRL1RUU1Rrz/3yJ8+N/zqGxovh1yTLgM04fH45oR8Zg6JIadPCIa8CQS5+9Bi8XCPtRFYP+JLqRcZ8Ku05X4+lQlvj9TDYPF7lkXIhZhUloUrsqKwxWZcciIDePUAUQUUEERSr366qt44YUXUF5ejjFjxuDll1/GpEmTfG5rtVqxdu1avPnmmygpKUFmZiaef/55zJw507PNmjVr8NRTT3ntl5mZiVOnTl10WyUSCTQaDSorKwEAoaGh/EXeRYIgwGg0orKyEhqNxtNJJeorzDY7vjxRgfcPFmP3mWrP8qgwGW4al4TZoxIwNjkSEjF/NxARuYWEhCA0NBRVVVWQSqUQizk/TVew/0TtsTsEHC2ux85TziDqZJnea31shBxXZsbiqqw4TB0SgwgFA00iCh4BD6Xef/99LFu2DBs2bEBOTg7Wr1+PGTNm4PTp04iLi2uz/cqVK/HOO+/g73//O7KysrB9+3bcdNNN2LNnD8aNG+fZLjs7Gzt27PC8DwnpuVNNSEgAAE8wRd2j0Wg8P0uivuBMZQPeO1CMzUdKUGuweJZPGxqDOyYOxjUj4iEL4X+yiIh8EYlESExMRH5+PgoLCwPdnD6L/ScCAIvNge/PVmPLsTLk/lSBOqPVs04kAsYM0jiH5WXGIVurgpgXyogoSImEAA9Mz8nJwcSJE/HKK68AABwOB5KTk/HAAw9g+fLlbbbXarV44oknsGTJEs+ym2++GUqlEu+88w4AZ6XUp59+iqNHj3arTXq9Hmq1GjqdDiqVqt3t7HY7rFZru+upfVKplFf4qE9ostix5ccyvHegCP8trPMsj1fJcduEZNw2IRnJUZysnKg/62y/gDr3s3I4HLBYLD7XUcfYfxrYbHYH9pytwZZjZdh2ohy6pub/h6gUIbhsWCyuzIzD5ZmxiAmXB7ClRESd7z8FtFLKYrHg0KFDWLFihWeZWCzG9OnTsXfvXp/7mM1mKBQKr2VKpRK7d+/2WpaXlwetVguFQoHJkydj7dq1GDx4cLvHNJub54LR6/U+t2tNIpGwY0DUTx0v0eG9g0X495FSNJidk5ZLxCJcmRmHuZOScfmwWN4amYioG8RicZu+HBH5ZncI2H+uBv85VobtJ8q9KrVjwuWYPSoBs0clYkJKJPslRNQnBTSUqq6uht1uR3x8vNfy+Pj4dud/mjFjBtatW4fLLrsMGRkZyM3NxebNm2G3N0/gl5OTgzfeeAOZmZkoKyvDU089hWnTpuH48eOIiIhoc8y1a9e2mYOKiAYevcmKz46W4r2DRThe0hxOJ0cpccfEwbhl/CDEq/gfKSIiIuo9doeAgwW12HKsDF8cL0N1Y3MQFRUmw6yRCbhudCJy0qI5fyUR9XkBn1Oqq1566SUsXrwYWVlZEIlEyMjIwKJFi7Bx40bPNrNmzfK8Hj16NHJycpCSkoIPPvgA9957b5tjrlixAsuWLfO81+v1SE5O7t0TIaKgIAgCDhfV4V8HirHlWBmarM6AWyYR49rseMydNBiT06M5FwMRERH1GofD2R/5/FgZtv5Y5nVHX02oFDOzE/DL0Vr8Ij2KFVFE1K8ENJSKiYmBRCJBRUWF1/KKiop2J3CMjY3Fp59+CpPJhJqaGmi1Wixfvhzp6entfo5Go8GwYcNw5swZn+vlcjnkco67JhpIag0WbD58Hu8fLEZeZaNn+ZC4cNwxMRm/umQQosJkAWwhERER9WeCIOBIcT22uIKoMp3Js06lCMGMbGdF1NQhMZAyiCKifiqgoZRMJsP48eORm5uLG2+8EYBz8svc3FwsXbq0w30VCgWSkpJgtVrx8ccf47bbbmt328bGRpw9exZ33XVXTzafiPoYh0PA3nM1+NeBInx5ogIWuwMAoJCK8cvRWsydlIxLBkdCJGJVFBEREfU8QRDwY4kOnx8rw5ZjZSipb/KsC5eH4NoR8fjlmERcOiSWd/QlogEh4MP3li1bhoULF2LChAmYNGkS1q9fD4PBgEWLFgEAFixYgKSkJKxduxYAsH//fpSUlGDs2LEoKSnBmjVr4HA48Nhjj3mO+eijj2LOnDlISUlBaWkpVq9eDYlEgrlz5wbkHIkosMw2Oz44WIy/f5ePolqjZ/nIJBXumDgY14/VQqWQBrCFRERE1F8JgoATpXps+dEZRLXsi4TJJJg+Ih7XjUrEZcNioZDyJkpENLAEPJS6/fbbUVVVhVWrVqG8vBxjx47Ftm3bPJOfFxUVQSxuvkpgMpmwcuVKnDt3DuHh4Zg9ezbefvttaDQazzbnz5/H3LlzUVNTg9jYWFx66aXYt28fYmNj/X16RBRAZpsdH/73PP668wxKXSXxEfIQ3DBOizsmDsbIJHWAW0hERET9kTuI2na8HFt+LEN+tcGzTimV4KrhcZgzOhFXZMYxiCKiAU0kCIIQ6EYEG71eD7VaDZ1OB5VKFejmEFEXWWwOfHioGK9+3RxGxavk+O0VQ3DrhEEIlQU8jyeiPoT9gs7jz4oGMpPVjr1na7Djpwrk/lSJcn3zHFHyEDGuyorDdaMTcVVWHPsiRNTvdbZPwN+GRNRvWO0OfHToPF75+oxnjoa4CDl+e0UG7pg0mFciiYiIqEdVN5rx9alK7DhZge/yqj138QWAUJkE04bGYPaoRFw9PB7hcv7Xi4ioNf5mJKI+z2p3YPPh83j56zM4X+cMo2JdYdRchlFERETUQwRBQF5lI746WYHcnypwpLgeLcedJKgUmD4iDlcPj8fk9Gj2QYiILoChFBH1WVa7A58cLsHLO/NQXOsMo2LC5bj/igzMz2EYRURERBfPanfgQH4tdvxUgR0/VXj6HG6jktS4engcpg+PR7ZWxbv4EhF1AUMpIupzbHYHPjlSgpe/PuO5g01MuAy/uTwD83NSoJQxjCIiIqLu0xmt2PVzJb46WYFvfq5Cg8nmWScLEWNqRjSmj4jH1VnxSFArAthSIqK+jaEUEfUZNrsDnx4txctf56GwxhlGRYc5w6g7f8EwiogGlldffRUvvPACysvLMWbMGLz88suYNGmSz22tVivWrl2LN998EyUlJcjMzMTzzz+PmTNnerZZs2YNnnrqKa/9MjMzcerUqV49D6JgUVBt8FRDHSyog93RPC4vJlyGq7Kcw/KmDY3hROVERD2Ev02JKOjZ7A589kMpXv76jOeWylFhMvzPZem4a3IKO4ZENOC8//77WLZsGTZs2ICcnBysX78eM2bMwOnTpxEXF9dm+5UrV+Kdd97B3//+d2RlZWH79u246aabsGfPHowbN86zXXZ2Nnbs2OF5HxLC36/Uf9kdAo4U1eGrnyqw42QFzlYZvNZnxkc4h+WNiMfYQRqIxRyWR0TU00SC0HJqPgJ4O2OiYGF3CPjPD6X4S24ezrnCqMhQKf7n8gzc9YsUhPEuNkTkB8HYL8jJycHEiRPxyiuvAAAcDgeSk5PxwAMPYPny5W2212q1eOKJJ7BkyRLPsptvvhlKpRLvvPMOAGel1KeffoqjR492u13B+LMicjOYbfjhfD2OFNXjcGEdDhXVod5o9awPEYuQkx6F6cPjMX14PJKjQgPYWiKivq2zfQL+j46Igo7dIeDzY6V4KTcP51xXLTWhUtx3WToWTk5lGEVEA5rFYsGhQ4ewYsUKzzKxWIzp06dj7969Pvcxm81QKLznvVEqldi9e7fXsry8PGi1WigUCkyePBlr167F4MGDe/4kiHqZIAjIrzbgcFE9jhTV4XBRPU6X6+FodTlerZTiysxYXD08HpdnxkKlkAamwUREAxT/Z0dEQcPuELDlxzL8JTcPZyobATjDqMXT0rFwSirCGUYREaG6uhp2ux3x8fFey+Pj49ud/2nGjBlYt24dLrvsMmRkZCA3NxebN2+G3W73bJOTk4M33ngDmZmZKCsrw1NPPYVp06bh+PHjiIiI8Hlcs9kMs9nsea/X63vgDIm6rtFsww/FzgqoI8XOIKquRRWUW5JGiXGDNRg3OBKXDNZgVJIaIRJxAFpMREQAQykiCgKCIGDrj+VYv+Nn5LnCKLVSisXT0rBwSioieNWSiOiivPTSS1i8eDGysrIgEomQkZGBRYsWYePGjZ5tZs2a5Xk9evRo5OTkICUlBR988AHuvfden8ddu3Ztm8nRiXqbIAg4V23A4cI6TyXU6YoGtJ6URBYixugkNS5JicS4ZA0uSYlEvIp3yiMiCiYMpYgooI6dr8eaz07gcFE9AEClCMGvp6Xj7qmpLKEn6mkOO2C3AnYL4LA5XzusgOBwPQTnM9DqvdDBe+EC613Hdticn2u3Nn+uV1tc69p77bWP+7UFsNuaXy/4N6BQB+7n6ycxMTGQSCSoqKjwWl5RUYGEhASf+8TGxuLTTz+FyWRCTU0NtFotli9fjvT09HY/R6PRYNiwYThz5ky726xYsQLLli3zvNfr9UhOTu7iGRF1rMFkxdFi11xQRXU4UlQPXZPvKqhLUpwVUJcMjsTwRBVkIayCIiIKZgyliCggqhrMeGH7KXx46DwEAQiVSbB4WjrunZbGMIr6F0EAbGbAagSsTa7nlq+bml9bfKyzm53Bi93iCl/ae91ecNMi/EE/v7eJzXzhbfoBmUyG8ePHIzc3FzfeeCMA50Tnubm5WLp0aYf7KhQKJCUlwWq14uOPP8Ztt93W7raNjY04e/Ys7rrrrna3kcvlkMvl3ToPIl/MNjvyKhpxolSHo8X1OFxYj58r21ZByUPEGDNI4zUUL45VUEREfQ5DKSLyK4vNgTf3FOAvuXloMNsAADeNS8LjM7OQoGZnktAc4tjNzmeb2Rmo2EytXltabdNqe7ulbRUPhFbP8LG8vW19PNutbYMla1PbcClowyARIJECIgkgEgEisXOZyPWAa5nXutbvO7mtRAqIpYBEBkhCvF9LZK730hbbuR8XWufaXyIF5APnbm/Lli3DwoULMWHCBEyaNAnr16+HwWDAokWLAAALFixAUlIS1q5dCwDYv38/SkpKMHbsWJSUlGDNmjVwOBx47LHHPMd89NFHMWfOHKSkpKC0tBSrV6+GRCLB3LlzA3KO1P81mm34qUyPEyU6nCjV40SpHnmVDbDa2/7OTI5S4pLBzcPwhieqIOVcUEREfR5DKSLym52nK/HM5yc9d9QblaTGmuuzMT4lMsAtox5jswDGGh+PWu/3TXXth0x2S6DPovdIZIBUCUhDfTy3XuZ6hMjbCXN8hDRtXvvYp2WII5YE+idC3XT77bejqqoKq1atQnl5OcaOHYtt27Z5Jj8vKiqCWNz8H3aTyYSVK1fi3LlzCA8Px+zZs/H2229Do9F4tjl//jzmzp2LmpoaxMbG4tJLL8W+ffsQGxvr79Ojfqim0ewJnk6U6nCyVI/8GkObCijAOa/kyCQVRiVpcMlgDcYO1iAugheuiIj6I5Eg+PqnYGDT6/VQq9XQ6XRQqQbOVVei3pJfbcAfPz+J3FOVAICYcBkem5GFW8YPglgsCnDrqF12G2Cq71zI5F5m7oU7b0nkQIgCCJG5XrseElk7y+WuZTI0V/K0qOoBWlT2+Hj22tbXM5rfi6WALLRFqOQrWGqxTMJrQX0R+wWdx58VCYKAUp0Jx13VTydLnc9lOpPP7RNUCoxMUmGEVo1srQrZWhWSNEqIROwftMtua76wYzM1D88WOqrwvUAV8AUrhB3OeQkFByDYAYej+bVnnd25vdd2LV5faJ3n31aJq9LW/XC/FzUv87mNyHtZm23Err6CwrsP4fVezgs2RD2ks30C9o6JqNc0mm14+es8bNydD6tdQIhYhEVTU/HA1UM5b1RrDoczAGqqaw58mmqbwx7P6zrA1tT+UDQIrpFi7a3raL8Wy8x6oKke3Rp2JpIAoVFAaLTr0fK166GMdAY1PkOmFq8l0uYgiYiIgordISC/2oATpTpPBdSJUj3qjW0nIQeAtJgwjNCqMLJFABUd3s/mJHM4nP+WGyqBxkrnv99WkytEMjWHSdam5lDJZnb+297yvdd6k3cI5bAF+iz7N3GId//Ec8FLfuFQS9KN/m1X+zme9rX8bHnHy3xevJOzn0VBgaEUEfU4h0PA5iMleH7bKVQ1OCcevnxYLJ785QgMiQsPcOv8wG5zdkh9hkq1Ld63CJ+a6prvehZslJGtQiUfIVPLdXI1IOY8H0RE/YHJakeZzoTS+iaU1Deh1PU4U9mIn8oa0GS1t9knRCzC0PgIZGtVGKlVITtJjeGJKoTL++h/PexWwFDtDJoMVUBjVXPo5F7uXmaodlb++It72HabKl+0ei/uoAJY3MF+rmdP1ZHE+W98ywomsaTF69bLfezTcrlnH1e/wWFvcedWdyWV+y6u7vcdrb/Avq3noHQHfS0vwjlszofV4K9vMYBEPsIrWYvqtHbmkWx3nsmW+3RivkmvP3vitp/pfrSsZve5rtXntq6y8/wZFTW/7syfz5bVdl5/zt3PId4PSUjbZV4PSfNUCuKQFuc/sPXRfxmIKFgdLa7Hms9O4GhxPQAgNToUT/5yBK7Kius/pfiC4Ox01p4Fas4ANWddr88CumLApOv+sWURQKgrBFJGNQdAntdRzmFg7Q4rg+91QPudUV/rFCrn5yo0HHJGRNRPCYKAGoMFJXVNLUInZwBVqnMuq27seJ4/pVSC4YkRyHZVP41MUmNofDjkIUE8BEoQnDehMFS3CJUqm0OlRnf45Hpuqu36Zyg0QHic899SaWhzJbB7rkD3+5BW7ztaL1W4liual3Go2cUTBGcI5Z7f0mZqG1zZW4VYLefDbPne7rtKsAcb6wzYfN4QpmVb3TeDaXljGFcbvUJTobkSb2DcwDb4iKXth1bu8AtAcz/d9Rrw0Zf3sV2bfXzsP+5OYNLiXjm9zuD/NIioR1TqTXh+22l8fPg8ACBMJsEDVw/Foqmpwd0x7UhTHVBzznf41Jm5kxSa5uohZVSL15HtLI9yXp0iIiLqASar3VXZ1KrSSedcVlLfBIvtwlW6oTIJtBoltBolkjRKJGkUSI4KRbZWjbSYMEgCPT+k1eR7nkNPlbKPORFtvue4apdIDITGOIOmsBggLM71Orb52f06NIb/nvclIlHzTUL62WhSn7xCrZahWougy1Nl5qo888xLhlbvW68XmvcFOt4GQqvPablv63Utl3e0zsdyz3xnLSrmfM5t5mvblnOh2X3Mq2Z3Bpp2q3Odu8rO0eK93ep83+73cYH1/pBxVUA/nqEUEV0Ui82BTd/n4y+5eTBYnFdebr5kEB6fmYk4VR+4U465Eag95wydas86Qyj3a2NNBzuKAHUyEJ0ORA8BojKA6AxAk+LsrLLCiIiI/MThEHCuuhGHC+txuKgOJ0r1KK1vQo3hwnczFYmA+AgFtBqFJ3TSeh4KJGmUUCulvVvt7HA0V2tYjc6QyWp0Vh5f6AYbxpruD7OSyJzhUpg7bIoDwl3hkue1K3AKjWJVEvUPYonzJi0IDXRLBhaHo0VgZWsVWtl8P+w2+J4D1vUa6MQ6H9t5nlyvI1N7+my7hP9jIqJu+/pUBZ75/CfkVzs7g2OSNVgzZwTGDY4McMtasRiBugJn+OSpenKFT43lHe8bnuAMnaLTXcHTEGf4FJnmLKMnIiLyswaTFT8U63C4qA6Hi+pwpKgeuibfV9pDZRKvoCmpVfgUr1JAFtKJeQDdE3i7AyGTzjk5t7XFw/PeFSq1DplsJt/bd7VqyReRpJPzH7ZYLgvjfC5E5B9iMSCWAWAVZWsMpYioy85WNeKZz09i1+kqAEBMuBzLZ2XhV+OSIA5UCb+5AajNdwVP7ofrfUNpx/uGRjdXOkVnNIdPUemAfABMzE5EREFLEAQU1BhxqNAZQB0urMPPFQ1wtLo5qkIqxuhBGlwyOBJjk9UYHBWGJI0SKmVI2yonQQAsjYCxEqioAQytK5B8PPx1Qw6x1DWvkgJQqDsfMinUDJiIiPoghlJE1Gl6kxUv5+Zh0/cFsDkESCUi3DM1DUuvGoIIRTdugdtVTXUtwqZWAZShsuN95WogKq250slT9ZTunOOJiIgoCBgttuYqqMI6HCmuR61rGJ4IDshgQzgsSFNLME6rxNgEGbLjFUhTixHiMAG2fMBiAM7XAaerfQx3cy2zX3hon09ytTMIUqidlUYhCmeI5H6EKC/wXuGc+FuqaJ4A3P0+RMmh70REAwx/6xPRBTkcAj46dB7/u/2U5y48V2XFYeV1w5Ee24OVRILg7Ch7VTu1eDTVdbx/aIwzeIpKb/tQRvIKKhER+Z9JB+hLAV0JoC8BGsqdVUo2MwRrE4xGA+r1DWg0NMJkbITNYkIELLgWVlwPC+QiKxRyCxQiK2RoMUTPDCDf9eiuEIXz386WVUhhMT4qk1zLlJGcwJuIiHoUQyki6tCB/Fr8cctJHDuvAwCkx4ThyTkjcGVm3MUdWBCcQdP5g85HyWHnHE8XuqtdeEKLsCnN+7VCfXFtIiIi6ixBcP6bpStxhk76867nkhbLSgFLQ7uHEAEIcz08OjG9k3NnsbOyKETuqkCSt3gf2na4W1hM22WysAt/DhERUS9iKEVEPhVUG/CnL05h2wnnRODh8hD87uqhWDgltXMTorbWVA+UHALO/9cVQv23nconEaAe5AyZIltXPaWxA01ERL1PEJornPSuCqeW1U7u95bGTh3OHKJCpSga+RY1SuyRaIQSJshgFqSwimWIUquQGB2JQXGRSI2PRpRa1Spkah06KQFxCCuAiYioz2MoRURedEYr/vJ1Ht7aWwCrXYBYBNwxaTAenj4MsRHyzh3EbgMqTzqDJ3cIVf1z2+0kckA7Fhg0EUgaD8RnA5oU3tWOiIh6jyAApvpWIVNpq2qnzgdOUGicF1NUWkCVBKMyHqeNKhysVSK3JAQ/NoTBiOZ/16LCZJiYGonxKZGYPDgSI5PUUEglvXKqREREwY6hFBEBACw2B97ZV4i/fJ2HeqNzzorLh8XiD7OHIzMhouOdG8pdw/BcIVTpYeetn1uLSgeSJjhDqEETgPiRnJuCiIh6jiA4q3A9QVPLoXQtnn39G+WLMhJQuQMnLaBOAlRJrveDAFUizGIFDhXU4bsz1fgurwonSvUQWtwZTxYixtTUSEwbGotLh8RgRKIqcHeqJSIiCjIMpYgGOEEQ8OXJCvzpi1PIrzYAADLjI/CH64bj8mGxbXewmoCyH5qH4J3/L6ArbrudXOWsfho0obkSKiyml8+GiIj6LUFw3j1OX9LOkDpXhZOtqXPHC432VDe1fXa9loX6aIaAnysa8d1PVfgu7wT259fAZHV4bZOVEIFpQ2Nw6dBYTEqNglLGSigiIiJfGEoRDWDHS3R45vOT2J9fCwCICZfhkWszcev4QQiRuOaNshiAvK+Awu+dAVT5j4DD6n0gkRiIG+EMoNyVUDHDAHE35p4iIiJqzeEA1g4CrIbObR8a46psalHl1DJsUmmd8zJ1UmWDCd+fqcZ3edXYnVeNygaz1/rYCDmmDYnBtGExmDokBnERHIZORETUGQyliAagMl0TXth+Gp8cKYEgAPIQMX49LQ33XzEE4fIQwNwInNwGnPwUyNvR9qpzWFzzELxBEwDtOEB+gSF+RERE3SUWA0qNM5QKi2sOmdQ+qpwiEi96bkKT1Y4D+bXYfaYa3/5chVPl3nfQU0jFmJQWjcuGxuDSoTHIjI+AiJOOExERdRlDKaIBxGC24W/fnMXr353zDDW4cawWv5+ZhSSlDTj9iTOIOrMDsJmad4xMBYbNBJInOSuhNIN5xx8iIvKvX+cCoVHOu8/1kvcOFOHzY2U4UFALi817SN7IJBUuHRKLaUNjMD4lkpOTExER9QCGUkQDgN0h4KNDxXjxy59R5RpyMDE1EquuScaoxj3AFy84gyh7i+EIUenAiBuB7BuBhNEMoYiIKLBUib16+DOVjVi++UfP+0S1ApcOicG0YbGYmhGN6PDeC8OIiIgGKoZSRP3c7rxq/HHLSc/Qg+woB9Zml2CU7i2I3v0asFuaN44e0hxExY9kEEVERANGUa1zvqrU6FD8Y+FEZMSGcUgeERFRL2MoRdRPnalswHNbT+HrU5VQwYA7FUdwX/SPSK7bB9HBFhOVxwxzBlEjbgDisxlEERHRgFRa7xy2PiQuAkPiwgPcGiIiooGBoRRRP1PTaMb6HXnYcuAkrhYdxBuyA5gmOQ6JYANqXBvFZjUHUXHDGUQREdGAV6Zz3tRDq+Gd84iIiPyFoRRRP2Gy2vGvb44i/7sPMN2xB6ukJyAV2Z0rBQCxw53D8kbcCMRlBbClREREwadM56yUSlQrA9wSIiKigYOhFFEfJzRW4tiOd2E69gnush9DiMgBuG8IFJftCqJuAGIzA9lMIiKioFZW7w6lWClFRETkLwyliPoahx04/1+YT21H4/EvEK0/iTHudSKgXpUJ1fhbIc6+EYgZGsCGEhER9R3u4XsMpYiIiPyHoRRRX9BQAZzNBfK+gu1MLkLMOsgBuG9OfUJIgy5tNi6ZeTc0CcMC2VIiIqI+RxAEz/A9rYbD94iIiPyFoRRRMLLbgPMHgTNfAXlfAeXHPKtCAOiEUHznGI2TYZOQPPF6zJ48Ftmh0sC1l4iIqA+rM1phtjkAAPEqVkoRERH5C0MpomDRUA6c2eEMoc7tBEw6r9XHHGnY5RiD3RgH7YipmPuLdPw+LQoi3jmPiIjoopTWO4fuxYTLIQsRB7g1REREAwdDKaJAsVuB4gPOaqgzO4DyH71WN4gi8LVtFHbZx+A7x2iERiViXs5g/HX8IMSEy9s5KBEREXVV89A9VkkRERH5E0MpIn/Sl7aohvoGMDdXQwkQoSxsOP5jGIFt5lH4QciASCzB9OFxWJeTgkuHxEAsZlUUERFRTyvnJOdEREQBwVCKqDeZG4HSI84g6swOoOK412ohNBql0VPw78bh+EdZOmpNKgDOTvFDkwbj9onJnNuCiIiol5W6KqUS1ZzknIiIyJ8YShH1BJsFqDkDVJ50Pipcz/WFrTYUAUnjoRt0Bf5jyMbLp8JQkWdzrhEBVw6LxfycFFyRGYsQCee0ICIi8oeyelZKERERBQJDKaKucDicQVPlT0DlCedzxUmgJg9w2HzvE54ApF8BR8bV2C2MwhtHG7Hz20oIAgDYEBMuxx0Tk3H7xGQkR4X682yIiIgILSqlNKyUIiIi8ieGUkS+CAJgqAIqTngHUJWnAKvB9z5yFRA3HIgb4XzEjwBih6PCHob3Dxbjva1FKNWd82w+dUg05uek4JoR8ZCyKoqIiChgyt0TnbNSioiIyK8YShGZ9EDVKe9hd5UnAWON7+0lMiA2szl8ihvhDKPUg5xj8ADUGSzYfqIcW3LPYM/ZGtgdAgAgMlSKW8YPwtxJg5EeG+6vMyQiIqJ2OByCJ5RKYChFRETkVwylqP8TBMBQ7Rx2V1cA1OW7nl3vdcXt7CgCotKdFU/u4Cku27lM0vavTq0riNr6Y5lXEAUAE1MjMT8nBTNHJkAhlfTGWRIREVE31BgssNgdEInAm4sQERH5GUMp6h+sTUB9kStsKmgOnNyP9obcuUUkNgdP8dnO55hMQNbxHE81jWZsO1GOL34sx95z3kHUiEQVrhudiFkjE1gVRUREFKTKdM5JzuMi5BxOT0RE5GdBEUq9+uqreOGFF1BeXo4xY8bg5ZdfxqRJk3xua7VasXbtWrz55psoKSlBZmYmnn/+ecycObPbx6Q+wOEAGst9B051Bc51HRIBqiQgMgWITG1+aFKAmKFAaFSnm1LdaMa2486KqH3natAih0K2VoXZoxIxe1Qi0mLCunaORERE5Hdl7knO1ZzknIiIyN8CHkq9//77WLZsGTZs2ICcnBysX78eM2bMwOnTpxEXF9dm+5UrV+Kdd97B3//+d2RlZWH79u246aabsGfPHowbN65bx6QgYbc5h9jVngNqzgK1Z70rn+zmjveXq7xDJ00KEJnmep0MhMi73bTKBhO2n6jA1mNl2J/vHUSNSlK7gqgEpEQziCIiIupLyuqdlVKJnE+KiIjI70SCIAgX3qz35OTkYOLEiXjllVcAAA6HA8nJyXjggQewfPnyNttrtVo88cQTWLJkiWfZzTffDKVSiXfeeadbx2xNr9dDrVZDp9NBpVL1xGmSm8PunMOp5qx3+FRz1hlIOWzt7yuSOMMlTatqJ/dDGemZaLwnVDaYsO14ObYcK8OBglq0/JsyepAriBqZiMHRHQ/xIyKivo39gs7riz+rtVt/wt++PYd7pqZh1ZwRgW4OERFRv9DZPkFAK6UsFgsOHTqEFStWeJaJxWJMnz4de/fu9bmP2WyGQuF9JUupVGL37t0XdUyzubkKR6/Xd/ucCM6hdg2lQM2ZtuFTXQFgt7S/b4jCOZF4VDoQneF8dodOqkE+JxjvSZV6E744Xo4tP5bhYKsgaow7iBqViOQoBlFERET9gXv4nlbDSikiIiJ/C2goVV1dDbvdjvj4eK/l8fHxOHXqlM99ZsyYgXXr1uGyyy5DRkYGcnNzsXnzZtjt9m4fc+3atXjqqad64IwGEEEAGsqbq5w8z+ecD5up/X0lMuewOnfoFJ0BRGU4nyO0gNi/k4xW6E344scybP2xHAcLvYOosckaXDcqEbNGJWBQJIMoIiKi/sY90XkCh+8RERH5XcDnlOqql156CYsXL0ZWVhZEIhEyMjKwaNEibNy4sdvHXLFiBZYtW+Z5r9frkZyc3BPN7V9MeuDcLiDvS+BMrrMaqj3iEGd1kztsahk+qQcBYom/Wu3FZnfgTFUjTpTocbxUh6PF9ThaXO8VRI0b7A6iEpGk4aSnRERE/VlpPSc6JyIiCpSAhlIxMTGQSCSoqKjwWl5RUYGEhASf+8TGxuLTTz+FyWRCTU0NtFotli9fjvT09G4fUy6XQy7v/iTY/ZYgABUngDNfAXk7gOJ93nM+iSSAZrB3pVNUBhCdDqgH9/pQuwsxWe04Xd6A46U6nCjV40SJDqfKG2C2Odpse8lgjWdonpZBFBER0YBgdwio0HP4HhERUaAENDWQyWQYP348cnNzceONNwJwTkqem5uLpUuXdrivQqFAUlISrFYrPv74Y9x2220XfUxCczWUO4hqXQ0VPQQYcg0wdDqQMhWQBkeA02Cy4mSpHidKnRVQJ0v1yKtshN3Rdh7/cHkIRiSqMEKrQrZWhalDYhhEERERDUA1jWbYHAIkYhHiIhhKERER+VvAh+8tW7YMCxcuxIQJEzBp0iSsX78eBoMBixYtAgAsWLAASUlJWLt2LQBg//79KCkpwdixY1FSUoI1a9bA4XDgscce6/QxqQVBACpPAnlfOR+tq6FClEDaNGDotcCQ6UBUWuDa6lLTaPaET+4KqIIao89to8JkyNaqkK1VY2SS8zklKhRicc/dpY+IiIj6plLXJOdxEXJI2DcgIiLyu4CHUrfffjuqqqqwatUqlJeXY+zYsdi2bZtnovKioiKIW0x8bTKZsHLlSpw7dw7h4eGYPXs23n77bWg0mk4fc8BrWQ11JhfQl3ivD5JqKEEQUKYz4XiJK3xyhVDuu+S0plUrkJ2k9gqhElQKiETsZBIREVFbZfXOSc4TOck5ERFRQIgEQWg7vmmA0+v1UKvV0Ol0UKlUgW7OxWtZDXVmB1C013c1lDuIikoPXFsB/FzRgM2HS/DZ0RLPFczW0mPCMEKrwsgWIVRUmMzPLSUiooGg3/ULelFf+1lt3J2Ppz8/ietGJ+LVeZcEujlERET9Rmf7BAGvlKJeYtID+d80B1Gtq6GiMoCh1zgfQTA3VGWDCZ8dLcXmwyU4Wab3LA8RizA0PgLZWhVGalXITlJjeKIK4XL+0SUiIqKLU6ZzVUqpWClFREQUCPyffX/R8k55Z3KDvhoKAIwWG748UYHNR0qwO68K7jnJpRIRrsyMw03jknBlVhwUUklgG0pERET9krsiO5E3PCEiIgoIhlJ9WVM9cG6nsxLqTC7QUOa93l0NNeQaIDXw1VCA89bLe8/WYPOR89h+vBwGi92z7pLBGtx0ySD8clQiIjkUj4iIiHqZe04pLeeUIiIiCgiGUn2JwwGU/+AMofJ2AOcPAkJzqOOshrrMGURlXAVEZwSura38VKbHp0dK8OnRElTozZ7lg6NCcdO4JNw0LgmpMWEBbCERERENNOWslCIiIgoohlLBzlDjrIbK+wo4mwsYqrzXx2S6qqGuBgZPAaTBc6WvQm/Cv4+WYPPhEpwqb/AsVyul+OXoRPzqkiRcMjiSd8cjIiIiv7M7BFQ0OC+U8e57REREgcFQKtg47EDpkeYJyksOAWhxg0RZOJB+hTOEGjId0AwOVEt9Mpht2H6iHJ8cKcH3Z6q95om6KisON40bhCuzYiEP4TxRREREFDiVDSbYHQJCxCLEhMsD3RwiIqIBiaFUMGisdM4JdWYHcPZroKnWe338SFcIdQ2QnAOEBNd8S3aHgO/PVOOTIyXYdrwcTdbmIYUTUiJx0yVJuG5UIjShwdVuIiIiGrjKXEP34lUKSMSs2iYiIgoEhlKBYLc554M646qGKvvBe71cDWRc4QyhhlwNqLQBaWZHBEHAyTI9Pjlcgs9+KEVlQ/M8UanRobhp3CDcNC4Jg6NDA9hKIiIiIt/K6l3zSXHoHhERUcAwlPK3w28B21cCZp338sSxzuF4Q6YDgyYCkuD8aposdnz2Qwne2luIE6V6z3JNqBRzRmtx0yVJGJes4TxRREREFNTKdM4773GScyIiosAJzuSjPwuLcwZSykgg4+rmO+WFxwW6ZR0qqDbg7X2F+PC/xdCbbAAAmUSMq4fH4aZxSbgiMw6yEHGAW0lERETUOaWuSiktK6WIiIgChqGUv6VdBvw6F9COA8TBPdm33SFg56lKvLWvEN/+3HzXv8FRobjzF4Nx6/hkRIZxnigiIiLqe8r1rkophlJEREQBw1DK32ShwKAJgW5Fh2oNFrx/sBj/3F+I83XODptIBFwxLBYLJqfi8mGxEHNCUCIiIurD3JVSCWoO3yMiIgoUhlLkcbS4Hm/tLcDnx8pgsTkAOOeKum1CMubnDEZKdFiAW0hERNS32Ww27Nq1C2fPnsW8efMQERGB0tJSqFQqhIeHB7p5A4p7TimthpVSREREgcJQaoAzWe347IdSvLOvEMfON0++PipJjbsmp+D6MVoopME9zJCIiKgvKCwsxMyZM1FUVASz2YxrrrkGEREReP7552E2m7Fhw4ZAN3HAsNodnjsHJ7JSioiIKGAYSg1QRTVGvLO/EB/8txj1RisA58TlvxydiLsmp2As76BHRETUo373u99hwoQJ+OGHHxAdHe1ZftNNN2Hx4sUBbNnAU9lghiAAUokI0Zwfk4iIKGAYSg0gDoeAb36uwlt7C7Dr5yoIgnN5kkaJO3+RgtsmDEJ0uDywjSQiIuqnvvvuO+zZswcymXcIkpqaipKSkgC1amAqq3cO3UtQKzhPJhERUQCJA90A6n31Rgte//YsrnhxFxa9cRA7TzsDqcuGxeIfCybg28euxP1XZDCQIiIi6kUOhwN2u73N8vPnzyMiIqLLx3v11VeRmpoKhUKBnJwcHDhwoN1trVYrnn76aWRkZEChUGDMmDHYtm3bRR2zLyvVOSc559A9IiKiwGKlVD/243kd3tpbgM9+KIXZNXG5ShGCWyck485fpCAthhOXExER+cu1116L9evX4/XXXwcAiEQiNDY2YvXq1Zg9e3aXjvX+++9j2bJl2LBhA3JycrB+/XrMmDEDp0+fRlxcXJvtV65ciXfeeQd///vfkZWVhe3bt+Omm27Cnj17MG7cuG4dsy8rd09yruYk50RERIEkEgT3IC5y0+v1UKvV0Ol0UKlUgW5Ol/1UpseKzT/iaHG9Z9mIRBUWTE7BDWOToJRx4nIiIqLO6ql+QXFxMWbOnAlBEJCXl4cJEyYgLy8PMTEx+Pbbb7sU/OTk5GDixIl45ZVXADirsJKTk/HAAw9g+fLlbbbXarV44oknsGTJEs+ym2++GUqlEu+88063julLX+lDrfnsBN7YU4DfXJ6B5bOyAt0cIiKifqezfQJWSvVDr397DkeL6yGViHDdKOfE5ZcMjuTE5URERAGUnJyMH374Ae+//z5++OEHNDY24t5778X8+fOhVHZ+GJnFYsGhQ4ewYsUKzzKxWIzp06dj7969Pvcxm81QKLyrgpRKJXbv3t3tY7qPazabPe/1en2nzyOQytyVUhpWShEREQUSQ6l+6FxVIwDgz7ePxS9HawPcGiIiIrJarcjKysLnn3+O+fPnY/78+d0+VnV1Nex2O+Lj472Wx8fH49SpUz73mTFjBtatW4fLLrsMGRkZyM3NxebNmz1zXHXnmACwdu1aPPXUU90+l0Ap45xSREREQYETnfczgiAgv9oAABgSFx7g1hAREREASKVSmEymgH3+Sy+9hKFDhyIrKwsymQxLly7FokWLIBZfXFdwxYoV0Ol0nkdxcXEPtbh3NYdSrJQiIiIKJIZS/Uyd0Qq9yQYASIniROZERETBYsmSJXj++edhs9ku6jgxMTGQSCSoqKjwWl5RUYGEhASf+8TGxuLTTz+FwWBAYWEhTp06hfDwcKSnp3f7mAAgl8uhUqm8HsHOYnOgutE55JChFBERUWB1afjesWPHOr3t6NGju9wYungFNc4qqUS1ghOaExERBZGDBw8iNzcXX375JUaNGoWwMO+LR5s3b+7UcWQyGcaPH4/c3FzceOONAJyTkufm5mLp0qUd7qtQKJCUlASr1YqPP/4Yt91220Ufs6+p0JsgCIA8RIyoMFmgm0NERDSgdSmUGjt2LEQiEdq7YZ97nUgk8sxRQP5V4Bq6lxrNKikiIqJgotFocPPNN/fIsZYtW4aFCxdiwoQJmDRpEtavXw+DwYBFixYBABYsWICkpCSsXbsWALB//36UlJRg7NixKCkpwZo1a+BwOPDYY491+pj9Rcuhe7wJDBERUWB1KZTKz8/vrXZQD/GEUjEMpYiIiILJpk2beuxYt99+O6qqqrBq1SqUl5dj7Nix2LZtm2ei8qKiIq/5okwmE1auXIlz584hPDwcs2fPxttvvw2NRtPpY/YX7jvvJXDoHhERUcB1KZRKSUnprXZQD8mvMQIA0mJCA9wSIiIi8qWqqgqnT58GAGRmZiI2NrZbx1m6dGm7Q+t27drl9f7yyy/HyZMnL+qY/UVpvbNSSss77xEREQVcl0Kpzz77rNPbXn/99V1uDF08d6VUCofvERERBRWDwYAHHngAb731FhwOBwBAIpFgwYIFePnllxEaygtK/uCulErUsFKKiIgo0LoUSrknvrwQzikVGIIgeEKpNA7fIyIiCirLli3DN998g//85z+YOnUqAGD37t148MEH8cgjj+C1114LcAsHBvecUgmslCIiIgq4LoVS7qt6FJxqDBY0mG0QiYDBUbzaSkREFEw+/vhjfPTRR7jiiis8y2bPng2lUonbbruNoZSfuCultJxTioiIKODEF96E+gp3lZRWrYRCKglwa4iIiKglo9Hoc9LwuLg4GI3GALRoYCqrd999j5VSREREgdalSqnWDAYDvvnmGxQVFcFisXite/DBBy+qYdR1Ba5JzlM5yTkREVHQmTx5MlavXo233noLCoWzSqepqQlPPfUUJk+eHODWDQwmqx01BmefVcs5pYiIiAKu26HUkSNHMHv2bBiNRhgMBkRFRaG6uhqhoaGIi4tjKBUA7kqpVE5yTkREFHReeuklzJgxA4MGDcKYMWMAAD/88AMUCgW2b98e4NYNDBV6Z5WUQiqGWikNcGuIiIio28P3Hn74YcyZMwd1dXVQKpXYt28fCgsLMX78eLz44os92UbqpPwaTnJOREQUrEaOHIm8vDysXbsWY8eOxdixY/GnP/0JeXl5yM7ODnTzBoRS19A9rVoJkUgU4NYQERFRtyuljh49ir/97W8Qi8WQSCQwm81IT0/H//7v/2LhwoX41a9+1ZPtpE5gpRQREVFwCw0NxeLFiwPdjAHLPcl5IofuERERBYVuV0pJpVKIxc7d4+LiUFRUBABQq9UoLi7umdZRpwmC0BxKsVKKiIgo6KxduxYbN25ss3zjxo14/vnnA9CigadMx0nOiYiIgkm3Q6lx48bh4MGDAIDLL78cq1atwj//+U889NBDGDlyZI81kDqnqtEMg8UOsQhIjmJHi4iIKNj87W9/Q1ZWVpvl2dnZ2LBhQwBaNPB4KqXUrJQiIiIKBt0OpZ577jkkJiYCAJ599llERkbi/vvvR1VVFf72t7/1WAOpcwqqnXfe02qUkIdIAtwaIiIiaq28vNzTd2opNjYWZWVlAWjRwFNWz0opIiKiYNLtOaUmTJjgeR0XF4dt27b1SIOoe9xD9zjJORERUXBKTk7G999/j7S0NK/l33//PbRabYBaNbCUuofvcU4pIiKioNDtUCo/Px82mw1Dhw71Wp6XlwepVIrU1NSLbRt1gfvOe5zknIiIKDgtXrwYDz30EKxWK6666ioAQG5uLh577DE88sgjAW7dwFDO4XtERERBpduh1N1334177rmnTSi1f/9+/OMf/8CuXbsutm3UBYU1nOSciIgomP3+979HTU0Nfvvb38JisQAAFAoFHn/8caxYsSLArev/mix21BmtADh8j4iIKFh0e06pI0eOYOrUqW2W/+IXv8DRo0cvpk3UDfmuOaXSYkID3BIiIiLyRSQS4fnnn0dVVRX27duHH374AbW1tVi1alWgmzYguCc5D5NJoFJ0+7osERER9aBuh1IikQgNDQ1tlut0Otjt9otqFHWNIAjNlVIcvkdERBTUwsPDMXHiRERERODs2bNwOByBbtKAUO6ZT0oJkUgU4NYQERERcBGh1GWXXYa1a9d6BVB2ux1r167FpZde2iONo86pbDDDaLFDIhZhUCQrpYiIiILJxo0bsW7dOq9l9913H9LT0zFq1CiMHDkSxcXFAWrdwOGZ5JzzSREREQWNbodSzz//PL7++mtkZmZi0aJFWLRoETIzM/Htt9/ihRde6Mk20gXku+68l6RRQhbS7a+UiIiIesHrr7+OyMhIz/tt27Zh06ZNeOutt3Dw4EFoNBo89dRTAWzhwFBWz0nOiYiIgk23E4wRI0bg2LFjuO2221BZWYmGhgYsWLAAp06dwsiRI3uyjXQBBdWc5JyIiChY5eXlYcKECZ73//73v3HDDTdg/vz5uOSSS/Dcc88hNzc3gC0cGJorpTjJORERUbC4qFketVotnnvuuZ5qC3VTvms+qbRoDt0jIiIKNk1NTVCpVJ73e/bswb333ut5n56ejvLy8kA0bUAp17FSioiIKNhc1Fiv7777DnfeeSemTJmCkpISAMDbb7+N3bt390jjqHNYKUVERBS8UlJScOjQIQBAdXU1Tpw44XUH4/LycqjV6kA1b8AoazHROREREQWHbodSH3/8MWbMmAGlUonDhw/DbDYDcN59j9VT/lVQbQTAUIqIiCgYLVy4EEuWLMEzzzyDW2+9FVlZWRg/frxn/Z49ezj1gR+UuuaU0rJSioiIKGh0O5T64x//iA0bNuDvf/87pFKpZ/nUqVNx+PDhHmkcXZjDIaCw1j18j6EUERFRsHnsscewePFibN68GQqFAh9++KHX+u+//x5z584NUOsGBoPZBr3JBoCVUkRERMGk23NKnT59Gpdddlmb5Wq1GvX19RfTJuqCigYTTFYHQsQiDIpkJ4uIiCjYiMViPP3003j66ad9rm8dUlHPcw/di5CHIFx+UVOqEhERUQ/qdqVUQkICzpw502b57t27kZ6e3qVjvfrqq0hNTYVCoUBOTg4OHDjQ4fbr169HZmYmlEolkpOT8fDDD8NkMnnWr1mzBiKRyOuRlZXVpTb1Ffmu+aSSo0IRIrmoKcKIiIiI+qUy9yTnGg7dIyIiCibdvlS0ePFi/O53v8PGjRshEolQWlqKvXv34pFHHsGqVas6fZz3338fy5Ytw4YNG5CTk4P169djxowZOH36NOLi4tps/+6772L58uXYuHEjpkyZgp9//hl33303RCIR1q1b59kuOzsbO3bsaD7RkP55VcwznxTvvEdERETkU1m9a5JzNavKiYiIgkm3k5rly5fD4XDg6quvhtFoxGWXXQa5XI7f//73+PWvf93p46xbtw6LFy/GokWLAAAbNmzAli1bsHHjRixfvrzN9nv27MHUqVMxb948AEBqairmzp2L/fv3e59YSAgSEhK6e3p9RkGNs1IqhfNJEREREfnkufMeJzknIiIKKt0e7yUSifDEE0+gtrYWx48fx759+1BVVQW1Wo20tLROHcNiseDQoUOYPn16c4PEYkyfPh179+71uc+UKVNw6NAhzxC/c+fOYevWrZg9e7bXdnl5edBqtUhPT8f8+fNRVFTUbjvMZjP0er3Xo69wD99L4533iIiIiHzyDN9jpRQREVFQ6XIoZTabsWLFCkyYMAFTp07F1q1bMWLECJw4cQKZmZl46aWX8PDDD3fqWNXV1bDb7YiPj/daHh8fj/Lycp/7zJs3D08//TQuvfRSSKVSZGRk4IorrsAf/vAHzzY5OTl44403sG3bNrz22mvIz8/HtGnT0NDQ4POYa9euhVqt9jySk5M7+dMIvAJXKJXKUIqIiIjIp1J3pRTnlCIiIgoqXQ6lVq1ahddeew2pqanIz8/Hrbfeivvuuw9//vOf8f/+3/9Dfn4+Hn/88d5oKwBg165deO655/DXv/4Vhw8fxubNm7FlyxY888wznm1mzZqFW2+9FaNHj8aMGTOwdetW1NfX44MPPvB5zBUrVkCn03kexcXFvdb+nuRwCCisdc4plcbhe0RERH1ScXEx7rnnnkA3o18rd1VKaVkpRUREFFS6PKfUhx9+iLfeegvXX389jh8/jtGjR8Nms+GHH36ASCTq0rFiYmIgkUhQUVHhtbyioqLd+aCefPJJ3HXXXZ55q0aNGgWDwYD77rsPTzzxBMTitjmbRqPBsGHDfN4tEADkcjnkcnmX2h4MSnVNsNgckEpE0PLKHxERUZ9UW1uLN998Exs3bgx0U/ot90TnCZxTioiIKKh0OZQ6f/48xo8fDwAYOXIk5HI5Hn744S4HUgAgk8kwfvx45Obm4sYbbwQAOBwO5ObmYunSpT73MRqNbYIniUQCABAEwec+jY2NOHv2LO66664utzGYFdY4q6SSo0IRIun29GBERETUiz777LMO1587d85PLRmYGkxWNJhtAMCLeEREREGmy6GU3W6HTCZrPkBICMLDw7vdgGXLlmHhwoWYMGECJk2ahPXr18NgMHjuxrdgwQIkJSVh7dq1AIA5c+Zg3bp1GDduHHJycnDmzBk8+eSTmDNnjiecevTRRzFnzhykpKSgtLQUq1evhkQiwdy5c7vdzmDkmeScjSM0BgAAJ6ZJREFUQ/eIiIiC1o033giRSNTuxTMA3bq4R53jvvOeWilFqKzbN54mIiKiXtDlf5kFQcDdd9/tGe5mMpnwm9/8BmFh3sHI5s2bO3W822+/HVVVVVi1ahXKy8sxduxYbNu2zTP5eVFRkVdl1MqVKyESibBy5UqUlJQgNjYWc+bMwbPPPuvZ5vz585g7dy5qamoQGxuLSy+9FPv27UNsbGxXTzeocZJzIiKi4JeYmIi//vWvuOGGG3yuP3r0qKcKnXqeO5RK5NA9IiKioNPlUGrhwoVe7++8886LbsTSpUvbHa63a9cur/chISFYvXo1Vq9e3e7x3nvvvYtuU19QUOMKpaJDA9wSIiIias/48eNx6NChdkOpC1VR0cUpq3dOcs5QioiIKPh0OZTatGlTb7SDuiGflVJERERB7/e//z0MBkO764cMGYKdO3f6sUUDS6m7UkrDO+8REREFGw6s76PsDgHFtc4rf6mcU4qIiChoTZs2rcP1YWFhuPzyy/3UmoHHXSmlZaUUERFR0OEt2/qo0vomWOwOyCRiaHnlj4iIKGidO3eOw/MCqFzvrJRKULO/REREFGwYSvVR7qF7g6NDIRHzjj1ERETBaujQoaiqqvK8v/3221FRURHAFg0spayUIiIiCloMpfqoQs8k5xy6R0REFMxaV0lt3bq1wzmmqOcIgtB89z1WlhMREQUdhlJ9VH61EQCQFsM77xERERH5ojfZYLTYAQAJKlZKERERBRuGUn1UQQ3vvEdERNQXiEQiiESiNsuo95XpnEP3IkOlUMokAW4NERERtca77/VRBa45pdI4fI+IiCioCYKAu+++G3K5HABgMpnwm9/8BmFh3v+Gb968ORDN69fK6l1D9zjJORERUVBiKNUH2ewOFNU6h++lsFKKiIgoqC1cuNDr/Z133hmglgw8pa5KKa2GQ/eIiIiCEUOpPqikvgk2hwB5iBiJnB+BiIgoqG3atCnQTRiwyl2TnCfwzntERERBiXNK9UH5rqF7KdGhEIs5JwURERGRL6UcvkdERBTUGEr1Qe75pFI5nxQRERFRu8o4fI+IiCioMZTqgwpqnPNJpXE+KSIiIqJ2eYbvqVgpRUREFIwYSvVBBTWuSimGUkREREQ+CYLAic6JiIiCHEOpPojD94iIiIg6Vm+0wmR1AOBE50RERMGKoVQfY7U7UFznvOrH4XtEREREvrmrpGLCZZCHSALcGiIiIvKFoVQfc76uCXaHAIVUjHiVPNDNISIiIgpKnvmkWCVFREQUtBhK9TEth+6JRKIAt4aIiIgoOJW6QqlENSc5JyIiClYMpfqYfM4nRURERHRBZfWuSc5ZKUVERBS0GEr1MbzzHhEREdGFNQ/fY6UUERFRsGIo1ce4K6XSYkID3BIiIiKi4OWe6FyrYaUUERFRsGIo1cd4KqU4fI+IiIioXWWcU4qIiCjoMZTqQyw2B0rqnFf90jh8j4iIiMgnQRBahFKslCIiIgpWDKX6kOI6IxwCECaTIDZCHujmEBEREQWlWoMFFpsDIhEQr2IoRUREFKwYSvUhBa75pFKiwyASiQLcGiIiIqLg5K6SigmXQxbC7i4REVGw4r/SfYh7kvNUTnJORERE1K7Setck5xy6R0REFNQYSvUhnOSciIiI6MI4yTkREVHfwFCqDymoNgIAUjnJORER0YD36quvIjU1FQqFAjk5OThw4ECH269fvx6ZmZlQKpVITk7Gww8/DJPJ5Fm/Zs0aiEQir0dWVlZvn0avcIdSCayUIiIiCmohgW4AdZ57+B7vvEdERDSwvf/++1i2bBk2bNiAnJwcrF+/HjNmzMDp06cRFxfXZvt3330Xy5cvx8aNGzFlyhT8/PPPuPvuuyESibBu3TrPdtnZ2dixY4fnfUhI3+wqlulcw/c0DKWIiIiCGSul+giT1Y5SVweLw/eIiIgGtnXr1mHx4sVYtGgRRowYgQ0bNiA0NBQbN270uf2ePXswdepUzJs3D6mpqbj22msxd+7cNtVVISEhSEhI8DxiYmL8cTo9rqyew/eIiIj6AoZSfcT5OiMEAQiXhyAmXBbo5hAREVGAWCwWHDp0CNOnT/csE4vFmD59Ovbu3etznylTpuDQoUOeEOrcuXPYunUrZs+e7bVdXl4etFot0tPTMX/+fBQVFfXeifSiMr3zQl4ih+8REREFtb5Zkz0A5XvmkwqFSCQKcGuIiIgoUKqrq2G32xEfH++1PD4+HqdOnfK5z7x581BdXY1LL70UgiDAZrPhN7/5Df7whz94tsnJycEbb7yBzMxMlJWV4amnnsK0adNw/PhxRERE+Dyu2WyG2Wz2vNfr9T1whhfH4RBQ7p7oXMNKKSIiomDGSqk+oqCad94jIiKi7tm1axeee+45/PWvf8Xhw4exefNmbNmyBc8884xnm1mzZuHWW2/F6NGjMWPGDGzduhX19fX44IMP2j3u2rVroVarPY/k5GR/nE6Hqg1mWO0CxCIgPkIe6OYQERFRB1gp1Ufk13CScyIiIgJiYmIgkUhQUVHhtbyiogIJCQk+93nyySdx11134de//jUAYNSoUTAYDLjvvvvwxBNPQCxue51So9Fg2LBhOHPmTLttWbFiBZYtW+Z5r9frAx5MueeTiotQIETC669ERETBjP9S9xHuSqkUVkoRERENaDKZDOPHj0dubq5nmcPhQG5uLiZPnuxzH6PR2CZ4kkgkAABBEHzu09jYiLNnzyIxMbHdtsjlcqhUKq9HoJW5hu4lcD4pIiKioMdKqT7CHUqlxYQGuCVEREQUaMuWLcPChQsxYcIETJo0CevXr4fBYMCiRYsAAAsWLEBSUhLWrl0LAJgzZw7WrVuHcePGIScnB2fOnMGTTz6JOXPmeMKpRx99FHPmzEFKSgpKS0uxevVqSCQSzJ07N2Dn2R1lrrsVazUMpYiIiIIdQ6k+wGS1o9R11Y9zShEREdHtt9+OqqoqrFq1CuXl5Rg7diy2bdvmmfy8qKjIqzJq5cqVEIlEWLlyJUpKShAbG4s5c+bg2Wef9Wxz/vx5zJ07FzU1NYiNjcWll16Kffv2ITY21u/ndzHclVKJak5yTkREFOwYSvUBhTXOO+9FKEIQFSYLcGuIiIgoGCxduhRLly71uW7Xrl1e70NCQrB69WqsXr263eO99//bu/vYqsv7/+Ovc3pz2iJthUJvoNLqJk6tleFoQJct2lDQVPhtUW6cIBOc/CCZdlsUBTpDtHPuS8gMilkKaoyKJqjJMDjsLJuKsl+L8WZIRFtQewOt397Q0pb2XL8/2nP0SHvOaWnP5/M5fT6Sk9DPuT5Xr4urp3nn3et6f158cTSHZ5lvk1LslAIAwO6oKeUANU3fFjl3uVwWjwYAAMC+6lv6j++xUwoAAPsjKeUAxweevMfRPQAAgOD8O6WoKQUAgO2RlHKAWl9SKo2kFAAAwFD6vEYNbf1JqSx2SgEAYHskpRyghifvAQAAhNR0ult9XqMYt0tTJnqsHg4AAAiBpJQD1Db1FzqfwfE9AACAIdUN1JNKn+hRjJs6nAAA2B1JKZs709Pn34aeS1IKAABgSN/Wk+LoHgAATkBSyuZ89aRSEuN04YR4i0cDAABgX76kVEYKRc4BAHACklI2V9tEkXMAAIBw1A8c38siKQUAgCOQlLK5moGdUrmTKXIOAAAQjP/4Hk/eAwDAEUhK2Rw7pQAAAMJT1zqwUyqVnVIAADgBSSmbq23uf/JeLkkpAACAoBr8NaXYKQUAgBOQlLI5/04pnrwHAAAwpN4+rxoHnlhMTSkAAJyBpJSNdXT36mR7tySSUgAAAMGcbO+W10ixbpfSLvBYPRwAABAGWySltm/frpycHCUkJKigoECHDh0K2n7btm2aOXOmEhMTlZ2drXvvvVddXV3n1acd1Q4UOb8wKU4pSXEWjwYAAMC+6gfqSaUnJ8jtdlk8GgAAEA7Lk1K7d+9WSUmJSktLVV1drfz8fBUVFenkyZODtn/++ed1//33q7S0VEeOHFF5ebl2796tBx54YMR92lVtU389KYqcAwAABOd78h5FzgEAcA7Lk1Jbt27VmjVrtGrVKl1++eXasWOHkpKStHPnzkHbv/vuu7r22mu1fPly5eTkaP78+Vq2bFnATqjh9mlXvp1SuRzdAwAACKq+pT8plUmRcwAAHMPSpFRPT4+qqqpUWFjov+Z2u1VYWKiDBw8Oes+8efNUVVXlT0J98cUXev3113XjjTeOuM/u7m61tbUFvOygxlfknJ1SAAAAQdUNHN/LZKcUAACOEWvlN29qalJfX5/S09MDrqenp+vTTz8d9J7ly5erqalJ1113nYwx6u3t1d133+0/vjeSPsvKyvTQQw+NwoxGVy1JKQAAgLA0DBzfy0wmKQUAgFNYfnxvuCorK/XII4/oiSeeUHV1tfbs2aO9e/dqy5YtI+5zw4YNam1t9b++/PLLURzxyNU299eU4vgeAABAcHW+pFQqx/cAAHAKS3dKpaWlKSYmRo2NjQHXGxsblZGRMeg9mzZt0u23367Vq1dLkvLy8tTR0aG77rpLDz744Ij69Hg88njs9ejg9q6zajrdLUnKSUuyeDQAAAD2Vt/Sf3wvi5pSAAA4hqU7peLj4zV79mxVVFT4r3m9XlVUVGju3LmD3tPZ2Sm3O3DYMTExkiRjzIj6tKPjA7uk0i6I18SEOItHAwAAYF89vV6dGvhjXkYKx/cAAHAKS3dKSVJJSYlWrlypa665RnPmzNG2bdvU0dGhVatWSZJWrFihadOmqaysTJJUXFysrVu3atasWSooKNCxY8e0adMmFRcX+5NTofp0Al+R8xkc3QMAAAjqZHuXjJHiY9yaPCHe6uEAAIAwWZ6UWrJkiU6dOqXNmzeroaFBV199tfbt2+cvVH7ixImAnVEbN26Uy+XSxo0b9fXXX2vKlCkqLi7Www8/HHafTuAvck5SCgAAIKj6gXpSGSkJcrtdFo8GAACEy2WMMVYPwm7a2tqUkpKi1tZWJScnWzKGkpc+0J7qr/X7+Zdq/fU/tGQMAADAHnGBU1j1f/XaB1/rty9+oILcSdr9G+eUawAAIFqFGxM47ul744V/p1QaO6UAAACCafA9eY96UgAAOApJKZuqHSh0zvE9AACA4HzH9zJTefIeAABOQlLKhlrPnNU3HT2S2CkFAAAQSl3LGUlSFjulAABwFJJSNnS8uf/o3pSJHl3gsbwWPQAAgK19W+icnVIAADgJSSkbqhmoJ5XL0T0AAICQ6qkpBQCAI5GUsqHapoF6UmlJFo8EAADA3rp7+9R0uluSlEVNKQAAHIWklA3VDhzfm8FOKQAAgKAaW/sTUp5Yty5MirN4NAAAYDhIStmQ//geRc4BAACCqm/tL3KemZIgl8tl8WgAAMBwkJSyId9OqRx2SgEAAAT1bT0pju4BAOA0JKVspqWzRy2dZyVRUwoAACCUOt9OqVSKnAMA4DQkpWzGd3QvPdmjpPhYi0cDAABgb/UtPHkPAACnIillMxzdAwAACB/H9wAAcC6SUjZT29QpiSLnAAAA4fAVOs/i+B4AAI5DUspm/DulSEoBAACExE4pAACci6SUzdQ2+Y7vUeQcAAAgmK6zffqmo0cSNaUAAHAiklI2YozxFzpnpxQAAEBwDQO7pBLjYpSSGGfxaAAAwHCRlLKR/+08q7auXknSjEkkpQAAAIKpG6gnlZmaIJfLZfFoAADAcJGUshHfLqnMlAQlxsdYPBoAAAB7q2/p3ymVRT0pAAAciaSUjXxbT4pdUgAAAKE0tPUnpTKoJwUAgCORlLIRnrwHAAAQvrqW/uN7WSSlAABwJJJSNlLb3ClJyk3jyXsAAACh1A8UOs9M5fgeAABORFLKRji+BwAAED7fTimO7wEA4EwkpWzCGONPSuVyfA8AACAkX00pCp0DAOBMJKVsormjR+3dvXK5pOxJHN8DAAAI5kxPn1o6z0qSMlPZKQUAgBORlLIJ3y6prJREJcTFWDwaAAAAe6tr7T+6d4EnVskJcRaPBgAAjARJKZuo8dWTosg5AABASA0DRc6pJwUAgHORlLKJ2maKnAMAAITLV+Q8k6QUAACORVLKJmqbOiVR5BwAACAc9a0UOQcAwOlIStmE//geO6UAAABCqh+oKcXxPQAAnIuklA0YY3Tcd3yPnVIAAAAh+XdK8eQ9AAAci6SUDZw63a2Onj65XVL2JLagAwAAhFLf0p+UyuT4HgAAjkVSygZ89aSyUhPliY2xeDQAAAD2VzdwfI+dUgAAOBdJKRuoHagnRZFzAACA0E5396q9q1eSlMFOKQAAHIuklA3UNFPkHAAAIFwNA7ukJibE6gJPrMWjAQAAI0VSygZ8O6Uocg4AABBa3UA9qSx2SQEA4GgkpWygxn98L8nikQAAANhf/cBOqYwU6kkBAOBkJKUsZozR8eb+Qucc3wMAAAitvnVgpxRFzgEAcDSSUhZrbOvWmbN9inG7lD2JnVIAAACh1A8c38vk+B4AAI5GUspitQNFzqdfmKi4GJYDAACEZ/v27crJyVFCQoIKCgp06NChoO23bdummTNnKjExUdnZ2br33nvV1dV1Xn1apW7g+F4mx/cAAHA0siAW8xc55+geAAAI0+7du1VSUqLS0lJVV1crPz9fRUVFOnny5KDtn3/+ed1///0qLS3VkSNHVF5ert27d+uBBx4YcZ9W8h3fY6cUAADORlLKYjXNvqQUR/cAAEB4tm7dqjVr1mjVqlW6/PLLtWPHDiUlJWnnzp2Dtn/33Xd17bXXavny5crJydH8+fO1bNmygJ1Qw+3TSg2+pBQ1pQAAcDSSUhbz75RKY6cUAAAIraenR1VVVSosLPRfc7vdKiws1MGDBwe9Z968eaqqqvInob744gu9/vrruvHGG0fcp1Xaus7qdHevJI7vAQDgdLFWD2C8q20aePIeSSkAABCGpqYm9fX1KT09PeB6enq6Pv3000HvWb58uZqamnTdddfJGKPe3l7dfffd/uN7I+lTkrq7u9Xd3e3/uq2tbaTTCpuvyHlKYpyS4gllAQBwMnZKWcjrNf5C57nUlAIAAGOksrJSjzzyiJ544glVV1drz5492rt3r7Zs2XJe/ZaVlSklJcX/ys7OHqURD62eIucAAEQN/rxkoYa2LnX3ehXrdmn6hRTqBAAAoaWlpSkmJkaNjY0B1xsbG5WRkTHoPZs2bdLtt9+u1atXS5Ly8vLU0dGhu+66Sw8++OCI+pSkDRs2qKSkxP91W1vbmCemfEXOs1KJnQAAcDp2SlnIV08qe1KSYmNYCgAAEFp8fLxmz56tiooK/zWv16uKigrNnTt30Hs6OzvldgfGGjExMZIkY8yI+pQkj8ej5OTkgNdYq29hpxQAANGCnVIWqm0eqCfFk/cAAMAwlJSUaOXKlbrmmms0Z84cbdu2TR0dHVq1apUkacWKFZo2bZrKysokScXFxdq6datmzZqlgoICHTt2TJs2bVJxcbE/ORWqT7uo8z15j6QUAACOR1LKQr56UhQ5BwAAw7FkyRKdOnVKmzdvVkNDg66++mrt27fPX6j8xIkTATujNm7cKJfLpY0bN+rrr7/WlClTVFxcrIcffjjsPu2iwZ+U4vgeAABO5zLGGKsHYTdtbW1KSUlRa2vrmG5DX/Ps/9P+/zbqoZuv0Mp5OWP2fQAAwMhFKi6IBpH4v7r+fyr1xakOPb+mQPMuSRuT7wEAAM5PuDEBhYws5KspxU4pAACA0Iwxqm9hpxQAANGCpJRFvF6j49/015TKnUxSCgAAIJS2M706c7ZPEjWlAACIBrZISm3fvl05OTlKSEhQQUGBDh06NGTbn//853K5XOe8brrpJn+bO+6445z3FyxYEImphK2u9Yx6er2Ki3EpK5WgCgAAIJS61v4n702aEK+EuBiLRwMAAM6X5YXOd+/erZKSEu3YsUMFBQXatm2bioqKdPToUU2dOvWc9nv27FFPT4//6+bmZuXn5+uWW24JaLdgwQLt2rXL/7XH4xm7SYxAbVP/LqnsSUmKjbFFbhAAAMDW6geSUuySAgAgOlieDdm6davWrFmjVatW6fLLL9eOHTuUlJSknTt3Dtp+0qRJysjI8L/279+vpKSkc5JSHo8noN2FF14YiemErWbgyXsc3QMAAAhPnb+eFEkpAACigaVJqZ6eHlVVVamwsNB/ze12q7CwUAcPHgyrj/Lyci1dulQTJgQmdyorKzV16lTNnDlTa9euVXNz85B9dHd3q62tLeA11ihyDgAAMDwNrRQ5BwAgmlialGpqalJfX5/S09MDrqenp6uhoSHk/YcOHdLHH3+s1atXB1xfsGCBnn32WVVUVOjRRx/VgQMHtHDhQvX19Q3aT1lZmVJSUvyv7OzskU8qTMebSUoBAAAMh6+mVCb1OAEAiAqW15Q6H+Xl5crLy9OcOXMCri9dutT/77y8PF111VW65JJLVFlZqRtuuOGcfjZs2KCSkhL/121tbWOemKpp4vgeAADAcNRzfA8AgKhi6U6ptLQ0xcTEqLGxMeB6Y2OjMjIygt7b0dGhF198UXfeeWfI73PxxRcrLS1Nx44dG/R9j8ej5OTkgNdY6vMafflN/1/6ZkxOGtPvBQAAEC0a2ji+BwBANLE0KRUfH6/Zs2eroqLCf83r9aqiokJz584Neu/LL7+s7u5u/epXvwr5fb766is1NzcrMzPzvMc8Gupazqinz6v4GLeyUgmqAAAAQjHGqK6l/496WSSlAACICpY/fa+kpER/+9vf9Mwzz+jIkSNau3atOjo6tGrVKknSihUrtGHDhnPuKy8v1+LFizV58uSA66dPn9Yf/vAHvffee6qtrVVFRYUWLVqkH/zgByoqKorInELxHd27aHKSYtwui0cDAABgf//beVbdvV5JUnqKx+LRAACA0WB5TaklS5bo1KlT2rx5sxoaGnT11Vdr3759/uLnJ06ckNsdmDs7evSo3n77bf3jH/84p7+YmBh9+OGHeuaZZ9TS0qKsrCzNnz9fW7ZskcdjjwCm1lfknHpSAAAAYfHtkkq7IF6e2BiLRwMAAEaD5UkpSVq/fr3Wr18/6HuVlZXnXJs5c6aMMYO2T0xM1BtvvDGawxt1/iLnadSTAgAACEdDK/WkAACINpYf3xuPageSUjlp7JQCAAAIR31r/04pnrwHAED0ICllgdrmTklSLsf3AAAAwlLn3ylFUgoAgGhBUirCevu8+vKb/qQUO6UAAADCUz9QUyqTJxcDABA1SEpF2NctZ9TrNfLEupWRzF/6AAAAwlHPTikAAKIOSakI8xU5nzE5SW63y+LRAAAAOIMvKZXFTikAAKIGSakI8xc5p54UAABAWLxe43/6HjvNAQCIHrFWD2C8+T+zpuvyrBR5YskHAgAAhGvP/52n+tYuZXB8DwCAqEFSKsJSkuI0J3eS1cMAAABwDLfbpSunpejKaSlWDwUAAIwitusAAAAAAAAg4khKAQAAAAAAIOJISgEAAAAAACDiSEoBAAAAAAAg4khKAQAAAAAAIOJISgEAAAAAACDiSEoBAAAAAAAg4khKAQAAAAAAIOJISgEAAAAAACDiSEoBAAAAAAAg4khKAQAAAAAAIOJirR6AHRljJEltbW0WjwQAAFjNFw/44gMMjRgKAABI4cdPJKUG0d7eLknKzs62eCQAAMAu2tvblZKSYvUwbI0YCgAAfFeo+Mll+LPfObxer+rq6jRx4kS5XK5R77+trU3Z2dn68ssvlZycPOr929V4nPd4nLPEvJn3+MC8x8+8jTFqb29XVlaW3G4qHwQzljHUePzZk5g38x4fmPf4mfd4nLM0PucdbvzETqlBuN1uTZ8+fcy/T3Jy8rj5gfyu8Tjv8ThniXmPN8x7fBlv82aHVHgiEUONt589H+Y9vjDv8WU8zns8zlkaf/MOJ37iz30AAAAAAACIOJJSAAAAAAAAiDiSUhbweDwqLS2Vx+OxeigRNR7nPR7nLDFv5j0+MO/xNW9Yb7z+7DFv5j0eMO/xM+/xOGdp/M47HBQ6BwAAAAAAQMSxUwoAAAAAAAARR1IKAAAAAAAAEUdSCgAAAAAAABFHUgoAAAAAAAARR1JqjGzfvl05OTlKSEhQQUGBDh06FLT9yy+/rMsuu0wJCQnKy8vT66+/HqGRjo6ysjL95Cc/0cSJEzV16lQtXrxYR48eDXrP008/LZfLFfBKSEiI0IhHxx//+Mdz5nDZZZcFvcfpay1JOTk558zb5XJp3bp1g7Z34lr/61//UnFxsbKysuRyufTqq68GvG+M0ebNm5WZmanExEQVFhbqs88+C9nvcH83RFqweZ89e1b33Xef8vLyNGHCBGVlZWnFihWqq6sL2udIPieRFmq977jjjnPmsGDBgpD9Onm9JQ36OXe5XHrssceG7NMJ6w37In4ifhqK09daGh/xk0QMRQz1asD7xFDEUKGQlBoDu3fvVklJiUpLS1VdXa38/HwVFRXp5MmTg7Z/9913tWzZMt155506fPiwFi9erMWLF+vjjz+O8MhH7sCBA1q3bp3ee+897d+/X2fPntX8+fPV0dER9L7k5GTV19f7X8ePH4/QiEfPFVdcETCHt99+e8i20bDWkvSf//wnYM779++XJN1yyy1D3uO0te7o6FB+fr62b98+6Pt//vOf9de//lU7duzQ+++/rwkTJqioqEhdXV1D9jnc3w1WCDbvzs5OVVdXa9OmTaqurtaePXt09OhR3XzzzSH7Hc7nxAqh1luSFixYEDCHF154IWifTl9vSQHzra+v186dO+VyufTLX/4yaL92X2/YE/ET8dNQomGtpfERP0nEUMRQ5yKGIoYKymDUzZkzx6xbt87/dV9fn8nKyjJlZWWDtr/11lvNTTfdFHCtoKDA/OY3vxnTcY6lkydPGknmwIEDQ7bZtWuXSUlJidygxkBpaanJz88Pu300rrUxxvz2t781l1xyifF6vYO+7/S1lmReeeUV/9der9dkZGSYxx57zH+tpaXFeDwe88ILLwzZz3B/N1jt+/MezKFDh4wkc/z48SHbDPdzYrXB5r1y5UqzaNGiYfUTjeu9aNEic/311wdt47T1hn0QPxE/DSUa19qY6I+fjCGGCoYYamjRuN7EUENjp9Qo6+npUVVVlQoLC/3X3G63CgsLdfDgwUHvOXjwYEB7SSoqKhqyvRO0trZKkiZNmhS03enTpzVjxgxlZ2dr0aJF+uSTTyIxvFH12WefKSsrSxdffLFuu+02nThxYsi20bjWPT09eu655/TrX/9aLpdryHbRsNY+NTU1amhoCFjLlJQUFRQUDLmWI/nd4AStra1yuVxKTU0N2m44nxO7qqys1NSpUzVz5kytXbtWzc3NQ7aNxvVubGzU3r17deedd4ZsGw3rjcgifupH/DS4aFzr8Rg/ScRQ30UMNbhoXG9iqOBISo2ypqYm9fX1KT09PeB6enq6GhoaBr2noaFhWO3tzuv16p577tG1116rK6+8csh2M2fO1M6dO/Xaa6/pueeek9fr1bx58/TVV19FcLTnp6CgQE8//bT27dunJ598UjU1NfrpT3+q9vb2QdtH21pL0quvvqqWlhbdcccdQ7aJhrX+Lt96DWctR/K7we66urp03333admyZUpOTh6y3XA/J3a0YMECPfvss6qoqNCjjz6qAwcOaOHCherr6xu0fTSu9zPPPKOJEyfqF7/4RdB20bDeiDziJ+In4qdzRcNafx8xVD9iKGKowUTDeo9ErNUDQPRZt26dPv7445DnX+fOnau5c+f6v543b55+9KMf6amnntKWLVvGepijYuHChf5/X3XVVSooKNCMGTP00ksvhZUJjwbl5eVauHChsrKyhmwTDWuNQGfPntWtt94qY4yefPLJoG2j4XOydOlS/7/z8vJ01VVX6ZJLLlFlZaVuuOEGC0cWOTt37tRtt90WsshuNKw3YAXip/H1e4L4afwihiKGGko0rPdIsFNqlKWlpSkmJkaNjY0B1xsbG5WRkTHoPRkZGcNqb2fr16/X3//+d7311luaPn36sO6Ni4vTrFmzdOzYsTEa3dhLTU3VpZdeOuQcommtJen48eN68803tXr16mHd5/S19q3XcNZyJL8b7MoXTB0/flz79+8P+he+wYT6nDjBxRdfrLS0tCHnEE3rLUn//ve/dfTo0WF/1qXoWG+MPeIn4ifip9CiYa2JoYihiKHCFw3rHQ6SUqMsPj5es2fPVkVFhf+a1+tVRUVFwF86vmvu3LkB7SVp//79Q7a3I2OM1q9fr1deeUX//Oc/lZubO+w++vr69NFHHykzM3MMRhgZp0+f1ueffz7kHKJhrb9r165dmjp1qm666aZh3ef0tc7NzVVGRkbAWra1ten9998fci1H8rvBjnzB1GeffaY333xTkydPHnYfoT4nTvDVV1+publ5yDlEy3r7lJeXa/bs2crPzx/2vdGw3hh7xE/ET8RPoUXDWhNDEUMRQ4UvGtY7LNbWWY9OL774ovF4PObpp582//3vf81dd91lUlNTTUNDgzHGmNtvv93cf//9/vbvvPOOiY2NNX/5y1/MkSNHTGlpqYmLizMfffSRVVMYtrVr15qUlBRTWVlp6uvr/a/Ozk5/m+/P+6GHHjJvvPGG+fzzz01VVZVZunSpSUhIMJ988okVUxiR3/3ud6aystLU1NSYd955xxQWFpq0tDRz8uRJY0x0rrVPX1+fueiii8x99913znvRsNbt7e3m8OHD5vDhw0aS2bp1qzl8+LD/CSl/+tOfTGpqqnnttdfMhx9+aBYtWmRyc3PNmTNn/H1cf/315vHHH/d/Hep3gx0Em3dPT4+5+eabzfTp080HH3wQ8Fnv7u729/H9eYf6nNhBsHm3t7eb3//+9+bgwYOmpqbGvPnmm+bHP/6x+eEPf2i6urr8fUTbevu0traapKQk8+STTw7ahxPXG/ZE/ET8RPwUHWtNDEUMRQzVjxgqPCSlxsjjjz9uLrroIhMfH2/mzJlj3nvvPf97P/vZz8zKlSsD2r/00kvm0ksvNfHx8eaKK64we/fujfCIz4+kQV+7du3yt/n+vO+55x7//1F6erq58cYbTXV1deQHfx6WLFliMjMzTXx8vJk2bZpZsmSJOXbsmP/9aFxrnzfeeMNIMkePHj3nvWhY67feemvQn2nfvLxer9m0aZNJT083Ho/H3HDDDef8X8yYMcOUlpYGXAv2u8EOgs27pqZmyM/6W2+95e/j+/MO9Tmxg2Dz7uzsNPPnzzdTpkwxcXFxZsaMGWbNmjXnBEbRtt4+Tz31lElMTDQtLS2D9uHE9YZ9ET8RPxkTnWvtE+3xkzHEUMRQxFA+xFDhcRljzEh3WQEAAAAAAAAjQU0pAAAAAAAARBxJKQAAAAAAAEQcSSkAAAAAAABEHEkpAAAAAAAARBxJKQAAAAAAAEQcSSkAAAAAAABEHEkpAAAAAAAARBxJKQAAAAAAAEQcSSkAAAAAAABEHEkpAAAAAAAARBxJKQAAAAAAAEQcSSkAAAAAAABE3P8H8w18z/Cq+KQAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 1200x800 with 4 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Plot the training history\n",
    "plot_graphs(history)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "8dd56fac",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "28/28 [==============================] - 2s 40ms/step\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "           1       0.00      0.00      0.00        15\n",
      "           2       0.51      0.49      0.50        37\n",
      "           3       0.76      0.86      0.81        36\n",
      "           4       0.00      0.00      0.00         4\n",
      "           6       0.45      0.46      0.46       467\n",
      "           7       0.66      0.63      0.64       100\n",
      "           8       1.00      0.12      0.22        16\n",
      "           9       0.50      0.14      0.22        56\n",
      "          10       0.44      0.49      0.46        97\n",
      "          11       0.31      0.24      0.27       478\n",
      "          12       0.52      0.51      0.52       684\n",
      "          13       0.38      0.26      0.31       236\n",
      "          14       0.47      0.31      0.37        65\n",
      "          15       0.32      0.29      0.30        45\n",
      "          16       0.00      0.00      0.00        16\n",
      "          17       0.60      0.27      0.37        11\n",
      "          19       0.22      0.11      0.15        55\n",
      "          20       0.37      0.34      0.35       465\n",
      "          21       0.00      0.00      0.00         2\n",
      "          22       0.52      0.45      0.48       143\n",
      "          23       0.60      0.53      0.57        49\n",
      "          24       0.00      0.00      0.00         6\n",
      "          25       0.00      0.00      0.00         2\n",
      "          26       0.00      0.00      0.00         2\n",
      "          27       0.00      0.00      0.00         3\n",
      "          28       1.00      0.38      0.55         8\n",
      "          29       0.00      0.00      0.00        11\n",
      "          30       0.67      0.43      0.52        74\n",
      "          31       0.83      0.91      0.87        32\n",
      "          32       0.67      0.29      0.40         7\n",
      "          33       0.42      0.43      0.43       558\n",
      "          34       0.00      0.00      0.00        12\n",
      "          35       0.00      0.00      0.00        10\n",
      "          36       0.34      0.26      0.29       163\n",
      "          37       0.00      0.00      0.00        10\n",
      "          38       0.00      0.00      0.00         4\n",
      "          40       0.00      0.00      0.00        11\n",
      "          41       0.00      0.00      0.00         7\n",
      "          42       0.91      0.90      0.91        71\n",
      "          43       0.24      0.36      0.29        11\n",
      "          45       0.53      0.52      0.53       505\n",
      "          46       0.00      0.00      0.00         1\n",
      "          47       0.00      0.00      0.00        10\n",
      "          48       0.00      0.00      0.00        15\n",
      "          49       0.52      0.55      0.53       161\n",
      "          50       0.24      0.16      0.19       460\n",
      "          51       0.59      0.54      0.57       924\n",
      "          52       0.38      0.25      0.30       199\n",
      "          53       0.52      0.46      0.49       107\n",
      "          54       0.29      0.29      0.29        59\n",
      "          55       0.46      0.17      0.25        78\n",
      "          56       0.40      0.15      0.22        13\n",
      "          58       0.35      0.36      0.36       188\n",
      "          59       0.39      0.26      0.31       385\n",
      "          60       0.00      0.00      0.00         2\n",
      "          61       0.60      0.37      0.46       119\n",
      "          62       0.65      0.54      0.59        48\n",
      "          63       0.00      0.00      0.00         9\n",
      "          64       0.00      0.00      0.00         4\n",
      "          65       0.00      0.00      0.00         2\n",
      "          66       0.00      0.00      0.00         1\n",
      "          67       1.00      0.33      0.50         3\n",
      "          68       0.00      0.00      0.00         9\n",
      "          69       0.00      0.00      0.00         9\n",
      "          70       0.00      0.00      0.00         1\n",
      "          71       0.33      0.30      0.32       354\n",
      "          72       0.00      0.00      0.00         3\n",
      "          73       0.00      0.00      0.00         6\n",
      "          74       0.38      0.18      0.24       127\n",
      "          75       0.30      0.38      0.33         8\n",
      "          76       0.20      0.14      0.17         7\n",
      "          78       0.98      0.99      0.98     79004\n",
      "\n",
      "    accuracy                           0.94     86900\n",
      "   macro avg       0.32      0.24      0.26     86900\n",
      "weighted avg       0.93      0.94      0.93     86900\n",
      "\n"
     ]
    }
   ],
   "source": [
    "from sklearn.metrics import classification_report\n",
    "\n",
    "# Get the model predictions\n",
    "y_pred = model.predict(test_sequences_padded)\n",
    "\n",
    "# Convert the predictions from one-hot encoded format to the label format\n",
    "y_pred_labels = np.argmax(y_pred, axis=2)\n",
    "test_labels_labels = np.argmax(test_labels, axis=2)\n",
    "\n",
    "# Print the classification report\n",
    "print(classification_report(test_labels_labels.reshape(-1), y_pred_labels.reshape(-1), zero_division=0))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "fe75e157",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABg4AAAY1CAYAAAD6kCXGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3RUVbvH8d9MyqSQHhKSQCCQhN47Kr2IiCKKDRXsBVTEiq+9odhBxC4ICjaKooAUAZVeQm+B0BPSezIpM/eP4OCYRNBLMhny/ax11ntnz94nz14s75OT5+y9DVar1SoAAAAAAAAAAABJRkcHAAAAAAAAAAAAag4KBwAAAAAAAAAAwIbCAQAAAAAAAAAAsKFwAAAAAAAAAAAAbCgcAAAAAAAAAAAAGwoHAAAAAAAAAADAhsIBAAAAAAAAAACwoXAAAAAAAAAAAABsKBwAAAAAAAAAAAAbCgcAAAAAAAAAAMCGwgEAAAAAAAAAADXQ6tWrNXToUIWHh8tgMGj+/PlnHbNy5Up16NBBJpNJ0dHRmj59+r/+uRQOAAAAAAAAAACogfLy8tS2bVtNnTr1nPonJCRoyJAh6tOnj+Li4jRu3DjdcccdWrJkyb/6uQar1Wr9LwEDAAAAAAAAAIDqYTAYNG/ePA0bNqzSPo8//rh++ukn7dy509Z2/fXXKzMzU4sXLz7nn8WKAwAAAAAAAAAAqonZbFZ2drbdZTabz8u9165dq/79+9u1DRo0SGvXrv1X93E9L9HA4QpLHB0BAAAAAAAA4Lw8+Evpf+LZfqyjQ3A6j18ZrOeff96u7dlnn9Vzzz33/753UlKSQkND7dpCQ0OVnZ2tgoICeXp6ntN9+M8BAAAAAAAAAIBqMmHCBI0fP96uzWQyOSiailE4AAAAAAAAAACgmphMpiorFNSrV0+nTp2yazt16pR8fX3PebWBxBkHAAAAAAAAAABcELp3767ly5fbtS1dulTdu3f/V/ehcAAAAAAAAAAAQA2Um5uruLg4xcXFSZISEhIUFxeno0ePSirb9uiWW26x9b/nnnt06NAhPfbYY9q7d6/ef/99ffPNN3rooYf+1c+lcFADrF69WkOHDlV4eLgMBoPmz5/v6JAApzTnqy81eEBfdW7fWiOvH6Ed27f/Y/9flizSlZdfqs7tW+vqYUP12+pVdt9brVZNnfKu+vW6WF06tNFdt4/WkSOHq3AGAABnQt4BAFQXcg4A1F6bNm1S+/bt1b59e0nS+PHj1b59ez3zzDOSpMTERFsRQZKioqL0008/aenSpWrbtq3efPNNffLJJxo0aNC/+rkUDmqAvLw8tW3bVlOnTnV0KIDTWrzoZ70xaaLuvm+M5nw7T02bNtO9d9+utLS0CvvHbd2iJx59WFcNv0Zffzdfffr207j7x+jAgf22Pp9/+rFmfzlTTz37nGbN/kaenp66967bZTabq2taAIAairwDAKgu5BwANZ7ByPVvr3+hd+/eslqt5a7p06dLkqZPn66VK1eWG7N161aZzWYdPHhQo0eP/vf/rFar1fqvR6HKGAwGzZs3T8OGDftX4wpLqiYewFmMvH6EWrZqrSefKqu2WiwWDezXSzfceLNuv/Oucv0ffXicCgoK9N77H9rabrrhWjVt1kxPP/uCrFar+ve+RLeMvlWjbr1dkpSTk6O+PXvohZdf1eDLhlTPxAAANRJ5BwBQXcg5QPXxcHV0BM7Js8MDjg7B6RRsmezoEM6KFQcAnF5xUZH27N6lbt172NqMRqO6deuh7du2Vjhme1ycunWzPxSmx0UXa/vp/eJOHD+u1NQUde125p4+Pj5q3aZtpfcEANQO5B0AQHUh5wAAHIXCAQCnl5GZodLSUgUFBdm1BwUFKTU1tcIxqampCgoKLt8/LfX09yllbcHnfk8AQO1A3gEAVBdyDgDAUViA44TMZnO5fQetLiaZTCYHRQQAAAAAAAAAuFCw4sAJTZw4UX5+fnbX669NdHRYgMME+AfIxcWl3OFgaWlpCg4OrnBMcHCw0tJSy/c//WZOcHDdsrbUc78nAKB2IO8AAKoLOQcA4CgUDpzQhAkTlJWVZXc9+vgER4cFOIybu7uat2ip9evW2tosFovWr1+rNm3bVzimTbt2Wr9unV3burVr1KZdO0lSRP36Cg6uq/Xrz9wzNzdXO7Zvq/SeAIDagbwDAKgu5BwATsFg4Pq3lxNgq6IaIDc3V/Hx8bbPCQkJiouLU2BgoCIjI8v1N5nKb0tUWFLlYQI12s2jbtXTTz6uli1bqVXrNpo1c4YKCgo07KrhkqT/TXhMISGhevChhyVJI2+6RbePvlkzpn+mnj17afGin7Vr5049/dwLkiSDwaCRN9+ijz+cpoaRDRVRv76mTnlXdUNC1Ldff4fNEwBQM5B3AADVhZwDAHAECgc1wKZNm9SnTx/b5/Hjx0uSRo0apenTpzsoKsC5XDr4MmWkp+v99yYrNTVFTZs11/sffqKg00ttkxITZTScWWTVrn0HTZz0ht6b/I6mvPOWIhs20jtTpiomJtbW59bb71RBQYFeeO4Z5eRkq32Hjnr/w084TwQAQN4BAFQbcg4AwBEMVqvV6ugg8P/HigMAAAAAAADgv/PgFev/xLPjg44OwekUbH7X0SGcFWccAAAAAAAAAAAAGwoHAAAAAAAAAADAhgU4AAAAAAAAAID/xsC76Rci/lUBAAAAAAAAAIANhQMAAAAAAAAAAGDDVkUXiAfn73J0CACAWsLb3cXRIQAAahFzqdXRIQAAaompVzV3dAhAjcGKAwAAAAAAAAAAYEPhAAAAAAAAAAAA2LBVEQAAAAAAAADgvzEYHB0BqgCFgxpg4sSJmjt3rvbu3StPT0/16NFDr732mpo2bero0ACn0rtJoAbEBsnPw1XHswo1Z2uSDmcUVNi3e0N/je4cYddWXGrR2Hl7bJ/bh/uoZ5NARfp7qI7JVS8uPajjWYVVOgcAgPO4qJG/+kQHycfkopPZZs3bcUpHM8+eJ9qF++iWThHakZijzzeesLXXMbno8uYhahriJU9XFx1Kz9fcHaeUmldcldMAADiBnlEB6h8TKF8PV53IMuub7Uk6klFxzukW6aebO4bbtRWXWjTuh312bUOaB+uiRgHydDPqUFqB5sQlKoWcAwA4jcJBDbBq1SqNGTNGnTt3VklJiZ588kkNHDhQu3fvlre3t6PDA5xCp/q+uqZNqL7akqiE9AL1iwnUA5c01LNLDijHXFrhmILiUj2zON722Sr7g/fcXY2KT83XpmNZuqVTxN+HAwBqsXbhPrqyZYi+3X5KRzMK1LNxoO7q1kCvrjik3KKK844kBXi66YqWITqYll/uu9s611ep1arPNpxQYbFFvZsE6J7ukZr06yEVcTgsANRaHSJ8NLx1iObElb0Y1adJoMb2iNTzSw9WmnMKikv1wtKDts9/zyIDYoLUu3GgZm45qdS8Yg1tUVdjL4rUi8sOqcRCzgEAcMZBjbB48WKNHj1aLVu2VNu2bTV9+nQdPXpUmzdvdnRogNPoHxuk3xMytOZIphJzzPpyS6KKSi3q0Sig0jFWq5RtLrFdfy8wrD+apZ/2pGhvcl5Vhw8AcDK9mgRq3dEsbTyWpVO5Rfpue5KKSy3qEulX6RiDpJs6hmnJvlSl/e2NzrrebmoU6KnvtifpWGahUvKK9N32U3JzMah9hG8VzwYAUJP1iw7SmsOZWnc0S0k5RZoTl6SiUou6N/KvdEzZs06p7fr7s06f6EAt3peq7Ym5Oplt1oxNJ+Xn4aq2YT5VPBsAgLNgxUENlJWVJUkKDAx0cCSAc3AxGBTp76lFe1NtbVZJe0/lqXGQZ6XjTK5GvTI4RgaDQUczCzR/Z7ISs83VEDEAwJm5GKT6fh5afiDN1maVtD81X40CKs87A5sGK9dcqvVHsxQV6GX3naux7H2ekr+sLLBKKrFYFRXopfVHs87rHAAAzsHFIDXw99CS/X971knJU+PAf37WeXFQtAySjmUV6oddyUrMKZIkBXm5yc/DVftSzrwgVVhi0eGMAkUFemrzieyqmg4AwImw4qCGsVgsGjdunC666CK1atXK0eEATqGOyUUuRoNyCkvs2rPNJfLzqLg+eirHrC82ndD7a47psw3HZZRBj/eJkr8n9VQAwD/zdnctyztm+7yTYy6RTyV5JyrQU10j/fTNtqQKvz+Va1Z6frGGNK8rTzejXAxS3+hABXi6ydfD5bzPAQDgHOqY/sw59isGcgpL5Wuq5Fknt0iztiTqw3XHNH3TSRkkPdyrkfxP5yjf0/+bXVjBPSvJYwCA2oeMUMOMGTNGO3fu1O+//15pH7PZLLPZ/q3o0uIiubi5V3V4wAXjUHqBDqWfOTj5YNpRPT8oWj0bB+qHXckOjAwAcKExuRh1Y/swfbMtSXmV7EVtsUrTNx7Xde3C9PLgWJVarDqQmqc9p3KrOVoAgLNLSC9Qwl+edQ6l5+uZ/k10cVSAFu5JcWBkAC5YBt5NvxBROKhBxo4dq4ULF2r16tWqX79+pf0mTpyo559/3q6tw4h71enaMVUdIlAj5ZpLVWqxlnvL09fkqqy/rUKojMUqHcssVF1vCnAAgH+WV1RSlnf+9qanj8m13Oo3SQrydlOQt7tu73Lm9zuDoex/X7+8qV5dcUhp+cU6nmXWm6sOy8PVKBejQXlFpXrwkoY6lllYpfMBANRcueY/c4796jMfDxdlm//Fs05Woep6u0mSsk/nKt+/3cPHw0XHM9m6FQBQhnJQDWC1WjV27FjNmzdPK1asUFRU1D/2nzBhgrKysuyu9lfdWU3RAjVPqdWqo5kFah7ibWszSGoW4q1DaQWVD/wLg6QIXw9lFxaftS8AoHYrtUrHswoVE2yfd2KCvXQ4o3zeSc4t0qRfD+nNVQm2a1dSruJT8/XmqgRlFtjnnsISi/KKShXs7aYG/h7amZRT1VMCANRQpadfcGpa1z7nNK3rbbeC+p8YJIX7mpR1ukiQll+srMISu3t6uBrVKMDTbqUCAKB2Y8VBDTBmzBh99dVXWrBggXx8fJSUVLb3rZ+fnzw9yx92ZDKZZDKZ7NrYpgi13bL9aRrdOUKHMwp0OL1A/WKC5O5q1JrDGZKk0Z0jlFlQrPk7y7YhGtK8rg6l5yslt0iebi4aGBusQG83/Z6Qabunl5uLAr3cbOce1PMp++8su7DknN/uAQBcmFYdTNcN7cN0LKtARzMK1atxgNxdjNpwrOwQ4xvahym7sEQ/7UlRicWqpNMHUv6poNgiSXbtbcN8lFtUqoyCYoX5mnRVq1DtTMzV/pT86psYAKDGWR6fpls6hutoZqEOZxSob5NAmVyMWnckU5J0S8cwZRaU6IfdZdsQDW4arISMAqXkFsnLzUX9YwIV6OWmNYczbff8NT5dlzYNVnJukdLyi3V587rKKizRtkSK1QCAMhQOaoBp06ZJknr37m3X/vnnn2v06NHVHxDghDYdz1Ydk6uuaBEiXw9XHc8q1OTfj9gOEQv0cpPVarX193J30c0dwuXr4ar84lIdzSjUpF8TlJhzZmlu23Afje4cYft8Z7cGkqQfdydr4W72BgWA2izuZI7quLvo0qZ15Wty0Ylssz5ad0y5p/NOgKeb/pJ2zomvh6uuaBUiH5OrsgtLtOlYlpbuT62C6AEAzmTLiRz5mJJ1efO68jG56ESWWVPXHLU96/w953i5GzWyfZh8TC4qKLboaGah3lx12K5YvfRAmtxdDbqxfZg83Yw6mFagqWuOqcTyL5MXAOCCZbBa/+0jDWqiu7/b5egQAAC1hLe7y9k7AQBwnphLeWQFAFSPqVc1d3QITsmzyyOODsHpFGx4w9EhnBUrDgAAAAAAAAAA/43B4OgIUAU4HBkAAAAAAAAAANhQOAAAAAAAAAAAADYUDgAAAAAAAAAAgA2FAwAAAAAAAAAAYMPhyBeIX34/7OgQAAC1RPKJZEeHAACoRbx9vR0dAgCglph6VXNHhwDUGBQOAAAAAAAAAAD/jYFNbS5E/KsCAAAAAAAAAAAbCgcAAAAAAAAAAMCGwgEAAAAAAAAAALDhjIMaYNq0aZo2bZoOHz4sSWrZsqWeeeYZDR482LGBAU7m5osb6q6+jVXXx6Q9J7P13Pe7tO1oVoV9Z4/tpm7RQeXaV+xK1u0fb7R9bhJaR08MbaYuTQLlajTowKlc3ffZZp3MLKyyeQAAnMNdg5pp3BWtFOrvqR1HMvTwZ+u0OT610v5jLmuhOwY1U4Ngb6VlmzV/3WE989VmmYtLbX3CAr300shOGtA+Ql4mVx1KytHdU3/T1kNp1TElAEANdVufaN13aVOF+Hlo17FMPfnVVm1NSK+0/139YzS6TxNFBHopPbdIP246rpe/3y5ziUWS1C02WGMGNVPbRgGq5++pUe/9rkVbT1bXdAAAToDCQQ1Qv359vfrqq4qJiZHVatWMGTN05ZVXauvWrWrZsqWjwwOcwpD2YfrfsOZ66pudijuSqdt6RWnGPV3V75WVSsstKtf/ns82y83lzKKrAG83/fzoJfp5W6KtLTLIS98+0F3frDumtxftV25hiWLr1bH9sg0AqL2u7hGlV0d10YMfrdHG+BSNGdJSC/43UO0fnKuU7PLF5WsvbqwXRnbUvdP+0Lp9yYoJ89WHYy6RVVY9MaOsYO3v7a7lL16m1buSdNUrS5WaXajoer7KzCufxwAAtceVnRvo+eva6tGZm7XlULruGhCjrx/qqR7/W6TUHHO5/sO7Ruqpa9po3OcbtTE+VU3q+WjybV0kWfXM19skSV7urtp1PFOzf0/Q9LEXVfOMAADOgMJBDTB06FC7zy+//LKmTZumdevWUTgAztEdvaP09dpj+m7DcUnS/77doT4tQjSiawN9sPxguf5Z+cV2n4d2CFNBcal+jjtTOHhkSFOt3J2sV3/ca2s7mpZfRTMAADiT+y9vqc+X79fMlfGSpAc+WqNLO9TXLX1j9Ob8HeX6d20aonX7kvXN74ckSUdTcvXtH4fUKaaurc/4Ya11PC1P97z/u63tSHJuFc8EAFDT3TMwVrNWH9KcPw5Lkh6duVkD2oTphoujNGXR3nL9OzcJ0ob4VM1df1SSdCwtX/PWH1WHxoG2Pit2JmnFzqRqiR9ALWAwODoCVAHOOKhhSktLNWfOHOXl5al79+6ODgdwCm4uBrWq76ff95/ZHsJqlf7Yn6oOjfzP6R7Xdm2ghVsSVVBUtl2EwSD1aRGihJQ8zbiniza+2F/zHuqhAa1Dq2IKAAAn4uZqVPvGQfp1+5ktHaxW6dftieoSG1LhmPX7ktWucZA6RgdLkhqF1NHA9vW1ZMtxW5/LOkVq68E0zRzfW4c/uV5rJl2h0f1iq3YyAIAazc3FqLYNA7R6zylbm9Uqrd6drE5Nym+9KkkbD6apbcMAtY8qKxQ0DPZWv9ZhWradQgEA4Nyx4qCG2LFjh7p3767CwkLVqVNH8+bNU4sWLRwdFuAUArzd5epiLLdMNzXHrCah3mcd3zbST83CffXEnO22tqA6JtXxcNU9/ZrozZ/369Uf96pXs7r64NaOunHqOq0/WPl+ogCAC1uQj0muLkYlZxXYtSdnFSg2wq/CMd/8fkhBPiYte/EyGWSQm6tRH/+yV2/MO5N7okLq6I6BTTVl4S69MXe7OkQH643buqq4xKIvV8VX6ZwAADVToE/Zs05Ktv2zTkp2oaLDfCocM3f9UQXWMenHJ/rYcs70X+P17s97qiNkAMAFgsJBDdG0aVPFxcUpKytL3333nUaNGqVVq1ZVWDwwm80ym+1/abCWFMvg6lZd4QIXlGu7NdDek9l2BykbT6+yW7rzlD5blSBJ2nMiWx2jAnTjRZEUDgAA/8olLerp0eFtNO7jtdoUn6rG9Xz0+q1d9fjVbfXa92X7TRuNBm05mKbnZm+RJG07nK4WDQJ0+8CmFA4AAOesR9O6GjekmR6ftUVbDqUrKqSOXrqhncZf3kJvLdzt6PAAAE6CrYpqCHd3d0VHR6tjx46aOHGi2rZtq3fffbfCvhMnTpSfn5/dlbnpm2qOGKg5MvKKVFJqUbCPya492MdU7s2cv/N0d9Hl7cP19bpj5e5ZXGpRfJL93tLxp3IV7u95fgIHADiltByzSkotCvGzzwchfp46lVlQ4Zinr2+v2asPasaKA9p1NEM/bjiq577arEeuamPbEjYpo0B7j2fajdt3IlMNgs++eg4AcGFKzyl71qnra/+sU9fXQ8lZhRWOeWJYK3279oi+/C1Be05k6eetJ/TK3B164LJmbEMOADhnFA5qKIvFUm5VwZ8mTJigrKwsu8u/07XVHCFQcxSXWrXzeJYuigm2tRkMUo/YIG05nPmPYy9rFyaTq1HzN50od8/tR7PUOMT+jzVRdb11IqPiPwoBAGqH4hKLth5KU+/WYbY2g0Hq3TpMG/YnVzjGy+Qqi8W+rdRiPT227K846/adUky4r12fmDA/HU3JO4/RAwCcSXGpRduOZOiS5mfOWjMYpEuah2jTwbQKx3i6u+h0irGx5RxROQAAnBu2KqoBJkyYoMGDBysyMlI5OTn66quvtHLlSi1ZsqTC/iaTSSaT/dsGbFOE2u6TlQl688a22n4sU9uOZum2Xo3k5e6q79aXrSR4c2RbJWUV6vWF++zGXde1gX7ZcUqZ+cXl7vnRioOaMqqDNhxM19r4NPVqVlf9WobohvfWVcucAAA115SFu/TRmIu19WCaNsWnaMyQlvIyuWrmrwckSR+PvUQn0/P17FebJUk/bzqm+y9vqW0JadoYn6Im9Xz19PUd9PPmY7Kc/mPOlIW7teKlIXrkqjaauzZBnaLr6tb+sbr/wzUOmycAwPE++GW/ptzeRdsOp2tLQrru7h8rL5Or5vxRtqXqe7d3UWJGgV6eu0OS9Mu2RN0zMFY7jmbYtip6Ylgr/bLtpCzWspzjbXJVVEgd28+IDK6jVg38lZFXpBPp+dU/SQDOzcC76RciCgc1QHJysm655RYlJibKz89Pbdq00ZIlSzRgwABHhwY4jZ+2JirI213jB8cq2NekPSeyNfrDDUrNLZIkhQd42n5J/lPjEG91bhKom99fX+E9f9lxSk99u0P39o/Ws8Nb6lBKru77fIs2JWRU+XwAADXb92sSFOzroaeua69Qf09tP5yuYS//Yts2on6wt13eee37bbJapWdu6KDwQC+lZhfq503H9Pzp8wwkacvBVF3/+nK9MLKTJlzTVoeTc/XY9A36+vdD1T4/AEDNsWDjMQX5mPTYsFYK8fXQzmOZuv7t1bZtWSMCvexyzlsLd8sqqyYMa6V6AZ5KyzHrl22JeuV0YUGS2jYK0PzH+tg+v3h9O0nSnD8S9MBnG6tnYgCAGs1gtf7tL2lwSlHjfnJ0CACAWiL5RMVbsQAAUBW8fTnnAwBQPZI/ZSvw/8Kzx5OODsHpFKx5xdEhnBXrSAAAAAAAAAAAgA2FAwAAAAAAAAAAYEPhAAAAAAAAAAAA2HA4MgAAAAAAAADgvzEYHB0BqgArDgAAAAAAAAAAgA0rDi4Qe94Y4ugQAAAAAAAAAAAXAFYcAAAAAAAAAAAAGwoHAAAAAAAAAADAhsIBAAAAAAAAAACwoXBQw7z66qsyGAwaN26co0MBnM6cr77U4AF91bl9a428foR2bN/+j/1/WbJIV15+qTq3b62rhw3Vb6tX2X1vtVo1dcq76tfrYnXp0EZ33T5aR44crsIZAACcCXkHAFBdyDkAajSDkevfXk7AOaKsJTZu3KgPP/xQbdq0cXQogNNZvOhnvTFpou6+b4zmfDtPTZs207133660tLQK+8dt3aInHn1YVw2/Rl9/N199+vbTuPvH6MCB/bY+n3/6sWZ/OVNPPfucZs3+Rp6enrr3rttlNpura1oAgBqKvAMAqC7kHACAI1A4qCFyc3M1cuRIffzxxwoICHB0OIDTmTnjcw2/5loNu+pqNYmO1lPPPi8PDw/Nn/t9hf2/nPWFelx8iUbfdocaN2misQ+MU/MWLTTnq1mSyt7A+XLmF7rz7nvVp29/xTZtppcmTlJKcrJWLF9WnVMDANRA5B0AQHUh5wAAHIHCQQ0xZswYDRkyRP3793d0KIDTKS4q0p7du9Stew9bm9FoVLduPbR929YKx2yPi1O3bt3t2npcdLG2x8VJkk4cP67U1BR17Xbmnj4+Pmrdpm2l9wQA1A7kHQBAdSHnAAAcxdXRAUCaM2eOtmzZoo0bNzo6FMApZWRmqLS0VEFBQXbtQUFBSkg4VOGY1NRUBQUFl+ufmpZ6+vuUsrbg8vdMTU09X6EDAJwQeQcAUF3IOQAAR6Fw4GDHjh3Tgw8+qKVLl8rDw+OcxpjN5nL7DlpdTDKZTFURIgAAAAAAAACgFmGrIgfbvHmzkpOT1aFDB7m6usrV1VWrVq3S5MmT5erqqtLS0nJjJk6cKD8/P7vr9dcmOiB6oGYI8A+Qi4tLucPB0tLSFBwcXOGY4OBgpaWllu9/+s2c4OC6ZW2p535PAEDtQN4BAFQXcg4Ap2AwcP3bywlQOHCwfv36aceOHYqLi7NdnTp10siRIxUXFycXF5dyYyZMmKCsrCy769HHJzggeqBmcHN3V/MWLbV+3Vpbm8Vi0fr1a9WmbfsKx7Rp107r162za1u3do3atGsnSYqoX1/BwXW1fv2Ze+bm5mrH9m2V3hMAUDuQdwAA1YWcAwBwFLYqcjAfHx+1atXKrs3b21tBQUHl2v9kMpXflqiwpMpCBJzCzaNu1dNPPq6WLVupVes2mjVzhgoKCjTsquGSpP9NeEwhIaF68KGHJUkjb7pFt4++WTOmf6aePXtp8aKftWvnTj393AuSJIPBoJE336KPP5ymhpENFVG/vqZOeVd1Q0LUtx+HmANAbUfeAQBUF3IOAMARKBwAuCBcOvgyZaSn6/33Jis1NUVNmzXX+x9+oqDTS22TEhNlNJxZZNWufQdNnPSG3pv8jqa885YiGzbSO1OmKiYm1tbn1tvvVEFBgV547hnl5GSrfYeOev/DTzhPBABA3gEAVBtyDgDAEQxWq9Xq6CDw/8eKAwAAAAAAAOC/8+AV6//E85JnHB2C0yn47QVHh3BWnHEAAAAAAAAAAABsqKMBAAAAAAAAAP4bA++mX4j4VwUAAAAAAAAAADYUDgAAAAAAAAAAgA2FAwAAAAAAAAAAYMMZBxeIV5YfcHQIAIBaotRidXQIAIBaxGgwODoEAEAt8eKlMY4OAagxWHEAAAAAAAAAAABsWHEAAAAAAAAAAPhvDLybfiHiXxUAAAAAAAAAANhQOAAAAAAAAAAAADZsVVQDnDhxQo8//rgWLVqk/Px8RUdH6/PPP1enTp0cHRrgVA6sXqi9K+aqMDtD/hFR6nDN3Qpq2PSs445uXqW1M15XROtuuvjOp2zt62e9rcMbltv1rdesg3rd98J5jx0A4Hzif/tJ+1fMVWFOhvzCo9T+6rsV2DD2rOOObVmt9V+8rvBWXdXjjqfsvstOOqYdP05XysGdslpK5RvaQN1vmyCvgJCqmgYAwAkc+G2h9v3lWaf91ef4rLNlldbNeF3hrbvp4gpyzvYfP1dK/E5ZLKXyDY1Uj9smyDuQnAMAoHDgcBkZGbrooovUp08fLVq0SHXr1tWBAwcUEBDg6NAAp3J0y2rFzftEHa8bo6CGTbV/1QKtev8ZXfbUh/Lw8a90XF7aKcXN/0x1m7Ss8Pt6zTuqy8hxts8urm7nOXIAgDM6tuU3bZ//iTpcO0aBDWN1YNUP+u2DZzToyQ/Omne2L/hMwY3L553c1EStnPy4GnUboBaDb5Sbh5eyk47K6OpehTMBANR0R7es1rZ5n6jjtWMU2KipDqxcoNXTntHg/539WWfb/M8UXMGzTm5qola8+5iiug1Qy8Ej5ebhpazEo3JxI+cAAMpQOHCw1157TQ0aNNDnn39ua4uKinJgRIBz2vfrfDXuMUiNuw2QJHW6dowSd21Uwrqlaj5gRIVjLJZSrf3iDbW6bKRSDu5ScUFeuT4urm7y9KWQBwCwt3/lfEV1H6RGXftLkjqMuE+Juzfq8Pqlata/4rxjtZRqw6w31WLwjUqtIO/s/Gmm6rXoqDZX3GprqxMcVnWTAAA4hf0ry551ok4/63S8dowSd5/9WWfdzDfUcvBIpR7apaK/5ZwdC79QWItOanvlbbY2cg4A4K8448DBfvjhB3Xq1EkjRoxQSEiI2rdvr48//tjRYQFOpbSkWBnH4hXatJ2tzWA0KrRpO6Um7K103O7Fc+Th46fG3QdW2ic5fofmPzlSP790tzZ9PVXmvOzzGToAwAlZSoqVeTxeIbFtbW0Go1Ghse2UdnhfpeN2L5kjUx0/RXUrn3esFouSdm9SnboR+m3aM/rxqZu0/K2HdWL72iqZAwDAOdiedWLb2doMRqNCYtsp7fBZnnXqVPysY7VYlLh7k+qEhGvVtKe14H8jteyt8eQcAIAdCgcOdujQIU2bNk0xMTFasmSJ7r33Xj3wwAOaMWOGo0MDnEZRXrasFku5ZboePv4qzMmocEzKwV06tPYXdb7+/krvG9a8g7reNF69x76sNleMVkr8Tq2e9qwsltLzGT4AwMmYbXnHfkWaycdfhdkV553UQ7t0eN1SdbxubMX3zM1SiblA+5Z/p9DmHXTJPS8ook03rf18olLid5z3OQAAnMOfzzqmf/msk7DuF3Wq5Fmn8HTO2bvsO9Vr1lE9731REa2764/PXlEyOQfAf2E0cP3bywmwVZGDWSwWderUSa+88ookqX379tq5c6c++OADjRo1qsIxZrNZZrPZrq2kqEiu7uxFCJyL4sJ8rZ/5ljrfcL9Mdfwq7RfZsZft//YPbyT/8Cj99MIdSjmww251AwAA/6S4MF8bZr2lDteNrTTvWK0WSVJ4q66K7T1MkuRfv7HSEvbq0B+LVTe6dXWFCwBwYn/mnE7X/8OzzumcE9Gqm5r2GSZJCqjfWGmH9+jgH4sUQs4BAIjCgcOFhYWpRYsWdm3NmzfX999/X+mYiRMn6vnnn7dr6zlyrHrd/ECVxAjUdO7evjIYjSrMybRrL8zJLPc2qCTlpiYpL/2UfvvoBVub1WqVJH0z7gpd9r8PVadu+f096wTXk8nbVzmpiRQOAKAWM9nyjv2bnuacTHlUcC5OXmqS8tOTteaTF21tf+ad78dfqUFPfiAv/2AZjC7yrRdpN9YntIHSEnZXwSwAAM7gz2cd87981vn94/LPOt8+dIUG/+9DedpyTgO7sT6hDZR6iJwDAChD4cDBLrroIu3bZ78X7v79+9WwYcNKx0yYMEHjx4+3a3t11bEqiQ9wBi6ubgpoEK1T+7epfpvuksr27Ty1b5tiel5err9vaH0NeuI9u7adP81SsTlf7YffJc+A4Ap/Tn5Gqsz5OfL0DTz/kwAAOA2jq5v860cr+cB2Rfwl7yTv36Ymlwwp198ntL4GPG6fd3b9NFPF5gK1G36XvPyDZXR1U0BkjHKSj9v1y005Ia+AulU3GQBAjfbXZ52/55zoSyp51vlbztnx8yyVFJ5+1vEPlourmwIjY5STfMKuX27yCXkHhFTdZAAAToXCgYM99NBD6tGjh1555RVde+212rBhgz766CN99NFHlY4xmUwymUx2bWxThNquaZ9hWj/rbQU2iFFQw1jtW7lAJUWFiuraX5K0buab8vILUpsrRsvFzV3+4Y3sxrt5ekuSrb3YXKBdi2arftse8vQNUG5qorYt+Fx1gsNUr1mH6pwaAKAGiu09TBu/elsBDaIVGBmrA6vK8k6j03lnw6y35OkXpNZDR8nFzV1+YfYvhfyZd/7a3rTvcK2bMUnBTVopJLq1kvZuUeKuDeo19pXqmxgAoMaJ7T1MG758W4GRMQqMjNX+VfbPOutnvSlPvyC1GVr2rOP3t2cd9z9zzl/az+SclgqJaaOkPZt1ctcG9R47sbqmBQCo4SgcOFjnzp01b948TZgwQS+88IKioqL0zjvvaOTIkY4ODXAqkR16ypybpZ0/z1Jhdob86zdWr3tfsG0ZkZ+RIoPh3M+DNxiMyjqZoMMblqu4IE8efoGq16y9Wl92k1zc3KpqGgAAJ9GgwyUy52Vp96IvVZidIb+Ixrr47udt20aU5Z1/d+hZRJvu6jDiPu1b9q3i5n4kn7oR6n7rBAU3blkVUwAAOImKnnV63vPfn3UkqX7bHupw7X3au/R0zgmJUI/bnlTdJuQcAEAZg/XPze7g1J5ZcsDRIQAAaolSC786AACqj/FfFuEAAPivXrw0xtEhOCXPvi87OgSnU7Dif44O4az+XUkaAAAAAAAAAABc0CgcAAAAAAAAAAAAGwoHAAAAAAAAAADAhsIBAAAAAAAAAACwoXAAAAAAAAAAAABsXB0dAM6PZdsSHR0CAKCWMJn49QEAUH1KS62ODgEAUFtcGuPoCJyTweDoCFAFWHEAAAAAAAAAAABsKBwAAAAAAAAAAAAbCgcAAAAAAAAAAMCGTYprgEaNGunIkSPl2u+77z5NnTrVAREBzml4+zCN7NJAgd7uik/O1VvLDmpPUk6l/euYXHT3JVHqFRskXw83JWUX6t0VB7X2UIatT3Add43pFaVujQPl4WrU8cxCvbxon/Ym5VbHlAAANdiwNvV0XcdwBXq562BqniavTNDeU5XnB293F93RI1KXRAfJx+SqUzlmTV2doPWHMyVJV7QO1RVt6qmej0mSdDi9QF+sP6YNRzKrYTYAgJrsqrb1dH2nCAV6u+tgSp7e/fWQ9vzDM0kdk4vuvKihekYHycejLOdMWZmgdQkZ5fqO7Byhuy9ppG+3nNSUlQlVOQ0AgBOhcFADbNy4UaWlpbbPO3fu1IABAzRixAgHRgU4l37N6uqBPk30+i8HtCsxR9d1itDb17bSDZ9sUkZ+cbn+rkaD3r22jTLyi/S/BXuUkmNWPT8P5RaW2Pr4mFz14ch22nI0U+O/3anMgmI1CPBUzl/6AABqpz4xQbr3kkZ6+9dD2pOUo2vahWnSsBa65YutyiyoOO+8MbylMvOL9dxP+5SSW6R6viblms/klJTcIn38xxEdzyyUQdKg5iF6aWgz3fXVNh1OL6jG2QEAapK+scEa0ytKby4/qN2JORrRIVxvDG+pkZ9vqTTnvHl1Wc55euFepeYWKdTXZPes86dmoXV0RZt6ik/Jq46pAACcCIWDGqBu3bp2n1999VU1adJEvXr1clBEgPO5vlOEftieqJ92npIkTVpyQD0aB+ry1vU0c/2xcv0vb1NPvh6uuuvLOJVarJKkpGyzXZ+butbXqWyzXl6039aWmFVYhbMAADiLER3C9dOuU1q8O1mS9NaKQ+oaFaDBLUM0e9OJcv0HtwyRj8lVY7/ZYcs7p3Ls887av70F+unao7qiTahahPlQOACAWuzajuFauPOUFu0qyzlvLjuo7o0DNKRViL7cWD7nXNYqVL4errpvzo5Kn3UkydPNqKcvi9WkpfG6pWuDqp0EgAubgd3wL0QUDmqYoqIizZo1S+PHj5fBYHB0OIBTcDUa1LSej2auO1MgsEraeCRTrcJ9KhxzcZMg7TyZrUcGROuS6CBl5hfrlz3JmrX+mE7/bq2Lo4O0/nCGXrqiudo38FNKbpHmbj2pH7YnVcOsAAA1lavRoNiQOnZ/rLFK2nI0Sy3rVZx3ejQO1O6kHI3rHaUeTQKVlV+i5ftTNHvTCVve+SujQeoVEyQPVxftSqx82z0AwIXN1WhQbGgdzdpw3NZmlbT5SJZahlX2rBOgXYk5eqhvY13cJFCZBcVatjdVX208bpdzHurbRGsPZWjz0SwKBwCAcigc1DDz589XZmamRo8e7ehQAKfh7+UmV6NB6flFdu3peUVqGOhX4ZgIfw/V8/PXL7uT9fB3O1U/wFOPDIiWq9Ggz9YclSSF+3vqqnaemrPxuL5Yd1TNw3z0UL8mKi61atGuU1U+LwBAzeTn6SoXo0EZf8s7GfnFigz0rHBMuK9J9er7adm+FE1YsEcRfh56sE9juRgN+mL9mT8GRQV5aeq1reXualRBcame+WmvjrDaAABqLT/Psmedv2+/mp5fpMhKnnXC/DzUvoGHlu1N0WPzdqu+v6ce6tdYrkaDpp9+2apv02DFhnrrri+3VfkcAADOicJBDfPpp59q8ODBCg8Pr7SP2WyW2Wy/zNBSUiSjq3tVhwdcMAwGKSO/SK8t2S+LVdp3Kld167jrxi71bYUDo0Ham5SjD387LEnan5ynxsHeuqpdGIUDAMC/YjAYlFFQrDeXH5TFWpZTguu467qOEXaFg2MZBbrjq22qY3JRz+ggPTEgRuO+30nxAABwzowGgzLzi/X60ni7nHNDpwhNX3dMIXXc9UDvKI3/fpeKSitY9gYAgCgc1ChHjhzRsmXLNHfu3H/sN3HiRD3//PN2bfX7j1aDAbdWZXhAjZWZX6wSi1WBXvbFs0Bvd6XnFVU4Ji2vSCWlVruluofT8hVcxyRXo0ElFqvScouUkJZvN+5wWr56xwaf9zkAAJxHVkGJSi1WBfwt7wR4uSk9r/whlVLZKrgSi33eOZJeoCBvd1vekaQSi1UnT5+nsz85T81C6+jqdmF6a8WhqpkMAKBGyyooe9YJ8HKzaw/0+nfPOkfS8xVUx9229VGgt7s+uamd7XtXo0Ft6/vqqnZh6v/umgq30QMA1C6cXFGDfP755woJCdGQIUP+sd+ECROUlZVld0X0GVlNUQI1T4nFqn1JOerY0N/WZpDUqaG/dp6seF/o7cezVT/AU389SSQy0FMpuWbbH2+2n8hWZICX3bgGgZ5KyuaAZACozUosVu1PzlWHBme2iDBI6tDAT7uSKs47OxNzFOHvYZd3GgR4KjW3yJZ3KmIwGOTmwq/sAFBblVis2n8qVx0j/5ZzIv0qPQNnx4nsf8w5m49madSMrbp9Zpzt2pOUo6V7UnT7zDiKBgAASRQOagyLxaLPP/9co0aNkqvrPy8EMZlM8vX1tbvYpgi13ZxNJ3RF2zANbhmqhoGeenRgjDzcjFq4o+wg46cva6p7ejay9Z8XlyhfD1eN69dEDQI81aNxoG7pFqm5W07a+ny96bhahfvolm4NFOHvoQHN6+rKNmH6fmtidU8PAFDDfLvlpC5vFapBzesqMsBTD/VtLA83Fy3enSxJmjAwWnf0iLT1X7A9ST4mV43tFaX6/h7q1ihAN3aO0PztZ3LKHT0i1SbcV6E+JkUFeemOHpFqV99Xy/alVPv8AAA1xzebT+ry1vV0aYu6ahjoqYf7N5Gnm4t+3lWWc568NEZ3XdzQ1n/BtiT5erjqgT6nc05UgG7qUl/z4spyTkFxqRLS8u2uwmKLsgtLyq24BoBzYjBw/dvLCbBVUQ2xbNkyHT16VLfddpujQwGc0vK9KfL3dNOdFzdUoLe7DiTnavy3O22HiIX6mmSxnnl1JjnHrIe+3aEH+jbRF7d2VGqOWd9sPqFZ64/Z+uxJytUT83fr3p5RurVHQyVmFerdFQf1y+k/CgEAaq9fD6TJz9NNo7tFKtDLTQdT8/T4/N22vBPiY7J7YzMlt0iPzd+tMT2j9OnIdkrJLdLcuETN3nTC1ifAy00TBkUr0MtdeUWlOpSap8fm79bmo1nVPT0AQA2yYn+q/L1cdVuPSAV6uSs+JU+PzN115lnHxyTrX591cov0yNzdGts7Sp/fUk+puWZ9tzVRX208XtmPAACgHIP1r9kFTqvHpNWODgEAUEuYTLx3AACoPqUc3goAqCarx1/k6BCckueA1xwdgtMpWPq4o0M4K7YqAgAAAAAAAAAANhQOAAAAAAAAAACADYUDAAAAAAAAAABgwybFAAAAAAAAAID/xsC76Rci/lUBAAAAAAAAAIANKw4uEFtnf+PoEAAAtcTupW84OgQAQC2Snlvk6BAAAABqHVYcAAAAAAAAAAAAGwoHAAAAAAAAAADAhsIBAAAAAAAAAACw4YwDAAAAAAAAAMB/YzA4OgJUAQoHDlZaWqrnnntOs2bNUlJSksLDwzV69Gg99dRTMvAfHXDOLurQRA/d0l8dWkQqrK6frn3oI/24cvs/jrmkY4xee3i4WjSpp+NJmXr1k8Wa9eN6uz53X9tTD43qp9AgX+3Yf0LjX/tWm3YdqcqpAACcxA/fz9F3X81QRnqqGkfH6r6HnlDTFq0r7Hv4ULxmfvK+Duzbo+Skk7r7gUd11XU32fWZ88Wn+mPVch0/kiB3k0ktWrfTbfeOU4OGjaphNgCAmuyXH77Rwu9mKSs9TZGNYzTqvkcV3axlhX1X/DxPvy37WceOHJQkRUU303W3jrH1Lykp0bfTpylu4x9KTjwhT+86atW+i264fawCgupW25wAADUbWxU52GuvvaZp06bpvffe0549e/Taa69p0qRJmjJliqNDA5yKt6dJO/af0LiJX59T/4bhQZo35R6t3rRfXa9/Ve999aumPXOj+ndvbutzzcAOeu3hq/Tyh4vU/cbXtH3/Cf3w/hjVDahTVdMAADiJVcsW6+Mpb+im2+7We5/NUePopvrf+HuVmZFWYX+zuVD1wuvrtnsfUEBQcIV9dsRt0tDh1+ntj2Zq4jsfqqSkRP976B4VFuRX5VQAADXc2pW/aNZH72j4yDv08tSZimwco1f/d7+yMtMr7L97+2b16DNQT02apuff/kxBdUP16pNjlZ6aLEkqMhcqIX6vrrrxdr08daYeemaSEo8f0RvPPlyd0wIA1HAGq9VqdXQQtdnll1+u0NBQffrpp7a2q6++Wp6enpo1a9Y538ez/diqCA9wSgVb3zvrioOXHrhSl17SUp1GvGJr++LVW+VXx1NXjn1fkrT6i0e0edcRPfTat5Ikg8Gg+MUvatqcVXrj86VVOwmgBtu99A1HhwA43IN3jlRss5Ya8/CTkiSLxaKbrxqoK665QdfdfPs/jr3l6sG66tqR5VYc/F1mRrquv7yPXp/6mVq363jeYgecTXpukaNDABzq6QdGq3FsC9069jFJZTnn/psu16Arr9UV140+63hLaanuvKafRt33qHoOGFJhn4P7dunpB0Zr8swfFRxS73yGDziVjo18HR2CU/IcxDPiv1Ww5BFHh3BWrDhwsB49emj58uXav3+/JGnbtm36/fffNXjwYAdHBlzYuraN0q/r99m1LV2zR13bREmS3Fxd1L55A634Sx+r1aoV6/epy+k+AIDaqbi4WAf27VH7zt1sbUajUe07ddOenf+8Td6/kZ+XK0ny8eUBFgBqq5LiYiUc2KtWHbrY2oxGo1q176IDu3ec0z3M5kKVlJSojk/l+SQ/L1cGg0Fe3qyuBgCU4YwDB3viiSeUnZ2tZs2aycXFRaWlpXr55Zc1cuRIR4cGXNBCg3x1Kj3Hri05PVt+Pp7yMLkpwNdLrq4uSv57n7RsNW0UWp2hAgBqmOzMDFlKS+UfGGTX7h8YpGNHE87Lz7BYLPrg3Ulq0aadGjWOOS/3BAA4n5zsTFkspfLzD7Rr9wsI1Mljh8/pHrM/naKAoGC74sNfFRWZNfvT99S990AKBwAAGwoHDvbNN9/oyy+/1FdffaWWLVsqLi5O48aNU3h4uEaNGlXhGLPZLLPZbNdmtZTKYHSpjpABAABQxaa++YoOHzqoN6dNd3QoAAAn9sPX07V25VI9/foHcnc3lfu+pKREk1+eIMmq2+5/ovoDBHBhMLCpzYWIf1UHe/TRR/XEE0/o+uuvV+vWrXXzzTfroYce0sSJEysdM3HiRPn5+dldJac2V2PUgPM7lZat0EAfu7aQQF9l5RSo0Fys1IxclZSUKuTvfYJ8lZSWXZ2hAgBqGF//ABldXJSZbn8QcmZ6mgICKz74+N+Y+uYrWr9mtSZN+Vh1Q1jlBgC1mY+vv4xGl3IHIWdlpMs/IKiSUWUWfjtTP3w9QxMmTlFkBavX/iwapJ5K0oSJ77HaAABgh8KBg+Xn58totP9ncHFxkcViqXTMhAkTlJWVZXe5hnJgHvBvrN+WoN5dmtq19evWTOu3l20xUVxSqq17jqlP1zN9DAaD+nSJ1Ybt52cbCgCAc3Jzc1NM0+aK27Te1maxWBS3eb2at2rzn+9rtVo19c1XtGb1Cr02+WPVC69/PsIFADgxVzc3RcU0066tG21tFotFu+I2KqZF60rH/fjNF5r31ad6/OXJahzbotz3fxYNkk4c1ZOvTpWPr39VhA8AcGJsVeRgQ4cO1csvv6zIyEi1bNlSW7du1VtvvaXbbrut0jEmk0kmk/0SQ7YpQm3n7emuJg3q2j43ighSm9gIZWTn61hShl64/wqFh/jpjqdnSpI+/u533XN9T7384JWasWCdeneO1dUD2uuqBz6w3WPyrBX6+IWbtXn3UW3aeVhjb+wjL0+TvliwrtrnBwCoWYZfd7PeePlpxTRrqaYtWmneN7NUWFiggUOGSZJef/F/CgoO0W33Piip7EDlowkHJZUddJmakqyD+/fK08tL4fUjJZWtNPh16SI9++o78vTyVnpaqiTJu04dmUwe1T9JAECNcNnwG/XBG8+rcWxzNWnaUovmzVZhYYF6DRwqSXp/0rMKDK6r628bK0n64esZ+m7mhxr7+EuqGxqmzPSyfOLh6SUPTy+VlJTo3RcfV0L8Xj36wtuyWEptfer4+MnVzc0xEwUA1CgUDhxsypQpevrpp3XfffcpOTlZ4eHhuvvuu/XMM884OjTAqXRo0VC/fPKg7fOkR66WJM38YZ3uenaW6gX7qkG9MweKHTmZpqvu/0CTHhmuMTf21olTmbr3ha+0bO0eW5/vftmi4IA6eubeIQoN8tH2fSd05Zip5Q5MBgDUPr36X6qszAzN/OR9ZaSnqnFMU7305vsKOH1gcvKpJBn+stdrWmqyxtx6ne3z97Nn6PvZM9S6fSe9/t6nkqSF876RJD029na7nzX+yRc0cMiVVT0lAEAN1b33QGVnZeq7Lz5UZkaaGjaO1RMvT5bf6a2K0lKSZDQabP2X/fS9SoqL9c5Lj9vdZ/hNd+qam+9SRmqyNq9bLUmacN9Iuz5PTfpALdqyowEAQDJYrVaro4PA/59n+7GODgEAUEvsXvqGo0MAANQi6blFjg4BAFBLdGzk6+gQnJLnpW85OgSnU7B4vKNDOCtWHAAAAAAAAAAA/huD4ex94HQ4HBkAAAAAAAAAANhQOAAAAAAAAAAAADYUDgAAAAAAAAAAgA2FAwAAAAAAAAAAYMPhyBeI254Z4+gQAAC1RKnF6ugQAAAAAABAFaJwAAAAAAAAAAD4bwxsanMh4l8VAAAAAAAAAADYUDgAAAAAAAAAAAA2FA4AAAAAAAAAAIANZxzUADk5OXr66ac1b948JScnq3379nr33XfVuXNnR4cGOJWeUQHqHxMoXw9Xncgy65vtSTqSUVhh326Rfrq5Y7hdW3GpReN+2GfXNqR5sC5qFCBPN6MOpRVoTlyiUvKKq2wOAADnsXDuHH0/e4Yy0tMU1SRW94x7XE1btK6w75GEeM36dJri9+1WclKi7rz/EQ279qZK7/3NrM8048PJunLEjbrrgceqagoAACfxyw/faOF3s5SVnqbIxjEadd+jim7WssK+K36ep9+W/axjRw5KkqKim+m6W8fY+peUlOjb6dMUt/EPJSeekKd3HbVq30U33D5WAUF1q21OAICajRUHNcAdd9yhpUuXaubMmdqxY4cGDhyo/v3768SJE44ODXAaHSJ8NLx1iH7em6pXf03Q8axCje0RqTruLpWOKSgu1YSf99uup5fE230/ICZIvRsHak5col5feVhFpRaNvShSrkZDVU8HAFDDrV6+RB+/96ZuHH23Jn8yW1HRsXr64fuUmZFeYX9zYaHqhUVo9N0PKiAw+B/vvX/PTi3+4TtFNYmtitABAE5m7cpfNOujdzR85B16eepMRTaO0av/u19ZmRXnnN3bN6tHn4F6atI0Pf/2ZwqqG6pXnxyr9NRkSVKRuVAJ8Xt11Y236+WpM/XQM5OUePyI3nj24eqcFgCghqNw4GAFBQX6/vvvNWnSJPXs2VPR0dF67rnnFB0drWnTpjk6PMBp9IsO0prDmVp3NEtJOUWaE5ekolKLujfyr3SM1Splm0ttV4651O77PtGBWrwvVdsTc3Uy26wZm07Kz8NVbcN8qng2AICabt7XM3Xp0OEaMGSYIqOaaOwjT8nDw0O//DS/wv6xzVvp9jHj1av/pXJzd6v0vgX5+Xr9hSd1/2PPqI4P+QYAIP089yv1uXSYeg+6QvUbNtbtD0yQyeShVUt+qLD/2Cde0oChI9SoSVNFRDbSXQ89JavVqp1bN0qSvLzr6MlXp6pbrwEKb9BIMc1ba/SYR5VwYI9Sk5Oqc2oALhQGA9e/vZwAhQMHKykpUWlpqTw8POzaPT099fvvvzsoKsC5uBikBv4e2puSZ2uzStqbkqfGgZ6VjjO5GvXioGi9NChad3errzAfd9t3QV5u8vNw1b6/3LOwxKLDGQWK+od7AgAufMXFxYrfv0ftOna1tRmNRrXr1FV7d23/f9172tuvqHP3S9S+U7f/b5gAgAtASXGxEg7sVasOXWxtRqNRrdp30YHdO87pHmZzoUpKSlTHx7fSPvl5uTIYDPLyrvP/jhkAcGGgcOBgPj4+6t69u1588UWdPHlSpaWlmjVrltauXavExMQKx5jNZmVnZ9tdpcVF1Rw5UHPUMbnKxWgot2Igp7BUvqaKj3I5lVukWVsS9eG6Y5q+6aQMkh7u1Uj+HmX9fU//b3ZhBff04HgYAKjNsrMyZCktlX9gkF27f0CQMtJS//N9Vy1brPj9ezX67gf+vyECAC4QOdmZslhK5ecfaNfuFxCozIy0c7rH7E+nKCAo2K748FdFRWbN/vQ9de89kMIBAMCGwkENMHPmTFmtVkVERMhkMmny5Mm64YYbZDRW/M8zceJE+fn52V2bv/+omqMGnFtCeoE2HMvS8Syz4tPy9dH648o1l+riqABHhwYAqIVSTiXpo8mT9OjTr8jdZHJ0OACAC8QPX0/X2pVLNf6Z1+XuXj6/lJSUaPLLEyRZddv9T1R/gACAGovXZmuAJk2aaNWqVcrLy1N2drbCwsJ03XXXqXHjxhX2nzBhgsaPH2/X9tjihOoIFaiRcs0lKrVY5WOyPwjZx8NF2eaSc7qHxSodyypUXe+yfaezC8vG+f7tHj4eLjqeaT5PkQMAnJGvX4CMLi7KTLd/0zMzI00BQf988HFl4vftVmZGuh644wZbm6W0VDu3bdGPc7/W/OUb5OLi8g93AABciHx8/WU0upQ7CDkrI13+AUGVjCqz8NuZ+uHrGXry1amKbBxT7vs/iwapp5L0v0nvs9oAAGCHFQc1iLe3t8LCwpSRkaElS5boyiuvrLCfyWSSr6+v3eXi5l5hX6A2KLVKxzIL1bSut63NIKlpXW8dSi84p3sYJIX7mpR1ukiQll+srMISu3t6uBrVKMBTCed4TwDAhcnNzU3Rsc0Vt3mDrc1isShu8wY1a9nmP92zbaeumjrjO0357GvbFdOshXoPuExTPvuaogEA1FKubm6KimmmXacPNpbKcs6uuI2KadG60nE/fvOF5n31qR5/ebIax7Yo9/2fRYOkE0f15KtT5ePrXxXhAwCcGCsOaoAlS5bIarWqadOmio+P16OPPqpmzZrp1ltvdXRogNNYHp+mWzqG62hmoQ5nFKhvk0CZXIxadyRTknRLxzBlFpToh90pkqTBTYOVkFGglNwiebm5qH9MoAK93LTmcKbtnr/Gp+vSpsFKzi1SWn6xLm9eV1mFJdqWmOOAGQIAapKrrrtZb73ytGKatVBs81Za8O2XKiwo0IDLyl78ePOlpxQUHKLR95SdV1BcXKyjhw9KkkqKS5SWkqyDB/bK09NL4fUj5eXlrUaNo+1+hoeHp3z9/Mq1AwBql8uG36gP3nhejWObq0nTllo0b7YKCwvUa+BQSdL7k55VYHBdXX/bWEnSD1/P0HczP9TYx19S3dAwZaaXnb/j4eklD08vlZSU6N0XH1dC/F49+sLbslhKbX3q+PjJ1c3NMRMF4LwMvJt+IaJwUANkZWVpwoQJOn78uAIDA3X11Vfr5ZdflhvJGjhnW07kyMeUrMub15WPyUUnssyauuao7cDkAE83Wa1n+nu5GzWyfZh8TC4qKLboaGah3lx1WEk5Zw4aX3ogTe6uBt3YPkyebkYdTCvQ1DXHVGKx/v3HAwBqmZ79BikrM0OzPp2mjPRUNY5uqhfeeF8Bpw9MTjmVKIPBYOufnpqsB2673vZ57pwvNHfOF2rdrqNenfJptccPAHAe3XsPVHZWpr774kNlZqSpYeNYPfHyZPmd3qooLSVJRuOZnLPsp+9VUlysd1563O4+w2+6U9fcfJcyUpO1ed1qSdKE+0ba9Xlq0gdq0bZjFc8IAOAMDFarlb+AXQDGzNvj6BAAALXEQxc1cnQIAIBaJCu/2NEhAABqiY6NfB0dglPyvPw9R4fgdAoWjnV0CGfFOhIAAAAAAAAAAGBD4QAAAAAAAAAAANhQOAAAAAAAAAAAADYcjgwAAAAAAAAA+G8MvJt+IeJfFQAAAAAAAAAA2LDi4AIR4evu6BAAALXE5DVHHB0CAKAW8THxvhsAoHp0bOTr6BCAGoPfwAAAAAAAAAAAgA2FAwAAAAAAAAAAYEPhAAAAAAAAAAAA2HDGQRVbvXq1Xn/9dW3evFmJiYmaN2+ehg0bZvvearXq2Wef1ccff6zMzExddNFFmjZtmmJiYhwXNOCk9q76UTuXfq+C7AwF1o9Sl2vvVd1GTc86LmHTKq3+7DU1aNNNfe95psI+a7+aov2/L1Lna+5Si77DznPkAABndEmUv/rGBMnX5KITWWZ9t/2UjmYWnnVchwgfje4coe2JOfpk/Qlbu4/JRVe0DFGzul7ydHPRwbR8fbf9lFLyiqtyGgAAJxD/20/av2KuCnMy5BcepfZX363AhrFnHXdsy2qt/+J1hbfqqh53PGX3XXbSMe34cbpSDu6U1VIq39AG6n7bBHkFhFTVNABcqAwGR0eAKsCKgyqWl5entm3baurUqRV+P2nSJE2ePFkffPCB1q9fL29vbw0aNEiFhWd/6ARwRsKmVdr4/cdqO+RGDZ0wRQERjbVsytMqyMn8x3G5aae0ae4nColuWWmfI3FrlHJ4nzz9gs5z1AAAZ9U+wkdXtQrR4r2pen3lYZ3INuu+Hg1Ux93lH8cFerlpWKsQxafml/vujq71FeTlpo/Xn9CklYeVnl+sMRdFyt2FBzEAqM2ObflN2+d/ohaX3qD+j7wj/4go/fbBMyo8y7NOXtopbV/wmYIbl3/WyU1N1MrJj8sntL56jX1FAx6bouaDrpfR1b2KZgEAcDYUDqrY4MGD9dJLL+mqq64q953VatU777yjp556SldeeaXatGmjL774QidPntT8+fOrP1jAie1eMU8xF12qmO4D5R8Wqe43jJWLu0nxa36pdIzFUqrVn09SuyE3ySc4rMI+eZmp2vDNNF0y+lEZXf75j0EAgNqjT5NArTmSpfVHs5SUU6Rv4pJUVGpRt4Z+lY4xSLqlY5h+3puqtHz7VQR1vd0UFeipb7Yl6WhmoZJzi/TNtlNyczGoY33fKp4NAKAm279yvqK6D1Kjrv3lWy9SHUbcJxd3kw6vX1rpGKulVBtmvakWg2+Ud1Boue93/jRT9Vp0VJsrblVA/SaqExym8FZd5eHjX4UzAQA4EwoHDpSQkKCkpCT179/f1ubn56euXbtq7dq1DowMcC6lJcVKOxqv8KbtbG0Go1HhzdopJWFvpeO2/zxbHj7+irloUIXfWy0W/T79DbXsf7UCwhue77ABAE7KxSA18PfQvpQ8W5tV0r6UfEUFelY67tJmwcoxl2rdkaxy37m6lP1aXlJqtbtnSalVjYO8zlvsAADnYikpVubxeIXEtrW1GYxGhca2U9rhfZWO271kjkx1/BTVbWC576wWi5J2b1KduhH6bdoz+vGpm7T8rYd1Yjt/hwAAnEHhwIGSkpIkSaGh9tX/0NBQ23cAzs6cmy2rxSIP3wC7dg8ffxVkp1c45lT8Lh1Ys0Q9Rj5Q6X13/vKtDEYXNe9z5XmNFwDg3LxNrnIxGpRTWGLXnmMukY+p4iPEGgd6qntDP82Jq/h3vFM5ZqXnF2toy7rydDPKxSD1jwlUgJebfE2seAOA2sqcd/pZx8f+Wcfk46/C7IwKx6Qe2qXD65aq43VjK75nbpZKzAXat/w7hTbvoEvueUERbbpp7ecTlRK/47zPAQDgnDgc2QmZzWaZzWa7tpIis1zdTQ6KCHAuxYX5+n3GG+o+8gF51Kl4S4m0owe0e+UPGvrEZBk45AcA8P9gcjXq5o5hmr01SXlFpRX2sVilT9cf1w0dwvTakFiVWqzan5KnXUm5nDUHADhnxYX52jDrLXW4bqxMlTzrWK0WSVJ4q66K7T1MkuRfv7HSEvbq0B+LVTe6dXWFCwCowSgcOFC9evUkSadOnVJY2Jn91U+dOqV27dpVOm7ixIl6/vnn7dr63ny/+o16sEriBGo6Ux1fGYzGcm/cFOZkytM3sFz/nJRE5aad0oppZ/47slrLtob4YuzlGvbsxzoVv0uFOZn67qlRZ/pYLNr0/SfavWK+rnlpetVMBgBQ4+WZS1RqscrHw/5XaR+Tq3LMJeX6B3u7KcjbXXd1q29r+7MY8PYVTfXyskNKzS/WsSyzJv16WB6uRrkaDcotKtX4ng11LLOwSucDAKi5TN6nn3Vy7J91zDmZ5VZcS1JeapLy05O15pMXbW1/Put8P/5KDXryA3n5B8tgdJFvvUi7sT6hDZSWsLsKZgHggmdgU5sLEYUDB4qKilK9evW0fPlyW6EgOztb69ev17333lvpuAkTJmj8+PF2be/8cbwqQwVqNBdXNwVFRitx3zZFtushqeyP/In74tSs19By/f3qNdAVT71v17b1hy9UbC5QlxF3yzsgWI279FVYs3Z2fZZOeVpNuvZVdPcBVTYXAEDNV2qVjmUWKraut3Yk5koqO/i4aV0vrT5UftuIUzlFmrj8kF3bkBZ1ZXI1au72U8oosD8oubCk7E3Qut5uigzw0M97UqpmIgCAGs/o6ib/+tFKPrBdEW26Syp71knev01NLhlSrr9PaH0NePw9u7ZdP81UsblA7YbfJS//YBld3RQQGaOcZPu/I+SmnJBXQN2qmwwAwKlQOKhiubm5io+Pt31OSEhQXFycAgMDFRkZqXHjxumll15STEyMoqKi9PTTTys8PFzDhg2r9J4mk0kmk/22RGxThNquRd+r9PsXbymoYYyCG8Zqz68LVGI22/7I/9v0N+TlH6SOw26Vi5u7AsIb2Y1396ojSbZ2lzpu8qjja9fH6OIiT98A+YXWFwCgdvv1YLpu6hCmYxkFOpJRqN5NAuTuYtT6o2UHH9/UIUxZhSX6cXeKSixWJeYU2Y0vKC4rDvy1vV24j3KLSpWRX6xwX5OGtwnV9sRc7U3Jr76JAQBqnNjew7Txq7cV0CBagZGxOrBqgUqKCtWoa39J0oZZb8nTL0ith46Si5u7/MIa2o138/SWJLv2pn2Ha92MSQpu0koh0a2VtHeLEndtUK+xr1TfxAAANRqFgyq2adMm9enTx/b5z5UCo0aN0vTp0/XYY48pLy9Pd911lzIzM3XxxRdr8eLF8vDwcFTIgFOK6tRLhbnZils4UwXZGQqs31j9x74gz9PLd/MyUmQwsnQOAHB+bD2RozruLrqseV35mlx0PMusaWuPKcdcdoZBgJebrP/ynr4errqqVYh8PFyVXViiDceytGRv6vkPHgDgVBp0uETmvCztXvSlCrMz5BfRWBff/bztwOT8jJR/fS5bRJvu6jDiPu1b9q3i5n4kn7oR6n7rBAU3blkVUwAAOCGD9c/N7uDUXll+0NEhAABqiaSc4rN3AgDgPPEx8fIHAKB6vDw41tEhOCXPKz90dAhOp2DB3Y4O4az4DQwAAAAAAAAAANiwVREAAAAAAAAA4L/5l9ulwTmw4gAAAAAAAAAAANhQOAAAAAAAAAAAADYUDgAAAAAAAAAAgA1nHFwg2ob6ODoEAEAt0beRu6NDAADUIoUlFkeHAAAAUOuw4gAAAAAAAAAAANiw4gAAAAAAAAAA8N8YeDf9QsS/KgAAAAAAAAAAsKFwAAAAAAAAAAAAbNiqqIqtXr1ar7/+ujZv3qzExETNmzdPw4YNs30/d+5cffDBB9q8ebPS09O1detWtWvXzmHxAs7s90Vz9euC2crJTFd4oya66vZxahjTosK+29et0rK5M5WaeEKW0hIFh9VX76HXqVPvS+36rPllgY4f3Kf83Gw9/MZnioiKqa7pAABquGU/fqtF33+prIw0NYiK0U33PqwmTVtW2Hfl4vn6Y/nPOn7kkCSpUXQzXTPq3kr7T5/yqn5dNE833jVOg4bdUGVzAAA4h19/+k5L532prIx01Y+K1vV3jVdUbMU55LclC7Tu10U6eTrnREY31bCb77Hrf/cV3SscO3z0GA0aftP5nwAAwOmw4qCK5eXlqW3btpo6dWql31988cV67bXXqjky4MKy9Y/lWjD9PQ26drTGv/6JwhtG66MXH1ZOVkaF/b3q+Kr/1bfowYnT9Mhb09Wlz2WaM/VV7d263tanqLBAUc1a6/Kb76muaQAAnMT6VUs1++N3deWNt+v5KTPUoHG03nj6QWVnplfYf+/2LerWa6CemPi+nn7zEwUGh+iNpx5Qempyub6b1qzUwX075R9Ut6qnAQBwAht/W6bvPp2sIdffrv+9PV31G8Vo8rMPVZpz9u/cos49B2j8y+/p8dc/UkBwqN59dpwy0s7knEkzFtpdtzzwPxkMBnXo0ae6pgUAqOFYcVDFBg8erMGDB1f6/c033yxJOnz4cDVFBFyYVv34tbr1H6oufYdIkq65+xHt3rJWG5b/pH4VvDET3aq93eeel4/QxpWLlLB3h5q17ypJttUH6cmJVRw9AMDZLJ43W70uvVI9Bw6VJI0e+4S2bVyj1b/8qMuvHVWu/z2PvWD3+fYH/6dNf/yq3ds26eJ+l9na01OTNWvaG3rkpcl6+9nxVTsJAIBTWLZgti4eeIUu6n+5JGnkfY9p56Y/tGbZQl16zS3l+t/+8PN2n28ZO0Fb1/yqvds2qXvfspzjFxBk12fb+t8U27qD6taLqKJZAACcDSsOADi9kuJiHT+4X7FtOtrajEajYtt00uH9u8463mq1av/2TUo5eUyNW7StylABABeAkuJiHY7fq5btutjajEajWrbrrPi9O87pHmZzoUpLS1Wnjq+tzWKx6KM3ntNlV9+k+g0bn/e4AQDOp6S4WEfj96l5u862NqPRqGZtO+vQ3p3ndI8ic6FKS0vk7eNb4ffZGenasekPXTxg6HmJGUAtZDBw/dvLCbDiwAmZzWaZzWa7tuIis9zcTQ6KCHCsvJwsWSyl8vEPtGv38QtQ8okjlY4ryMvV83cNV0lxkYxGF11953g1bdu50v4AAEhSTnamLJZS+QXY5x0//0AlHqs87/zVN59PlX9gsFq0P5N3fvr2CxldXDTgyuvOa7wAAOeVezrn/P1Zx9c/UEn/8KzzV3NnvC+/wLpqXsmzztoVP8vD00vtu/f+/4YLALiAsOLACU2cOFF+fn521zefTHZ0WIDTMXl66eE3PtNDr32sy268Uwumv6f4nVsdHRYA4AK38JsZWr9qqR54+jW5n37xI+HAHi394WvdOf4ZGZzkDSQAQM23+LsvtPG3pbp3wquVvmz4x7If1aXXIF5GBADYYcWBE5owYYLGj7ff83ZFfJaDogEcz9vHT0aji3L+djhYTlaGfPyDKhlVtsS3blh9SVJEVIxOHT+s5XNnljv/AACAv/Lx9ZfR6KKsDPu8k5WZLr/AwEpGlfn5+1n66dsv9NjL7ykyKsbWvn9XnLIzMzR+1JW2NoulVLM/maxf5n+tN6fPP69zAAA4hzqnc87fn3WyM9Pl9w/POpL0y7wvtfj7mRr3wmTVj4qusM+BXXE6deKo7nzspfMWMwDgwkDhwAmZTCaZTPZvAri5FzooGsDxXN3cVL9JrA7s2KzWXXtKKtsn+sD2zbp48PBzvo/ValVJSXFVhQkAuEC4urmpUXQz7d62UR179JJUlnd2x21U/6EjKh3307cz9ePXn+uRl95VVGxzu+8u6nuZ3ZkJkvT60w/qor6DdcmAy8//JAAATsHVzU2R0U21Z9smtet2Jufs3b5JfYZcU+m4Jd/P0s/fTteDz72jRjHNK+33x9IfFRndTA3+UswGAECicFDlcnNzFR8fb/uckJCguLg4BQYGKjIyUunp6Tp69KhOnjwpSdq3b58kqV69eqpXr55DYgacUa+h12n2lFfUoEkzRcY016qF36rIXKAufS+TJH01+SX5Bgbr8pvukSQtmztTDZo0U3BohEpKirRnyzptWrVE19z1sO2eeTnZykw9paz0VElS8smjkiQf/0D5Bvzz2z0AgAvbpVfdoI/fekFRMc3VOLaFliyYI7O50PZH/g/feE4BQXV17a1jJJWdXzB35ke657EXFBwSrsz0NEmSh6enPDy9VMfXT3V8/ex+hquLq/wCAhVWv2H1Tg4AUKP0v/IGTX/nRTWKbqZGsS21/Ic5KiosVI9+ZTnn87efl39gXV016j5J0uLvZ+rHLz/W7Y88r6DQMGVllOUck0dZzvlTQX6eNv+xQtfcdn/1TwoAUONROKhimzZtUp8+fWyf/9xiaNSoUZo+fbp++OEH3Xrrrbbvr7/+eknSs88+q+eee65aYwWcWfuL+ik3K1OL53yq7Mx0RURF666n3rAdIpaRespuz+iiwkJ9/9FbykxPlpu7SaERDTXywafV/qJ+tj67Nv6uOVMn2j7PfOs5SdLAa2/VpdfdVj0TAwDUSF17DVB2dqbmzvxIWRlpimwcq0deeEd+pwvL6SmnZDSeOU5sxU9zVVJSrPdemWB3n2E33qGrbrqzWmMHADiXzpf0V25Whn746hNlZ6SpfuMYPfDc2/INKHvWSU85JYPhTM5Zvags53z46pN297n8+ts19MY7bJ83rl4qq9WqLj0HVs9EAFywOKPrwmSwWq1WRweB/7+fdiY7OgQAQC0R5Onu6BAAALVIYYnF0SEAAGqJ3k3/+bwqVMzr6s8cHYLTyf++5r+Qajx7FwAAAAAAAAAAUFtQOAAAAAAAAAAAADYUDgAAAAAAAAAAgA2FAwAAAAAAAAAAYOPq6AAAAAAAAAAAAM7JYDA4OgRUAQoHF4gFe1IcHQIAoJbgd0IAQHWyWh0dAQCgtujdNNDRIQA1BlsVAQAAAAAAAAAAGwoHAAAAAAAAAADAhsIBAAAAAAAAAACw4YyDKrZ69Wq9/vrr2rx5sxITEzVv3jwNGzZMklRcXKynnnpKP//8sw4dOiQ/Pz/1799fr776qsLDwx0bOOCEejcJ1MCmQfLzcNXxzELN3pqkwxkFFfbt3tBft3aJsGsrLrVozNw9kiQXg3Rlq1C1DqujYG93FRSXas+pPM3dcUpZhSVVPhcAQM3Xu0mgBsSezjtZhZpzlrwzunP5vDN23h7b5/bhPurZJFCR/h6qY3LVi0sP6nhWYZXOAQDgHHjWAQBUNwoHVSwvL09t27bVbbfdpuHDh9t9l5+fry1btujpp59W27ZtlZGRoQcffFBXXHGFNm3a5KCIAefUqb6vRrQN1ZdbEpWQVqB+sYF6sGdDPbP4gHLMpRWOKSgu1dOL4m2frTpz8p67i1GRAR5auDtFxzML5eXuouvb1dOYiyL1yvJDVT4fAEDN1qm+r65pE6qvtiQqIb1A/WIC9cAlDfXskn/OO88srjjvSJK7q1HxqfnadCxLt3SK+PtwAEAtxbMOgBrP4OgAUBUoHFSxwYMHa/DgwRV+5+fnp6VLl9q1vffee+rSpYuOHj2qyMjI6ggRuCAMiA3S7wkZWnM4U5L05eZEtQ7z0UWNArR4X2qFY6xWKdtc8Rs1BSUWvbP6iF3bV1sT9b/+TRTo6ab0guLzGj8AwLn0/zPvHMmUJH25JVGtwnzUo1GAlvyHvCNJ649mSZKCvNzOe7wAAOfFsw4AwBEoHNQwWVlZMhgM8vf3d3QogNNwMRgUGeCpRXvP/NJslbTnVJ4aB3lWOs7katTEy2JkMBh0NKNA83YmKzHbXGl/LzcXWaxW5RdX/FYPAKB2cDEYFOlfPu/sPYe888rg03kns0Dzz5J3AADgWQcA4CgcjlyDFBYW6vHHH9cNN9wgX19fR4cDOI06Jhe5GA3K/tt+nDmFJfLzqLg+eirHrBmbTmjqH8f02frjMhgMeqJvlPw9K+7vajRoeJtQbTyapcISy3mfAwDAefyZd3L+lneyzf+cd77YdELvrzmmzzYcl1EGPd6n8rwDAIDEsw4AwHEoHNQQxcXFuvbaa2W1WjVt2rR/7Gs2m5WdnW13lRYXVVOkwIXhUHqB1h3J0vGsQu1PzdcHa44qx1yino0Dy/V1MUh3d68vg8q2ogAA4N86lF6gdUfL8s6B1HxNW1t53gEA4P+DZx0AwPlA4aAG+LNocOTIES1duvSsqw0mTpwoPz8/uytu3sfVFC1Q8+SaS1Vqscr3b2/c+Hi4Kquw8r2k/6rUKh3LKFRIHXe7dheDdFf3Bgr0ctfbq4/wBg4AwJZ3fP6Wd3xN5553LFbpWGah6nq7n70zAKDW4lkHAOAoFA4c7M+iwYEDB7Rs2TIFBQWddcyECROUlZVld7W76s5qiBaomUqtVh3NKFCzEG9bm0FS8xBvHUorOKd7GCRF+Hkoq/DMQWB//iIdUsddb686rLwi9vsEAJzOO5kFav63vNPs3+YdXw9lF3IAJQCgcjzrAHAGBoOB619ezoBNVatYbm6u4uPjbZ8TEhIUFxenwMBAhYWF6ZprrtGWLVu0cOFClZaWKikpSZIUGBgod/eK30AzmUwymUx2bS5uvK2G2m3p/jTd2iVCRzIKlJBeoP4xQXJ3NeqPwxmSpFs7RyizoFjzdiZLkoY0r6uE9Hwl5xbJy81FA5sGK9DbTb8fypT055LdBooM8NR7vx+R0WCQr6ns/2XmFZWq1Gp1yDwBADXDsv1pGt05QoczCnQ4vUD9TuedNafzzujTeWf+X/LOofR8peQWydPNRQNjT+edhEzbPb3cXBTo5Wbbg7qeT9nvd9mFJco2n9tbpQCACw/POgAAR6BwUMU2bdqkPn362D6PHz9ekjRq1Cg999xz+uGHHyRJ7dq1sxv366+/qnfv3tUVJuD0Nh3Plo/JVVe0DJGvh6uOZxZq8m9HlGMue3Mm0MtNVp35Bdjb3UU3dwyXr4er8otLdTSjUK+tSFBijlmS5O/ppnYRZduGPTMw2u5nvbEyQftT8qtpZgCAmmjT8WzVMbnqihan805WoSb//re885c/vHi5u+jmDvZ5Z9KvZ/KOJLUN99HozhG2z3d2ayBJ+nF3shbuTqmmmQEAahqedQAAjmCwWiklXwju+naXo0MAANQSTrKqEgBwgeCJFQBQXT4a0dLRITilOtdOd3QITif3m9GODuGsOOMAAAAAAAAAAADYUDgAAAAAAAAAAAA2nHEAAAAAAAAAAPhPDOxne0FixQEAAAAAAAAAALChcAAAAAAAAAAAAGzYqugC0a2Rj6NDAADUErH+5BwAQPXJMhc7OgQAAIBahxUHAAAAAAAAAADAhsIBAAAAAAAAAACwYasiAAAAAAAAAMB/YjAYHB0CqgArDgAAAAAAAAAAgA0rDqrY6tWr9frrr2vz5s1KTEzUvHnzNGzYMNv3zz33nObMmaNjx47J3d1dHTt21Msvv6yuXbs6LmjASW1ZukDrf/pWeVnpColsov63jFF4k2YV9t238Tet+2G2Mk6dlKW0VAGh4ep82TVqdfEAW5+iwgKt+voT7d+0RoW52fKrW08dBw1T+35Dq2tKAIAabMXC77R47ixlZaSrQVS0brz7YTVu2rLCvqsWz9faFYt04sghSVLD6KYafsu95fqfPJag7z6fqv07t6q0tFThkVG6b8JEBYXUq/L5AABqrt8XzdWvC2YrJzNd4Y2a6Krbx6lhTIsK+25ft0rL5s5UauIJWUpLFBxWX72HXqdOvS+167PmlwU6fnCf8nOz9fAbnykiKqa6pgMAcAIUDqpYXl6e2rZtq9tuu03Dhw8v931sbKzee+89NW7cWAUFBXr77bc1cOBAxcfHq27dug6IGHBOe9at1IovP9TAWx9QeHRzbVo8V9+8NkF3vv6ZvP0CyvX39PZV9ytuVGB4A7m4uung1nX6+aM35OXrr8ZtOkuSVnz5gY7sitPQe5+QX91QJezYrF+mT1Yd/yDFdOxR3VMEANQgG1Yv1defvKubxzyuxk1baumCOXr7mXF6+cOv5esfWK7/vh1b1KXXAEU3byM3N3ct+n6m3nrmQb049SsFBIdIkpITj+vVx+7WJQOG6sqRd8rTy1snjx6Sm7t7dU8PAFCDbP1juRZMf08j7n5YkTEttHrht/roxYf1xJSv5FPBs45XHV/1v/oWhUZEysXVTbs3rdGcqa+qjl+AmrUve0mxqLBAUc1aq12PPvpm2qTqnhIAwAlQOKhigwcP1uDBgyv9/sYbb7T7/NZbb+nTTz/V9u3b1a9fv6oOD7hgbFz0vdr2Gaw2vcreohl064M6GLdeO1YtUbcrri/XP7JFW7vPnS4drp2/LdXxfbtshYMTB3ar1SUDbH3b9R2iuBU/KfHQPgoHAFDL/TJ/tnoOulIXD7hcknTzmMe1feMa/b50oS4bcUu5/nc9+oLd59H3P6nNf/yqPds2qUe/yyRJc7/4QK079dCI2+639QsJq1+FswAAOINVP36tbv2HqkvfIZKka+5+RLu3rNWG5T+p3/CbyvWPbtXe7nPPy0do48pFSti7w1Y4+HP1QXpyYhVHDwBwVpxxUIMUFRXpo48+kp+fn9q2bXv2AQAkSaUlxUpK2K+GLTvY2gxGoxq17KAT8bvPOt5qterwzi1KTzquBs1a29ojYloofsta5aSnymq16sjuOGUkHVdU645VMg8AgHMoKS7Wkfh9at6us63NaDSqRbvOOrh3xzndw2wuVGlpqbx9fCVJFotF2zetUb3wSL319IMaN3KwXhp/m7asXVUlcwAAOIeS4mIdP7hfsW3OPIMYjUbFtumkw/t3nXW81WrV/u2blHLymBq34O8MAIBzx4qDGmDhwoW6/vrrlZ+fr7CwMC1dulTBwcGV9jebzTKbzXZtxUVmubmbqjpUoEbKz8mS1WIptyWRl1+A0hKPVTrOnJ+nqfdfr9KSYhmMRg0c/YBdUaD/LWO05NN39P4DN8jo4iKDwahLb39IDZq1qbK5AABqvpzsTFkspeW2JPL1D1Di8cPndI/vpk+Vf2CwWpwuPuRkZchckK+fv/tCV918t665dYx2bl6n9195Qo++MlVNW3c4yx0BABeivJwsWSyl8vlbzvHxC1DyiSOVjivIy9Xzdw1XSXGRjEYXXX3neDVt27nS/gDw/2EwGBwdAqoAhYMaoE+fPoqLi1Nqaqo+/vhjXXvttVq/fr1CQkIq7D9x4kQ9//zzdm1X3DFOV971UHWEC1ww3D08devLH6jIXKAju7ZqxZcfyL9umG1ros2/LNDJ+D26evwL8g0O1bG927V0xhTVCQhSo1b8AQcA8N/8/O0X2rB6mR6bONX24ofFYpEkte/WUwOH3SBJimwcq/g927Vy0TwKBwCAf8Xk6aWH3/hMRYUFOrBjsxZMf09BoeHltjECAKAyFA5qAG9vb0VHRys6OlrdunVTTEyMPv30U02YMKHC/hMmTND48ePt2mbvOFUdoQI1kpePnwxGo/KyMuza87MyKjwY+U8Go1EB9SIkSaENo5V24qjW/jhbkS3aqrjIrNXffKbh455Tk9P7gIZENlbykYPa8NO3FA4AoBbz8fWX0eii7Mx0u/bszAz5BQT949jFc7/Uz999oUdemqIGUTF293RxcVFYg0Z2/cMaNFL87m3nLXYAgHPx9vGT0eiinL/lnJysDPn4V55zjEaj6p4+JyciKkanjh/W8rkzKRwAAM4ZZxzUQBaLpdxWRH9lMpnk6+trd7FNEWozF1c31YuK1ZFdW21tVotFh3dtVUR0i3O+j9VqVWlxsSTJUlIiS2mJZLRfbmcwushqtZyfwAEATsnVzU0No5tqz7aNtjaLxaI92zaqyV/Oyvm7Rd/N1MI5n+mh599Ro5jm5e7ZKKaFkk4ctWs/deKYgkLCzu8EAABOw9XNTfWbxOrAjs22NovFogPbN6tRbMtzvo/ValVJSXFVhAgAuECx4qCK5ebmKj4+3vY5ISFBcXFxCgwMVFBQkF5++WVdccUVCgsLU2pqqqZOnaoTJ05oxIgRDowacD6dB1+tnz6cpHpRsQpr0lSbFs9TsblQrXsNkiQt/OA1+QQEq9d1t0uS1v4wW/WiYhUQGq6S4iId2rZBu/5YpoGjH5Akmby81aBZG62c/bHc3EzyDQ7Rsb3btev3peo78h6HzRMAUDMMHHaDPn37RTWKaa6o2BZatuBrmQsLdVH/IZKkT958XgFBdXX16PskST9/94UWzPpYdz76vIJDw5SVkSZJMnl4ysPTS5J06fCR+mDSU4pt2U7N2nTUzs3rtG3D73ps4lTHTBIAUCP0GnqdZk95RQ2aNFNkTHOtWvitiswF6tL3MknSV5Nfkm9gsC6/qew5ZdncmWrQpJmCQyNUUlKkPVvWadOqJbrmrodt98zLyVZm6illpadKkpJPlhWuffwD5XuW1XMAgNqBwkEV27Rpk/r06WP7/OcWQ6NGjdIHH3ygvXv3asaMGUpNTVVQUJA6d+6s3377TS1bnvubAwCk5t16Kz87U79/P0N5WRkKadhE1z72im2rouzUZLvDeorNhVo6fbJy0lPl6m5SYHgDXX7vE2rerbetzxVj/6dVX3+qH6dNVGFujnyDQ3XJiFvVrt/l1T09AEAN06XnAOVkZWr+rI+VnZGmBo1j9NALb9u2KkpPSZLhL6vWVv48VyUlxZo28Um7+1xxw+26cuSdkqQOPXrr5vse18/fztDsj95WvYhI3ffkRMW0bFdt8wIA1DztL+qn3KxMLZ7zqbIz0xURFa27nnrDdmByRuopu2edosJCff/RW8pMT5abu0mhEQ018sGn1f6ifrY+uzb+rjlTJ9o+z3zrOUnSwGtv1aXX3VY9EwMA1GgGq9VqdXQQ+P/7bOPRs3cCAOA8iPX3cXQIAIBaJMvM9ioAgOoxpFWIo0NwSn43znR0CE4n66ubHR3CWXHGAQAAAAAAAAAAsKFwAAAAAAAAAAAAbCgcAAAAAAAAAAAAGwoHAAAAAAAAAADAhsIBAAAAAAAAAACwcXV0ADg/4lMKHR0CAKCWCPX0cHQIAIBaJLXQ7OgQAADAPzAYDI4OAVWAFQcAAAAAAAAAAMCGwgEAAAAAAAAAALChcAAAAAAAAAAAAGw446CKrV69Wq+//ro2b96sxMREzZs3T8OGDauw7z333KMPP/xQb7/9tsaNG1etcQIXgoO//6T9K+aqMCdDfuFRajf8bgU2jD3ruGNbVmvDzNcV1qqretz+lK39+4eGVti/1dBb1bTv8PMWNwDAOf2+aK5+XTBbOZnpCm/URFfdPk4NY1pU2Hf7ulVaNnemUhNPyFJaouCw+uo99Dp16n2pXZ81vyzQ8YP7lJ+brYff+EwRUTHVNR0AQA226ZcFWv/TN8rNSldoZBMNHDVW4U2aVdh378bftGbBbGWcOiFLaakCQiPU9bJr1PqSAbY+r4zsX+HYvjfcqW6XX1clcwAAOBcKB1UsLy9Pbdu21W233abhwyv/Q+O8efO0bt06hYeHV2N0wIXj2NbftH3+J2o/YowCG8bqwKof9PuHz2jghA/k4eNf6bi89FPa8cNnCm7cstx3Q57/wu5z0p7N2vz1ZEW06XG+wwcAOJmtfyzXgunvacTdDysypoVWL/xWH734sJ6Y8pV8/ALK9feq46v+V9+i0IhIubi6afemNZoz9VXV8QtQs/ZdJUlFhQWKatZa7Xr00TfTJlX3lAAANdTutb9q+Zcf6NLbHlR4k+bauPh7zXn1Cd39xufyriDneHr76KIrb1RQeAO5uLrpwNZ1WvjR6/L281fjNp0lSQ9M/cZuzMFtG/TTx2+qaZdLqmVOAICaj8JBFRs8eLAGDx78j31OnDih+++/X0uWLNGQIUOqKTLgwnJg5Xw16j5IjbqWvTnTYcR9StqzUUfWL1XT/iMqHGO1lGrjzDfV/NIblXZol4oK8uy+9/C1/yX85M51qhvdWnWC61XNJAAATmPVj1+rW/+h6tK37He3a+5+RLu3rNWG5T+p3/CbyvWPbtXe7nPPy0do48pFSti7w1Y4+HP1QXpyYhVHDwBwJhsWfa92fS5T215leWLwbeMUH7de21YtVo8rbijXv2GLdnafu1w6XDt++0XH9u20FQ7q+Afa9TmweY0atmingBBeZgTw7xkMBkeHgCrAGQcOZrFYdPPNN+vRRx9Vy5bl33gGcHaWkmJlHo9XSGxbW5vBaFRITDulHdlX6bg9S+bI5OOnqG4Dz/ozCnMylLR7kxp1HXDWvgCAC1tJcbGOH9yv2DYdbW1Go1GxbTrp8P5dZx1vtVq1f/smpZw8psYt2p61PwCg9iotKVZiwn41atXB1mYwGhXVqoNOHNh91vFWq1UJO7coPfG4Ipu1qbBPblaG4uPWq12vSyv8HgBQO7HiwMFee+01ubq66oEHHnB0KIDTMudly2qxyMPHfoWAh4+/cpKPVzgm9dAuHV6/VP0eefecfsaRDSvk6uHJNkUAAOXlZMliKZXP397W9PELUPKJI5WOK8jL1fN3DVdJcZGMRhddfed4NW3buarDBQA4sfycLFktlnJbEnn7Bijt5LFKxxXm52rK2OtVWlIsg9GoS0c/oKjWHSvsu2P1L3L38FLTzmxTBAA4g8KBA23evFnvvvuutmzZ8q+W9JjNZpnNZru2kuIiubq5n+8QgQtScWG+Nn75ljpcN1amOn7nNObwhqWK7NBbLvx3BgD4j0yeXnr4jc9UVFigAzs2a8H09xQUGl5uGyMAAP6/TB5euv2VD1VcWKDDu7Zq2ZcfyD8krNw2RpK0bdVitbyor1zdedYBAJzBVkUO9Ntvvyk5OVmRkZFydXWVq6urjhw5oocffliNGjWqdNzEiRPl5+dnd6395sPqCxyoYUzevjIYjSrMybBrL8zJLHdOgSTlpSUpPz1Zaz55UXMfvlJzH75SRzb9qsRdGzT34SuVm2q/t3TqwV3KTT6hRuewpREA4MLn7eMno9FFOZnpdu05WRny8Q+qdJzRaFTdsPqKiIpR7yuuV9vuvbR87syqDhcA4MS8fPxkMBqVl2X/rJOXnVHhwch/MhiNCqwXodBG0eo6ZISadempNT/MLtfv6N4dSk88pna9LzvvsQMAnBsrDhzo5ptvVv/+/e3aBg0apJtvvlm33nprpeMmTJig8ePH27W99OvRKokRcAZGVzf5149Wyv7timjdXZJktViUcmCbmlxc/sBxn5D66v/Ye3Ztu36eqRJzgdpedZe8/IPtvju8/hf514+Wf0RU1U0CAOA0XN3cVL9JrA7s2KzWXXtKKju36sD2zbp48PBzvo/ValVJSXFVhQkAuAC4uLopLCpWh3dtUdNOF0kqe9Y5vHOrOg688pzvY7VaVFpBztm2cpHqRcUqtGGT8xYzAODCQOGgiuXm5io+Pt72OSEhQXFxcQoMDFRkZKSCguzfSnNzc1O9evXUtGnTSu9pMplkMpns2timCLVdTO9h2vTV2wpoEK2AhrGKX7VAJUWFati1rDi38cu35OkXpFaXj5KLm7v8whrajXf39Jakcu3Fhfk6vu0Ptbni9uqZCADAKfQaep1mT3lFDZo0U2RMc61a+K2KzAXq0rfsjc2vJr8k38BgXX7TPZKkZXNnqkGTZgoOjVBJSZH2bFmnTauW6Jq7HrbdMy8nW5mpp5SVnipJSj5Z9mKIj3+gfAMqX8kAALiwdRl8tX78cJLCopoqvElTbVg8V8XmQrU5fZjxD9NelU9AsPpcf4ckac2CrxTWuKn8Q8NUWlysg3EbtPP3Zbr01gft7mvOz9PeDavV78a7q31OAC4s/2YLdjgPCgdVbNOmTerTp4/t858rBUaNGqXp06c7KCrgwtOg/SUy52Zp9+IvVZidIb+Ixrr47udtBybnZ6T8p0R2bMtqyWpVgw49z3fIAAAn1v6ifsrNytTiOZ8qOzNdEVHRuuupN2wHJmeknrLLO0WFhfr+o7eUmZ4sN3eTQiMaauSDT6v9Rf1sfXZt/F1zpk60fZ751nOSpIHX3qpLr7uteiYGAKhxWnTvo/ycLK3+brrysjIU2rCJrnt8ouqc3qooOy1ZBsOZnaiLzIVa/Plk5aSnyNXdpKDwBrri3ifUonsfu/vuXverrFarWvSwbwcAQJIMVqvV6ugg8P/35M/7HR0CAKCWuCjS39EhAABqkdRCs6NDAADUEqM6NXB0CE4p8OavHB2C00mfeaOjQzgrDkcGAAAAAAAAAAA2FA4AAAAAAAAAAIANhQMAAAAAAAAAAGDD4cgAAAAAAAAAgP/EYDA4OgRUAVYcAAAAAAAAAAAAG1YcXCC6NvB1dAgAgFrC3YX3DgAA1aeup8nRIQAAANQ6PPkDAAAAAAAAAAAbCgcAAAAAAAAAAMCGwgEAAAAAAAAAALDhjAMAAAAAAAAAwH9jcHQAqAoUDqrY6tWr9frrr2vz5s1KTEzUvHnzNGzYMNv3o0eP1owZM+zGDBo0SIsXL67mSAHnt2bRPK36YY5yMtMV1rCJrrz9QUXGNK+w7451q7Vi7iylJZ1QaWmJgsPqq+fQa9Wx1yBJUmlJiZbM/kR7t65T2qlEeXh5K6Z1Rw2+6W75BQZX57QAADXUqp+/1/J5Xyk7M10RjaI14s6H1Ci2RYV9//jlB234dZFOHk2QJEU2aaqhN91t1z87M10LZryvPXEbVJCXq+iW7TTizocUEt6gWuYDAKi5fl80Vyvmz1ZOZrrCGzXR8DvGqWFMxTln+7pVWvr9TKUmnpDl9LNO7yuuU+fel9r6WK1WLZ7zqdYu/VGF+blq1Ky1Rtz1sOqScwAAp7FVURXLy8tT27ZtNXXq1Er7XHrppUpMTLRds2fPrsYIgQtD3B8r9OOMqeo/YpQenPSxwho10acvPaLcrIwK+3vV8VG/q2/SmFemavybn6lzn8H6dupr2he3QZJUZC7UiYT96nfNLXpw0se65dEXlXLymKa/+mR1TgsAUENt/n2Z5n02RYOvv02Pv/WZIhpFa+rz45WTWXHeObBzizpeMkAPvjhZD7/2ofyDQzT1uYeUmZYiqewPOB9NfEKpp07q7idf0xNvf67AuvU05dkHZS4sqM6pAQBqmK2/L9f8z9/ToGtH6+E3PlF4o2h9+MLDleYcrzq+GnD1LRr36jQ9+vZ0del7mea896r2bl1v67Ni3lda/dP3GnHPIxr36ocymTz1wYsPq7jIXF3TAgDUcBQOqtjgwYP10ksv6aqrrqq0j8lkUr169WxXQEBANUYIXBh++/Ebde1/uTr3vUyhDRpp+F0Py83koY0rfq6wf5NW7dWqa0+F1m+koHoRunjINarXsLEO79khSfL0rqM7n3lLbXv0VUhEpBrGttSwOx7UiUP7lJFyqjqnBgCogVYs+Fo9Bg5V935DFNYgStff+6jcTSatXb6wwv6jxz+nnpcNV/3GsapXv6FGjnlCVqtF+7ZvkiQlnzymw/t26fp7HlHDmOYKjWio6+55RMVFZm3+bWk1zgwAUNOs/PFrdR8wVF37DVG9BlEacfcjcjd5aP2KnyrsH92qvdp0K3vWCa4XoV6Xj1BYw8Y6dPpZx2q1atXCbzTwmlvUusslCm8UrRsf+J+y09O0Y8Nv1Tk1AEANRuGgBli5cqVCQkLUtGlT3XvvvUpLS3N0SIBTKSku1olD+xXdpqOtzWg0KqZ1Rx3Zt+us461Wqw5s36yUk8cU1aJNpf0K8/NkMBjk6V3nvMT9f+zdd3SUxf7H8c9uOpBegRA6CS00Q5duKIoi2FHKRbEEFfBagqKoP29sV1EpchWBqwIqgigCgtKlKCXSpHdIgPS+Kbu/P+AurkkUkexmyft1znMOO893Jt+Rg5Nn55kZAIBzKi4q0snD+xUZHWMtMxqNimx1nY7u331ZbRQWFqikpFjVavhY25QkVzd3mzZdXd11eO/Oq5g9AMCZFBcV6dThA2ry+2ed6Osu+1nnwM6tOn/mpBo2ayVJSj2bpOyMNDVpdZ01zqt6DdVt3FTHLqNNAEDVwBkHDtavXz8NHjxY9evX1+HDhzVhwgT1799fmzZtkouLS5l1TCaTTCbb5YNFhSa5uXvYI2Wg0snNzpTZXCJvX9vVOjX8/HXu9Ily6+Xn5uiVB29TcVGhjEYX3Xr/WDVpFVNmbFGhSUs/maFWXXrLs1r1q5o/AMC55GRnXBh3/AJsyn18A3T2VPnjzm8tnjNdvv5Birr4pU1YeF35B4fq649n6O5HnpS7h5dWf/OZMlLPKTOdl0oAoKqyPuv8bszx9vPXudPHy62Xn5ujSQ8Mtj7r3DZ6vCJbX3jWyc64MK7UKPX8FKDs9LSr3AMAgLNi4sDB7rrrLuufW7ZsqejoaDVs2FBr1qxR7969y6yTkJCgF1980abszoee0N2P/LNCcwWuNR5e1TT2jQ9VWJCvg7u265s50xQQWksNW7SxiSspLtYnb02SxWLR4NHjHZQtAOBaseLLj7Vtw/d6/P+mWF/8cHF11QNP/0ufTknQU/f2l9HooshW16lZ244OzhYA4Iw8vKrpn//+SIUF+Tqwc5u+mjVFgaG11Oh3zzoAcDUYDAZHp4AKwMRBJdOgQQMFBQXp0KFD5U4cxMfHa/x42y8vVxws+1AkoCqo7u0ro9FF2b87CDknI73Umzm/ZTQaFVQzXJJUq35jnTt9XKsXfWozcXBh0uAFZZw/q9GT3ma1AQBANbz9Low7GbZvZWZlpsnHv/xxR5K+/2quVn75ica8NFm16zWyuRfRKErxk+coPzdHxcVF8vb11xtPPqCIRlFXvQ8AAOdgfdb53ZiTnZEuH7/AcusZjUYFX3zWqV2/sc6eOqbvF36sRi3ayPtivZzMdPkGBFnr5GSkqVb9xhXQCwCAM+KMg0rm1KlTSk1NVc2aNcuN8fDwkI+Pj83FNkWoylzd3FS7QRMd2rXNWmY2m3Vo13bVjWx+2e1YzGbrHtPSpUmDlKTTeuD5t1Td2/eq5g0AcE6ubm6q0zDSerCxdGHcObBzm+pHtii33sqFn2r557P1yAv/Vt1GTcuN86peQ96+/jp35qROHN6n6PZdr2r+AADn4ermpvCGTXRgp+2zzsGd2/7as47FYn3WCQytKW+/AJs2C/Jydfzgr6r3F9oEAFzbWHFQwXJycnTo0CHr56NHjyoxMVEBAQEKCAjQiy++qCFDhigsLEyHDx/WU089pUaNGqlv374OzBpwPtcPvEOfT0lQeMMo1WkUpQ3fLlChKV/X9ewvSZr/7ivyDQxW/6GjJUmrFn6i8IaRCgyrreKiQu3bvkXb163QrQ9cWM1TUlysj998XqePHtDI+FdlMZco++Ie0141fOTq5uaYjgIAKoVet9ypj995RRGNolSvcTOt/uZzmQoK1LH3jZKk/05+Wb6BQbrlvoclSSsXfqJv536o4eNfUGBITWVdHFM8PL3k4VVNkrT9x1Wq4eOngOBQnTl+RAs+nKzo9teraZsOjukkAKBS6DHwTs1971+q0yhKdRs31dpvvlChKV8deg2QJH36zv/JNzBIN937kCTp+y8/Vp2GUQoMq62S4kLt3bZZW9d+p9tHPyHpwpYi3W+6QysXzFFwzXAFhNbUsnkfyicgUC3bX++wfgIAKhcmDirY1q1b1bNnT+vn/20xNHz4cE2fPl07d+7UnDlzlJGRoVq1aik2NlYvv/yyPDxYQQD8Fa279FJuVoZWzP9I2RlpqlWvkUY9+4Z1q6KMlHMyGC8tsio0FWjRB28rM+283Nw9FFIrQnc99pxad+klScpMO6+9W3+UJE3+5yibn/XgpMmlzkEAAFQt7br2UU5mhr6d96Gy09NUu35jxb3wb/lcHHfSzp+12et1/bJFKi4u0szXn7Npp/+d/9CNd18YZ7LSU7Xwo/eUnZkmH/9AdejRT/3uGGm/TgEAKqU2XXsrJytDy+fNVFZGmmrXb6QHJ75pfdZJTzkrg/HSmFNoKtCCD95SZuq5C886tevq3scnqk3XS9sh97r1HhWa8vX5+28oPzdH9Zu21IMT32Q3AwCAlcFisVgcnQT+vsW7kh2dAgCgiqjmynsHAAD7KTKbHZ0CAKCKGNA8xNEpOKWgEfMdnYLTSZl9l6NT+FM8+QMAAAAAAAAArshvV9ri2sHhyAAAAAAAAAAAwIqJAwAAAAAAAAAAYMXEAQAAAAAAAAAAsGLiAAAAAAAAAAAAWHE48jWib9MwR6cAAAAAAAAAALgGMHEAAAAAAAAAALgiBoPB0SmgArBVEQAAAAAAAAAAsGLiAAAAAAAAAAAAWDFxUMHWrVungQMHqlatWjIYDPrqq69Kxfz666+6+eab5evrq+rVqysmJkYnTpywf7KAk5s/91P1v6GXYtq01NC7bteunTv/MH7Fd8t0y039FNOmpYYMGqj169ba3LdYLJr63jvq3b2r2reN1uhRI3T8+LEK7AEAwJkw7gAA7IUxBwBgb0wcVLDc3Fy1atVKU6dOLfP+4cOH1bVrV0VFRWnNmjXauXOnJk6cKE9PTztnCji35cuW6s3XE/TgI3Ga/8UiRUZG6eEHRyk1NbXM+MQd2/XMk0/o1sG36bMFX6lnr94a+2icDh48YI2ZNfMDzfv0Yz33wiR9Mu9zeXl56eHRo2QymezVLQBAJcW4AwCwF8YcAIAjGCwWi8XRSVQVBoNBixYt0qBBg6xld911l9zc3PTxxx//rbYLiv9mcoCTG3rX7WreoqUmPPe8JMlsNiu2d3fdfc99GvXA6FLxTz4xVvn5+ZoybYa17N6771BkVJQmvvCSLBaL+vS4XsNGjNTwkaMkSdnZ2erVrbNeeuVV9R9wo306BgColBh3AAD2wpgD2I+nq6MzcE4h//jc0Sk4nXMf3eHoFP4UKw4cyGw269tvv1WTJk3Ut29fhYSEqEOHDmVuZwSgfEWFhfp17x517NTZWmY0GtWxY2ft/GVHmXV2JiaqY8dONmWdu3TVzsRESdLpU6eUknJeHTpeatPb21sto1uV2yYAoGpg3AEA2AtjDgCnYOD6y5cTYOLAgc6dO6ecnBy9+uqr6tevn1asWKFbb71VgwcP1tq1a/+8AQCSpPSMdJWUlCgwMNCmPDAwUCkpKWXWSUlJUWBgUOn41JSL989fKAu6/DYBAFUD4w4AwF4YcwAAjsICHAcym82SpFtuuUXjxo2TJLVu3VobN27U+++/r+7du5dZz2Qyldp30OLiIQ8Pj4pNGAAAAAAAAABwzWPFgQMFBQXJ1dVVzZo1sylv2rSpTpw4UW69hIQE+fr62lxvvJZQ0ekClZa/n79cXFxKHQ6WmpqqoKCgMusEBQUpNTWldPzFN3OCgoIvlKVcfpsAgKqBcQcAYC+MOQAAR2HiwIHc3d0VExOj/fv325QfOHBAdevWLbdefHy8MjMzba4nn46v6HSBSsvN3V1NmzXXls2brGVms1lbtmxSdKs2ZdaJbt1aWzZvtinbvGmjolu3liTVDg9XUFCwtmy51GZOTo527fyl3DYBAFUD4w4AwF4YcwAAjsJWRRUsJydHhw4dsn4+evSoEhMTFRAQoIiICD355JO688471a1bN/Xs2VPLly/XN998ozVr1pTbpodH6W2JCoorqgeAc7hv+EhNnPC0mjdvoRYto/XJx3OUn5+vQbcOliQ9G/+UQkJC9fi4JyRJQ+8dplEj7tOc2R+pW7fuWr5sqfbs3q2Jk16SJBkMBg29b5g+mDFddSPqqnZ4uKa+946CQ0LUq3cfh/UTAFA5MO4AAOyFMQcA4AhMHFSwrVu3qmfPntbP48ePlyQNHz5cs2fP1q233qr3339fCQkJeuyxxxQZGakvv/xSXbt2dVTKgFPq13+A0tPSNG3Ku0pJOa/IqKaaNuNDBV5capuclCSj4dIiq9Zt2irh9Tc15d3Jem/yW4qoW0+T35uqxo2bWGNGjnpA+fn5emnS88rOzlKbtu00bcaHnCcCAGDcAQDYDWMOgMrOYDA4OgVUAIPFYrE4Ogn8faw4AAAAAAAAAK6cJ69YX5HQ+79wdApO5+yHtzs6hT/FGQcAAAAAAAAAAMCKiQMAAAAAAAAAACqpqVOnql69evL09FSHDh30008//WH85MmTFRkZKS8vL9WpU0fjxo1TQUHBX/qZTBwAAAAAAAAAAFAJffbZZxo/frxeeOEFbd++Xa1atVLfvn117ty5MuPnzp2rZ555Ri+88IJ+/fVXzZw5U5999pkmTJjwl34uEwcAAAAAAAAAAFRCb731lh544AGNHDlSzZo10/vvv69q1arpo48+KjN+48aN6tKli+655x7Vq1dPsbGxuvvuu/90lcLvMXEAAAAAAAAAALgiBoOB6y9eJpNJWVlZNpfJZCr137awsFDbtm1Tnz59rGVGo1F9+vTRpk2byvz76Ny5s7Zt22adKDhy5IiWLl2qAQMG/KW/V84Kv0YMmfnXZowAALhST/Zo5OgUAABVyLGsHEenAACoIkbERDg6BVQRCQkJevHFF23KXnjhBU2aNMmmLCUlRSUlJQoNDbUpDw0N1b59+8ps+5577lFKSoq6du0qi8Wi4uJiPfTQQ2xVBAAAAAAAAABAZRUfH6/MzEybKz4+/qq0vWbNGv3rX//StGnTtH37di1cuFDffvutXn755b/UDisOAAAAAAAAAACwEw8PD3l4ePxpXFBQkFxcXHT27Fmb8rNnzyosLKzMOhMnTtR9992n+++/X5LUsmVL5ebmavTo0Xr22WdlNF7eWgJWHAAAAAAAAAAAUMm4u7urXbt2+uGHH6xlZrNZP/zwgzp16lRmnby8vFKTAy4uLpIki8Vy2T+bFQcAAAAAAAAAAFRC48eP1/Dhw3Xdddepffv2mjx5snJzczVy5EhJ0rBhw1S7dm0lJCRIkgYOHKi33npLbdq0UYcOHXTo0CFNnDhRAwcOtE4gXA4mDirYunXr9MYbb2jbtm1KSkrSokWLNGjQIOt9g8FQZr3XX39dTz75pJ2yBK4NNzYP0ZBWNeXv5aajqXl6/8fjOnA+t9z46u4uGtY+XJ3r+cvb01Xnsgv1n43HtfVk5hW3CQCoOlZ/u0ArF32qzPQ0hddvpLtGj1f9Js3LjF3/3WJtXr1MZ44fkSRFNIrUoPsesol/8Oay3xgaPCJOfQffe/U7AABwGttWLtaWb79QTmaaQiIaKnZYnGo1jCozdv/P67Xx63lKP3tG5pIS+YfWUvsBt6ll1xusMQn33lBm3Z53PaCON91RIX0AcO0q7/tNXB133nmnzp8/r+eff17Jyclq3bq1li9fbj0w+cSJEzYrDJ577jkZDAY999xzOn36tIKDgzVw4EC98sorf+nnGix/ZX0C/rJly5bpxx9/VLt27TR48OBSEwfJycml4keNGqVDhw6pQYMGl/1zbpzx09VKGXBK1zcM0BM9G2jK+mPafzZHg6LD1LVBgEbP36nMguJS8a5Gg964paky84v12Y4zSs0tVIi3h3JNxTqaln9FbQJVxZM9Gjk6BcDhfl7/vWa//ZLueeQp1W/SXD98/Zm2/7hKL06fLx+/gFLxM//9gho2jVbDqJZyc3fX8i8/UeLmtXphyqfyDwyRJGWmp9rU2b1tkz5+7196ecYXCg6rbZd+AZXRsawcR6cAONTezWu05P3X1W/kY6rVqKl+Xr5Q+7as0+g3PlJ1X/9S8cf3/qKC3GwF1qojF1c3HdqxWT/MnaE7/vl/ahAdI0nKyUizqXPkl5/07Ydv6aF/z5F/SE279AuojEbERDg6BadUc/SXjk7B6ST9Z4ijU/hTrDioYP3791f//v3Lvf/7QywWL16snj17/qVJAwDSrS3DtPzX8/p+f4okacq6Y7ouwk+xUcH6IjGpVPwNkUHy9nDVPxf/qhLzhfnTczmFf6tNAEDV8f3ieeoae7O69LlJkjT0kae0e+uP2vj9EvW7bVip+FFPvGjzediYeO3YuFr7ftmqTr0GSJJ8/QNtYn7Zsl5NWrZl0gAAqrifln2pVj37K7p7P0lSv5GP61DiFu1c+5063XxXqfi6zVrZfI7pN1i71q/Uyf17rBMHNX43yX1g+ybVbdqKSQMAgBWHI1ciZ8+e1bfffqtRo0Y5OhXAqbgaDWoUXF2Jpy9tMWSRlHgqS1GhNcqs06Gev/ady9EjXevqk/vaaOrtLXRHm5oyGq68TQBA1VBcVKQTh/araesYa5nRaFRUqxgd2bf7stooNBWopKRY1b19yryflZ6mXVt/VNcbBl6VnAEAzqmkuEjJRw+ofvO21jKD0ah6zdvq9KG9f1rfYrHo2O7tSks+pYiolmXG5Gam63DiFrXqUf5LjwCAqocVB5XInDlz5O3trcGDBzs6FcCp+Hi6ysVoUEa+7fZBGflFquPnWWadMG8Phdby0ZpDqZq0bL9q+nrqka715GI0aN62M1fUJgCgasjJypDZXCLv372t6eMXoOTTxy+rjYVzpsk3IFhNW8WUeX/TqqXy9KqmNp16/N10AQBOLC87UxazWdV+tyVRdV9/pSadLLdeQV6upjx6l0qKi2QwGtV3xGOq37JdmbG71q+Qu2c1RV7X9armDgBwbkwcVCIfffSRhg4dKk/PP/5S0mQyyWQy2ZSVFBXKxc29ItMDrilGg0EZ+UV6b91RmS3SoZQ8BVZz15BWYZq37Yyj0wMAXMOWL/ivfl6/Uk+8Mk1u7h5lxvz4/Tdq371vufcBAPgjHp5e+scr76vIlK9je3boh0/fl19wzVLbGEnSL2u/U/POveTqzncKAIBL2Kqokli/fr3279+v+++//09jExIS5Ovra3MdXj7HDlkClVNWQbFKzBb5ednOhfp5uSk9v6jMOml5hTqTWSDzb46HP5mRr4Dq7nI1Gq6oTQBA1VDDx09Go4uyf3ewZFZGmnz9AsupdcGKRZ9q+Zcf6/EX31F4/bIPGj+4J1FnT59Q19ibr1rOAADnVM3bVwajUXmZ6TbluZnpqlHGwcj/YzAaFRBWW6F1G6nDgNsVFXO9Nn0zr1TcyX27lJZ0km2KAPwtBoOB6y9ezoCJg0pi5syZateunVq1Kj37/3vx8fHKzMy0uRr2G26HLIHKqdhs0aHzuWpd29daZpDUuraP9p3NKbPO3rM5qunrqd/+r7q2r6dScwtVbLZcUZsAgKrB1c1NEY0i9esvW61lZrNZ+3ZuVYOoFuXW++7LT/TtZ7P02Atvq17jpuXG/bjyG0U0ilKd+o2vat4AAOfj4uqmsPpNdGzPDmuZxWzW8T07VLtRs8tux2KxqKSo9AtQv6xdprD6jRVat+FVyRcAcO1g4qCC5eTkKDExUYmJiZKko0ePKjExUSdOnLDGZGVl6Ysvvris1QaS5OHhIR8fH5uLbYpQ1S3alay+UcHq3SRIdfw8FXd9PXm6GbVy/3lJ0vieDTS8fbg1fumec/L2cNWDXeqqlq+nYiJ8dUebWvp2z9nLbhMAUHX1ueVubVjxtTb98K2STh7T3Omvq7CgQJ173yRJmvX2i1o0Z5o1fvmXH+vrT/+j4Y89q8DQmspMT1VmeqoK8vNs2s3Py9W2H1dxKDIAwKp9/yFKXLNUO9etUMrp41o+610VmQoU3b2vJOmb91/Tms9mWuM3fj1PR3dtU/q5JKWcPq4tS7/Q7h+/V/MuvW3aNeXlat9P61ltAAAoE2ccVLCtW7eqZ8+e1s/jx4+XJA0fPlyzZ8+WJM2fP18Wi0V33323I1IErgnrD6fJ19NV915XW/7V3HQkJU/PL91vPdw4uIa7LJZL+xKl5BZq4tL9eqBThKbe1kKpuYX6eneyFiQmXXabAICqK+b6PsrJTNfXcz9UVnqqwhs01mOT3paP/4UDk9POn5XBcOkdnXXLFqq4uEgzXp1g085Nd43SwHsuvTzy87qVslgsat8t1j4dAQBUes069lBeVobWfzlHuZnpCqnbUHc89S9Vv7hVUVbKOZttL4pMBfpu9rvKTkuRq7uHAmvV0cCHn1Gzjj1s2t27eY0sFouadeplz+4AAJyEwfLbb9LgtG6c8ZOjUwAAVBFP9ih7X3YAACrCsSy2iQQA2MeImAhHp+CUaj240NEpOJ0zMwY7OoU/xVZFAAAAAAAAAADAiq2KAAAAAAAAAABXxvDnIXA+rDgAAAAAAAAAAABWTBwAAAAAAAAAAAArJg4AAAAAAAAAAIAVZxxcI17qG+XoFAAAVUSIj4ejUwAAVCG1/bwcnQIAAECVw4oDAAAAAAAAAABgxYoDAAAAAAAAAMAVMRgMjk4BFYAVBwAAAAAAAAAAwIoVBxVs3bp1euONN7Rt2zYlJSVp0aJFGjRokPX+2bNn9fTTT2vFihXKyMhQt27d9N5776lx48aOSxpwUiu+/lxLFnyizLRURTRorOGPPKlGUc3LjF21dJHWf79UJ48fliTVbxSlO0fGWeOLi4v1xezpSvz5R51LOi2v6jXUok173T1qjPwDg+3WJwBA5bV4wXx9/ulspaWlqGGjJhozPl5RzVuWGXvsyCHN/mCqDu77VWeTz+jhx5/UkLvus4nZuWOrPv90tg7u/1WpKef14quT1aV7L3t0BQBQyS1ZOF8L589Relqq6jdsogcff1qRzcoec44fPaRPZ07XoQN7dS45SQ+M+aduueNem5hPP5quebNn2JSFR9TT+598VVFdAAA4GVYcVLDc3Fy1atVKU6dOLXXPYrFo0KBBOnLkiBYvXqwdO3aobt266tOnj3Jzcx2QLeC8Nq1ZoU/+M1mDh96vV6Z+rIgGjfXqs48qMyOtzPi9O7epc89YPff6dL349kcKDA7VqxPGKC3lnCSp0FSgo4f26dZ7RumVqR9r3POvK+nUcb35whP27BYAoJJa/f1yvf/uG7pv1EN6f/ZnatA4Us+Me0jpaallxhcUFKhmrXDd/8jjCggMKicmXw0aR+rRJyZUZOoAACez7ofv9OHUf+vuEQ/qnQ/nqX6jJnr+n48oI73sZx1TQYHCatXW8Acfl39A2WOOJEXUb6iPF31vvV6bMquiugAAcEKsOKhg/fv3V//+/cu8d/DgQW3evFm7d+9W8+YX3nKePn26wsLCNG/ePN1///32TBVwaksXzlXPfoPUo+/NkqRRj8Ur8acftfa7r3XznSNKxY955v9sPo8e95x+/nG1du/4Wd1uuFHVqtfQhFdtJ/xGxD2piY+NUMq5ZAWFhFVYXwAAld+X8/6rATcPUb+bBkmSxj41UVt+XK/lS77S3cNGlYqPatZCUc1aSJI+nPZOmW2273S92ne6vsJyBgA4p68+/1h9bxqsGwYMkiTFPfGcft60Xiu//Uq33/uPUvFNmrZQk6YXxpw5M8oecyTJxcVF/uVMZgMAwIoDBzKZTJIkT09Pa5nRaJSHh4c2bNjgqLQAp1NcVKSjB/epRdv21jKj0agWbdrr4N5dl9WGyVSg4uJi1fD2KTcmLzdHBoNB1arX+Ns5AwCcV1FRkQ7s/1VtYzpay4xGo9rGdNDe3b84MDMAwLWmqKhIhw78qtbXdbCWGY1GtW7XQfv27PxbbZ85dULDbr1Bo+68UW+8FK9zZ5P+broAgGsIEwcOFBUVpYiICMXHxys9PV2FhYV67bXXdOrUKSUlMWADlys7K0Nmc4l8/QJsyn39A5SRXvaWEb83b+Z78g8Mspl8+K3CQpPmzZyiTj1imTgAgCouMyNd5pIS+QcE2pT7BwQqPTXFQVkBAK5FWZkXxhw/f9sxxy8gUOlpVz7mRDZrqXHxL+nFN6fqkSee1dmk03p6zD+Ul8e2yQD+OoPBwPUXL2fAVkUO5ObmpoULF2rUqFEKCAiQi4uL+vTpo/79+8tisZRbz2QyWVcr/E+hySR3D4+KThm4Jn392WxtWrNSE994X+7upf8dFRcX691X4iVZ9I9Hn7F/ggAAAABwFV3Xsav1z/UbNlFk0xb6xx0DtGHVCsXedKsDMwMAVBasOHCwdu3aKTExURkZGUpKStLy5cuVmpqqBg0alFsnISFBvr6+Ntes6W/ZMWugcvH28ZPR6FLqIOTM9LRSb+b83pIvPtbXn81RfMJ7imjQuNT9/00apJxNVnzCFFYbAADk6+cvo4tLqYOQ09NS2SsaAHBV+fheGHN+v5I6Iy31Dw8+/qtqePuodp0InTl98qq1CQBwbkwcVBK+vr4KDg7WwYMHtXXrVt1yyy3lxsbHxyszM9PmGvnweDtmC1Qurm5uqt84Snt2/GwtM5vN2pP4sxo3a1luvW8+/68WzZ2pp195Vw2aNCt1/3+TBsmnT2jCq1Pl7eNXEekDAJyMm5ubmkQ21fatW6xlZrNZO7ZuUbMWrRyYGQDgWuPm5qZGTZrql20/WcvMZrN+2f6ToppHX7Wfk5+Xp6TTpxTABDgA4CK2KqpgOTk5OnTokPXz0aNHlZiYqICAAEVEROiLL75QcHCwIiIitGvXLj3++OMaNGiQYmNjy23Tw8NDHr/blsg9LavC+gA4gwGD79H7b76oBk2aqmFkcy1bNE8FBfnqHjtQkjTt9RcUEBSsu/4xRpL09WdztODjGRrz9P8pOLSmMi7uD+rpVU2eXtVUXFysd15+WkcP7dOTL70ts7nEGlPD21eubm6O6SgAoFIYcvcwvf7yc4qMaqbI5i21cP4nKijIV7+bBkmSXn1xgoKCQ3X/I49LunC45fGjhyVJxcVFSjl/TocO7JOXVzXVrhMh6cKXNqdPnbD+jKQzp3XowD55+/gqNKymfTsIAKg0Bt1xn95OmKjGkc3UpGkLLf7iUxXk56vPgAsvHP77lecUGBSiEQ8+JunCmHPy2MUxp6hYqSnndOTgPnl6VVOt8Atjzsypb6l9l24KCa2ptJTz+nTWdBmNLurep59jOgkAqHSYOKhgW7duVc+ePa2fx4+/sDJg+PDhmj17tpKSkjR+/HidPXtWNWvW1LBhwzRx4kRHpQs4rU49YpWVmaEF/52hjPRU1W3QRM+88q58L25VlHo+WUbjpcNnvv/2SxUXFWny/z1t087gex/QbfeNVnrKOW3bvE6SFP/IUJuY515/X81atavgHgEAKrOeffopMz1dsz+cpvTUFDVsHKmEt6dbD0w+dzZZRuOlxb2pKef00PA7rJ+/mDtHX8ydo+g21+mtaR9Jkvbv26N/xo2yxrz/7huSpNgBN+upif9nj24BACqhbr37KjMjXZ98NF3paSlq0ChSL705zTrmnD+bJONvDtpMSzmnx0bdZf28cP5/tXD+f9WidTu9+u5MSVLK+bN648V4ZWVlyNfPX81attG/3/+vfP0C7Ns5AEClZbD80Sm8cBrbjrHiAABgHyE+pQ8RBwCgohQUmR2dAgCgimgc6uXoFJxSnbjFjk7B6ZycWv429ZUFZxwAAAAAAAAAAAArJg4AAAAAAAAAAIAVEwcAAAAAAAAAAMCKiQMAAAAAAAAAAGDFxAEAAAAAAAAAALBydXQCuDr2pGQ6OgUAQBVxJMPF0SkAAKqQIrPZ0SkAAKqIxqHhjk7BORkcnQAqAisOAAAAAAAAAACAFRMHAAAAAAAAAADAiokDAAAAAAAAAABgxcQBAAAAAAAAAACw4nDkCpaQkKCFCxdq37598vLyUufOnfXaa68pMjLSGlNQUKAnnnhC8+fPl8lkUt++fTVt2jSFhoY6MHPA+WxdsVibv/1cOZlpCo1oqNjhY1S7YVSZsft+Xq8fF89T+tnTMpeUyD+0tjoOuE0tr7/BGvPK0D5l1u119wPqdNOdFdIHAIDz2PzdIm345jPlZKQprG5D3TTyMYU3alpm7J4t67T2q0+VlnxaJSUlCgyrrS433aE23WLLjF/8wVv6+ftvNGBYnDrfeFtFdgMA4AR+WvGVNn5z4VknLKKh+o94VLUblf2s8+tP67X+q7lKu/isExBWW51uvF2tfvOs89X01/TLuhU29RpGx+je+FcrtB8AAOfBxEEFW7t2reLi4hQTE6Pi4mJNmDBBsbGx2rt3r6pXry5JGjdunL799lt98cUX8vX11ZgxYzR48GD9+OOPDs4ecB57N63W95++r/7/eFy1GjbVT8u/1PxXn9FDb85SdV//UvFe1b3V5ZZ7FFSrjlxc3XRwx2Z98583VM3XTw2jYyRJj0/93KbO4V9+0pIP/q2o9tfbpU8AgMpr18ZVWvbf6br5/nGq07ipNi5doNn/ekpj3/6vapQ17tTwUY9b71VQrQi5uLpq//ZNWjT9NdXw8VPj1u1tYvf+tF4nD+6Vt3+QvboDAKjEdm9arRUfv68bR41VeKMobV62UJ+8+rTG/Ht22c86Nbx1/a1Drc86B7Zv0uL3X1d1Hz81ahVjjWvUKka3PPSU9bOLq5td+gPg2mMwGBydAioAWxVVsOXLl2vEiBFq3ry5WrVqpdmzZ+vEiRPatm2bJCkzM1MzZ87UW2+9pV69eqldu3aaNWuWNm7cqM2bNzs4e8B5bFn2pVr3HKBW3fspOLyuBvxjrFw9PPTL2uVlxtdt1lpRMV0VVLuu/ENrqX2/wQqJaKCT+3dbY2r4BdhcB7ZtVL1mreUfUste3QIAVFI/fvuFrut9o9r17K+Q8Hq6+f7xcnP31LbVy8qMb9C8tZq1v14h4XUVGFZbnQfcptCIhjr+m3FHkrLSzmvJrHd1+6PPysXVxR5dAQBUcpu/XaC2vQaoTY9+Cg6vp5tGjZWbu4d2rCn7Wades9ZqGtNVwbXrKiC0ljr2H6LQiAY68bsxx8XNzeZ5x6uGtz26AwBwEkwc2FlmZqYkKSAgQJK0bds2FRUVqU+fS1uiREVFKSIiQps2bXJIjoCzKSkuUtLRA6rfoq21zGA0qn6Ltjp1cO+f1rdYLDq6e7vSkk4pIiq6zJiczHQdStyiVt37XbW8AQDOqbi4SGeOHFDDlu2sZUajUQ1bttXJg3v+tL7FYtHhXduUknRS9ZpeGnfMZrO+mJKgrgPvVGid+hWSOwDAuZQUF+nM0QNq8LtnnQZ/4VnnyO7tSk06pbpRLW3uHdv7i954cIimjB+uJTMnKy8786rnDwBwXmxVZEdms1ljx45Vly5d1KJFC0lScnKy3N3d5efnZxMbGhqq5ORkB2QJOJ+87ExZzOZSy3Sr+/gr9czJcusV5OXo3TF3qaS4SAajUf1GPKYGv/kS6Ld2rVshd89qiophmyIAqOrysjJlNptLbUlUw9dfKWdOlFuvIC9Hrz90u4qLi2Q0GjVw1Fg1ir7Oen/94nkyurioU/8hFZY7AMC55GWV86zj66+UP3nWeeuRO63POjeOfFwNfzPmNGoVo6Yx18svJEzpZ8/oh89m6tPX4jXqpfdkNLLiDQDAxIFdxcXFaffu3dqwYcPfasdkMslkMtmUFRWa5Obu8bfaBaoaD89quv9fM1RYkK9je3bo+0/fl39ITdVt1rpU7C9rl6tFl15ydXe3f6IAgGuCu2c1xb3+oQoL8nV413Yt++80+YfUUoPmrXX6yH5tWvalHnn1P+wRCwD42zw8q+mhV/+jwoJ8Hdm9Xd99Ml3+oTVV7+KzTovOvayxoRENFBrRQO+OvU/H9v5is7oBAFB1MXFgJ2PGjNGSJUu0bt06hYeHW8vDwsJUWFiojIwMm1UHZ8+eVVhYWJltJSQk6MUXX7QpG/TAWN06enyF5A5UdtW8fWUwGpWbmW5TnpuVXuZhYf9jMBoVEFZbkhRWr5FSzpzQxq/nlZo4OLFvl1KTTurWR5+76rkDAJxPNR9fGY1G5fxu3MnJTFcNv4By6xmNRgVeHHdq1muk86ePa91Xn6pB89Y6/usu5WZl6M24O63xZrNZyz6ero3LFuifU+ZXTGcAAJVaNZ9ynnX+ZMwp61lnw+J51omD3/MPraVq3r5KSz7NxAEAQBITBxXOYrHo0Ucf1aJFi7RmzRrVr2+7X227du3k5uamH374QUOGXFiWvn//fp04cUKdOnUqs834+HiNH287SfDF7nMV0wHACbi4uqlm/SY6tme7Iq/rIkmymM06tnuHrou95bLbsVjMKi4uKlX+y5plCqvfRKF1G161nAEAzsvV1U21GjTRkV3b1Symq6QLX/If2b1dHfreetnt/Hbcad3tBpszEyRp9r+eUutuN6htD87XAYCqysXVTbXqN9GR3TsUdXHMsZjNOrJnh9rHDrrsdixmi4qLSj/r/E9W6nnl5WTJ2y/w76YMoApixey1iYmDChYXF6e5c+dq8eLF8vb2tp5b4OvrKy8vL/n6+mrUqFEaP368AgIC5OPjo0cffVSdOnVSx44dy2zTw8NDHh622xK5uXOIEaq2Dv2H6OsZr6tm/UjVahipn5YvVJGpQNEXDzP+evqr8vYPUs+77pck/bh4rmo2iJR/aE2VFBXpUOJP2r3he/Ub+bhNu6a8XP360zr1vudBu/cJAFB5dbnxdn057VXVathE4Q2bauPSBSo0FajdxS/5F0z5l3wCghV7zwOSpLWLPlXthpEKCK2l4qIiHdixRYnrV+rmUeMkXVg9V83b1+ZnuLi6yNs3QMG1IuzbOQBApdLxxtv01fTXVKtBE9VuFKXNy75UkalArbv3lSQtmnbhWafP3ReeddZ/NVe1GjS5MOYUF+ngji3auWGlbvzHhWedwoJ8rfnyv2rW/nrV8AtQ2tkz+n7ufxQQWksNW11Xbh4AgKqFiYMKNn36dElSjx49bMpnzZqlESNGSJLefvttGY1GDRkyRCaTSX379tW0adPsnCng3Jp16qnc7EytXTBbuZnpCq3bUHc9nWA9uDIz9ZwMBqM1vshUoOWz3lV22nm5unsosFYd3fLwM2rWqadNu3s2r5bFYlHzzrblAICqrWXnXsrNytQPn89WTkaaatZrqOHxr1m3jchIPSeD8dK4U2gq0DczJysz9bzc3D0UVDtCt4+ZoJa/2WMaAICytOjUU3lZmVqzYLZyMtIVVrehhj7zqnXMyUw5Z/O2b5GpQEtnvaus1AvPOkG16ujWuHi1uPisYzAade7EEf2yboUKcnPk7R+ohtHXqeftI+TqxpluAIALDBaLxeLoJPD3/XfrSUenAACoIrxcXRydAgCgCikymx2dAgCgirinbfifB6GUuo994+gUnM7xdwc6OoU/ZfzzEAAAAAAAAAAAUFUwcQAAAAAAAAAAAKw44wAAAAAAAAAAcEV+e84Krh2sOAAAAAAAAAAAAFZMHAAAAAAAAAAAACu2KrpG3NG6jqNTAAAAAAAAAABcA1hxAAAAAAAAAAAArJg4AAAAAAAAAAAAVmxVBAAAAAAAAAC4IgaDwdEpoAKw4qCCJSQkKCYmRt7e3goJCdGgQYO0f/9+m5j//Oc/6tGjh3x8fGQwGJSRkeGYZAEnN3/up+p/Qy/FtGmpoXfdrl07d/5h/IrvlumWm/oppk1LDRk0UOvXrbW5b7FYNPW9d9S7e1e1bxut0aNG6PjxYxXYAwCAM2HcAQDYC2MOAMDemDioYGvXrlVcXJw2b96slStXqqioSLGxscrNzbXG5OXlqV+/fpowYYIDMwWc2/JlS/Xm6wl68JE4zf9ikSIjo/Twg6OUmppaZnziju165skndOvg2/TZgq/Us1dvjX00TgcPHrDGzJr5geZ9+rGee2GSPpn3uby8vPTw6FEymUz26hYAoJJi3AEA2AtjDgDAEQwWi8Xi6CSqkvPnzyskJERr165Vt27dbO6tWbNGPXv2VHp6uvz8/P5SuwXFVzFJwAkNvet2NW/RUhOee16SZDabFdu7u+6+5z6NemB0qfgnnxir/Px8TZk2w1p27913KDIqShNfeEkWi0V9elyvYSNGavjIUZKk7Oxs9erWWS+98qr6D7jRPh0DAFRKjDsAAHthzAHsx5NN3a9I/bHfOjoFp3N0cuX/fy0rDuwsMzNTkhQQEODgTIBrR1FhoX7du0cdO3W2lhmNRnXs2Fk7f9lRZp2diYnq2LGTTVnnLl21MzFRknT61CmlpJxXh46X2vT29lbL6FbltgkAqBoYdwAA9sKYAwBwFCYO7MhsNmvs2LHq0qWLWrRo4eh0gGtGeka6SkpKFBgYaFMeGBiolJSUMuukpKQoMDCodHxqysX75y+UBV1+mwCAqoFxBwBgL4w5AABHYQGOHcXFxWn37t3asGHD32rHZDKV2nfQ4uIhDw+Pv9UuAAAAAAAAAPwlBkcngIrAigM7GTNmjJYsWaLVq1crPDz8b7WVkJAgX19fm+uN1xKuUqaA8/H385eLi0upw8FSU1MVFBRUZp2goCClpqaUjr/4Zk5QUPCFspTLbxMAUDUw7gAA7IUxBwDgKEwcVDCLxaIxY8Zo0aJFWrVqlerXr/+324yPj1dmZqbN9eTT8VchW8A5ubm7q2mz5tqyeZO1zGw2a8uWTYpu1abMOtGtW2vL5s02ZZs3bVR069aSpNrh4QoKCtaWLZfazMnJ0a6dv5TbJgCgamDcAQDYC2MOAMBR2KqogsXFxWnu3LlavHixvL29lZycLEny9fWVl5eXJCk5OVnJyck6dOiQJGnXrl3y9vZWREREmYcoe3iU3paooLiCOwJUcvcNH6mJE55W8+Yt1KJltD75eI7y8/M16NbBkqRn459SSEioHh/3hCRp6L3DNGrEfZoz+yN169Zdy5ct1Z7duzVx0kuSJIPBoKH3DdMHM6arbkRd1Q4P19T33lFwSIh69e7jsH4CACoHxh0AgL0w5gAAHIGJgwo2ffp0SVKPHj1symfNmqURI0ZIkt5//329+OKL1nvdunUrFQPgj/XrP0DpaWmaNuVdpaScV2RUU02b8aECLy61TU5KktFwaZFV6zZtlfD6m5ry7mS9N/ktRdStp8nvTVXjxk2sMSNHPaD8/Hy9NOl5ZWdnqU3bdpo240POEwEAMO4AAOyGMQcA4AgGi8VicXQS+PtYcQAAAAAAAABcOU9esb4i9cd96+gUnM7Rt290dAp/in8OAAAAAAAAAIArYjAYHJ0CKgCHIwMAAAAAAAAAACsmDgAAAAAAAAAAgBUTBwAAAAAAAAAAwIqJAwAAAAAAAAAAYMXhyNeIMV/udnQKAIAqIiLA09EpAACqkMyCEkenAACoIv49MNLRKQCVBhMHAAAAAAAAAIArYjAYHJ0CKgBbFQEAAAAAAAAAACsmDgAAAAAAAAAAgBUTBwAAAAAAAAAAwIozDipYQkKCFi5cqH379snLy0udO3fWa6+9psjIC4etpKWl6YUXXtCKFSt04sQJBQcHa9CgQXr55Zfl6+vr4OwB59KzUYD6RgXJ19NVJzMKNG97ko6m5ZcZ27men/7RIdymrKjErIcX7JUkuRikQS1D1bKmt4JruCu/qER7z+boy1/OKrOguML7AgCo/PavXaJff/hS+Vnp8q9dX9fd/pCC6v35gXrHtq7Vj7NfV3h0R3UfPdFavunjt3Rkyw82sTWbtlWvuJeveu4AAOfSpZ6fejQMkLeHi85kmbRo9zmdzCj403qta3nrvna1tDs5W7N+PmMtd3cx6MamwWoRVkPV3V2UmlekDUfTtel4ZkV2AwDgRJg4qGBr165VXFycYmJiVFxcrAkTJig2NlZ79+5V9erVdebMGZ05c0ZvvvmmmjVrpuPHj+uhhx7SmTNntGDBAkenDziNmDo+uqN1mD7ZdkZHUvPVp0mgxnavp+eWHlC2qaTMOnmFJXpu2cFLBRaL9Y/urkbV9ffSkr0XfiGv7u6iu9rU1KPX19X/rTxc0d0BAFRyx7at0/ZFH6j9nWMUVC9S+1Z/pdVTJ2rg8/+Rp7dfufVyUs9q+1czFdyweZn3azZrp073jrV+Nrq6XeXMAQDOpnUtb93cLFgLdp3VifQCXd/AX6M7hOu11UeVU1j2s44k+Xu5amCzYB1OzSt17+bmIWocVE1zdyQpLa9IkcHVNbhlqLIKirXnbG5FdgcA4CSYOKhgy5cvt/k8e/ZshYSEaNu2berWrZtatGihL7/80nq/YcOGeuWVV3TvvfequLhYrq78FQGX44bIIK0/kq4fj2ZIkj7ZekbRNb3Vtb6/lu1LKbdeVjmrB/KLzHpr7TGbsrnbk/TcDQ0VUM1NaXlFVyt1AIAT2rdqkRp17qeGnW6QJLW/a4xO79mqw5tWqHnsHWXWMZtL9OOcNxQ9YKjOH96jwvzSX8y4uLrJyyegQnMHADiXbg38tflEpn4+mSVJ+nLnWTULqa72Eb5adSitzDoGSUPb1tJ3+1PVINBLXm62O1XX8/fSzyezdDj1wgrtzScy1bGun+r4eTFxAOAvMxgcnQEqAmcc2Flm5oVlfwEB5T8QZmZmysfHh0kD4DK5GA2q6++lvWdzrGUWSb+ezVGDoGrl1vNwNeq1m5ro9YGRiusaoVo+Hn/4c7zcjDJbLMr7g7d6AADXvpLiIqWdPKSwyNbWMoPRqLDI1ko5uq/ceruXzZNnDT816ty33JizB3dpwTP36OuXRuun+VNlysm6mqkDAJyMi0EK9/XUwZRLqwYskg6k5Kmuv2e59WKbBCrHVKyfTpa99dCx9Hw1D6suH88L3zs0DPRScA13HTjPpAEA4AK+mbYjs9mssWPHqkuXLmrRokWZMSkpKXr55Zc1evRoO2cHOK8a7i5yMRpKrR7IKihWWDmTAcnZJs3++bROZRTIy82ovpFBeqZ3A72w/KDS80uvQnA1GnRbdJh+OpGpgmJzhfQDAOAcTDlZspjNpbYk8vTxU9bZk2XWOXd4jw5tWqEBz7xXbrs1m7ZTnVadVT0wTDkpSUr8Zo5WT39BsU+8KaPR5Wp2AQDgJKpffNbJNtk+o+SYShRSw73MOvUDvNQ+wldvrTtebruLdp/T7dGheuGGhioxW2SxWPT5zrM6Us4ZcQCAqoeJAzuKi4vT7t27tWHDhjLvZ2Vl6cYbb1SzZs00adKkctsxmUwymUw2ZSVFhXJxK/uXBgClHUnN15HUS78UH045oZf7N1a3hgFavPucTayLQXqocx3JcGELJAAA/oqigjxt/O+/1eHux+RZw7fcuHrXdbf+2b92PfnVrqevJ92vcwd32axuAACgPB4uBt3dJkxf7Dyr3D9YKX19PT/V9ffSzJ9OKT2vWA0CvaxnHPx2dQMAoOpi4sBOxowZoyVLlmjdunUKDw8vdT87O1v9+vWTt7e3Fi1aJDe38g/CS0hI0IsvvmhT1mbIw2p7+yNXPW/AGeQUlqjEbLEus/0fH09XZZZzhsHvlVikExkFpd7acTFID3aOUGB1N725+hirDQAA8qjhI4PRqILsDJvygqwMefn4l4rPTklSbupZrZ1x6fc3i8UiSZr72EANnPgfeQfXLFXPO6imPGr4KPt8EhMHAFBF5V581vH2sH3WqeHhUmoVgiQFVndXYDV3/SOmtrXsf3uPv35jE722+qgyC4rVv2mwZv98Wr+eu7A1UVK2SbV9PNSjYQATBwAASUwcVDiLxaJHH31UixYt0po1a1S/fv1SMVlZWerbt688PDz09ddfy9Oz/H0KJSk+Pl7jx4+3KXv860NXNW/AmZSYLTqenq+moTWUeDpb0oXDwKJCa2j1wdTLasNgkGr7empXUra17H+TBqHe7npj9dE/fGMHAFB1uLi6KaBOIyXvT1SdVp0kSRazWckHEhXZ7aZS8b6hdXTjhKk2Zb8s+VhFBfm67rbRquYfVObPyUtPkSk3u8zJCABA1VBikU5lFqhxUDXtTr5wpptBUuOgavrxWEap+HM5hXpjzVGbsv5RQfJwMeqrPeeUkV8kVxejXI0GWX5X1ywOOAUAXMLEQQWLi4vT3LlztXjxYnl7eys5OVmS5OvrKy8vL2VlZSk2NlZ5eXn65JNPlJWVpaysC4fgBQcHy8Wl9H62Hh4e8vCw3bedbYpQ1a3cn6J/dAjX8bR8HU3NV5/IQHm4GvXj0XRJ0j861FZGXrEW7jorSbqpWbCOpObrXI5J1dxd1DcySIHV3LT+yIV4F4P0UJcI1fX30rvrj8toMFhXNPzvrR8AQNUV1etWbfr4LQVGNFZgvSbat3qxSkwFatDxBknSxv/+W16+gWpzywi5uLnLr1Y9m/ruXtUlyVpeZMrXrqVzFdG6izx9/JWTkqQdX30k76Caqtm0nT27BgCoZNYdSdddrcN0MqNAJzIK1K2Bv9xdjPrpxIWDj+9uHabMgmIt3ZeiYrNFydmFNvXziy6smv5feUmxWYdS8nRT02AVlZiVnleshoFeui7cR4v3nLdv5wBcEwzMOl6TmDioYNOnT5ck9ejRw6Z81qxZGjFihLZv364tW7ZIkho1amQTc/ToUdWrV88eaQJO7+eTWarhkaxbWoTIx9NVJzMKNHntMWWZLqwSCKzmLstvvuuv7u6i4TG15OPpqrzCEh1PL1DCD0eUlHXh/BA/Lze1qe0jSZrU1/bf5hurjmr/+Vz7dAwAUCnVa9dNppxM/fLtJyrITpd/7QbqGfeSdXVAbtr5v/QAZTAYlXH6mI5s+UFF+bny8g1Qzag2ir7pPrn8wRaWAIBrX+KZbFW/+LKTj4eLTmeZ9MGWU8q5uCLaz8ut1OqBP/PJ9jMaEBWsoW1qqpq7i9Lzi7R0X4o2Hc+46vkDAJyTwWKx8NrsNeD+z3Y7OgUAQBUREfDHW+oBAHA1ZRawXSQAwD7+PTDS0Sk4pcZPLnd0Ck7n4Bv9HJ3CnzI6OgEAAAAAAAAAAFB5MHEAAAAAAAAAAACsmDgAAAAAAAAAAABWHI4MAAAAAAAAALgiBoOjM0BFYMUBAAAAAAAAAACwYsXBNeJMep6jUwAAVBFmi8XRKQAAqpBcU7GjUwAAAKhyWHEAAAAAAAAAAACsmDgAAAAAAAAAAABWTBwAAAAAAAAAAAArzjioYAkJCVq4cKH27dsnLy8vde7cWa+99poiIyOtMQ8++KC+//57nTlzRjVq1LDGREVFOTBzwPnc1DxEQ1rXlL+Xm46m5mn6j8d14FxuufHV3V00vH24Otf3l7enq85lF2rGxuPaeiLzitsEAFQdvRoFqF/TYPl6uupkRoE+3XZGR9Pyy4ztUt9PozrUsSkrKjHrwS/2WD/f0iJE7SN8FVDNXcVmi46n5WvhzmQdKadNAEDVERsZpIEtQuTn5abjafma9dMpHU4p+6zD7g0D9EjXujZlhSVm3ffJL9bPnw1vU2bdT7ae1jd7zl29xAFUCQaDwdEpoAIwcVDB1q5dq7i4OMXExKi4uFgTJkxQbGys9u7dq+rVq0uS2rVrp6FDhyoiIkJpaWmaNGmSYmNjdfToUbm4uDi4B4Bz6NYwQA90jtCUdce071yOBrUM08s3Rmr0vJ3KLCh9oJ6r0aBXbopURn6x/rXykFJyCxVSw0O5hcVX3CYAoOqIqeOrO9vU1Mdbz+hIap5uiAzS+B71NeHb/co2lZRZJ6+wRBOWHrhU8LtzxpOzTfp02xmdzymUm4tRsRfbjP+DNgEA175O9fw0LKa2Ptx8UgfP52lAs2BN6NNQ4776VVnlPJfkFZZo7KK95bY5+rNdNp/bhPvowc4R2nI842qmDgBwYkwcVLDly5fbfJ49e7ZCQkK0bds2devWTZI0evRo6/169erp//7v/9SqVSsdO3ZMDRs2tGu+gLO6NTpMy389r5X7UyRJU9YdU0xdP8VGBeuLxKRS8bFRQfL2cNUTX/2qEvOFb27OZRf+rTYBAFVH36ggrTucrg1H0yVJ//35tKJreuv6BgFa+uv5cuuV9wWPJG05nmnzef6OJHVrGKBwP0/9epbVbgBQVd3YLEQ/HEzVmkNpkqQPN51U23Af9WwUqMW7z5ZZxyLLH77s9Pt719Xx1Z7kHJ3LKSynBgCgqmHiwM4yMy88EAYEBJR5Pzc3V7NmzVL9+vVVp06dMmMA2HI1GtQouLo+33HGWmaRlHgqS1GhNcqs06Gev349m6NHutZVx3r+yiwo0pqDqVqQmCSz5craBABUDS5Gg+r6e+nbvZcmCCyS9p7NUcPAauXW83A16vWBkTIapONpBfpyZ7LOZJnK/RndGwYor7BEJ9MLrnYXAABOwsVoUIPAavpq16UJAoukXWey1Ti4/DHH09VFU4Y0l8EgHU3N0/wdSTqVUfZ44uvpqjbhvpq24fjVTh8A4MQ4HNmOzGazxo4dqy5duqhFixY296ZNm6YaNWqoRo0aWrZsmVauXCl3d3cHZQo4Fx9PV7kYDUrPt31rJiO/SAHV3MqsE+btoa4NAmQ0GPTC0v2av+2MBreqqbva1rriNgEAVYO3u4tcjIZSqweyCorl61X2eznJWYWa9dMpvbf+uP6z6ZQMBmlCn4by/118q1remjakmWbc3lyxkUF6c81R5RSyTREAVFU+HhfGnMyCIpvyzIJi+XmV/VxyJqtA7/94Qm+sOqIp64/LaDDo5f5Nyn2O6d4wQAVFJfqJbYoAAL/BxIEdxcXFaffu3Zo/f36pe0OHDtWOHTu0du1aNWnSRHfccYcKCsp+G8BkMikrK8vmKiliOSHwVxgNBmXkF+m9dUd1KCVP6w6n6bPtZzSgWYijUwMAXIMOp+Zp47EMncwo0IHzuZq64biyTcXq0SjQJu7Xszma9N0h/ev7w9qdnK2HO0fI24MzrwAAl+/g+TytO5Km4+n5+vVsjv69+oiyCorVp0lQmfE9Ggdqw5F0FZktZd4HAFRNTBzYyZgxY7RkyRKtXr1a4eHhpe77+vqqcePG6tatmxYsWKB9+/Zp0aJFZbaVkJAgX19fm+vId3MqugtApZVVUKwSs6XUW5t+Xm5Kyysqs05aXqFOZxbot78bn0zPV0B1d7lefIv0r7YJAKgasgtLVGK2yMfTdozw8XRVZn75+0n/VolFOpFeoJAatitMC0ssOpdTqCOp+Zr102mZLRZd36DsLS4BANe+LNOFMcfX03a1gK+nqzLyL++5pMQiHUvLU5iPR6l7USHVVdvXU6sOpl6VfAFUTQYD11+9nAETBxXMYrFozJgxWrRokVatWqX69etfVh2LxSKTqew9b+Pj45WZmWlzNeg7/GqnDjiNYrNFh87nqlVtX2uZQVLr2j7adzanzDp7k3NUy9dTv/1/dW0/T6XmFqrYbLmiNgEAVUOJ2aLj6flqGlrdWmaQ1DS0hg6n5l1WGwaDFO7noYw/mWgwGCQ3Fyd5sgAAXHUlZouOpOapZU1va5lBUoua3jp4/vLHnDr+Xkov4wWono0DdTglT8fT869WygCAawSHI1ewuLg4zZ07V4sXL5a3t7eSk5MlXVhh4OXlpSNHjuizzz5TbGysgoODderUKb366qvy8vLSgAEDymzTw8NDHh62bwq4uHEeAqq2RTuTNb5nAx08n6sD53J0S3SYPNyMWrn/wsGVT/RsoNTcQs3+6ZQk6ds95zSwRage7FJX3+w+q1q+HrqjTS19vTv5stsEAFRd3+1L0f0dw3UsLV9H0/J1Q5NAebgateFIuiTp/g7hSs8v0pc7LxxmObB5iI6k5ulctkle7i7qHxWswGruWn8kTZLk7mLQTc1DlHg6S5n5xarh4aJejQPl7+Wmn09kOqyfAADH+3bvOT3Sta4Op+bpcEquBjQNkYerUWsOXVglENe1rtLyCjVve5IkaUh0mA6m5Co5y6Tq7i4a2CJUwdXdS60q8HIzqmNdP3289bTd+wQAqPyYOKhg06dPlyT16NHDpnzWrFkaMWKEPD09tX79ek2ePFnp6ekKDQ1Vt27dtHHjRoWEsNc6cLnWHU6Tj6er7oupLf9qbjqSkqfnv91vfZMz2NtdZl3alyglt1DPfbtfoztHaOrtLZSaW6jFu5K1IDHpstsEAFRdP5/MlLenqwa1DJWvp6tOZhTo7TVHlWW6MEYEVHeT+Tfx1d1dNDymtnw9XZVXWKJj6fn61/eHdSbrwgpTs0Wq6e2hLl3qqoaHi3ILS3Q0NV8JPxyxxgAAqqZNxzLk4+mqO1rXlJ+Xq46l5Svh+8PKLLgw5gRWd5PZculZp7qHi0Z3ipCfl6tyC0t0JDVPE5cd0OlM23MUO9fzl8Fg0I9H0+3aHwCAczBYLBZOv7kGDHj/J0enAACoIsL8vBydAgCgCsk18dIGAMA+PhvextEpOKWoZ75zdApOZ9+rfR2dwp/ijAMAAAAAAAAAAGDFVkUAAAAAAAAAgCtiNBocnQIqACsOAAAAAAAAAACAFRMHAAAAAAAAAADAiokDAAAAAAAAAABgxRkH14iF97d3dAoAAAAAAAAAgGsAKw4AAAAAAAAAAIAVKw4AAAAAAAAAAFfEYHB0BqgIrDgAAAAAAAAAAABWTBwAAAAAAAAAAAArJg4qWEJCgmJiYuTt7a2QkBANGjRI+/fvLzPWYrGof//+MhgM+uqrr+ybKHANmD/3U/W/oZdi2rTU0Ltu166dO/8wfsV3y3TLTf0U06alhgwaqPXr1trct1gsmvreO+rdvavat43W6FEjdPz4sQrsAQDAmTDuAADshTEHAGBvTBxUsLVr1youLk6bN2/WypUrVVRUpNjYWOXm5paKnTx5sgxsCgZckeXLlurN1xP04CNxmv/FIkVGRunhB0cpNTW1zPjEHdv1zJNP6NbBt+mzBV+pZ6/eGvtonA4ePGCNmTXzA8379GM998IkfTLvc3l5eenh0aNkMpns1S0AQCXFuAMAsBfGHACAIxgsFovF0UlUJefPn1dISIjWrl2rbt26WcsTExN10003aevWrapZs6YWLVqkQYMGXXa7BcUVkCzgRIbedbuat2ipCc89L0kym82K7d1dd99zn0Y9MLpU/JNPjFV+fr6mTJthLbv37jsUGRWliS+8JIvFoj49rtewESM1fOQoSVJ2drZ6deusl155Vf0H3GifjgEAKiXGHQCAvTDmAPbj6eroDJxT82dXODoFp7PnlVhHp/CnWHFgZ5mZmZKkgIAAa1leXp7uueceTZ06VWFhYY5KDXBaRYWF+nXvHnXs1NlaZjQa1bFjZ+38ZUeZdXYmJqpjx042ZZ27dNXOxERJ0ulTp5SScl4dOl5q09vbWy2jW5XbJgCgamDcAQDYC2MOAGdgMBi4/uLlDJg4sCOz2ayxY8eqS5cuatGihbV83Lhx6ty5s2655RYHZgc4r/SMdJWUlCgwMNCmPDAwUCkpKWXWSUlJUWBgUOn41JSL989fKAu6/DYBAFUD4w4AwF4YcwAAjsICHDuKi4vT7t27tWHDBmvZ119/rVWrVmnHjsuf1TeZTKX2HbS4eMjDw+Oq5QoAAAAAAAAAqJpYcWAnY8aM0ZIlS7R69WqFh4dby1etWqXDhw/Lz89Prq6ucnW9MJczZMgQ9ejRo8y2EhIS5Ovra3O98VqCPboBVEr+fv5ycXEpdThYamqqgoKCyqwTFBSk1NSU0vEX38wJCgq+UJZy+W0CAKoGxh0AgL0w5gAAHIWJgwpmsVg0ZswYLVq0SKtWrVL9+vVt7j/zzDPauXOnEhMTrZckvf3225o1a1aZbcbHxyszM9PmevLp+IruClBpubm7q2mz5tqyeZO1zGw2a8uWTYpu1abMOtGtW2vL5s02ZZs3bVR069aSpNrh4QoKCtaWLZfazMnJ0a6dv5TbJgCgamDcAQDYC2MOAMBR2KqogsXFxWnu3LlavHixvL29lZycLEny9fWVl5eXwsLCyjwQOSIiotQkw/94eJTelqig+OrnDjiT+4aP1MQJT6t58xZq0TJan3w8R/n5+Rp062BJ0rPxTykkJFSPj3tCkjT03mEaNeI+zZn9kbp1667ly5Zqz+7dmjjpJUkXDvYZet8wfTBjuupG1FXt8HBNfe8dBYeEqFfvPg7rJwCgcmDcAQDYC2MOAMARmDioYNOnT5ekUtsOzZo1SyNGjLB/QsA1ql//AUpPS9O0Ke8qJeW8IqOaatqMDxV4caltclKSjIZLi6xat2mrhNff1JR3J+u9yW8pom49TX5vqho3bmKNGTnqAeXn5+ulSc8rOztLbdq207QZH3KeCACAcQcAYDeMOQAqO4PB0RmgIhgsFovF0Ung72PFAQAAAAAAAHDlPHnF+oq0nLjS0Sk4nV0v3+DoFP4UZxwAAAAAAAAAAAArJg4AAAAAAAAAAIAVEwcAAAAAAAAAAMCKiQMAAAAAAAAAAGDFkR8AAAAAAAAAgCtiMBgcnQIqACsOAAAAAAAAAACAFRMHAAAAAAAAAADAiokDAAAAAAAAAABgxcQBAAAAAAAAAACwYuIAAAAAAAAAAABYMXFQwRISEhQTEyNvb2+FhIRo0KBB2r9/v01Mjx49ZDAYbK6HHnrIQRkDzmv+3E/V/4ZeimnTUkPvul27du78w/gV3y3TLTf1U0yblhoyaKDWr1trc99isWjqe++od/euat82WqNHjdDx48cqsAcAAGfCuAMAsBfGHACV2e+/1+T688sZMHFQwdauXau4uDht3rxZK1euVFFRkWJjY5Wbm2sT98ADDygpKcl6vf766w7KGHBOy5ct1ZuvJ+jBR+I0/4tFioyM0sMPjlJqamqZ8Yk7tuuZJ5/QrYNv02cLvlLPXr019tE4HTx4wBoza+YHmvfpx3ruhUn6ZN7n8vLy0sOjR8lkMtmrWwCASopxBwBgL4w5AABHMFgsFoujk6hKzp8/r5CQEK1du1bdunWTdGHFQevWrTV58uQrbreg+ColCDipoXfdruYtWmrCc89Lksxms2J7d9fd99ynUQ+MLhX/5BNjlZ+frynTZljL7r37DkVGRWniCy/JYrGoT4/rNWzESA0fOUqSlJ2drV7dOuulV15V/wE32qdjAIBKiXEHAGAvjDmA/Xi6OjoD59TqhR8cnYLT+eXF3o5O4U+x4sDOMjMzJUkBAQE25Z9++qmCgoLUokULxcfHKy8vzxHpAU6pqLBQv+7do46dOlvLjEajOnbsrJ2/7Cizzs7ERHXs2MmmrHOXrtqZmChJOn3qlFJSzqtDx0ttent7q2V0q3LbBABUDYw7AAB7YcwBADgK82h2ZDabNXbsWHXp0kUtWrSwlt9zzz2qW7euatWqpZ07d+rpp5/W/v37tXDhwjLbMZlMpZYPWlw85OHhUaH5A5VVeka6SkpKFBgYaFMeGBioo0ePlFknJSVFgYFBpeJTUlMu3j9/oSyodJspKSlXK3UAgBNi3AEA2AtjDgDAUZg4sKO4uDjt3r1bGzZssCkfPfrS0sKWLVuqZs2a6t27tw4fPqyGDRuWaichIUEvvviiTdmzE1/Qc89PqpC8AQAAAAAAAABVB1sV2cmYMWO0ZMkSrV69WuHh4X8Y26FDB0nSoUOHyrwfHx+vzMxMm+vJp+Oves6As/D385eLi0upw8FSU1MVFBRUZp2goCClpqaUjr/4Zk5QUPCFspTLbxMAUDUw7gAA7IUxB4AzMBi4/urlDJg4qGAWi0VjxozRokWLtGrVKtWvX/9P6yRe3HewZs2aZd738PCQj4+PzcU2RajK3Nzd1bRZc23ZvMlaZjabtWXLJkW3alNmnejWrbVl82abss2bNiq6dWtJUu3wcAUFBWvLlktt5uTkaNfOX8ptEwBQNTDuAADshTEHAOAobFVUweLi4jR37lwtXrxY3t7eSk5OliT5+vrKy8tLhw8f1ty5czVgwAAFBgZq586dGjdunLp166bo6GgHZw84j/uGj9TECU+refMWatEyWp98PEf5+fkadOtgSdKz8U8pJCRUj497QpI09N5hGjXiPs2Z/ZG6deuu5cuWas/u3Zo46SVJksFg0ND7humDGdNVN6KuaoeHa+p77yg4JES9evdxWD8BAJUD4w4AwF4YcwAAjsDEQQWbPn26JKlHjx425bNmzdKIESPk7u6u77//XpMnT1Zubq7q1KmjIUOG6LnnnnNAtoDz6td/gNLT0jRtyrtKSTmvyKimmjbjQwVeXGqbnJQko+HSIqvWbdoq4fU3NeXdyXpv8luKqFtPk9+bqsaNm1hjRo56QPn5+Xpp0vPKzs5Sm7btNG3Gh6zwAQAw7gAA7IYxBwDgCAaLxWJxdBL4+wqKHZ0BAAAAAAAA4Lw8ecX6irSe9IOjU3A6iZN6OzqFP8UZBwAAAAAAAAAAwIp5NAAAAAAAAADAFTEYDI5OARWAFQcAAAAAAAAAAMCKiQMAAAAAAAAAAGDFxAEAAAAAAAAAALBi4gAAAAAAAAAAAFgxcQAAAAAAAAAAAKyYOAAAAAAAAAAAAFaujk4AAAAAAAAAAOCcDAZHZ4CKwIqDCpaQkKCYmBh5e3srJCREgwYN0v79+0vFbdq0Sb169VL16tXl4+Ojbt26KT8/3wEZA85r/txP1f+GXopp01JD77pdu3bu/MP4Fd8t0y039VNMm5YaMmig1q9ba3PfYrFo6nvvqHf3rmrfNlqjR43Q8ePHKrAHAABnwrgDALAXxhwAgL0xcVDB1q5dq7i4OG3evFkrV65UUVGRYmNjlZuba43ZtGmT+vXrp9jYWP3000/6+eefNWbMGBmN/PUAl2v5sqV68/UEPfhInOZ/sUiRkVF6+MFRSk1NLTM+ccd2PfPkE7p18G36bMFX6tmrt8Y+GqeDBw9YY2bN/EDzPv1Yz70wSZ/M+1xeXl56ePQomUwme3ULAFBJMe4AAOyFMQcA4AgGi8VicXQSVcn58+cVEhKitWvXqlu3bpKkjh076oYbbtDLL798xe0WFF+tDAHnNPSu29W8RUtNeO55SZLZbFZs7+66+577NOqB0aXin3xirPLz8zVl2gxr2b1336HIqChNfOElWSwW9elxvYaNGKnhI0dJkrKzs9WrW2e99Mqr6j/gRvt0DABQKTHuAADshTEHsB9PNnW/Im1fWuXoFJzO9ud7OTqFP8Ur7XaWmZkpSQoICJAknTt3Tlu2bFFISIg6d+6s0NBQde/eXRs2bHBkmoBTKSos1K9796hjp87WMqPRqI4dO2vnLzvKrLMzMVEdO3ayKevcpat2JiZKkk6fOqWUlPPq0PFSm97e3moZ3arcNgEAVQPjDgDAXhhzAACOwsSBHZnNZo0dO1ZdunRRixYtJElHjhyRJE2aNEkPPPCAli9frrZt26p37946ePCgI9MFnEZ6RrpKSkoUGBhoUx4YGKiUlJQy66SkpCgwMKh0fGrKxfvnL5QFXX6bAICqgXEHAGAvjDkAAEdhAY4dxcXFaffu3TarCcxmsyTpwQcf1MiRIyVJbdq00Q8//KCPPvpICQkJpdoxmUyl9h20uHjIw8OjArMHAAAAAAAAAFsGg8HRKaACsOLATsaMGaMlS5Zo9erVCg8Pt5bXrFlTktSsWTOb+KZNm+rEiRNltpWQkCBfX1+b643XSk8wAFWFv5+/XFxcSh0OlpqaqqCgoDLrBAUFKTU1pXT8xTdzgoKCL5SlXH6bAICqgXEHAGAvjDkAAEdh4qCCWSwWjRkzRosWLdKqVatUv359m/v16tVTrVq1tH//fpvyAwcOqG7dumW2GR8fr8zMTJvryafjK6wPQGXn5u6ups2aa8vmTdYys9msLVs2KbpVmzLrRLdurS2bN9uUbd60UdGtW0uSaoeHKygoWFu2XGozJydHu3b+Um6bAICqgXEHAGAvjDkAAEdhq6IKFhcXp7lz52rx4sXy9vZWcnKyJMnX11deXl4yGAx68skn9cILL6hVq1Zq3bq15syZo3379mnBggVltunhUXpbooLiCu8KUKndN3ykJk54Ws2bt1CLltH65OM5ys/P16BbB0uSno1/SiEhoXp83BOSpKH3DtOoEfdpzuyP1K1bdy1ftlR7du/WxEkvSbqwzG7ofcP0wYzpqhtRV7XDwzX1vXcUHBKiXr37OKyfAIDKgXEHAGAvjDkAAEdg4qCCTZ8+XZLUo0cPm/JZs2ZpxIgRkqSxY8eqoKBA48aNU1pamlq1aqWVK1eqYcOGds4WcF79+g9Qelqapk15Vykp5xUZ1VTTZnyowItLbZOTkmQ0XFpk1bpNWyW8/qamvDtZ701+SxF162nye1PVuHETa8zIUQ8oPz9fL016XtnZWWrTtp2mzfiQ80QAAIw7AAC7YcwBADiCwWKxWBydBP4+VhwAAAAAAAAAV86TV6yvSLuXVzs6BaezbWJPR6fwp/jnAAAAAAAAAAC4IgaDozNAReBwZAAAAAAAAAAAYMXEAQAAAAAAAAAAsGLiAAAAAAAAAAAAWDFxAAAAAAAAAAAArJg4AAAAAAAAAAAAVq6OTgAAAAAAAAAA4JwMBoOjU0AFYMUBAAAAAAAAAACwYuIAAAAAAAAAAABYMXEAAAAAAAAAAACsmDioYAkJCYqJiZG3t7dCQkI0aNAg7d+/33r/2LFjMhgMZV5ffPGFAzMHnM/8uZ+q/w29FNOmpYbedbt27dz5h/ErvlumW27qp5g2LTVk0ECtX7fW5r7FYtHU995R7+5d1b5ttEaPGqHjx49VYA8AAM6EcQcAYC+MOQAAe2PioIKtXbtWcXFx2rx5s1auXKmioiLFxsYqNzdXklSnTh0lJSXZXC+++KJq1Kih/v37Ozh7wHksX7ZUb76eoAcfidP8LxYpMjJKDz84SqmpqWXGJ+7YrmeefEK3Dr5Nny34Sj179dbYR+N08OABa8ysmR9o3qcf67kXJumTeZ/Ly8tLD48eJZPJZK9uAQAqKcYdAIC9MOYAABzBYLFYLI5Ooio5f/68QkJCtHbtWnXr1q3MmDZt2qht27aaOXPmZbdbUHy1MgSc09C7blfzFi014bnnJUlms1mxvbvr7nvu06gHRpeKf/KJscrPz9eUaTOsZffefYcio6I08YWXZLFY1KfH9Ro2YqSGjxwlScrOzlavbp310iuvqv+AG+3TMQBApcS4AwCwF8YcwH48XR2dgXNq/681jk7B6fw0oYejU/hTrDiws8zMTElSQEBAmfe3bdumxMREjRo1yp5pAU6tqLBQv+7do46dOlvLjEajOnbsrJ2/7Cizzs7ERHXs2MmmrHOXrtqZmChJOn3qlFJSzqtDx0ttent7q2V0q3LbBABUDYw7AAB7YcwBADgK82h2ZDabNXbsWHXp0kUtWrQoM2bmzJlq2rSpOnfuXOZ9STKZTKWWD1pcPOTh4XFV8wWcRXpGukpKShQYGGhTHhgYqKNHj5RZJyUlRYGBQaXiU1JTLt4/f6EsqHSbKSkpVyt1AIATYtwBANgLYw4AwFFYcWBHcXFx2r17t+bPn1/m/fz8fM2dO/dPVxskJCTI19fX5nrjtYSKSBkAAAAAAAAAUMUwcWAnY8aM0ZIlS7R69WqFh4eXGbNgwQLl5eVp2LBhf9hWfHy8MjMzba4nn46viLQBp+Dv5y8XF5dSh4OlpqYqKCiozDpBQUFKTU0pHX/xzZygoOALZSmX3yYAoGpg3AEA2AtjDgDAUZg4qGAWi0VjxozRokWLtGrVKtWvX7/c2JkzZ+rmm29WcHDwH7bp4eEhHx8fm4ttilCVubm7q2mz5tqyeZO1zGw2a8uWTYpu1abMOtGtW2vL5s02ZZs3bVR069aSpNrh4QoKCtaWLZfazMnJ0a6dv5TbJgCgamDcAQDYC2MOAMBROOOggsXFxWnu3LlavHixvL29lZycLEny9fWVl5eXNe7QoUNat26dli5d6qhUAad23/CRmjjhaTVv3kItWkbrk4/nKD8/X4NuHSxJejb+KYWEhOrxcU9IkobeO0yjRtynObM/Urdu3bV82VLt2b1bEye9JEkyGAwaet8wfTBjuupG1FXt8HBNfe8dBYeEqFfvPg7rJwCgcmDcAQDYC2MOgMrOYDA4OgVUACYOKtj06dMlST169LApnzVrlkaMGGH9/NFHHyk8PFyxsbF2zA64dvTrP0DpaWmaNuVdpaScV2RUU02b8aECLy61TU5KktFwaZFV6zZtlfD6m5ry7mS9N/ktRdStp8nvTVXjxk2sMSNHPaD8/Hy9NOl5ZWdnqU3bdpo240NW+AAAGHcAAHbDmAMAcASDxWKxODoJ/H0FxY7OAAAAAAAAAHBenrxifUU6JKx1dApOZ0t8d0en8Kc44wAAAAAAAAAAAFgxcQAAAAAAAAAAAKyYOAAAAAAAAAAAAFbs3AUAAAAAAAAAuCIGg6MzQEVgxQEAAAAAAAAAALBixcE1wj9mjKNTAABUEVP/85SjUwAAVCGrD6Q7OgUAQBXx8dBWjk4BqDRYcQAAAAAAAAAAAKyYOAAAAAAAAAAAAFZMHAAAAAAAAAAAACvOOKhgCQkJWrhwofbt2ycvLy917txZr732miIjI60xycnJevLJJ7Vy5UplZ2crMjJSzz77rIYMGeLAzAHn0qVtQ40b1kdtm0WoZrCv7hj3H32zZucf1rm+XWO99sRgNWsYplPJGXr1w+X65JstNjEP3tFN44b3Vmigj3YdOK3xr32hrXuOV2RXAABOYvvKxdry7RfKzUxTSERD9RkWp1oNo8qM3f/zem3+ep7Sz56RuaRE/qG1FDPgNrXoeoM1prAgX2s/+1AHtm5UQU6WfIPD1K7vILXpPdBeXQIAVFJ9mgRqQNMQ+Xq56mR6vv679bSOpOaXGXt9A3+N7hRhU1ZYYtao+busn0d3rKPrGwbYxOw8k6U3Vh+9+skDuOYZDAZHp4AKwMRBBVu7dq3i4uIUExOj4uJiTZgwQbGxsdq7d6+qV68uSRo2bJgyMjL09ddfKygoSHPnztUdd9yhrVu3qk2bNg7uAeAcqnt5aNeB0/rv4k367K3Rfxpft1agFr33kD5csEEjn52tnu0jNf35e5SckqXvN/0qSbottq1ee+JWPfrKZ/p59zGNuaenvp4Wp1aDXtL59JyK7hIAoBL7dfMarfp0hmJHPqZajZpq6/KF+vy1eD3wxkeq7utfKt6ruo863XyPAmrVkYurmw7v2Kyl/3lT1Xz81CA6RpK06tP3dXxPogY+/Ix8g0N1dNc2rZj9rmr4Bapxu8727iIAoJLoUNdP97StpVk/ndLhlDz1iwrWUz0b6Klv9ivLVFxmnbzCEj31zT7rZ0sZMb+cydIHm05aPxeZy4oCAFRVbFVUwZYvX64RI0aoefPmatWqlWbPnq0TJ05o27Zt1piNGzfq0UcfVfv27dWgQQM999xz8vPzs4kB8MdW/LhXL05boq9X//Eqg/954LauOnY6Vc+8tUj7j57V+5+t06IfEvXo0J7WmMfu7aVZCzfq4683a9+RZD36ynzlFxRq+KBOFdUNAICT+HnZl2rVs7+iu/dTUO266jvycbl5eGjX2u/KjI9o1kpNYroqqHZd+YfW0nX9BiukTgOd2r/HGnP64F61uP4GRTRrJd/gMLXudaNCIhoq6ch+e3ULAFAJ9Y8K0ppDaVp/JF1nskya9dMpmUos6va7FQO/ZZGUWVBsvbIKSk8wFJdYbGLyCksqsBcAAGfDxIGdZWZmSpICAi4N8J07d9Znn32mtLQ0mc1mzZ8/XwUFBerRo4eDsgSufR1a1dfqLbZfxKzc+Ks6RNeXJLm5uqhN0zpa9ZsYi8WiVVv2q/3FGABA1VRSXKTkowdUt3lba5nBaFS95m11+tDeP61vsVh0bPd2pSWfUp2oltby2o2b6dD2TcpOS5HFYtHxvYlKTz6l+i3bVUg/AACVn4vRoHoB1bQnOdtaZpG0JzlbjYKqlVvP09Wotwc11eRBTTW2Wz3V9vUoFRMVWkNThzTT6wMjNSKmtmq4u1REFwAAToqtiuzIbDZr7Nix6tKli1q0aGEt//zzz3XnnXcqMDBQrq6uqlatmhYtWqRGjRo5MFvg2hYa6KOzadk2ZefSsuTr7SVPDzf5+1STq6uLzv0+JjVLkfVC7ZkqAKCSycvOlMVsLrUlUTVff6UmnSynlmTKy9XUR+9SSXGRDEajYkc8ZjMp0GdYnL6bOVnTHrtbRhcXGQxG9Rs1TnWioiusLwCAys3bw0UuRoMyf7diIKugWLV8Sk8GSFJSlkkfbD6pkxn5qubmogFNg/V8bGM9s2S/0vOLJEk7k7L188lMnc8tVGgNd93euqb+2bOBXlxxUBZ2LAIAiIkDu4qLi9Pu3bu1YcMGm/KJEycqIyND33//vYKCgvTVV1/pjjvu0Pr169WyZctS7ZhMJplMJpsyi7lEBiNvBwAAAFRW7p5eGvnK+yo05ev4nh1a9en78guuqYhmrSRJ21Ys1plDv2rI+JfkExSqk/t2auWc91TDP1D1WrT9k9YBALjgUEqeDqXkWT8fPJ+r1wZGqVfjQH25M1mStPl4hvX+qYwCncgo0Fu3NFXTkBrae5bz3AAATBzYzZgxY7RkyRKtW7dO4eHh1vLDhw9rypQp2r17t5o3by5JatWqldavX6+pU6fq/fffL9VWQkKCXnzxRZsyl9AYudVsX7GdAK4hZ1OzFBrgbVMWEuCjzOx8FZiKlJKeo+LiEoX8PibQR8mpWfZMFQBQyVTz9pXBaFRuZrpNeV5mepkHI/+PwWiUf1htSVJo3UZKPX1Cm76Zp4hmrVRUaNK6zz/S4LGT1LBNB0lSSEQDnTt+WD99+wUTBwBQRWWbSlRitsjX0/brGx9PV2Xkl30w8u+VWKTjafkK9XYvN+Z8TqGyCooV6u2uvWf/VsoAqiCDwdEZoCJwxkEFs1gsGjNmjBYtWqRVq1apfn3bvdHz8i68BWA02v5VuLi4yGw2l9lmfHy8MjMzbS7XUPa+Bf6KLb8cVY/2kTZlvTtGacvOo5KkouIS7fj1pHp2uBRjMBjUs30T/XQxBgBQNbm4uimsfhMd37PDWmYxm3Vszw7VbtTsstuxWCwqKbqwZYS5uFjmkmLJaPvUZTC6yGIp+3dCAMC1r8Rs0bG0PDULu/RCk0FS87AaNqsK/ojBIIX7ef7hRIO/l5tqeLhc9mQEAODax4qDChYXF6e5c+dq8eLF8vb2VnLyhWWBvr6+8vLyUlRUlBo1aqQHH3xQb775pgIDA/XVV19p5cqVWrJkSZltenh4yMPDdi9DtilCVVfdy10N6wRbP9erHajoJrWVnpWnk8npeunRm1UrxFf3T/xYkvTBgg166K5ueuXxWzRn8Wb1iGmiITe00a2PXVrl8+4nq/TBS/dp294T2rr7mMbc01PVvDz038Wb7d4/AEDlEtN/iL6d8brC6jdRzYaR2rp8kYpMBWrZva8kacn7r8nbP0jd7xwlSdr09TyF1W8i/9BaKi4q1JFfftKeH79X7IjHJEke1aqrTlS01sz7QG5uHvIJCtHJfTu1Z8NK9Rr6kMP6CQBwvGX7UjS6Ux0dTc3TkdQ89Y0KloeLUeuOpEmSHuxUR+n5Rfo88cL3DYNahOpQSq7O5hSqmpuLbmwWrKDq7lpzKFWS5OFq1K0tQ/XziUxlFhQppIaH7mpTU2ezC7UrKbvcPAAAVQsTBxVs+vTpkqQePXrYlM+aNUsjRoyQm5ubli5dqmeeeUYDBw5UTk6OGjVqpDlz5mjAgAEOyBhwTm2b1dWKDx+3fn79n0MkSR9/vVmjX/hEYUE+qhMWYL1//Eyqbn30fb3+z8GKu6eHTp/N0MMvzdX3m361xixYsV1B/jX0/MM3KjTQWzv3n9YtcVNLHZgMAKh6mnbsobysDG34co5yM9MVUreh7njqX9atirJSzsnwmzXbRaYCrZz9rrLTUuTq7qGAWnV008PPqGnHHtaYm8c8q7WfzdQ30xNUkJMtn6BQXX/7SLXufZO9uwcAqES2HM+Qt4eLhrQKk6+nq06k5+uN1UeVdfHA5MDq7jYHGld3d9GojnXk6+mq3MISHUvL10srDulM1oWzEs0Wi+r4een6Bv6q5uai9Pxi7U7K1oKdySo2czIyAOACg8ViYVS4Bni1GePoFAAAVcTU/zzl6BQAAFXI6gPpfx4EAMBV8PHQVo5OwSl1fn2do1NwOhuf6uboFP4UZxwAAAAAAAAAAAArtioCAAAAAAAAAFyR327RiWsHKw4AAAAAAAAAAIAVEwcAAAAAAAAAAMCKiQMAAAAAAAAAAGDFGQfXiPSfpzg6BQAAAAC46u5pE+HoFAAAAKocVhwAAAAAAAAAAAArVhwAAAAAAAAAAK6IweDoDFARWHEAAAAAAAAAAACsmDgAAAAAAAAAAABWTBxUsISEBMXExMjb21shISEaNGiQ9u/fbxNz+PBh3XrrrQoODpaPj4/uuOMOnT171kEZA85r/txP1f+GXopp01JD77pdu3bu/MP4Fd8t0y039VNMm5YaMmig1q9ba3PfYrFo6nvvqHf3rmrfNlqjR43Q8ePHKrAHAABnwrgDALAXxhwAgL0xcVDB1q5dq7i4OG3evFkrV65UUVGRYmNjlZubK0nKzc1VbGysDAaDVq1apR9//FGFhYUaOHCgzGazg7MHnMfyZUv15usJevCROM3/YpEiI6P08IOjlJqaWmZ84o7teubJJ3Tr4Nv02YKv1LNXb419NE4HDx6wxsya+YHmffqxnnthkj6Z97m8vLz08OhRMplM9uoWAKCSYtwBANgLYw4AwBEMFovF4ugkqpLz588rJCREa9euVbdu3bRixQr1799f6enp8vHxkSRlZmbK399fK1asUJ8+fS6r3YLiiswaqPyG3nW7mrdoqQnPPS9JMpvNiu3dXXffc59GPTC6VPyTT4xVfn6+pkybYS279+47FBkVpYkvvCSLxaI+Pa7XsBEjNXzkKElSdna2enXrrJdeeVX9B9xon44BAColxh0AgL0w5gD24+nq6AycU9c31zs6Baez4Z/XOzqFP8WKAzvLzMyUJAUEBEiSTCaTDAaDPDw8rDGenp4yGo3asGGDQ3IEnE1RYaF+3btHHTt1tpYZjUZ17NhZO3/ZUWadnYmJ6tixk01Z5y5dtTMxUZJ0+tQppaScV4eOl9r09vZWy+hW5bYJAKgaGHcAAPbCmAPAGRgMBq6/eDkDJg7syGw2a+zYserSpYtatGghSerYsaOqV6+up59+Wnl5ecrNzdU///lPlZSUKCkpqcx2TCaTsrKybC6WE6IqS89IV0lJiQIDA23KAwMDlZKSUmadlJQUBQYGlY5PTbl4//yFsqDLbxMAUDUw7gAA7IUxBwDgKEwc2FFcXJx2796t+fPnW8uCg4P1xRdf6JtvvlGNGjXk6+urjIwMtW3bVkZj2X89CQkJ8vX1tbneeC3BXt0AAAAAAAAAAFzD2LnLTsaMGaMlS5Zo3bp1Cg8Pt7kXGxurw4cPKyUlRa6urvLz81NYWJgaNGhQZlvx8fEaP368TZnFxaPMWKAq8Pfzl4uLS6nDwVJTUxUUFFRmnaCgIKWmppSOv/hmTlBQ8IWylFQFB4fYxERGRV3N9AEAToZxBwBgL4w5AABHYcVBBbNYLBozZowWLVqkVatWqX79+uXGBgUFyc/PT6tWrdK5c+d08803lxnn4eEhHx8fm+u3ZyQAVY2bu7uaNmuuLZs3WcvMZrO2bNmk6FZtyqwT3bq1tmzebFO2edNGRbduLUmqHR6uoKBgbdlyqc2cnBzt2vlLuW0CAKoGxh0AgL0w5gAAHIUVBxUsLi5Oc+fO1eLFi+Xt7a3k5GRJkq+vr7y8vCRJs2bNUtOmTRUcHKxNmzbp8ccf17hx4xQZGenI1AGnct/wkZo44Wk1b95CLVpG65OP5yg/P1+Dbh0sSXo2/imFhITq8XFPSJKG3jtMo0bcpzmzP1K3bt21fNlS7dm9WxMnvSTpwsE+Q+8bpg9mTFfdiLqqHR6uqe+9o+CQEPXq3cdh/QQAVA6MOwAAe2HMAQA4AhMHFWz69OmSpB49etiUz5o1SyNGjJAk7d+/X/Hx8UpLS1O9evX07LPPaty4cXbOFHBu/foPUHpamqZNeVcpKecVGdVU02Z8qMCLy3eTk5JkNFxaZNW6TVslvP6mprw7We9NfksRdetp8ntT1bhxE2vMyFEPKD8/Xy9Nel7Z2Vlq07adps34kBU+AADGHQCA3TDmAKjsDAaDo1NABTBYLBaLo5PA31dQ7OgMAAAAAAAAAOflySvWV6TbWz86OgWns258F0en8Kc44wAAAAAAAAAAAFgxcQAAAAAAAAAAAKyYOAAAAAAAAAAAAFZMHAAAAAAAAAAAACuO/AAAAAAAAAAAXBGDwdEZoCIwcXCN6PHmWkenAACoIga1D3d0CgCAKuTQ+XxHpwAAqCI+vLOFo1MAKg22KgIAAAAAAAAAAFZMHAAAAAAAAAAAACsmDgAAAAAAAAAAgBVnHFSw6dOna/r06Tp27JgkqXnz5nr++efVv39/SVJBQYGeeOIJzZ8/XyaTSX379tW0adMUGhrqwKwB5zSkbS3d26GOAqq769C5HP175SHtTcouN76Gh4se6lZfPSKD5OPppuSsAr39/WFtOpImSVr0cAfV9PUsVW/BttN6c+WhCusHAMA5/LrmG+1e+aXys9LlH15fHe98WMH1Iv+03pGf12rtR68polVH9X7oeWv5jiWf6OjWdcpNPy+ji5sCIxqp3S3DFFw/qiK7AQBwAj0bBahvVJB8PV11MqNA87Yn6Wha2ed/dK7np390sD2TqqjErIcX7JUkuRikQS1D1bKmt4JruCu/qER7z+boy1/OKrOguML7AgBwDkwcVLDw8HC9+uqraty4sSwWi+bMmaNbbrlFO3bsUPPmzTVu3Dh9++23+uKLL+Tr66sxY8Zo8ODB+vHHHx2dOuBU+kQF6/FeDfXadwe050y27oqprcl3ttSd//lZ6XlFpeJdjQa9e1e00nOLNGHRXp3PMSnMx1PZpku/KI+cvV3G36zLahhUXe/d3Uqr9p+3R5cAAJXYka1r9dOXH6jz3WMUXD9Ke1Z9pRXvTtTgSf+Rl49fufWyU8/q54UfKrRR81L3fEJqq+OdD8s7KEzFRYXa88Mifffuc7rtpZny9PatwN4AACqzmDo+uqN1mD7ZdkZHUvPVp0mgxnavp+eWHlC2qaTMOnmFJXpu2cFLBRaL9Y/urkbV9ffSkr3ndDKjQNXdXXRXm5p69Pq6+r+Vhyu6OwCuQQaDwdEpoAKwVVEFGzhwoAYMGKDGjRurSZMmeuWVV1SjRg1t3rxZmZmZmjlzpt566y316tVL7dq106xZs7Rx40Zt3rzZ0akDTuXu9uFa/EuSvt11VsdS8/Ta8oMqKDLrpuiwMuMHRofJx9NNTy3co52ns5SUadKOk5k6dC7XGpORX6S03EtXl0aBOpmer+0nMu3VLQBAJbXnh0Vq0qWfGneOlV/NCHW+e4xc3T10cNOKcuuYzSVa99HranPTvfIOqlnqfsP2PVWraRt5B9eUf626an/baBUV5Cnt9NGK7AoAoJK7ITJI64+k68ejGUrKMumTrWdUWGxW1/r+f1gvq6D40vWbCYb8IrPeWntMW09m6Wx2oY6k5mvu9iTVC/BSQDW3iu4OAMBJMHFgRyUlJZo/f75yc3PVqVMnbdu2TUVFRerTp481JioqShEREdq0aZMDMwWci6vRoMgwb/18LN1aZpH087F0taztU2ad6xsHavfpLD0Z20hLH+2kT0ddp+GdImQsZ5Lc1WhQv+ahWrIzuQJ6AABwJiXFRUo9cUi1olpbywxGo2pGtda5I/vKrffLt/Pk6e2nJl36XtbP2L9hmdy9qisgvP7VSBsA4IRcjAbV9ffS3rM51jKLpF/P5qhBULVy63m4GvXaTU30+sBIxXWNUC0fjz/8OV5uRpktFuUVlr2CAQBQ9bBVkR3s2rVLnTp1UkFBgWrUqKFFixapWbNmSkxMlLu7u/z8/GziQ0NDlZzMl5PA5fKr5iZXo0FpubZbEqXnFqleYNm/TNfy81K7up76bs9Zjft8l+r4e+nJvo3lajRo5o/HS8V3bxKkGp6u+nYX/zYBoKoz5WTJYjbLy8f2TU8vHz9lnj1ZZp2zh/bowMbvdMuzU/6w7ZO7tmjNzNdUXGhSNZ8AxT72ijxrsE0RAFRVNdxd5GI0KOt3Zw9kFRQrrJzJgORsk2b/fFqnMgrk5WZU38ggPdO7gV5YflDp+aXPMHA1GnRbdJh+OpGpgmJzhfQDAOB8mDiwg8jISCUmJiozM1MLFizQ8OHDtXbt2ituz2QyyWQy2ZSZiwtldHX/u6kCVYbRIKXnFurV5Qdktkj7z+Yo2NtDQzuElzlxMDA6TJuPpCklp9AB2QIAnFlRQZ7WzX5TXYY+9qeTAGFNWumWCVNUkJOlAz8u15oPE3TTU2//4bkJAAD81pHUfB1JvXRw8uGUE3q5f2N1axigxbvP2cS6GKSHOteRDNInW8/YO1UAQCXGVkV24O7urkaNGqldu3ZKSEhQq1at9M477ygsLEyFhYXKyMiwiT979qzCwsrel12SEhIS5Ovra3OdWfNpBfcCqLwy8opUbLYooLrtfpz+1d2Umlv2F/0pOYU6mZ4v86UzwnQsNU9BNTzk+rv9isJ8PBRTz1+Lf0m66rkDAJyPRw0fGYxG5Wel25TnZ2XIyyegVHzW+STlpJ7V99Nf1Oy4mzQ77iYd2vKDTuzcotlxNynr/KXxxc3DUz4htRTSIEpd7xsrg9FFBzd+V+F9AgBUTjmFJSoxW+Tjafvep4+nqzILSq8eKEuJRTqRUaCQGrYvG7oYpAc7RyiwupveWnOM1QYAABtMHDiA2WyWyWRSu3bt5Obmph9++MF6b//+/Tpx4oQ6depUbv34+HhlZmbaXLV6DLVH6kClVGy2aH9ytmLqXdoywiAppq6/dp3OKrPOzlNZCvf30m+nCOoEeOl8tknFv51NkHRTdJjS8wq18VBqBWQPAHA2Lq5uCoxopKT9v1jLLGazkvYnKqRBVKl437A6GvTcNN0yYYr1iojuoJpNonXLhCmq7h9U/g+zmFVSXFT+fQDANa3EbNHx9Hw1Da1hLTNIigqtoSMpeZfVhsEg1fb1tJlo+N+kQai3u/695phyOdsAwN9gMHD91csZsFVRBYuPj1f//v0VERGh7OxszZ07V2vWrNF3330nX19fjRo1SuPHj1dAQIB8fHz06KOPqlOnTurYsWO5bXp4eMjDw3YvQ7YpQlU376dTmnhTlH5NytbepGzdeV1tebob9e3Fw4yfvylS57MLNX3tUUnSwh1ndHu7Whp/QyN9vvW06gR4aUSnCH2+9bRNuwZJN7YM09JdZ1Vi+f1PBQBUVc1736oNc95SYERjBddroj2rFqvYZFLjTjdIktbNflPV/AJ13aCRcnVzl3/tejb13b0ufAH0v/IiU4F2LpuvOtEdVc3XXwU5Wdq3donyMlJVr+319uwaAKCSWbk/Rf/oEK7jafk6mpqvPpGB8nA16sejF1a+/aNDbWXkFWvhrrOSpJuaBetIar7O5ZhUzd1FfSODFFjNTeuPXIh3MUgPdYlQXX8vvbv+uIwGg3VFQ+7FFQ4AADBxUMHOnTunYcOGKSkpSb6+voqOjtZ3332nG2648FD59ttvy2g0asiQITKZTOrbt6+mTZvm4KwB5/P9vvPyq+amB66vp8Dq7jp4LkfjPtultLwLb2mG+XjK8pvff89lm/T4Z7s0tndDfTLqOp3PNumzraf18eYTNu3G1Pt/9u48rKpq/+P45zCjDCKTA+IEoqg4F5BZOSWa1zKzwdTM1MzKoVtJg0PlxWy4mqmZpjlmZdGoklpa3dQURVDLecwBmQcBGc7vD7zHzgXU+sk5HHm/evbzXNdee/FdT0/3y/a711pequvpoq8TORQZAHBZk463KT8nS7u+Waa8rHTVDmiink+9YjowOTftvAyGa1/ca7CzU8a5Uzr0/jTl52bKuaaHfBo2U9Qzb8irXsPKmgYAwAZsP5klN+ez6tfKTx4uDjqZka+Zm48pq6B0lYB3DSezd52aTvYa2qmePFwcdOFisY6n5ytm4xGdySo9K7GWq6Pa1feQJE25M8jsZ73x/VHtP59rmYkBAKo0g9FopJR8Awif/vcPWwYA4K+4+6YAa4cAAKhGDp3Pu3onAACug4X3t7J2CDbpjlm/WDsEm/PD2Ehrh3BVnHEAAAAAAAAAAABMKBwAAAAAAAAAAAATzjgAAAAAAAAAAPwtBoPB2iGgErDiAAAAAAAAAAAAmFA4AAAAAAAAAAAAJmxVdIM4sPcPa4cAAKgmpm7eae0QAADViF3NWtYOAQBQTSy8v5W1QwCqDFYcAAAAAAAAAAAAEwoHAAAAAAAAAADAhK2KAAAAAAAAAAB/i8Fg7QhQGVhxAAAAAAAAAAAATFhxUMnmzZunefPm6dixY5Kkli1batKkSYqKipIkvf/++1q5cqV27typ7Oxspaenq1atWtYLGLBhw7sH66neLeTn6aq9J9P1/NJ47TySWmH/x+8M0bBuwQrwrqG07AJ9tf2kXvkkQQWFJZKkYd2C9GjXYAX6ukmSfj+VqTe+SNKGxDMWmQ8AoGobdVcbjR/QQf5eNZV05LwmzPtBOw6cK7evg72dnr2/kx7uHqp63m46cCpdLy36Sevjj5v63NKqvsYP6Kj2QX6q6+2mga98pa+3HLbUdAAAVdjIXs017h+t5F/LVUnH0/XMB1sVfyilwv5j+oTqsZ7N1cCnplKzC/TF1mOatCJeBYXFkqR9cweooZ97mefmr/tNExZurbR5AABsBysOKllAQICmT5+u+Ph47dixQ127dlW/fv20d+9eSdKFCxfUq1cvvfDCC1aOFLBt99wcqNceaq8ZsXt0x8trtedEhlY/d4d8PJzL7X9vRENNGthWM2KTFP78t3p64TbdfXOgXr6vranP6bQ8Tf1kt+54eZ26TlqnH/ed1fLxXdS8vqeFZgUAqKoGdGmm10d20bQVWxXx1AolHk3RV6/1l6+na7n9pwyN1GNRYZow7we1G7VUC9ck6uOX/6E2TX1NfWq6OCrpyHmNm/u9paYBALAB90Y21vShNynm0wTd8txXSjqWpi9f6ilfD5dy+w/s3ESvDOqgmE8T1H5crJ6Y97PujWysqQ+1N/XpMvFrNXlslem6a+o6SVLslmOWmBIAwAZQOKhkffv2Ve/evRUcHKxmzZpp2rRpcnNz09atpRX8cePGaeLEiQoPD7dypIBteyKquZZuOqyVPx3R/tNZmrD4V10oKNKgLk3L7X9TsK+2HTyvz7Yc18mUXP2w56w+33Jc7ZvUNvWJ2/WHNuw+rSPnsnX4bLamrU5Ubn6ROgZ5W2paAIAq6ul72mvx2j1atn6ffj+Rpqdmb1BeQZGG9mxVbv+HurbQjI9/Vdz2Yzp2NlMLvk1U3PajGtu/g6nPdzuOaerSX/TVL6wyAABc9lTfllq84YCW/XBIv5/K1NPv/6K8giIN6Rpcbv+bQ/y0dX+yPvn5iE6cz9HG3af16c9H1CHocrE6JatA5zLyTFdUhwY6fCZLP+09a6lpAQCqOAoHFlRcXKxVq1YpNzdXERER1g4HuGE42tupTaPa2vynX3KNRmnz3rPqFORT7jO/Hjyvto1qq32T0iJAQ9+a6tGmntbvPl1ufzuDQf3DG6qGs4O2H6x4STAA4Mbn6GCndsH++j7hhKnNaJS+Tzihm1rULfcZJ0d75V8sMmvLu1ikyJb1KjVWAIBtc3SwU7sm3voh8fJ7itEo/ZB0RjeF+JX7zLb9yWrbxFsdLr0LNfJzU8/2AYrbdarCn3F/l6Za+sPB6z8BAIDN4owDC0hKSlJERITy8/Pl5uam2NhYhYaG/u3xCgoKVFBQYNZmLC6Uwd7x/xsqYJO83Z3lYG+n85n5Zu3ns/LVrJ5Huc98tuW4vN2dtebl7jLIIEcHOy3aeFD//nqfWb8WAZ6Km9xTLo72ys0v0uBZP2n/6axKmwsAoOrz8XCVg72dktMvmLUnp19QSIBXuc9siD+up/t30M97/tCRMxm6o22g+kUGyd7eYImQAQA26r/vOsmZeWbtyRl5albBFqqf/HxE3h7O2vBqbxkMpe86C+J+15ufJ5bbv2+nQNWq6aTlFA4A/E12Bn6nvRGx4sACQkJClJCQoG3btmn06NEaOnSo9u3bd/UHKxATEyNPT0+zK3/PV9cxYuDGd0tzP43v21LPfrhDt7+8VoNn/qieberpn/3Mt5g4dCZbt724Vj2mxGnR9wc1d2S4QiooRgAAUJF/zt+kw3+ka/f7Q5X19Vj9+4k7tHT9XpWUWDsyAMCN5taWdfTsPWEat3CLbnnuKz0wY6N6tQ/Q8wPalNt/aLdm+m7XKZ1Nzyv3PgCgemLFgQU4OTkpKChIktShQwdt375ds2bN0vz58//WeNHR0ZowYYJZW8PHY//fcQK2KjW7QEXFJfL1ND8czNfDRecy8st95oUBYfrkP0e1bHPpPtK/ncpUDWcH/fvRm/TWV3tkNJb2Kywu0dHkHEnS7mPpatfYW6PuDNGExdsrb0IAgCotJStPRcUl8vOqYdbu51VDZ/9nFYLpmcw8DXz1azk72svbw0WnU3P12qOddfRspiVCBgDYqP++6/h5upq1+9Vy1bmM8v+i/+UH2umjHw9rycbSFQR7T6SrprODZj9+i2Z8ttv0riNJDXxq6o7WdfXgmz9U2hwAALaJFQdWUFJSUmarob/C2dlZHh4eZhfbFKE6Kywu0e5jaeoS6m9qMxik21rW0fZD5Z9H4OrkoBKjeVvxpQaDKl5iZ2dXuk81AKD6Kiwq0a6D53RH2wamNoNBuqNtA/3625krPltQWKzTqblysLfT3bcE65stHIQMAKhYYVGJdh1J1e2tL5+hYzBIt7euq1/3J5f7TI0rvev8z3Yig7sG63xWvtbFn7y+gQMAbB4rDipZdHS0oqKiFBgYqOzsbK1cuVKbNm1SXFycJOns2bM6e/asDh06JKn0PAR3d3cFBgaqdu3a1gwdsClz1/6uOSMjlHA0TTuPpOrxO0NUw9lBK388Unp/VITOpF/Qq5/sliTF7fpDT0Q1V9LxdO04nKIm/u56YUCY4nb9oZJLn+C8PLCNNuw+rVOpF+Tm4qABkY3Uubm/BrzB1zgAUN29E7tTC565U/EHk7Vj/1k9eXc71XB21NL1eyVJC5+5U6dTczTpw/9IkjqF1FE9bzftPnJe9b3d9OLD4bIzGPT26h2mMWu6OKppvVqmPzfy91BYE1+lZ+fr5Plsi84PAFB1zP56r95/srN2HU7VjkPnNaZPS9VwdtCyS2cSLHjqVp1OvaDJK+MlSWviT+qpu1pq99FUbT94Xk3reOjlB9przY6TKvlTRcFgkAbfEawVmw6ZCgsAAPwXhYNKlpycrCFDhujMmTPy9PRUWFiY4uLi1KNHD0nSe++9p6lTp5r6d+nSRZK0ePFiPfLII9YIGbBJsdtOyNvdRdH3hsnP00V7TqTrvjd+0PmslMIdZQABAABJREFU0q2KArxrmAoCkvTml3tklFEvDAhTXS9XpWYVaF3CH3rt092mPr4eLpo3KkL+tVyVlVeovScyNOCNH7Rpz1mLzw8AULWs/vGAfDxdNenhCPnXrqHEw+fV7+VYJWeUblXUwM/dLO84O9lr8tBINa7jqZy8QsVtP6rhb6xTZu7lVajtg/313Yz7TH+eMep2SdKy9Xs18u3vLDMxAECV89kvR+Xj4aKXHmgn/1quSjyWprunfafkzEvvOj41zQoCr68u3Y5o0gPtVa92DaVk5WtN/ElNXbnTbNyuYfUU6Oumpd9zKDIAoCyD0WikrHwDqD14pbVDAABUE3kp56wdAgCgGrGrWcvaIQAAqonc1cOsHYJN6jlnq7VDsDnfjQm3dghXxRkHAAAAAAAAAADAhMIBAAAAAAAAAAAwoXAAAAAAAAAAAABMKBwAAAAAAAAAAAATCgcAAAAAAAAAAMDEwdoB4Ppo1rK+tUMAAFQTr/brae0QAADVyIG0HGuHAAAArsBgMFg7BFQCVhwAAAAAAAAAAAATCgcAAAAAAAAAAMCEwgEAAAAAAAAAADDhjINKNm/ePM2bN0/Hjh2TJLVs2VKTJk1SVFSU0tLSNHnyZH333Xc6ceKEfH19dffdd+vVV1+Vp6endQMHbNC97evp4ZsbqHZNJx1KztFb6w9p35nsCvu7Odvr8S6NdXuIjzxcHHU2K1//3nBYW46kSZJiR9+sup4uZZ5bHf+H3lx/qNLmAQCwDZvXfKaNsSuVlZGm+o2CdN+I8WrULLTcvv/57iv9+sNanT5xVJIU2DREfR8eZdY/KyNNXy6Zq98SflVebo6CWrbVfSPGy69eA4vMBwBQde3e+JV2rlutC5lp8mnQRLcNekJ1mjS/6nMHtm3SuvkxatIuQnc9NcXUbjQate2Lpdrz4zoVXMhRvaBQ3THkadXy5/xEAEApCgeVLCAgQNOnT1dwcLCMRqOWLFmifv36adeuXTIajTp9+rTefPNNhYaG6vjx43r88cd1+vRprV692tqhAzale3Nfje3aVK/HHdDe09l6oFN9zby/te5/f7vSLxSW6e9gZ9A7D4QpPbdQL8Tu0/mcAtXxcFF2QZGpz7APd8ruT+uymvrU1OwH2+j7/ectMSUAQBUW//MGxS6arftHP6tGzUL1w1efaM7UCZo05yO51/Iq0//gnp3qcGsP3de8lRycnLX+8+WaM2W8Xpy9XLW8fWU0GvV+zETZ2zto1Auvy6VGDX3/5ceaPXmsXpq9Qs4urlaYJQCgKjjw6yb99PH76jr4Kfk3aa6E9bH68u0XNfhfH6iGR60Kn8tKOaufPlmges1albkXv/YTJWz4Uj0e+6c8fepoS+wSffHWC3p42gI5ODpV4mwAALaCrYoqWd++fdW7d28FBwerWbNmmjZtmtzc3LR161a1atVKn332mfr27aumTZuqa9eumjZtmr7++msVFRVdfXAAJg/eFKAvd5/Rt0nndCz1gl5fd1D5hSW6K6xOuf37htWRh4ujnvt8rxL/yNKZzALtOpmpQ8m5pj4ZeYVKy7183RLkrZPpedp5ItNS0wIAVFHff/mxInv2VUS3PqrboLEeGP2snJydtWXjN+X2f2TCFHXp3V8BTZqpTkBDDRozUUZjifYn7pAkJZ8+qWP79+qBx/+phsEt5F+/oe5//J8qvFig+J/WW3BmAICqZlfc52rVpZdCb71T3vUbquuQp+Xg5Kx9P8VV+ExJSbHi3n9d4f0Gy9O3rtk9o9GohPVf6Ka+D6ppu0j5NGiino89p9yMVB3Z+UtlTwfADcjOwPVXL1tA4cCCiouLtWrVKuXm5ioiIqLcPpmZmfLw8JCDA4tBgGvlYGdQSB13bT+WbmozStp+LF2t63uU+8ytwd7a80eWnu0ZpDVPRWjF8I4aGhFY4f95O9gZ1Kulv75JPFsJMwAA2JKiwkKdPLxfIWGdTG12dnYKadNRR/fvuaYxLl7MV3FxkWq4eZjGlGT2laednZ0cHJx0eF/idYweAGBLiosKlXz8oBqEtje1Gezs1CC0nc4c3lfhc79+tUKu7rXUskuvMveyzp/Vhcw0szGda9SUf5PmOnP4t+s7AQCAzaJwYAFJSUlyc3OTs7OzHn/8ccXGxio0tOz+tykpKXr11Vc1cuRIK0QJ2K5aNRzlYGdQWq75lkTpuYXyrln+Mtt6tVx1R3Nf2RkMGv9Jkhb/57geuilAwyIbltv/tmY+cnNx0LdJFA4AoLrLyc5QSUmx3GvVNmv38KytrPS0axrjyyXz5Onlo+ZtOkqS6gQ0lJevv75aNl8XcrJUVFio9Z8vV0ZqsjLTU6/7HAAAtiEvO0vGkpIyWxLV8PDShcz0cp85fWCP9v4Up26PjCv3/oWstEtj/O+YtXQh89ryGADgxsdn7RYQEhKihIQEZWZmavXq1Ro6dKg2b95sVjzIyspSnz59FBoaqilTplxxvIKCAhUUFJi1lRRdlJ0D+xAC18rOIKXnXtT0dQdUYpT2n8uRr7uzBt0coA/+c7xM/75hdbT1SJpSci5aIVoAwI3ku8+WKf7nDRr72rtydHKWJNk7OGjE8//Sindj9NzDUbKzs1dIm44KbR9u5WgBALbkYt4FfbdwhroNHSdXd09rhwMAsGEUDizAyclJQUFBkqQOHTpo+/btmjVrlubPny9Jys7OVq9eveTu7q7Y2Fg5OjpecbyYmBhNnTrVrK1+t6EK6D6sciYAVHEZFwpVVGJU7Zrm/+141XRUam75f9GfknNRxSVGlRgvtx1LvSAfN2c52BlU9KcbdTyc1amRlybG7q2U+AEAtsXNvZbs7OyVnWH+VWZWZpo8vGpX8FSpDV+s1PrPluvJV2aqfqMgs3uBQc0VPXOJ8nJzVFRUKHdPL73x7AgFBjW/7nMAANgGV3cPGezsdCErw6z9Qla6anh6lemfef6MslLO6et3JpnajMbSd5vZj0VdOlC59qUxMlSzlvefxsyQb2DTSpgFAMAWsVWRFZSUlJhWDGRlZalnz55ycnLSV199JRcXl6s+Hx0drczMTLOr3u2DKjtsoMoqKjFq/9lsdWp0+Rdng6RODb2U9EdWuc8knspSgJer/nykQYParjqfXWBWNJCku8LqKP3CRf1yiK0iAACSg6OjGjQNMR1sLJX+fncgMV6NQ1pV+Nz6z1do3Scf6onJb6lhUIsK+7nWdJO7p5eST5/UicO/K+ymztc1fgCA7bB3cJRfw2Cd/G2Xqc1YUqKTvyWobtOyWyB71W2gQa/M10NT5pmuJm3DFdC8jR6aMk/utX3l4VtHNTxr6+S+y2MW5OXq3JHfVbdpxfkJAFC9sOKgkkVHRysqKkqBgYHKzs7WypUrtWnTJsXFxZmKBhcuXNDy5cuVlZWlrKzSv+T09fWVvb19uWM6OzvL2dnZrI1tilDdffTrKb18V3P9diZb+85k6/6O9eXiZKdvLx1mPOmuEJ3Pvqh5m49Kkj7fdVr3dainCT2C9MmOP9SgtqseiQjUJzv+MBvXIKlP6zpak3ROxcb//akAgOqqa7/7tWzWNAUGNVej4FD98PUnKsjPV3i3PpKkpTNflae3j/oNHi1JWv/5cn27cqGGTpgsb7+6yrp0boGzi6ucXWtIknb+53u5edRSbV9/nT5+RKsXzlTYTbeqRbubrTNJAECV0O7O/lq/8E35N2om/8YhSlgfq6KCfIV27ilJ+m7BDNX08tEtAx6Vg6OTvAMamT3vXMNNksza2/a4W9u/+Ui1/OvLw7eOtsYuUc1a3mrSPtJS0wJwAzEYDFfvBJtD4aCSJScna8iQITpz5ow8PT0VFhamuLg49ejRQ5s2bdK2bdskybSV0X8dPXpUjRo1skLEgG3a8Pt51arhqBG3NpJ3TScdTM7R+I+TlHah9MDkOh4uMv7pL/6Tsws09uMkjevWVMuHd9T57AJ9vOMPLdt6wmzcTo28VNfTRV8ncigyAOCyDp27KyczQ99+tFDZ6Wmq3zhYYya/JY9LByannT9n9gL109pYFRUV6oMZL5mNE3X/o+rz4HBJUlZ6qj5fNFvZmWny8PLWzbf3Uq+BbEUJANVds5tuV152prZ+sVS5menybdBE/cZPM21VlJ12Xga7v7ahRIeogSoqyNf3S2ap4EKO6gW3VL8J0+TgyEeJAIBSBqPRyDe0N4Dw6ZutHQIAoJp4tV9La4cAAKhGDqTlWDsEAEA1MeaWRtYOwSb1fu9Xa4dgc9Y8fpO1Q7gqzjgAAAAAAAAAAAAmFA4AAAAAAAAAAKii5syZo0aNGsnFxUU333yzfv31yqs8MjIyNGbMGNWtW1fOzs5q1qyZ1qxZ85d+JmccAAAAAAAAAABQBX388ceaMGGC3nvvPd18882aOXOm7rzzTu3fv19+fn5l+l+8eFE9evSQn5+fVq9erfr16+v48eOqVavWX/q5FA4AAAAAAAAAAH+LwWDtCG5sb7/9tkaMGKFhw4ZJkt577z19++23WrRokSZOnFim/6JFi5SWlqZffvlFjo6OkqRGjRr95Z/LVkUAAAAAAAAAAFhIQUGBsrKyzK6CgoIy/S5evKj4+Hh1797d1GZnZ6fu3btry5Yt5Y791VdfKSIiQmPGjJG/v79atWqlf/3rXyouLv5LMbLi4AZxb3gDa4cAAKgm4s9kWjsEAEA1YsdXjAAA4AYTExOjqVOnmrVNnjxZU6ZMMWtLSUlRcXGx/P39zdr9/f31+++/lzv2kSNH9P3332vQoEFas2aNDh06pCeeeEKFhYWaPHnyNcdI4QAAAAAAAAAAAAuJjo7WhAkTzNqcnZ2vy9glJSXy8/PT+++/L3t7e3Xo0EF//PGH3njjDQoHAAAAAAAAAABURc7OztdUKPDx8ZG9vb3OnTtn1n7u3DnVqVOn3Gfq1q0rR0dH2dvbm9patGihs2fP6uLFi3JycrqmGDnjAAAAAAAAAACAKsbJyUkdOnTQxo0bTW0lJSXauHGjIiIiyn3mlltu0aFDh1RSUmJqO3DggOrWrXvNRQOJwgEAAAAAAAAA4G8y8M9f/uevmDBhghYsWKAlS5bot99+0+jRo5Wbm6thw4ZJkoYMGaLo6GhT/9GjRystLU1jx47VgQMH9O233+pf//qXxowZ85d+LlsVVbJ58+Zp3rx5OnbsmCSpZcuWmjRpkqKioiRJo0aN0oYNG3T69Gm5ubkpMjJSr7/+upo3b27FqAHbtO+Hr5W4frXyMtNVO6CJIh4YLb/GIVd97vD2Tfph4etq2CZCPZ6YJEkqKS7Sji+W6OSeHcpOOSMn15qq16KdOt0zTDVreVf2VAAANuC3TV9rz/rPlJeVLq+Axgq/f7R8G1097xzZvlmbF72uwDbh6vb4JFP7rm+W6+iOH5Wbfl529o7yDgxSh35D5NuY3wsBoLrbt+lrJX1XmnNqBzRWxP2j5XtN7zqbtemD0pzTY/TlnLPz6+U68t+c4+Aon0s5x4+cAwBVzv3336/z589r0qRJOnv2rNq2bat169aZDkw+ceKE7Owurw9o0KCB4uLiNH78eIWFhal+/foaO3asnn/++b/0cw1Go9F4XWcCM19//bXs7e0VHBwso9GoJUuW6I033tCuXbvUsmVLvf/++2revLkCAwOVlpamKVOmKCEhQUePHjXbh+pq3th0pBJnAVR9h7dv1uYP31Tnh56Sb+MQ7dn4hY7u/Fn3TV0gV49aFT6XnXJOX7/xjDx86sq5prupcHAxL1cb5k9T8869VDugiS5eyNaWj+fLWFKiu198x0KzAqqm4hJ+dQCO7Nisn5a8pcgHn5Rv4+ba+/0XOhb/s/pPef/KeSf1nNa8+U+5+9SRc013s8LB4V9/kKt7Lbn71FFR4UXt3RirYzt/1oBXPpCLu6cFZgVUTXZ/7aM84IZzZMdmbf7wLd3y0JPybVSac47u/FkDrpZzUs7pmz/lnD8XDg7/+oNcLuWc4sKL2rMxVkfjf9Z9r34gV3IOqrHn7mhq7RBs0l3zt1s7BJvzzahO1g7hqtiqqJL17dtXvXv3VnBwsJo1a6Zp06bJzc1NW7dulSSNHDlSXbp0UaNGjdS+fXu99tprOnnypGmFAoBrs2dDrJp3jlKzW3rKq15DdR70lBycnHXgl+8qfKakpFg/LJqhDn0Hy93X/EAZJ9ea6j3uX2rSsYtq1QmQX5MWinxwtFJOHFROWnJlTwcAUMXt3RirZrf0UnBkT9WqG6jIB5+Ug5OzDm65ct75cdEMtbvrYbn71C1zv+lNd6hei3Zy960rr3oNddOAkSrMv6C0P45W5lQAAFXcng2xCrmll5pF9pRXvUDd8tCTcnC8+rvOpkUz1L7vw/KoIOfUb9FOHpdyzs2Xck46OQcAcAmFAwsqLi7WqlWrlJubW+7hFbm5uVq8eLEaN26sBg0aWCFCwDYVFxUq5cRB1WvR1tRmsLNT/eZtde7IbxU+t+ublXJ191RI5zuv6edczLsgGQxycq35/w0ZAGDDiosKlXrikOo1b2tqM9jZqW7ztko+8nuFz+3+9iO5uNdSs1uunneKiwq1/+e1cnKtqdoBja9H2AAAG1T6rnOozLtOvRZXzjkJ334kV/daCrnWnPMTOQcAYI4zDiwgKSlJERERys/Pl5ubm2JjYxUaGmq6P3fuXD333HPKzc1VSEiI1q9f/5dOuAaqu/ycLBlLSuTq7mXW7uLhpYyzp8p95uyhPdr/nzj1f3nONf2MosKL+vXzRWra6TYKBwBQzRX8N+94mOcdV49ayjx3stxnzh3aqwO/xKnfi+9eceyTSdu06YPXVXSxQDU8aqvn09Pk4saWEQBQXeVXlHPcaynzbPk55+yhvdr/nzjd89KVc86JxG364U85p9dYcg4A4DJWHFhASEiIEhIStG3bNo0ePVpDhw7Vvn37TPcHDRqkXbt2afPmzWrWrJkGDhyo/Pz8CscrKChQVlaW2VV0scASUwFuCBfzL2jTojd16+Cx1/SLcUlxkb5//1+S0ahbHnrSAhECAG4khfkX9OOHb+qWQU9fNe/UadZG/V54V33++Zbqt+ygTQtjlJeVYZlAAQA272L+BW1e/KY6P3z1nFM3pI3uefFd9X32LQW07KDvF5BzAPw9dgauv3rZAlYcWICTk5OCgoIkSR06dND27ds1a9YszZ8/X5Lk6ekpT09PBQcHKzw8XF5eXoqNjdWDDz5Y7ngxMTGaOnWqWVv3oU+r5yNjK3ciQBXl4uYhg52d8rLTzdrzs9Ll6ulVpn/2+TPKST2n7+ZMMbX995z4D0b30X2vLJCHbz1JpUWDje//Szlpyeo9fjqrDQAAcv5v3skyzzt5WRly9ahdpn/WpbyzYd7l39/+m3c+HHOX+k9ZIA/f0v2nHZ1d5OhXTx5+9eTXpLlWT3pMB3+JU1iv+ytxRgCAqsqlopyTXX7O+e+7zvq5ZXPOoifu0oCpFeecT19+TAd+iVMbcg4AQBQOrKKkpEQFBeWvEDAajTIajRXel6To6GhNmDDBrG3O1j+ua4yALbF3cJRPYLBO/5agRm0jJUnGkhL98XuCWt7xjzL9Pes0UP9J88za4r9cqsL8Cwq//3HV9PKVdLlokJV8Wr0nTJeLm0flTwYAUOXZOzjKOzBIZ/bvVsM/5Z0z+xPU4va+Zfp71mmgu1+aa9a28+ulKszP0833jVJNL5+Kf5ixRMVFhdc1fgCA7Sh91wnSmd93m73rnP49QaEV5Jx7XjbPOfFfleac8IFXzjlGY4mKC8k5AIBSFA4qWXR0tKKiohQYGKjs7GytXLlSmzZtUlxcnI4cOaKPP/5YPXv2lK+vr06dOqXp06fL1dVVvXv3rnBMZ2dnOTs7m7U5OKVU9lSAKq1V93v044dvyadRsHwbhWjvxi9UdLFAwZE9JEmbFr+pmrW81emeYXJwdFLt+o3MnneqUbqS4L/tJcVF2jB/mlJPHFLPMVNlLCnRhcw0SZJzTXfZOzhabG4AgKqnZbd79POSt+UdGCzfRs209/svVVRQoOCI0rzz44dvqkYtb3W8uzTveP1v3nF1kyRTe2FBvhLXrlKDsHDV8PRSfk6Wft/8jS5kpKpR+1stOTUAQBVT+q7ztnwaluacPd9/qaKLBWp26V1n8+LSnFPRu47zpZxT+085Z/faVQoMC5erp5cKcrK071LOadyBnAMAKEXhoJIlJydryJAhOnPmjDw9PRUWFqa4uDj16NFDp0+f1k8//aSZM2cqPT1d/v7+6tKli3755Rf5+flZO3TApjTtdJvyczK186vlupCVJu+Apur19KuqcekQsZy0ZBkM176JXG56qk7s3ipJin1tjNm93hNeV72QsOsXPADA5jTpeJvyc7K065tlystKV+2AJur51Cumwytz087LYLj248QMdnbKOHdKh96fpvzcTDnX9JBPw2aKeuYNedVrWFnTAADYgCYdb1N+dpbivy7NOd4BTXTnn3JOzt/JOWdP6eCW0pzjcinn9PknOQcAcJnB+N/N7mDT3th0xNohAACqieISfnUAAFiOrRwgCACwfc/d0dTaIdikf7y/3doh2JyvRnaydghXxYoDAAAAAAAAAMDf8ld2eIDtuPa1bAAAAAAAAAAA4IZH4QAAAAAAAAAAAJhQOAAAAAAAAAAAACYUDgAAAAAAAAAAgAmHI98gnurcxNohAAAAAAAAAABuABQOAAAAAAAAAAB/i8Fg7QhQGdiqCAAAAAAAAAAAmFA4AAAAAAAAAAAAJhQOKtm8efMUFhYmDw8PeXh4KCIiQmvXri3Tz2g0KioqSgaDQV988YXlAwVuAKtWrlBUj67q1K61Bj1wn5ISE6/Y/7u4tep3Vy91atda997dVz/9uNnsvtFo1JzZs9Ttts66qX2YRg5/RMePH6vEGQAAbAl5BwBgKeQcAIClUTioZAEBAZo+fbri4+O1Y8cOde3aVf369dPevXvN+s2cOVMGNgQD/rZ1a9fozRkxGvXEGK36NFYhIc01etRwpaamlts/YddOTXz2Gd3Tf4A+Xv2F7ujaTeOeGqODBw+Y+iz+YIE+WrFML02eouUffSJXV1eNHjlcBQUFlpoWAKCKIu8AACyFnAMAsAYKB5Wsb9++6t27t4KDg9WsWTNNmzZNbm5u2rp1q6lPQkKC3nrrLS1atMiKkQK2bdmSxeo/YKDuvudeNQ0K0kuTp8rFxUVffP5Zuf1XLF+qyM636pFHH1OTpk315NPj1CI0VKtWLpdU+gXOimVLNWLUaN3RtbuahTTXazEzdD45Wd9v3GDJqQEAqiDyDgDAUsg5AABroHBgQcXFxVq1apVyc3MVEREhSbpw4YIeeughzZkzR3Xq1LFyhIBtKrx4Ub/t26vwiEhTm52dncLDI5W4e1e5zyQmJCg8PMKsLfKWzkpMSJAk/XHqlFJSzuvm8Mtjuru7q3VYmwrHBABUD+QdAIClkHMA2AI7g4HrL162wMHaAVQHSUlJioiIUH5+vtzc3BQbG6vQ0FBJ0vjx4xUZGal+/fpZOUrAdqVnpKu4uFje3t5m7d7e3jp69Ei5z6SkpMjb26dM/5TUlEv3z5e2+ZQdMyUl5XqFDgCwQeQdAIClkHMAANZC4cACQkJClJCQoMzMTK1evVpDhw7V5s2bdejQIX3//ffateuvVfQLCgrK7DtotHeWs7Pz9QwbAAAAAAAAAFANsVWRBTg5OSkoKEgdOnRQTEyM2rRpo1mzZun777/X4cOHVatWLTk4OMjBobSOc++99+r222+vcLyYmBh5enqaXW+8HmOh2QBVj1ctL9nb25c5HCw1NVU+Pj7lPuPj46PU1JSy/S99mePj41valnLtYwIAqgfyDgDAUsg5AABroXBgBSUlJSooKNDEiROVmJiohIQE0yVJ//73v7V48eIKn4+OjlZmZqbZ9ezz0RaKHqh6HJ2c1CK0pbZt3WJqKykp0bZtWxTWpl25z4S1battfzqkXJK2bvlFYW3bSpLqBwTIx8dX27ZdHjMnJ0dJibsrHBMAUD2QdwAAlkLOAQBYC1sVVbLo6GhFRUUpMDBQ2dnZWrlypTZt2qS4uDjVqVOn3AORAwMD1bhx4wrHdHYuuy1RftF1Dx2wKYOHDtPLLzyvli1bqVXrMC1ftkR5eXm6+57+kqQXo5+Tn5+/xo5/RpI06OEhGv7IYC35cJG6dLlN69au0d49e/TylFckSQaDQYMGD9GC+fPUMLCh6gcEaM7sWfL181PXbt2tNk8AQNVA3gEAWAo5BwBgDRQOKllycrKGDBmiM2fOyNPTU2FhYYqLi1OPHj2sHRpwQ+kV1VvpaWma++47Skk5r5DmLTR3/kJ5X1pqe/bMGdkZLi+yatuuvWJmvKl335mp2TPfVmDDRpo5e46Cg5uZ+gwbPkJ5eXl6ZcokZWdnqV37Dpo7fyHniQAAyDsAAIsh5wCo6gwGa0eAymAwGo1GaweB/z9WHAAAAAAAAAB/nwufWP8t9y6Kt3YINuezRztYO4Sr4owDAAAAAAAAAABgQuEAAAAAAAAAAACYUDgAAAAAAAAAAAAmFA4AAAAAAAAAAIAJR34AAAAAAAAAAP4Wg8Fg7RBQCVhxAAAAAAAAAAAATCgcAAAAAAAAAAAAEwoHAAAAAAAAAADAhMIBAAAAAAAAAAAwoXAAAAAAAAAAAABMKBxUsnnz5iksLEweHh7y8PBQRESE1q5da7p/++23y2AwmF2PP/64FSMGbNeqlSsU1aOrOrVrrUEP3KekxMQr9v8ubq363dVLndq11r1399VPP242u280GjVn9ix1u62zbmofppHDH9Hx48cqcQYAAFtC3gEAWAo5B0BVZjBw/dXLFlA4qGQBAQGaPn264uPjtWPHDnXt2lX9+vXT3r17TX1GjBihM2fOmK4ZM2ZYMWLANq1bu0ZvzojRqCfGaNWnsQoJaa7Ro4YrNTW13P4Ju3Zq4rPP6J7+A/Tx6i90R9duGvfUGB08eMDUZ/EHC/TRimV6afIULf/oE7m6umr0yOEqKCiw1LQAAFUUeQcAYCnkHACANVA4qGR9+/ZV7969FRwcrGbNmmnatGlyc3PT1q1bTX1q1KihOnXqmC4PDw8rRgzYpmVLFqv/gIG6+5571TQoSC9NnioXFxd98fln5fZfsXypIjvfqkcefUxNmjbVk0+PU4vQUK1auVxS6Rc4K5Yt1YhRo3VH1+5qFtJcr8XM0PnkZH2/cYMlpwYAqILIOwAASyHnAACsgcKBBRUXF2vVqlXKzc1VRESEqX3FihXy8fFRq1atFB0drQsXLlgxSsD2FF68qN/27VV4RKSpzc7OTuHhkUrcvavcZxITEhQeHmHWFnlLZyUmJEiS/jh1Sikp53Vz+OUx3d3d1TqsTYVjAgCqB/IOAMBSyDkAAGtxsHYA1UFSUpIiIiKUn58vNzc3xcbGKjQ0VJL00EMPqWHDhqpXr54SExP1/PPPa//+/fr888+tHDVgO9Iz0lVcXCxvb2+zdm9vbx09eqTcZ1JSUuTt7VOmf0pqyqX750vbfMqOmZKScr1CBwDYIPIOAMBSyDkAAGuhcGABISEhSkhIUGZmplavXq2hQ4dq8+bNCg0N1ciRI039Wrdurbp166pbt246fPiwmjZtWu54BQUFZfYdNNo7y9nZuVLnAQAAAAAAAAC48bFVkQU4OTkpKChIHTp0UExMjNq0aaNZs2aV2/fmm2+WJB06dKjC8WJiYuTp6Wl2vfF6TKXEDtgCr1pesre3L3M4WGpqqnx8fMp9xsfHR6mpKWX7X/oyx8fHt7Qt5drHBABUD+QdAIClkHMA2AI7g4HrL162gMKBFZSUlJRZMfBfCZf2HKxbt26Fz0dHRyszM9Psevb56MoIFbAJjk5OahHaUtu2bjG1lZSUaNu2LQpr067cZ8LattW2Px1SLklbt/yisLZtJUn1AwLk4+Orbdsuj5mTk6OkxN0VjgkAqB7IOwAASyHnAACsha2KKll0dLSioqIUGBio7OxsrVy5Ups2bVJcXJwOHz6slStXqnfv3vL29lZiYqLGjx+vLl26KCwsrMIxnZ3LbkuUX1TZMwGqtsFDh+nlF55Xy5at1Kp1mJYvW6K8vDzdfU9/SdKL0c/Jz89fY8c/I0ka9PAQDX9ksJZ8uEhdutymdWvXaO+ePXp5yiuSJIPBoEGDh2jB/HlqGNhQ9QMCNGf2LPn6+alrt+5WmycAoGog7wAALIWcAwCwBgoHlSw5OVlDhgzRmTNn5OnpqbCwMMXFxalHjx46efKkNmzYoJkzZyo3N1cNGjTQvffeq5deesnaYQM2p1dUb6WnpWnuu+8oJeW8Qpq30Nz5C+V9aant2TNnZGe4vMiqbbv2ipnxpt59Z6Zmz3xbgQ0baebsOQoObmbqM2z4COXl5emVKZOUnZ2ldu07aO78hZwnAgAg7wAALIacAwCwBoPRaDRaOwj8/7HiAAAAAAAAAPj7XPjE+m+5f8kua4dgcz4eWvW3huOMAwAAAAAAAAAAYEIdDQAAAAAAAADwtxisHQAqBSsOAAAAAAAAAACACYUDAAAAAAAAAABgQuEAAAAAAAAAAACYcMbBDeLrPaetHQIAoJqoV9PV2iEAAKqR3KIia4cAAKgmerbwtXYIQJXBigMAAAAAAAAAAGDCigMAAAAAAAAAwN9iMBisHQIqASsOAAAAAAAAAACACSsOKtm8efM0b948HTt2TJLUsmVLTZo0SVFRUaY+W7Zs0Ysvvqht27bJ3t5ebdu2VVxcnFxd2UMa+Cu2xsXq568/Vk5Gmuo0bKq7hj2tgKAW5fbdu+1Hbf5ihdLO/qHi4mJ516mvW+4aqHZdepbb/8sFb2v7hq/Ve8gYRfYZUJnTAADYiI3frNa6z5crMz1NDRoHadCoZ9QkpGW5fTev+0K/fL9Wfxw/IklqGBSie4eMLtP/9MmjWr14jvbv2aXi4mLVC2ysMdEx8varU+nzAQBUXT+u+UwbYz9SVkaa6jdqqgEjxqtRs9By+/7nu6/06w/rdOZEac5p0DREfR8eZdY/KyNNXy6Zp98TflVebo6CWrbRgBHj5VevgUXmAwCo+igcVLKAgABNnz5dwcHBMhqNWrJkifr166ddu3apZcuW2rJli3r16qXo6GjNnj1bDg4O2r17t+zsWAwC/BVJv3yvtUvn6R+PjVeD4Bb6Zc1qffiv5zTu30vl5ulVpr+rm4duv+dh+dQLlL2Dg/bv3KLYea/LzaOWgtveZNZ3368/6eTBfXL38rHUdAAAVdyvP67XxwtnafCY59UkpKXWf7lKb08ap3/N/1getWqX6b8/aaduvq2HglqEydHRSWs+W6a3Jo3Va3NWysvHT5KUfOaUYp4bpVt79FW/QSPkWqOm/jhxRI5OTpaeHgCgCon/eaNiF72r+0f/Uw2bhWrTV59o7tQJennOR3KvVfZd59CeXepwa3c1ad5aDk5O2vD5Cs2dMkEvzF6mWt6+MhqNWhATLXt7B418YbpcatTUD1+u0ruTx+nF2cvl7MJHjAAAtiqqdH379lXv3r0VHBysZs2aadq0aXJzc9PWrVslSePHj9fTTz+tiRMnqmXLlgoJCdHAgQPl7Oxs5cgB2/Kfbz9Vx2591OGOKPkFNNI/HpsgRycXxf+wttz+TVq2VehNt8ovoKG869RXZO8B8g9squP795j1y0o7r28Wv6P7nnpR9g72lpgKAMAGxH3xkbrc2U+39rhL9QMba8iY5+Xk7KKf1n9Tbv+Rz76irn0GKLBJM9Vt0EjDnnpBxpIS7du9w9Tn86XvKaxjpAY++pQaNg2RX90Atbu5S7mFCABA9fHDl6sU0bOvwrv1Ud0GjXX/6Gfl5OyiLRvLzzlDJ0xWl979FdAkWHUCGuqhMc/LaCzR/sTSnHP+9Ekd279X9z/+jBoGt5B//UANfPyfKrxYoPifNlhyagCAKozCgQUVFxdr1apVys3NVUREhJKTk7Vt2zb5+fkpMjJS/v7+uu222/Tzzz9bO1TAphQVFer0kQNq2rqDqc3Ozk5NW7fXyYN7r/q80WjU4aR4pZw5qUYtwkztJSUl+vTdGHXue7/8GzSulNgBALanqLBQxw/tV2jbTqY2Ozs7hbbtpMO/J13TGAUF+SouLlZNdw9JpTln945f5F8vUG+9PFZjB0Xp1QmPaueWzZUyBwCAbSgqLNTJwwcUEtbR1GZnZ6eQNh11bP/V33Uk6eLFAhUXF6mmm4dpTElycLz8waKdnZ0cHJx0eF/idYweAGDLKBxYQFJSktzc3OTs7KzHH39csbGxCg0N1ZEjpfsNTpkyRSNGjNC6devUvn17devWTQcPHrRy1IDtuJCVqZKSkjJbErl5eiknI63C5/Iv5OiVIVGaPKiHlr0erbuGPaWgP/1C/tOXH8nO3l4RUfdWWuwAANuTnZWhkpLiMisBPGp5KTM99ZrGWP3hHNWq7aOWl4oP2ZnpKsi7oDWrl6p1h3A98+ostY+4XXP+NVH7k3Ze9zkAAGxDbnZmuTnH3bO2sq4x53y5ZK48vXwU0qb0Xcc/oKG8fP319bL3dCEnS0WFhVr/+XJlpCZf85gA8Gd2Bq6/etkCzjiwgJCQECUkJCgzM1OrV6/W0KFDtXnzZpWUlEiSRo0apWHDhkmS2rVrp40bN2rRokWKiYkpd7yCggIVFBSYtRVeLJCjE9sbAX+Fk0sNjZmxUBfz83Q4aafWLp0rL796atKyrf44sl9b1n6mJ6a/L4PBRv4fHQBgE779dKl+/XGDnouZY/r97b+/F7YL76Kedz8oSQps0kyHf0vUD2tjFdK6vdXiBQDYru8+W6adP2/U06/NNuUcewcHPfb8NK18d7qef7i37OzsFdKmg0Lbh8soo5UjBgBUFRQOLMDJyUlBQUGSpA4dOmj79u2aNWuWJk6cKEkKDQ0169+iRQudOHGiwvFiYmI0depUs7YBoyZo4OPPXOfIAdtQw8NTdnZ2yslMN2vPyUyX2xX2hbazs5N3nfqSpLqNgnT+j+P68YsVatKyrY7/lqTcrAy9OeZ+U/+SkhKtXTZPv6xdrX++u6pyJgMAqPLcPWrJzs5eWf+zqi0rI12eXt5XfHbd5yu0ZvVS/fO12WrQONhsTHt7e9Vr0Misf90GjXRw3+7rFjsAwLbUdPcsN+dkZ6bJ4yo5Z+MXK7XhsxV68pWZqt8oyOxeYFBzTZz5ofJyc1RUVCh3Ty+9+ewIBQY1v+5zAADYJgoHVlBSUqKCggI1atRI9erV0/79+83uHzhwQFFRURU+Hx0drQkTJpi1ffM7ywlRfTk4OKpek2Y6krRToZ06Syr97+zInp26+c57rnkco7FERUWl+3227dLD7MwESfrwX8+pbZcean97r+sXPADA5jg4OqphUIh+271d7SNuk1Sad37bvV1d77qvwufWrl6mbz75UBNemaXGwS3KjNkoOFRn/zD/eOTsHyfl7Vf3+k8CAGATHBwd1aBpMx1IjFeb8C6SSnPOgcR43dq7f4XPbfh8heJWL9UTk9+6YjHAtaabJCn59EmdOLxffR4acX0nAACwWRQOKll0dLSioqIUGBio7OxsrVy5Ups2bVJcXJwMBoOeffZZTZ48WW3atFHbtm21ZMkS/f7771q9enWFYzo7O8vZ2XxbIkennMqeClCl3dLnPn02d7rqNW2mgKYt9Mua1bpYkK8Ol/6Sf/W7/5JHbV/1vPSL8ObYFarfNES1/eupqLBQB3ZtU8JP6/WP4eMlSTXcPVXD3dPsZ9g72Mvds7Z86wVadnIAgCrnzrsf1MJ/v6pGwS3UuFmo1n/5sQry89W5ex9J0oK3psrL21cDHnlCkrRm9VJ9sXyBRj47VT7+dU1nITi7uMrFtYYkqVf/QXpvxktq1rKtmod10J74rdr96896LmaOdSYJAKgS7uj3gJbPmqbAoOZqGNxCm77+RAX5eQrvVppzls58VbW8ffWPwY9LktZ/vlxrVn6goRMmy9uvruncAmcXVzlfyjm7/vO93DxqycvXX6ePH9FnC2cp7KZb1aLdTdaZJACgyqFwUMmSk5M1ZMgQnTlzRp6engoLC1NcXJx69OghSRo3bpzy8/M1fvx4paWlqU2bNlq/fr2aNm1q5cgB29I6sqtyszK18ZMPlZORprqNmmpo9OumrYoyUpNlsLt8HvzFgnx9/cFMZaael6OTs3zqB+q+J19Q68iu1poCAMCG3NSlh7IzM/TF8gXKTE9VgybBGv/Kv01bFaWdPyu7P5169sOaz1VUVKi5MS+YjfOPB4fr7kGlRe0OkbdryBPP69tPl2jl+/9WnfqBGvNCjJq1bGuxeQEAqp4OnbspJzND3360UNnpaarfOEhPTH7LdGBy+vlzMhguv+v8vPYLFRUV6oMZL5mNE3X/MPV+cLgkKTM9VZ8vete05dFNt/dSr4GPWGxOAICqz2A0Gjn55gbwacJpa4cAAKgm6tV0tXYIAIBqJLeoyNohAACqiZ4tfK0dgk16eDlncv1Vyx9uY+0Qrsru6l0AAAAAAAAAAEB1QeEAAAAAAAAAAACYUDgAAAAAAAAAAAAmFA4AAAAAAAAAAIAJhQMAAAAAAAAAAGDiYO0AcH30bVXP2iEAAAAAAAAAqGYMBmtHgMrAigMAAAAAAAAAAGBC4QAAAAAAAAAAAJhQOAAAAAAAAAAAACYUDgAAAAAAAAAAgAmFg0o2b948hYWFycPDQx4eHoqIiNDatWslSceOHZPBYCj3+vTTT60cOWB7Vq1coageXdWpXWsNeuA+JSUmXrH/d3Fr1e+uXurUrrXuvbuvfvpxs9l9o9GoObNnqdttnXVT+zCNHP6Ijh8/VokzAADYEvIOAMBSyDkAAEujcFDJAgICNH36dMXHx2vHjh3q2rWr+vXrp71796pBgwY6c+aM2TV16lS5ubkpKirK2qEDNmXd2jV6c0aMRj0xRqs+jVVISHONHjVcqamp5fZP2LVTE599Rvf0H6CPV3+hO7p207inxujgwQOmPos/WKCPVizTS5OnaPlHn8jV1VWjRw5XQUGBpaYFAKiiyDsAAEsh5wCo6ir6MJqr4ssWGIxGo9HaQVQ3tWvX1htvvKHhw4eXudeuXTu1b99eH3zwwV8aM7/oekUH2KZBD9ynlq1a64WXJkmSSkpK1LPbbXrwocEaPmJkmf7PPjNOeXl5enfufFPbww8OVEjz5np58isyGo3qfvutGvLIMA0dVvrfanZ2trp2idQr06Yrqncfy0wMAFAlkXcAAJZCzgEsx8XB2hHYpiErr7wKCmUtfSjM2iFcFSsOLKi4uFirVq1Sbm6uIiIiytyPj49XQkJCuQUFABUrvHhRv+3bq/CISFObnZ2dwsMjlbh7V7nPJCYkKDzc/L/DyFs6KzEhQZL0x6lTSkk5r5vDL4/p7u6u1mFtKhwTAFA9kHcAAJZCzgEAWAt1NAtISkpSRESE8vPz5ebmptjYWIWGhpbp98EHH6hFixaKjIwsZxQAFUnPSFdxcbG8vb3N2r29vXX06JFyn0lJSZG3t0+Z/impKZfuny9t8yk7ZkpKyvUKHQBgg8g7AABLIecAAKyFwoEFhISEKCEhQZmZmVq9erWGDh2qzZs3mxUP8vLytHLlSr388stXHa+goKDMvoNGe2c5Oztf99gBAAAAAAAAANULWxVZgJOTk4KCgtShQwfFxMSoTZs2mjVrllmf1atX68KFCxoyZMhVx4uJiZGnp6fZ9cbrMZUVPlDledXykr29fZnDwVJTU+Xj41PuMz4+PkpNTSnb/9KXOT4+vqVtKdc+JgCgeiDvAAAshZwDALAWCgdWUFJSUmbFwAcffKB//OMf8vX1verz0dHRyszMNLuefT66ssIFqjxHJye1CG2pbVu3mNpKSkq0bdsWhbVpV+4zYW3batvWrWZtW7f8orC2bSVJ9QMC5OPjq23bLo+Zk5OjpMTdFY4JAKgeyDsAAEsh5wCwBXYGrr962QK2Kqpk0dHRioqKUmBgoLKzs7Vy5Upt2rRJcXFxpj6HDh3Sjz/+qDVr1lzTmM7OZbclyi+6rmEDNmfw0GF6+YXn1bJlK7VqHably5YoLy9Pd9/TX5L0YvRz8vPz19jxz0iSBj08RMMfGawlHy5Sly63ad3aNdq7Z49envKKJMlgMGjQ4CFaMH+eGgY2VP2AAM2ZPUu+fn7q2q271eYJAKgayDsAAEsh5wAArIHCQSVLTk7WkCFDdObMGXl6eiosLExxcXHq0aOHqc+iRYsUEBCgnj17WjFSwLb1iuqt9LQ0zX33HaWknFdI8xaaO3+hvC8ttT175ozsDJcXWbVt114xM97Uu+/M1OyZbyuwYSPNnD1HwcHNTH2GDR+hvLw8vTJlkrKzs9SufQfNnb+Q80QAAOQdAIDFkHMAANZgMBqNRmsHgf8/VhwAAAAAAAAAf58Ln1j/LY98lGjtEGzOhw+GWTuEq+KMAwAAAAAAAAAAYELhAAAAAAAAAAAAmLAABwAAAAAAAADwtxgMBmuHgErAigMAAAAAAAAAAGBC4QAAAAAAAAAAAJhQOAAAAAAAAAAAACYUDgAAAAAAAAAAgAmFAwAAAAAAAAAAYOJg7QAAAAAAAAAAALbJYO0AUClYcVDJ5s2bp7CwMHl4eMjDw0MRERFau3at6f7Zs2c1ePBg1alTRzVr1lT79u312WefWTFiwHatWrlCUT26qlO71hr0wH1KSky8Yv/v4taq31291Klda917d1/99ONms/tGo1FzZs9St9s666b2YRo5/BEdP36sEmcAALAl5B0AgKWQcwAAlkbhoJIFBARo+vTpio+P144dO9S1a1f169dPe/fulSQNGTJE+/fv11dffaWkpCT1799fAwcO1K5du6wcOWBb1q1dozdnxGjUE2O06tNYhYQ01+hRw5Wamlpu/4RdOzXx2Wd0T/8B+nj1F7qjazeNe2qMDh48YOqz+IMF+mjFMr00eYqWf/SJXF1dNXrkcBUUFFhqWgCAKoq8AwCwFHIOAMAaDEaj0WjtIKqb2rVr64033tDw4cPl5uamefPmafDgwab73t7eev311/XYY49d85j5RZURKWA7Bj1wn1q2aq0XXpokSSopKVHPbrfpwYcGa/iIkWX6P/vMOOXl5endufNNbQ8/OFAhzZvr5cmvyGg0qvvtt2rII8M0dNhwSVJ2dra6donUK9OmK6p3H8tMDABQJZF3AACWQs4BLMeFTd3/lkdXJVk7BJuz6IHW1g7hqlhxYEHFxcVatWqVcnNzFRERIUmKjIzUxx9/rLS0NJWUlGjVqlXKz8/X7bffbt1gARtSePGiftu3V+ERkaY2Ozs7hYdHKnF3+at3EhMSFB4eYdYWeUtnJSYkSJL+OHVKKSnndXP45THd3d3VOqxNhWMCAKoH8g4AwFLIOQAAa6GOZgFJSUmKiIhQfn6+3NzcFBsbq9DQUEnSJ598ovvvv1/e3t5ycHBQjRo1FBsbq6CgICtHDdiO9Ix0FRcXy9vb26zd29tbR48eKfeZlJQUeXv7lOmfkppy6f750jafsmOmpKRcr9ABADaIvAMAsBRyDgDAWigcWEBISIgSEhKUmZmp1atXa+jQodq8ebNCQ0P18ssvKyMjQxs2bJCPj4+++OILDRw4UD/99JNaty5/yUpBQUGZfQeN9s5ydna2xHQAAAAAAAAAQJJkZzBYOwRUArYqsgAnJycFBQWpQ4cOiomJUZs2bTRr1iwdPnxY7777rhYtWqRu3bqpTZs2mjx5sjp27Kg5c+ZUOF5MTIw8PT3Nrjdej7HgjICqxauWl+zt7cscDpaamiofH59yn/Hx8VFqakrZ/pe+zPHx8S1tS7n2MQEA1QN5BwBgKeQcAIC1UDiwgpKSEhUUFOjChQuSSvcn/DN7e3uVlJRU+Hx0dLQyMzPNrmefj67UmIGqzNHJSS1CW2rb1i2mtpKSEm3btkVhbdqV+0xY27batnWrWdvWLb8orG1bSVL9gAD5+Phq27bLY+bk5CgpcXeFYwIAqgfyDgDAUsg5AABrYauiShYdHa2oqCgFBgYqOztbK1eu1KZNmxQXF6fmzZsrKChIo0aN0ptvvilvb2998cUXWr9+vb755psKx3R2LrstUX5RZc8EqNoGDx2ml194Xi1btlKr1mFavmyJ8vLydPc9/SVJL0Y/Jz8/f40d/4wkadDDQzT8kcFa8uEidelym9atXaO9e/bo5SmvSJIMBoMGDR6iBfPnqWFgQ9UPCNCc2bPk6+enrt26W22eAICqgbwDALAUcg4AwBooHFSy5ORkDRkyRGfOnJGnp6fCwsIUFxenHj16SJLWrFmjiRMnqm/fvsrJyVFQUJCWLFmi3r17WzlywLb0iuqt9LQ0zX33HaWknFdI8xaaO3+hvC8ttT175ozsDJdX97Rt114xM97Uu+/M1OyZbyuwYSPNnD1HwcHNTH2GDR+hvLw8vTJlkrKzs9SufQfNnb+Q80QAAOQdAIDFkHMAANZgMBqNRmsHgf8/VhwAAAAAAAAAf58Ln1j/LY99vMfaIdichfe3snYIV8V/DgAAAAAAAACAv8VgsHYEqAwcjgwAAAAAAAAAAEwoHAAAAAAAAAAAABMKBwAAAAAAAAAAwITCAQAAAAAAAAAAMKFwAAAAAAAAAAAATBysHQAAAAAAAAAAwDYZDAZrh4BKwIoDAAAAAAAAAABgQuEAAAAAAAAAAACYUDgAAAAAAAAAAAAmFA4sbPr06TIYDBo3bpypLT8/X2PGjJG3t7fc3Nx077336ty5c9YLErBRq1auUFSPrurUrrUGPXCfkhITr9j/u7i16ndXL3Vq11r33t1XP/242ey+0WjUnNmz1O22zrqpfZhGDn9Ex48fq8QZAABsCXkHAGAp5BwAgKVROLCg7du3a/78+QoLCzNrHz9+vL7++mt9+umn2rx5s06fPq3+/ftbKUrANq1bu0ZvzojRqCfGaNWnsQoJaa7Ro4YrNTW13P4Ju3Zq4rPP6J7+A/Tx6i90R9duGvfUGB08eMDUZ/EHC/TRimV6afIULf/oE7m6umr0yOEqKCiw1LQAAFUUeQcAYCnkHACANVA4sJCcnBwNGjRICxYskJeXl6k9MzNTH3zwgd5++2117dpVHTp00OLFi/XLL79o69atVowYsC3LlixW/wEDdfc996ppUJBemjxVLi4u+uLzz8rtv2L5UkV2vlWPPPqYmjRtqiefHqcWoaFatXK5pNIvcFYsW6oRo0brjq7d1SykuV6LmaHzycn6fuMGS04NAFAFkXcAAJZCzgFQ1RkMXH/1sgUUDixkzJgx6tOnj7p3727WHh8fr8LCQrP25s2bKzAwUFu2bLF0mIBNKrx4Ub/t26vwiEhTm52dncLDI5W4e1e5zyQmJCg8PMKsLfKWzkpMSJAk/XHqlFJSzuvm8Mtjuru7q3VYmwrHBABUD+QdAIClkHMAANbiYO0AqoNVq1Zp586d2r59e5l7Z8+elZOTk2rVqmXW7u/vr7Nnz1ooQsC2pWekq7i4WN7e3mbt3t7eOnr0SLnPpKSkyNvbp0z/lNSUS/fPl7b5lB0zJSXleoUOALBB5B0AgKWQcwAA1kLhoJKdPHlSY8eO1fr16+Xi4nJdxiwoKCiz76DR3lnOzs7XZXwAAAAAAAAAQPXFVkWVLD4+XsnJyWrfvr0cHBzk4OCgzZs365133pGDg4P8/f118eJFZWRkmD137tw51alTp9wxY2Ji5OnpaXa98XqMBWYDVE1etbxkb29f5nCw1NRU+fj4lPuMj4+PUlNTyva/9GWOj49vaVvKtY8JAKgeyDsAAEsh5wAArIXCQSXr1q2bkpKSlJCQYLo6duyoQYMGmf63o6OjNm7caHpm//79OnHihCIiIsodMzo6WpmZmWbXs89HW2pKQJXj6OSkFqEttW3r5XNBSkpKtG3bFoW1aVfuM2Ft22rb/xxAvnXLLwpr21aSVD8gQD4+vtq27fKYOTk5SkrcXeGYAIDqgbwDALAUcg4AwFrYqqiSubu7q1WrVmZtNWvWlLe3t6l9+PDhmjBhgmrXri0PDw899dRTioiIUHh4eLljOjuX3ZYov6hy4gdsxeChw/TyC8+rZctWatU6TMuXLVFeXp7uvqe/JOnF6Ofk5+evseOfkSQNeniIhj8yWEs+XKQuXW7TurVrtHfPHr085RVJksFg0KDBQ7Rg/jw1DGyo+gEBmjN7lnz9/NS1W/cK4wAAVA/kHQCApZBzAFR1dgaDtUNAJaBwUAX8+9//lp2dne69914VFBTozjvv1Ny5c60dFmBTekX1Vnpamua++45SUs4rpHkLzZ2/UN6XltqePXNGdobLi6zatmuvmBlv6t13Zmr2zLcV2LCRZs6eo+DgZqY+w4aPUF5enl6ZMknZ2Vlq176D5s5fyHkiAADyDgDAYsg5AABrMBiNRqO1g8D/HysOAAAAAAAAgL/PhU+s/5bRn+2zdgg2Z969odYO4ao44wAAAAAAAAAAAJhQOAAAAAAAAAAAACYUDgAAAAAAAAAAgAk7dwEAAAAAAAAA/haDwdoRoDKw4gAAAAAAAAAAAJhQOAAAAAAAAAAAACYUDgAAAAAAAAAAgAmFAwAAAAAAAAAAYELhAAAAAAAAAAAAmDhYOwAAAAAAAAAAgG0yGAzWDgGVgBUHFjR9+nQZDAaNGzfO1Pb+++/r9ttvl4eHhwwGgzIyMqwWH2DrVq1coageXdWpXWsNeuA+JSUmXrH/d3Fr1e+uXurUrrXuvbuvfvpxs9l9o9GoObNnqdttnXVT+zCNHP6Ijh8/VokzAADYEvIOAMBSyDkAAEujcGAh27dv1/z58xUWFmbWfuHCBfXq1UsvvPCClSIDbgzr1q7RmzNiNOqJMVr1aaxCQppr9KjhSk1NLbd/wq6dmvjsM7qn/wB9vPoL3dG1m8Y9NUYHDx4w9Vn8wQJ9tGKZXpo8Rcs/+kSurq4aPXK4CgoKLDUtAEAVRd4BAFgKOQcAYA0UDiwgJydHgwYN0oIFC+Tl5WV2b9y4cZo4caLCw8OtFB1wY1i2ZLH6Dxiou++5V02DgvTS5KlycXHRF59/Vm7/FcuXKrLzrXrk0cfUpGlTPfn0OLUIDdWqlcsllX6Bs2LZUo0YNVp3dO2uZiHN9VrMDJ1PTtb3GzdYcmoAgCqIvAMAsBRyDgDAGigcWMCYMWPUp08fde/e3dqhADekwosX9du+vQqPiDS12dnZKTw8Uom7d5X7TGJCgsLDI8zaIm/prMSEBEnSH6dOKSXlvG4Ovzymu7u7Woe1qXBMAED1QN4BAFgKOQcAYC0cjlzJVq1apZ07d2r79u3XbcyCgoIyyweN9s5ydna+bj8DsCXpGekqLi6Wt7e3Wbu3t7eOHj1S7jMpKSny9vYp0z8lNeXS/fOlbT5lx0xJSbleoQMAbBB5BwBgKeQcAIC1sOKgEp08eVJjx47VihUr5OLict3GjYmJkaenp9n1xusx1218AAAAAAAAALgWdlx/+bIFthKnTYqPj1dycrLat28vBwcHOTg4aPPmzXrnnXfk4OCg4uLivzVudHS0MjMzza5nn4++ztEDtsOrlpfs7e3LHA6WmpoqHx+fcp/x8fFRampK2f6Xvszx8fEtbUu59jEBANUDeQcAYCnkHACAtVA4qETdunVTUlKSEhISTFfHjh01aNAgJSQkyN7e/m+N6+zsLA8PD7OLbYpQnTk6OalFaEtt27rF1FZSUqJt27YorE27cp8Ja9tW27ZuNWvbuuUXhbVtK0mqHxAgHx9fbdt2ecycnBwlJe6ucEwAQPVA3gEAWAo5BwBgLZxxUInc3d3VqlUrs7aaNWvK29vb1H727FmdPXtWhw4dkiQlJSXJ3d1dgYGBql27tsVjBmzV4KHD9PILz6tly1Zq1TpMy5ctUV5enu6+p78k6cXo5+Tn56+x45+RJA16eIiGPzJYSz5cpC5dbtO6tWu0d88evTzlFUmSwWDQoMFDtGD+PDUMbKj6AQGaM3uWfP381LUbB50DQHVH3gEAWAo5BwBgDRQOrOy9997T1KlTTX/u0qWLJGnx4sV65JFHrBQVYHt6RfVWelqa5r77jlJSziukeQvNnb9Q3peW2p49c0Z2hsuLrNq2a6+YGW/q3XdmavbMtxXYsJFmzp6j4OBmpj7Dho9QXl6eXpkySdnZWWrXvoPmzl/ICh8AAHkHAGAx5BwAgDUYjEaj0dpB4P8vv8jaEQAAAAAAAAC2y4VPrP+Wp2J/s3YINmf2PS2sHcJV8Z8DAAAAAAAAAOBvMRgM1g4BlYDDkQEAAAAAAAAAgAmFAwAAAAAAAAAAYELhAAAAAAAAAAAAmFA4AAAAAAAAAAAAJhyOfIPw6vOmtUMAAFQXDk7WjgAAUJ2UFFs7AgBANZG3dry1QwCqDAoHAAAAAAAAAIC/xc5g7QhQGdiqCAAAAAAAAAAAmFA4AAAAAAAAAAAAJhQOLGz69OkyGAwaN26cJCktLU1PPfWUQkJC5OrqqsDAQD399NPKzMy0bqCADRrVt61+XzJC6V+P04+zBqljSJ0K+zrY2yl6UIT2Ln5M6V+P07Z5Q9SjYyOzPre0CtDqqffoyMrHlRf3T/WNCKrkGQAAbMmoPmH6fdEjSo99Qj++PVAdm/lX2NfB3k7RD96kvQuHKj32CW2b/aB6dGj4/xoTAFB9jLqrjX7/8FGlf/mUfvz3A1fPOQ/drL2Lhin9y6e0bc7DZXLOLa3qa/WUfjqyfITy1o5X34imlT0FAICNoXBgQdu3b9f8+fMVFhZmajt9+rROnz6tN998U3v27NGHH36odevWafjw4VaMFLA9A24L0esjb9e0FVsUMWaZEo8k66tpA+TrWaPc/lMe6azHeodpwtyNajdisRZ+u1sfT+qnNk39TH1qujgq6Uiyxr27wVLTAADYiAG3Buv1Ebdq2sptinh6lRKPpuirV/vJ19O13P5ThoTrsV6tNOG9TWo3erkWrt2jj1/sozZNfP/2mACA6mFAl2Z6fWQXTVuxVRFPrSjND6/1rzjnDI3UY1FhmjDvB7UbtVQL1yTq45f/oTZNL+ec0ned8xo393tLTQMAYGMoHFhITk6OBg0apAULFsjLy8vU3qpVK3322Wfq27evmjZtqq5du2ratGn6+uuvVVRUZMWIAdvydP+OWrwuScu+26PfT6TqqXfWK6+gUEPvbFVu/4e6hWrGqm2K235Ux85masE3uxW3/ajG3tvR1Oe7HUc1dcl/9NUvhyw1DQCAjXj6nnZavG6Plm34Tb+fTNNT736vvPwiDe0ZWm7/h+5orhmf7FDcjuM6djZLC9YkKW7HMY3t3+5vjwkAqB6evqe9Fq/do2Xr9+n3E2l6avYG5RUUaWjPCt51urbQjI9/Vdz2Y6XvOt8mlr7r9O9g6vPdjmOauvQXffXLYUtNAwBgYygcWMiYMWPUp08fde/e/ap9MzMz5eHhIQcHBwtEBtg+Rwc7tQv21/c7j5vajEbp+10ndFNovXKfcXK0V/5F8+JcXkGRIlvWr9RYAQC2z9HBTu2C/PR9wklTm9EofZ9wUjc1r1vuM06O9sov/J+8c7FIkZfy1N8ZEwBw4zO96yScMLWV5ocTuqnFFXLO/77rXCxSZMvy340A4P/LzsD1Vy9bQOHAAlatWqWdO3cqJibmqn1TUlL06quvauTIkRaIDLgx+Hi4ysHeTskZuWbtyem5quNVs9xnNsQf09P3dlTTerVkMEhd2zdUv1uCVad2+f0BAPivy3nngll7csYF1fEqf4u8DTtP6Om726lpPc/SvNO2gfpFNDXlnb8zJgDgxmfKD+n/kx/Sr5Bz4o/r6f4dLr/rtAtUv8gg3nUAAH8Jn7RXspMnT2rs2LFav369XFxcrtg3KytLffr0UWhoqKZMmVJhv4KCAhUUFJi1GUuKZLDjXydwrf4573vNHddTuxc+KqOkI6cztPS7PRVubQQAwP/HP+f/qLlPd9Xu9waX5p0zmVq64TcN7cE2RACA6+uf8zdp7tPdtfv9oZdyToaWrt9b4dZGAACUh79prmTx8fFKTk5W+/btTW3FxcX68ccf9e6776qgoED29vbKzs5Wr1695O7urtjYWDk6OlY4ZkxMjKZOnWrWZt+khxyDelbaPICqLCUrT0XFJfKrZf4FjZ9XTZ1Nzy3/mcw8DZz6pZwd7eXt4arTqTl6bXgXHT2baYmQAQA27HLeMf/S069WDZ39ny9C//zMwNe+vZR3XHQ6NVevDYs05Z2/MyYA4MZnyg//s7rAz+sKOSczTwNf/do85zzamXcdAMBfwlZFlaxbt25KSkpSQkKC6erYsaMGDRqkhIQE2dvbKysrSz179pSTk5O++uqrq65MiI6OVmZmptnl0KSrhWYEVD2FRSXadfCc7mgXaGozGKQ72gbq132nr/hsQWGxTqfmyMHeTnd3DtY3WzgIGQBwZYVFJdp1KFl3tG1gaivNOw306+9nrvhsad7JLc07kUH6ZuuR//eYAIAbl+ldp7z88NtfyDm3BOubLRyEDAC4dqw4qGTu7u5q1cp8OWDNmjXl7e2tVq1amYoGFy5c0PLly5WVlaWsrCxJkq+vr+zt7cuM6ezsLGdnZ7M2tilCdffO5zu04J9Rij9wTjv2n9GT93RQDRdHLf1ujyRp4bNROp2So0mLf5IkdQqpo3o+7tp9OFn1fdz04sORsjMY9PYn201j1nRxVNN6tUx/blTHU2FNfJWena+T57MtOj8AQNXyTuwuLZjQQ/EHz2nHgXN6sl9b1XBx0NL1+yRJCyf00OnUXE1a8oskqVOIv+p5u2n3kfOq7+2mFx+6WXZ2Br39Wfw1jwkAqJ7eid2pBc/cqfiDydqx/6yevLudajg7aun6vZKkhc/cqdOpOZr04X8kXXrX+XPOeTi89F1n9Q7TmGXedfw9eNcBAJjhb5utbOfOndq2bZskKSgoyOze0aNH1ahRIytEBdie1Zv3y8ezhiYNuUX+XjWUeOS8+r242nTIZANfD5WUGE39nZ0cNHloZzWu66mcvIuK235Uw2esUWbu5fND2jero+/euN/05xmP3yFJWvbdHo18a52FZgYAqIpW/3RQPp6umvRwuPy9apbmnUlfKjkjT5LUwNddJcY/5R1HB00eHKHGdTyUk1eouB3HNPyt75SZe/GaxwQAVE+rfzxwKT9EyL92DSUePq9+L8deftfx+5+c42SvyUMj1biOZ2nO2X5Uw99YZ/6uE+yv72bcZ/rzjFG3S5KWrd+rkW9/Z5mJAbhhGAwGa4eASmAwGv+UXWCzXO9809ohAACqCwcna0cAAKhOSoqtHQEAoJrIWzve2iHYpGe+3m/tEGzOW31DrB3CVXHGAQAAAAAAAAAAMKFwAAAAAAAAAAAATCgcAAAAAAAAAAAAEwoHAAAAAAAAAADAxMHaAQAAAAAAAAAAbJOdwdoRoDJQOLhBbJ43wtohAACqid/TsqwdAgCgGqlb09XaIQAAAFQ7bFUEAAAAAAAAAABMKBwAAAAAAAAAAAATCgcAAAAAAAAAAMCEwgEAAAAAAAAAADDhcGQLmz59uqKjozV27FjNnDlTkjRq1Cht2LBBp0+flpubmyIjI/X666+refPm1g0WsDHrv/5Ua1YvV2Z6qho0CdaQ0f9U05CW5fb9Ye0X+nnjtzp1/IgkqXFQc933yBMV9l88O0bfr4nVoJHj1eueByttDgAA27Hjuy+19dtPlJOZJv/Apuo59EnVb1r+72+/b/9J//nyI6Wf+0MlxcXy8q+v8N4D1PrWHmb9Uv44ru9XLdSJ33arpKREPvUDde/YyfL08bfElAAAVdTmNZ9pY+xKZWWkqX6jIN03YrwaNQstt+9/vvtKv/6wVqdPHJUkBTYNUd+HR5n1z8pI05dL5uq3hF+Vl5ujoJZtdd+I8fKr18Ai8wFwYzEYrB0BKgMrDixo+/btmj9/vsLCwszaO3TooMWLF+u3335TXFycjEajevbsqeLiYitFCtierZvXa+X7M3XPoMf06uylCmwcrBkvPa3MjLRy+/+WGK+I2+/UC9PnafLbH6i2r79mvPiU0lKSy/Td8Z8fdOj3PfLy9q3saQAAbMS+LT9ow4r3dGv/wRr+2nvyC2yiVdMnKjczvdz+rjXddUu/h/TIlHc0IuZ9tbntTn39/hs6nLjd1Cf93GktfWWcvOs20MMvvaURMe+r890Py8HRyVLTAgBUQfE/b1DsotmKeuBRPf/2ItVvFKQ5UycoO6P8nHNwz051uLWHxr76jp55fb5q+fhpzpTxykg9L0kyGo16P2aiUs6d1qgXXtfEfy9Wbd86mj15rAry8yw5NQBAFUbhwEJycnI0aNAgLViwQF5eXmb3Ro4cqS5duqhRo0Zq3769XnvtNZ08eVLHjh2zTrCADVobu1K3R92tLj37qn7DJhr21EQ5O7vox+++Lrf/E8+/qu53DVDDps1Ur0EjPTb2RZWUGLUvYbtZv7SUZC2d95ZGP/eK7O1ZpAUAKLVt7Wdqe0dvtbmtl3wDGqr3o+Pk4Oys3ZvXldu/YWhbNe/UWT71G8rLv55u6tVffoFNdHL/HlOfTZ8sUtM2N6vbQyNVp1GwvPzrqVmHSNX09Cp3TABA9fD9lx8rsmdfRXTro7oNGuuB0c/KydlZWzZ+U27/RyZMUZfe/RXQpJnqBDTUoDETZTSWaH/iDklS8umTOrZ/rx54/J9qGNxC/vUb6v7H/6nCiwWK/2m9BWcGAKjKKBxYyJgxY9SnTx917979iv1yc3O1ePFiNW7cWA0asEQQuBZFhYU6dvB3tWzbydRmZ2enlm076dBvSdc0RkFBvoqLi1TT3cPUVlJSovfenKw+Ax5WQMOm1z1uAIBtKi4q1JmjB9S4VXtTm8HOTo1btdepg/uu+rzRaNTRPTuVduaUApuXrkQ1lpToUMI21a4boI+mP69/jx6gxZOe1P4d/6m0eQAAqr6iwkKdPLxfIWHm7zohbTrq6J+Kz1dy8WLpu04NNw/TmJLMVrTZ2dnJwcFJh/clXsfoAQC2jMKBBaxatUo7d+5UTExMhX3mzp0rNzc3ubm5ae3atVq/fr2cnMpfll5QUKCsrCyz62JBQWWFD1R52VkZKikplqdXbbN2D6/aykhPvaYxPl70rrxq+6hlu5tMbd98ulT2dg7q2e/+6xovAMC2XcjOlLGkpMxKgJoeXhVuVSRJ+RdyNOPRuzR9aC99/OaL6jlkjJq07iBJys3K0MX8PG35epWatOmkB5+frpCOt2j1zCk6/tvuSp0PAKDqyskufddxr/U/7zqetZWVXv62rP/ryyXz5Onlo+ZtOkqS6gQ0lJevv75aNl8XcrJUVFio9Z8vV0ZqsjKv8f0JAHDjo3BQyU6ePKmxY8dqxYoVcnFxqbDfoEGDtGvXLm3evFnNmjXTwIEDlZ+fX27fmJgYeXp6ml1L3nu7sqYA3PC+/mSJtm5er7GTZsjJyVmSdPTgb/ruy1Ua+cwkGTjlBwBwHTi71NBj/5qvYa/M0e33PaoNK97T8X0JkiSjsUSS1Kx9hG6OGqA6jYIU+Y8HFdwuXDsr2IoCAICr+e6zZYr/eYNGRMfI8dK7jr2Dg0Y8/y8lnz6h5x6O0oT7u+lA0k6Ftg+XnR1/TQQAKMWG3ZUsPj5eycnJat/+8lL24uJi/fjjj3r33XdVUFAge3t7UwEgODhY4eHh8vLyUmxsrB588MEyY0ZHR2vChAlmbYl/lF9kAKoDd49asrOzV+b/fHGTlZ6mWl7eV3z229XL9c0nS/T8v95VYONgU/v+PQnKykjXuCH/MLWVlBRr5cJZivtilf695MvrOwkAgM2o4e4pg51dmdUFuVnpVzyPwGBnp9p16kuS6jQKUsrpE/rlq4/UMLStarh7ys7eXj71G5o941Mv0OwcBABA9eLmXvquk53xP+86mWny+J8V1/9rwxcrtf6z5XrylZmq3yjI7F5gUHNFz1yivNwcFRUVyt3TS288O0KBQc2v+xwA3Pjs+ODyhkThoJJ169ZNSUnme6wPGzZMzZs31/PPPy97e/syzxiNRhmNRhVUsP2Qs7OznJ2dzdqcUozXL2jAxjg4OqpRcHPtS9iujpG3Syo9n2Bvwg71+Md9FT73zadL9dWqxXrutXfUpFmo2b1bukWZbVskSW+89LRu6RqlLj37Xvc5AABsh72Do+o2bqZje3cqpOMtkkrPKDi2Z5c69ux3zeMYjSUqKiq8PGaTEKWeOWXWJ/XsKXn6+F2/4AEANsXB0VENmoZof+IOtQnvIqn0XedAYry69L63wufWf75CcauXaMzkt9UwqEWF/VxrukkqPTD5xOHfdddDj13fCQAAbBaFg0rm7u6uVq1ambXVrFlT3t7eatWqlY4cOaKPP/5YPXv2lK+vr06dOqXp06fL1dVVvXv3tlLUgO2Juuchvf/WVDUObqEmIS0V98UqFRTkqUuPuyRJ7705WV7efrp/2BhJ0jefLNFny97XE8+/Kh//uspIS5EkubjWkItrDbl71JK7Ry2zn2Fv7yBPL2/VDTD/GhQAUP3cHHWvvpo/Q3Ubh6he0xD9uu5zFRbkK+y2XpKkr+ZNl7uXj+54oPQvYP7z5UrVbRIiL/+6Ki4s1KGEX7Xn5w3qNWysaczwPgMVO/s1BTZvrYahbXU4cbsO7tyiwS+9ZZU5AgCqhq797teyWdMUGNRcjYJD9cPXn6ggP1/h3fpIkpbOfFWe3j7qN3i0JGn958v17cqFGjphsrz96irr0rkFzi6ucnatIUna+Z/v5eZRS7V9/XX6+BGtXjhTYTfdqhbtbrbOJAEAVQ6FAytzcXHRTz/9pJkzZyo9PV3+/v7q0qWLfvnlF/n58XUZcK3Cb+uh7Mx0fbb8fWWmpSqwaTM9++oseV7aqig1+ZwMhsv7dW789nMVFRXqnWkTzca5Z9Bj6v/wSIvGDgCwPaERdyg3O1ObV3+o3Mx0+Tdsqgeej5Hbpa2KMlOTzfJOYUG+1i1+R9lp5+Xg5Czveg3Ub/REhUbcYerTvFNnRT06Vr98tUrfLZ2j2nUb6N6xk9UgpLXF5wcAqDo6dO6unMwMffvRQmWnp6l+42CNmfyWPC4dmJx2/pzZuWw/rY1VUVGhPpjxktk4Ufc/qj4PDpckZaWn6vNFs5WdmSYPL2/dfHsv9Ro4zHKTAgBUeQaj0cgeNzeAX49kWjsEAEA18XtalrVDAABUI3Vrulo7BABANdGjhY+1Q7BJE9ccsHYINmd672bWDuGq7K7eBQAAAAAAAAAAVBdsVQQAAAAAAAAA+Fv4Mv3GxL9XAAAAAAAAAABgQuEAAAAAAAAAAACYUDgAAAAAAAAAAAAmnHFwg5j36wlrhwAAqCYc7fnuAABgOSUlmdYOAQBQTfRo4WPtEIAqgzd/AAAAAAAAAABgwooDAAAAAAAAAMDfYjBYOwJUBlYcAAAAAAAAAAAAE1YcWNj06dMVHR2tsWPHaubMmZKk22+/XZs3bzbrN2rUKL333ntWiBCwXV2Daiuqha88XRx0IiNfK+JP62haXrl9b2lcS4/d3MCsrbC4RCM/3Wv6c79Wfro50FO1azipqMSoY2l5+jzxrI5UMCYAoHq5vWlt9QzxlqeLg05l5OujXWd1LL38HBHRsJaG3VTfrK2wuERjPv9NkmRvkPq18lfrum7yqemkvMJi/XYuV58nnVNmflGlzwUAULXdEVRbdzb3kaeLg05m5OujnWcqfNeJbFRLj94cYNZWWFyi0av3mf78j5Z+6hToqdo1HFVUYtTxtDzFJp2rcEwAQPVD4cCCtm/frvnz5yssLKzMvREjRuiVV14x/blGjRqWDA2weTc18NQD7epq6Y7TOpJ6QT1CfPTM7Y0V/e1+ZRcUl/vMhYvFil5z4HKD0fz+uewCLY8/rfM5F+Vob6c7L4058QpjAgCqh44BHrqvjb9W7Dyjo6l56tastsZ2aahJ6w5WmCPyCov18tpDpj8b/5R4nOztFOjlom/2ndepjHzVcLLXA23raMwtgfrXxiOVPh8AQNXVqYGHBrato+Xxp3UkNU/dm3lr3G2N9NKaA1d813lp7cHLDUbzl52z2QVaubP0XcfJ3k49Qrw1/rZGemHNAeXwrgMAEFsVWUxOTo4GDRqkBQsWyMvLq8z9GjVqqE6dOqbLw8PDClECtqtncx/9eDhdPx9N1+msAi3d/ocuFpXo1ia1r/hcVn7R5avA/IvOrcczte9crs7nFup0VoE+2nVGNZzsFVDLpTKnAgCwAT2aeevno+n65ViGzmQXaEX8GV0sLtEtjcr+nvdfRqOUVVBkuv78lz15RSWa+eNxxZ/K0rmcizqalqeVu86oUW1X1XZ1tMSUAABVVI8QH/10JF3/OZqhM1kFWr7jtC4Wlahz44pzjvS/7zrmxYBfT2Tqt3O5Srn0rvPxrrOl7zqevOsAAEpROLCQMWPGqE+fPurevXu591esWCEfHx+1atVK0dHRunDhgoUjBGyXvZ1BjbxctfdcjqnNKGnfuRwFeVe8esfZwU5v9A3RW/8I0dOdG6qeh/MVf8btTWvrwsVinUzPv57hAwBsjL3BoEAvV/12LtfUZpT027lcNfF2rfA5Zwc7xfQO1vQ+zfREZAPVvULekaQajvYqMRp1oZAvPwGgurK3M6ihl6v2/c+7zm/nctTE58rvOq/f1Uwz+oZoTOfAq77rdGnqpQsXi3Uqg3cdAEAptiqygFWrVmnnzp3avn17ufcfeughNWzYUPXq1VNiYqKef/557d+/X59//rmFIwVsk7uTveztDMr6nz2gM/OLVKeCX5DPZl3Uol9P6WRGvmo42qtXcx+92L2pXlp7QOl5l8dpU89dj0c0kJODnTLzivTmpqPKuchf4ABAdebmXH7eyc4vUl338v8S51x2gZbs+EOnMgpUw9FOPUJ8NLFrY02OO6SMvLJnGDjYGdQ/zF/bT2Qqv6ikUuYBAKj63Cp418m60rtOdoE+3P6HTmXky9WxdMvVid2aaPK6g2bvOmF13TUyIsD0rvP25mO86wD4W+wMBmuHgEpA4aCSnTx5UmPHjtX69evl4lL+kr+RI0ea/nfr1q1Vt25ddevWTYcPH1bTpk3L9C8oKFBBQYFZW3HhRdk7Ol3f4IEb2OHUCzqcenllz6GUXE3r3Uy3B3krNumcqf23czmaHHdIbs72uq1pbY2ODNSr6w9xxgEA4C85kpanI386cPJw6glN7RWkLk1q66u9yWZ97Q3SqIgAGSSt2HnGwpECAGzdkdQ8HUn9U85JOaFXo4LVpWltfbnncs75PTlHr3x3WG7O9rq1SW2Nimigf204zLsOAEASWxVVuvj4eCUnJ6t9+/ZycHCQg4ODNm/erHfeeUcODg4qLi6bkG+++WZJ0qFDh8rck6SYmBh5enqaXYlfLqzUeQBVWfbFYhWXGOXhYl4L9XRxUFY5X3GWp9gonUjPl5+beQHuYrFRyTkXdSQ1T4t//UMlRqO6XOXcBADAjS2noPy84+7ioMz8a887J8vJO/YGaWREA9Wu4aR//3ic1QYAUM3lVPCu4/EXc86JjCu/6yzZXvqu07nJlc9NAABUHxQOKlm3bt2UlJSkhIQE09WxY0cNGjRICQkJsre3L/NMQkKCJKlu3brljhkdHa3MzEyzK6zfY5U5DaBKKy4x6lh6nkL9a5raDJJa+LvpUOq1nRdiMEgBtZyVeZVCg8EgOdizBA8AqrNio1En0vPU3O9/8o5fTbMvPK/EIKm+p4sy8wtNbf8tGvi5Oenfm48pl+0iAKDaKy4x6nh6nlr4u5naDJKa+7vpSMq1v+uU5pyrvesY5GjHXxMBAEqxVVElc3d3V6tWrczaatasKW9vb7Vq1UqHDx/WypUr1bt3b3l7eysxMVHjx49Xly5dFBYWVu6Yzs7OcnY238uQbYpQ3X33e4oeCw/QsUtbQfRs5i1nBzv9fCRdkvTYzQHKyCvU6sTSbYj+0dJPh1MvKDm7QDWc7NWrua+8azjpxyNpkiQne4P6tvTTrj+ylJlXJDdne3UL9paXq6O2n8i02jwBAFXD+gOpGnZTfR1Pz9PRtDx1D/aWk4Od/nOsNO8M61RfGXmFir20JUSfFr46mnZByTkXVcPRXj1DfFS7pqN+PpIh6b/bEzVQoJer3v35uOwMBnk4l/6qnnuxWMVGo1XmCQCwvvX7U/TozQE6npano6l56h5S+q7zn6OlOefRm+sr40KRPr+05epdob46kpqn5JzSd507Q3zkXcNRP116N3KyN6hPqJ92n85SRl6R3J3tdUeQt7xcHbTjJO86AIBSFA6szMnJSRs2bNDMmTOVm5urBg0a6N5779VLL71k7dAAm/LryUy5uzjo7tb+8nRx0ImMfL296aiyCkq/qvGu6ag//5VLDSd7PdKpvjxdHHThYrGOpedp2obDOp1Ven5IiVGq6+6sW25pKDdne+VcLNax1DzFbDxi6gMAqL52nMqSu7OD/tHSTx4uDjqVka93fjpu2he6dg1HGf+UeWo62Wtwh3rycHHQhcJinUjP1+vfH9WZ7NKcUsvVUW3re0iSJvUMMvtZb246qgPnr+2rUgDAjWf7ySy5OZ9Vv1alOedkRr5mbj6mrEs5x7uGk/5cX67pZK+hnS7lnIvFOp6er5iNR3Tmz+86Hk6KbBQoN2d75V4s1tG0PL3+/VHedQAAJgajkc+XbgTDViVZOwQAQDXhaM8SdgCA5ZSU8MoKALCMhfe3unonlDEp7qC1Q7A5r9wZbO0Qroo3fwAAAAAAAAAAYELhAAAAAAAAAAAAmFA4AAAAAAAAAAAAJhQOAAAAAAAAAACACYUDAAAAAAAAAABg4mDtAHB9zBvQ2tohAAAAAAAAAKhm7AzWjgCVgRUHAAAAAAAAAADAhMIBAAAAAAAAAAAwoXAAAAAAAAAAAABMKBwAAAAAAAAAAAATCgcWNH36dBkMBo0bN86sfcuWLeratatq1qwpDw8PdenSRXl5edYJErBhq1auUFSPrurUrrUGPXCfkhITr9j/u7i16ndXL3Vq11r33t1XP/242ey+0WjUnNmz1O22zrqpfZhGDn9Ex48fq8QZAABsCXkHAGAp5BwAgKVROLCQ7du3a/78+QoLCzNr37Jli3r16qWePXvq119/1fbt2/Xkk0/Kzo5/NcBfsW7tGr05I0ajnhijVZ/GKiSkuUaPGq7U1NRy+yfs2qmJzz6je/oP0Merv9AdXbtp3FNjdPDgAVOfxR8s0EcrlumlyVO0/KNP5OrqqtEjh6ugoMBS0wIAVFHkHQCApZBzAFR1dgYD11+8bAF/O20BOTk5GjRokBYsWCAvLy+ze+PHj9fTTz+tiRMnqmXLlgoJCdHAgQPl7OxspWgB27RsyWL1HzBQd99zr5oGBemlyVPl4uKiLz7/rNz+K5YvVWTnW/XIo4+pSdOmevLpcWoRGqpVK5dLKv0CZ8WypRoxarTu6NpdzUKa67WYGTqfnKzvN26w5NQAAFUQeQcAYCnkHACANVA4sIAxY8aoT58+6t69u1l7cnKytm3bJj8/P0VGRsrf31+33Xabfv75ZytFCtimwosX9du+vQqPiDS12dnZKTw8Uom7d5X7TGJCgsLDI8zaIm/prMSEBEnSH6dOKSXlvG4Ovzymu7u7Woe1qXBMAED1QN4BAFgKOQcAYC0UDirZqlWrtHPnTsXExJS5d+TIEUnSlClTNGLECK1bt07t27dXt27ddPDgwQrHLCgoUFZWltnFckJUZ+kZ6SouLpa3t7dZu7e3t1JSUsp9JiUlRd7ePmX7p6Zcun++tM3n2scEAFQP5B0AgKWQcwAA1kLhoBKdPHlSY8eO1YoVK+Ti4lLmfklJiSRp1KhRGjZsmNq1a6d///vfCgkJ0aJFiyocNyYmRp6enmbXG6+XLUwAAAAAAAAAAPBXUTioRPHx8UpOTlb79u3l4OAgBwcHbd68We+8844cHBzk7+8vSQoNDTV7rkWLFjpx4kSF40ZHRyszM9Psevb56EqdC1CVedXykr29fZnDwVJTU+Xj41PuMz4+PkpNTSnb/9KXOT4+vqVtKdc+JgCgeiDvAAAshZwDALAWCgeVqFu3bkpKSlJCQoLp6tixowYNGqSEhAQ1adJE9erV0/79+82eO3DggBo2bFjhuM7OzvLw8DC7OEwZ1Zmjk5NahLbUtq1bTG0lJSXatm2Lwtq0K/eZsLZttW3rVrO2rVt+UVjbtpKk+gEB8vHx1bZtl8fMyclRUuLuCscEAFQP5B0AgKWQcwDYAoOB669etsDB2gHcyNzd3dWqVSuztpo1a8rb29vU/uyzz2ry5Mlq06aN2rZtqyVLluj333/X6tWrrREyYLMGDx2ml194Xi1btlKr1mFavmyJ8vLydPc9/SVJL0Y/Jz8/f40d/4wkadDDQzT8kcFa8uEidelym9atXaO9e/bo5SmvSJIMBoMGDR6iBfPnqWFgQ9UPCNCc2bPk6+enrt26VxgHAKB6IO8AACyFnAMAsAYKB1Y2btw45efna/z48UpLS1ObNm20fv16NW3a1NqhATalV1Rvpaelae677ygl5bxCmrfQ3PkL5X1pqe3ZM2dkZ7i8yKptu/aKmfGm3n1npmbPfFuBDRtp5uw5Cg5uZuozbPgI5eXl6ZUpk5SdnaV27Tto7vyFrPABAJB3AAAWQ84BAFiDwWg0Gq0dBP7/8ousHQEAAAAAAABgu1z4xPpveXXDIWuHYHNe7h5k7RCuijMOAAAAAAAAAACACYUDAAAAAAAAAABgQuEAAAAAAAAAAACYsHMXAAAAAAAAAOBvsTNYOwJUBlYcAAAAAAAAAAAAEwoHAAAAAAAAAADAhMIBAAAAAAAAAAAwoXAAAAAAAAAAAABMKBwAAAAAAAAAAAATCgcWNn36dBkMBo0bN06SdOzYMRkMhnKvTz/91LrBAjZm1coViurRVZ3atdagB+5TUmLiFft/F7dW/e7qpU7tWuveu/vqpx83m903Go2aM3uWut3WWTe1D9PI4Y/o+PFjlTgDAIAtIe8AACyFnAOgKjPwz1/+xxZQOLCg7du3a/78+QoLCzO1NWjQQGfOnDG7pk6dKjc3N0VFRVkxWsC2rFu7Rm/OiNGoJ8Zo1aexCglprtGjhis1NbXc/gm7dmris8/onv4D9PHqL3RH124a99QYHTx4wNRn8QcL9NGKZXpp8hQt/+gTubq6avTI4SooKLDUtAAAVRR5BwBgKeQcAIA1UDiwkJycHA0aNEgLFiyQl5eXqd3e3l516tQxu2JjYzVw4EC5ublZMWLAtixbslj9BwzU3ffcq6ZBQXpp8lS5uLjoi88/K7f/iuVLFdn5Vj3y6GNq0rSpnnx6nFqEhmrVyuWSSr/AWbFsqUaMGq07unZXs5Dmei1mhs4nJ+v7jRssOTUAQBVE3gEAWAo5BwBgDRQOLGTMmDHq06ePunfvfsV+8fHxSkhI0PDhwy0UGWD7Ci9e1G/79io8ItLUZmdnp/DwSCXu3lXuM4kJCQoPjzBri7ylsxITEiRJf5w6pZSU87o5/PKY7u7uah3WpsIxAQDVA3kHAGAp5BwAgLU4WDuA6mDVqlXauXOntm/fftW+H3zwgVq0aKHIyMir9gVQKj0jXcXFxfL29jZr9/b21tGjR8p9JiUlRd7ePmX6p6SmXLp/vrTNp+yYKSkp1yt0AIANIu8AACyFnAMAsBYKB5Xs5MmTGjt2rNavXy8XF5cr9s3Ly9PKlSv18ssvX7FfQUFBmX0HjfbOcnZ2/n/HCwAAAAAAAACo3tiqqJLFx8crOTlZ7du3l4ODgxwcHLR582a98847cnBwUHFxsanv6tWrdeHCBQ0ZMuSKY8bExMjT09PseuP1mMqeClBledXy0v+xd9/RURZrHMe/u5sO6T1AEpKQBEIHDSAoShFQFLuIHQW7gihyLRT14rWigqAoRWmCAjZAKaKgNEEEpIcOgZDeN2X3/hFcXEkUlWSz5PfxvOdk55138gwcfDKZd2ZMJtMZh4NlZGQQFBRU6TNBQUFkZKSfWf/UmzlBQcEVZeln36aIiNQNyjsiIlJTlHNExBkYDbr+7uUMNHFQzbp168bWrVvZvHmz7Wrfvj0DBgxg8+bNmEwmW90PPviAq666iuDg4D9tc8SIEeTk5NhdTwwfUd1dEam1XN3caNosiXVr19jKLBYL69atoWWrNpU+07J1a9atXWtXtnbNj7Rs3RqABg0bEhQUzLp1p9vMz89n65ZfqmxTRETqBuUdERGpKco5IiLiKNqqqJp5e3vTvHlzu7J69eoRGBhoV753716+//57Fi1a9JdturufuS1Rcdm5iVfEWd12x108+5/hJCU1p3mLlsz4aDpFRUX0u+ZaAJ4e8SQhIaE8OuRxAAbcejsD77yN6dOmcPHFl7Bk8SJ+3baNZ0eNAcBgMDDgttuZ/O5EoiKjaNCwIRPefpPgkBAu6/bnh5yLiMj5T3lHRERqinKOiIg4giYOaokpU6bQsGFDevbs6ehQRJxSr959yMrM5J3xb5GefpKExKa88+77BJ5aans8NRWj4fQiq9Zt2jL25VcZ/9Y43h73OpFR0Yx7ewJNmsTb6tw18F6KiooYM+o58vJyadO2He+8+77OExEREeUdERGpMco5IiLiCAar1Wp1dBDy72nFgYiIiIiIiIiIyD/noVes/5GXVqQ4OgSn89RlsY4O4S/pjAMREREREREREREREbHRPJqIiIiIiIiIiIiI/CNGg6MjkOqgFQciIiIiIiIiIiIiImKjiQMREREREREREREREbHRxIGIiIiIiIiIiIiIiNho4kBERERERERERERERGw0cSAiIiIiIiIiIiIiIjYujg5ARERERERERERERJyTwWBwdAhSDbTiQEREREREREREREREbDRxICIiIiIiIiIiIiIiNpo4qEEvvfQSBoOBxx57zFZ2/PhxbrvtNsLCwqhXrx5t27bl008/dVyQIk5szqyZ9O5xGRe0acGAm29g65Ytf1r/m68Xc/WVvbigTQuu69eXVd9/Z3ffarUy4e036XZJZy5s25JBA+/k4MED1dgDERFxJso7IiJSU5RzRESkpmnioIZs2LCBd999l5YtW9qV33777ezatYvPP/+crVu3cu2113LjjTfy888/OyhSEee0ZPEiXn15LIMfeJA58xaQkJDI/YMHkpGRUWn9zT9v4qknHueaa6/n408Wcull3Xjs4QfZs2e3rc7UDyYze+ZHPDNyFDNmz8XT05P7Bw3EbDbXVLdERKSWUt4REZGaopwjIiKOoImDGpCfn8+AAQOYPHky/v7+dvd+/PFHHn74YS688EJiYmJ45pln8PPzY+PGjQ6KVsQ5fTR9KtdefyP9rrmO2Lg4nhk5Gg8PDxbOr3wFz8wZH9KpcxfuvPseYmJjeeiRx2jarBlzZs0AKt7AmfnRh9w7+H4uvaw78QmJvDD2ZU6mpbFi+bKa7JqIiNRCyjsiIlJTlHNERMQRNHFQAx588EGuuOIKunfvfsa9Tp068fHHH5OZmYnFYmHOnDkUFxfTtWvXmg9UxEmVlpSwY/uvdOjYyVZmNBrp0KETW36pfPXOls2b6dCho11Zp4s6s2XzZgCOHjlCevpJkjucbtPb25sWLVtV2aaIiNQNyjsiIlJTlHNExBkYDbr+7uUMXBwdwPluzpw5bNq0iQ0bNlR6f+7cudx0000EBgbi4uKCl5cXCxYsIC4urso2zWbzGcsHrSZ33N3dz2nsIs4iKzuL8vJyAgMD7coDAwPZv39fpc+kp6cTGBh0Rv30jPRT909WlAWd2WZ6evq5Cl1ERJyQ8o6IiNQU5RwREXEUrTioRocPH+bRRx9l5syZeHh4VFrn2WefJTs7m2XLlvHTTz8xdOhQbrzxRrZu3Vplu2PHjsXX19fueuV/Y6urGyIiIiIiIiIiIiJSh2jFQTXauHEjaWlptG3b1lZWXl7O999/z/jx49m1axfjx49n27ZtJCUlAdCqVStWrVrFhAkTmDRpUqXtjhgxgqFDh9qVWU1abSB1l7+fPyaT6YzDwTIyMggKCqr0maCgIDIy0s+sf+rNnKCg4Iqy9AyCg0Ps6iQkJp7L8EVExMko74iISE1RzhEREUfRioNq1K1bN7Zu3crmzZttV/v27RkwYACbN2+msLAQqNif8PdMJhMWi6XKdt3d3fHx8bG7tE2R1GWubm40bZbEurVrbGUWi4V169bQslWbSp9p2bo169autStbu+ZHWrZuDUCDhg0JCgpm3brTbebn57N1yy9VtikiInWD8o6IiNQU5RwREXEUrTioRt7e3jRv3tyurF69egQGBtK8eXNKS0uJi4tj8ODBvPrqqwQGBrJw4UKWLl3Kl19+6aCoRZzTbXfcxbP/GU5SUnOat2jJjI+mU1RURL9rrgXg6RFPEhISyqNDHgdgwK23M/DO25g+bQoXX3wJSxYv4tdt23h21BgADAYDA267ncnvTiQqMooGDRsy4e03CQ4J4bJuZx50LiIidYvyjoiI1BTlHBERcQRNHDiQq6srixYt4qmnnqJv377k5+cTFxfH9OnT6dOnj6PDE3EqvXr3ISszk3fGv0V6+kkSEpvyzrvvE3hq+e7x1FSMhtOre1q3acvYl19l/FvjeHvc60RGRTPu7Qk0aRJvq3PXwHspKipizKjnyMvLpU3bdrzz7vta4SMiIso7IiJSY5RzRKS2MxgcHYFUB4PVarU6Ogj594rLHB2BiIiIiIiIiIiI8/LQK9b/yOvf73N0CE5n6MUxjg7hL+mMAxERERERERERERERsdHEgYiIiIiIiIiIiIiI2GjiQEREREREREREREREbDRxICIiIiIiIiIiIiIiNjryQ0RERERERERERET+EaPB4OgQpBpo4uA88ciCXx0dgoiI1BFFJWWODkFEROoQF5MWyouISM2YenMLR4cgUmvoJzAREREREREREREREbHRxIGIiIiIiIiIiIiIiNho4kBERERERERERERERGx0xkENeumllxgxYgSPPvoo48aNAyAlJYVhw4axevVqzGYzvXr14u233yY0NNSxwYo4oa6xAfRMCMTXw4Uj2cXM/vk4B7KKKq3bMcqPuy5sYFdWWm7hwfk7ADAZ4OrmobQIr09QPTeKSsvZcaKA+VtPkFOs/d1FRAS6xwfSp2kIvp4uHM4q4sOfjrIvo/K80yXGn0EdI+3KSsotDJyz1fZ5UIdGdIkNsKuz5Vgur3y7/9wHLyIiTuWyuAB6Nw3G18OFQ9nFzNx4jP2Zleecixr7cU9yI7uy0nILg+adPhvx6uYhJEf6EuDlRpnFyoHMIuZvOc6+KtoUEZG6RxMHNWTDhg28++67tGzZ0lZWUFBAz549adWqFStWrADg2WefpW/fvqxduxajUQtCRM5W+4Y+3NAqlJmbUtmfUUS3+AAevTiK55bsIc9cXukzRaXlPLt4r+2zFavtazeTkUh/D77cfpIj2cV4uZm4uXUYD14UyX+X76v2/oiISO2WHOXHLW0jmLr+CCnphfRKDObJS2N48otd5Jorn2AuLCnnyS922j5bK6nzy7FcJq85bPtcaqmsloiI1CUXNvLl5jbhfPjTMfZlFNIjIYjHuzZmxFe7qhzrFJaUM2LR7tMFf0gnJ/LMzNh4jJP5JbiajFx+qs2n/qRNEZGqGA2OjkCqg34zXQPy8/MZMGAAkydPxt/f31b+ww8/cODAAaZNm0aLFi1o0aIF06dP56effrJNJIjI2ekRH8jq/Vn8eCCb1DwzMzemUlJu4aJo/yqfsVoh11xmu37/A3JRmYVx3x9k45FcTuSXsD+ziFk/pxId4EmAp2tNdElERGqx3olBrNybyap9WRzLNTN1/RHM5VYu/sOKgd+zAjnFZbYrt5IVbGXlVrs6hSX65Y2ISF3XMzGI71OyWL2/Iud8uOEoJWUWusRUnXMAck/lmtzisjMmtdcezGH7iQJOFpRyLNfM7J9T8XIz0dDPozq7IiIiTkQrDmrAgw8+yBVXXEH37t154YUXbOVmsxmDwYC7u7utzMPDA6PRyOrVq+nevbsjwhVxOiaDgUh/TxbvTLeVWYEdJwqICfSs8jl3FyNj+zTBYDBwKKuIBdvSSM01V1nfy9WExWqlsFS/xBERqctMRgPRAV588WuarcwK/Ho8j7ggryqf83Ax8ka/phiAA5lFzPsllaM59nknMbQ+E65rRkFJOduP5/PJL8fJ1+SBiEidZTIaiPb35KvtJ21lVmD7iXziAqvOOe4uRl7pm4DRAAczi/lky3GOVTHWMRkNdI0NoLCknMNZxee6CyIi4qQ0cVDN5syZw6ZNm9iwYcMZ9zp06EC9evUYPnw4//3vf7FarTz11FOUl5eTmprqgGhFnFN9dxMmo+GMNzfzissI9678h+kTeWam/3SUI9lmvFyN9EgI4qnLGjPy671kF535BqiL0cC1LUPZcCiH4jJLtfRDREScg/epvPPHM29yi8uI8HGv9JnUXDOT1x7mcHYRXq4m+jQN5rmeTXjqy11kFZUCsCU1jw2HczhZUEJofTduaB3OsEtjGP3NHqzasUhEpE7ydqt8rJNTXEZYFTnneG4JU9Yf4XB2MV6uJnolBvF091ieWbybrN+NdVpFeHNfx0a4uRjJKSrj1ZX7NVktIiI22qqoGh0+fJhHH32UmTNn4uFx5nK/4OBg5s2bxxdffEH9+vXx9fUlOzubtm3b/un5BmazmdzcXLurvLSkOrsict7Zl1nE2oM5HMkpZnd6IZN+PESeuYyLK1nuazLA4I4NMQAzN2lST0RE/r696YX8sD+LQ1nF7Ewr4M3vD5BnLuOyJoG2OmsPZvPz0VyOZBez8Ugur63cT2yQF01D6jswchERcTYpGYX8eCCbw9nF7DpZwPjVB8kzl9E1LtCu3o4T+Yz8ei8vLkth6/E87u8Uibe7yUFRi4hIbaOJg2q0ceNG0tLSaNu2LS4uLri4uPDdd9/x1ltv4eLiQnl5OT179iQlJYW0tDTS09P56KOPOHr0KDExMVW2O3bsWHx9fe2uzQsm12DPRGqXfHM55RYrPh72i6i8PVzOeBu0KuVWOJxVTEh9N7tykwEGdWxEgJcbb3x/UKsNRESEvFN5x/cPecfHw6XSVWuVKbfCwcwiQr3dqqxzMr+E3OKyP60jIiLnt7ySysc6vh4u5P6NnHOokrFOSbmVtPwS9mUUMXX9USxWa6UvUomISN2kiYNq1K1bN7Zu3crmzZttV/v27RkwYACbN2/GZDo9kx8UFISfnx8rVqwgLS2Nq666qsp2R4wYQU5Ojt3V+pp7a6JLIrVSudXKoawiEkPq2coMQNOQeuzLKDqrNgxAA18PcopLbWW/TRqE1Hfjje8OUKBluyIiApRbrBzILKRZmLetzAAkhdVnb3rhWbVhMEBDP48/nWjw93SlvrvprCcjRETk/FNusXIgq4hmoX8Y64TWZ2/G38k57uT8RT4xGMDFZPg34YpIHWUw6Pq7lzPQGQfVyNvbm+bNm9uV1atXj8DAQFv51KlTadq0KcHBwaxZs4ZHH32UIUOGkJCQUGW77u7udgcqA5hc9Saa1G1Ld2dw14UNOJhVxP7MIro3CcTNxcgPB7IAuOuCBmQXlbJgW8VBllc0DWZ/ZiFp+SV4uZromRBEQD1XVu/LBn7bnqgRkf6ejF99EKPBgI97xf8yC0rKKddm0yIiddrinekM6tiI/RmF7Mso5PLEYNxNRr7flwlU5JCsolLmbj4OQL/moexNL+DEqbxzRbNgguq5sXJvBlBxiOU1LSrO0skpLiWkvjs3twnnRF4JW1PzHNZPERFxvG92pnNPh4YcyCxiX2YRPeMDcXcxsnpfxVjnnuSGZBeV8smWEwBclRRCSkYhaXlmvNxM9EoMJtDLzZaj3EwG+iaF8PPRXHKKyqjvbqJbk0D8PV3ZcCjHYf0UEZHaRRMHDrZr1y5GjBhBZmYm0dHRPP300wwZMsTRYYk4nZ+O5OLt7sJVSSH4eLhwJLuYt1YdJM9csUogwMsVK6d/2V/PzcRt7SLw8XChsLScQ1nF/G/FflLzzAD4ebrSuoEPAM/1jLP7Xq+u3M/uk2f3do+IiJyf1h3MxtvdxHWtwvD1cOFQVhGvfLvfdnhlYD03uwON67mZGNihEb4eLhSUlHMgs4gx3+zlWG5F3rFYrTTy86RLjD9eriayisrYlprHJ1uOU2bRZLWISF22/nAO3h4u9GsRWpFzsot5feV+cs2/5RxXfp8pvNxM3HlBA3w9XCgsKedAVhEvLkv5Xc6BcG93LrooivruJvJLyjmQUcTY5ftsdURERAxWq16bPR8Mmvero0MQEZE6oqhE26aIiEjNcTFph10REakZU29u4egQnNLbP+x3dAhO5+GLGjs6hL+kn8BERERERERERERERMRGEwciIiIiIiIiIiIiIrXUhAkTiI6OxsPDg+TkZNavX39Wz82ZMweDwUC/fv3+9vfUxIGIiIiIiIiIiIiI/CNGDLr+5vV3fPzxxwwdOpSRI0eyadMmWrVqxeWXX05aWtqfPnfgwAGGDRtGly5d/uHfq4iIiIiIiIiIiIiI1Dqvv/469957L3fddRfNmjVj0qRJeHl5MWXKlCqfKS8vZ8CAAYwePZqYmJh/9H01cSAiIiIiIiIiIiIiUkPMZjO5ubl2l9lsPqNeSUkJGzdupHv37rYyo9FI9+7dWbNmTZXtjxkzhpCQEAYOHPiPY3T5x09KrTKwbUNHhyAiInWEXz1XR4cgIiJ1SEmZxdEhiIiIiJxTY8eOZfTo0XZlI0eOZNSoUXZl6enplJeXExoaalceGhrKzp07K2179erVfPDBB2zevPlfxaiJAxERERERERERERGRGjJixAiGDh1qV+bu7v6v283Ly+O2225j8uTJBAUF/au2NHEgIiIiIiIiIiIiIlJD3N3dz2qiICgoCJPJxIkTJ+zKT5w4QVhY2Bn1U1JSOHDgAH379rWVWSwVqzddXFzYtWsXsbGxZxWjJg5ERERERERERERE5B8xGBwdwfnLzc2Ndu3asXz5cvr16wdUTAQsX76chx566Iz6iYmJbN261a7smWeeIS8vjzfffJNGjRqd9ffWxIGIiIiIiIiIiIiISC00dOhQ7rjjDtq3b8+FF17IuHHjKCgo4K677gLg9ttvp0GDBowdOxYPDw+aN29u97yfnx/AGeV/RRMH1WzUqFFnHHSRkJBgO7yiuLiYxx9/nDlz5mA2m7n88st55513zjjwQkT+2rIv5rHo0xnkZGXQqHETbrt/GLEJSZXW/XbJQn5Y/hVHDu4DIDoukRvueKDK+lPfHsu3ixdwy6Ah9OrXv9r6ICIizuOrBR+zYM50sjIzaBwbz6BHhxPftPIfxg/tT2HmlHdI2b2DtOOpDHxoGFffMOCMehkn05j27ptsWvcD5uJiwhs04pGnRtEksfL8JCIidcPihXP5fO6HZGdmEBXbhIEPP0mTxMpzzuEDKcyZNol9u3dw8kQqdz7wOFded4tdnaLCAuZMnci61d+Sm51FdFwCdz84jDjlGxGRWuemm27i5MmTPPfccxw/fpzWrVuzZMkS2++PDx06hNFoPOff99y3KGdISkoiNTXVdq1evdp2b8iQIXzxxRfMmzeP7777jmPHjnHttdc6MFoR57T2u6XMmjyOfrfcw5i3PyQypgmvPPsIudmZldbfuWUjHS65nBFjJ/Lcax8QGBTKK888TGZ62hl1f/rxW1J2bcM/MLi6uyEiIk5i1Yqv+WDCa9x8x2DemDyL6Nh4Rg57gOysyvOOubiYsIiG3D7oEfwDKj+kLD8vl+EP3YmLyYWRL49n/IefcveDQ6nv7VOdXRERkVruh2+/Yfqk17nh9kG8PGkm0bHxvDD8IXL+JOeEhjdgwD0P4xcQWGmdia89zy8b1/HIiOd57f2PadW+A2OevJ+Mk2eOh0RExPEeeughDh48iNlsZt26dSQnJ9vurVy5kmnTplX57LRp01i4cOHf/p6aOKgBLi4uhIWF2a7fTrTOycnhgw8+4PXXX+eyyy6jXbt2TJ06lR9//JG1a9c6OGoR57JkwSy69urHxT370iAyhjsfegp3dw++++aLSuvf/+TzdL/yeqJi44loFM3AR5/GYrGy/ZcNdvUy09P4aOJr3PfEGEwmLdISEZEKn82dQc8rr6V7n6uJjI7lgcefxt3Dg2WLFlZav0nTJO66fwgXd+uFq5trpXU+nTWVoOAwHh0xmvimzQkLb0CbCzoS3uDs9yEVEZHzzxefzKB7n2u4rNdVNIqOYdBj/8Hd3YMVSz6rtH5cYhK3D36Mzpddjqur2xn3zeZi1n6/gtsGPUKzlm0Jb9CIm+4YTFhEI7754pPq7o6IiDgJTRzUgD179hAREUFMTAwDBgzg0KFDAGzcuJHS0lK6d+9uq5uYmEhkZCRr1qxxVLgiTqestJQDe3eS1PoCW5nRaKRZ6wvYu3Prnzx5mtlcTHl5GfXqn36r02Kx8O6rI+lz3a00jDq7E+dFROT8V1payt7dO2jd7vRbPkajkVbtktn565Z/3O76H74jLrEZLz33BLddfRmPDryZr7+Yfy5CFhERJ1VaWsq+3Ttp2fZCW5nRaKRF2wvZtf3sxjp/ZCkvx2Ipx9XN3a7czd2dHds2/5twRUTkPKLXZ6tZcnIy06ZNIyEhgdTUVEaPHk2XLl3Ytm0bx48fx83NzXZAxW9CQ0M5fvy4YwIWcUJ5udlYLOX4+AfYlfv6BZB6+OBZtfHx1PH4BwSR1Ob0D+RfzfsQk8mFnlffdE7jFRER55abk4WlvBy/P+QdP/9Ajh468I/bPZ56lMWfzePqG27lhlsHsmfnr0x+62VcXF3o1uuqfxm1iIg4o7ycirGOr7/9lkN+/oEcPXzgH7Xp6VWP+GYt+WTG+zSMbIyvfwA/rPia3du3EhahVW4i8vcZDY6OQKqDJg6qWe/evW1ft2zZkuTkZKKiopg7dy6enp7/qE2z2YzZbLYrKzGbcXN3r+IJEfkzX8ydzrrvljLifxNxO/XWzf49O/jm8zmMeesjDAZlQBERqX5Wi4W4hGbcPuhhAGLjEzm0fy9LPvtEEwciInJOPTJiDO+8MoZBN/XCaDQR0ySRiy69nH17djg6NBERqSW0VVEN8/PzIz4+nr179xIWFkZJSQnZ2dl2dU6cOEFYWFiVbYwdOxZfX1+7a/qk16s5cpHay9vHD6PRRO4fDgfLyc7Et4rDwH6z6NMZfDVvOk+88BaRjZvYynf9upnc7CyG3HEVd17ZkTuv7Eh6Wiqz33+ToXdeXS39EBER5+Dj64/RZDrjIOTsrIwqD6E8G/6BQTSKjrEraxjVmJNpWokqIlJXeftWjHVysjLsyityTtA/bjcsohFj3pjMjC9X8+6cr3jpnQ8pLy8jNLzBvw1ZRETOE5o4qGH5+fmkpKQQHh5Ou3btcHV1Zfny5bb7u3bt4tChQ3Ts2LHKNkaMGEFOTo7ddcd9Q2sifJFaycXVlei4RH793cHGFouF7Zt/Ii6xRZXPfTXvQz6b/QHDnn+TmPhmdvcuuqw3L06YxQvjZ9gu/8Bg+lx3K0+88Fa19UVERGo/V1dX4uKb8svGdbYyi8XClk3rSUxq+Y/bbdq8NUcP2W+xd+zIIUJCw/9xmyIi4txcXV2JiU9k68/2Y52tP28goVnVY52z5eHpiX9gMPl5uWzesIYLOnX9122KiMj5QVsVVbNhw4bRt29foqKiOHbsGCNHjsRkMtG/f398fX0ZOHAgQ4cOJSAgAB8fHx5++GE6duxIhw4dqmzT3d0dd/c/HmJkre6uiNRqva65hcmvj6Zxk6bExCfxzWdzMJuLuLjHlQC8++pI/ANDuPGuBwH4ct505n/0Hvc/+TxBIeFkZ6YD4OHphYenF94+fnj7+Nl9D5PJBV//QMIbRtVo30REpPa5+sZbGTf2OeISmxGf2JzPP5lFcVER3XpXrEp748VnCAgO4Y5BjwAVh1sePrAPgLLSUjLT09i3Zxcenp5ENIysaPOGW3nywTuZ+9EHdL60B3t2/MrXX3zKg8OedUwnRUSkVuh7/a2M/99IYuObEpfYnK8+nYW5uIhLL6/Yxu6tl54jMCiYAfdUbHVXWlrKkYOnck5ZRc7Zv3cXHp5ehDeoOMNg84YfsVoholEUx48e5qP33qRBZDSX9urrmE6KiEito4mDanbkyBH69+9PRkYGwcHBdO7cmbVr1xIcHAzAG2+8gdFo5LrrrsNsNnP55ZfzzjvvODhqEefT4ZIe5OVmMf+j98jJyiAyJp4nxrxpO0Qs4+QJDMbTi6xWfDWfsrJS3v7vU3bt9LvlHq69dVCNxi4iIs6ny2WXk5OdxawpE8nKzCAmLoFRr0zA/9RWRSfTjtvlncz0kzx2z822zwvmfMiCOR/SvHU7/vvm+wA0aZrEf154jQ/fe5uPP3yP0LAG3PPQE3Tt0admOyciIrXKRZf2JDcniznTJpGdlUF0bDxPv/S2bXu89LTjGH93LltWxkmeGHyL7fPncz/i87kf0axVO8a8/h4AhQX5zHx/PBnpadT39qFDl270v/sBXFxca7ZzIiJSaxmsVqteVT8PrEvJcXQIIiJSR/jV04BSRERqTkmZxdEhiIhIHdGiYX1Hh+CU3lt78K8riZ1BHWr/bhY640BERERERERERERERGw0cSAiIiIiIiIiIiIiIjaaOBARERERERERERERERtNHIiIiIiIiIiIiIiIiI0mDkRERERERERERERExMbF0QHIufHi8t2ODkFEROoIv/rujg5BRETqEHNpuaNDEBGROuLjO9o4OgSnZDA4OgKpDlpxICIiIiIiIiIiIiIiNpo4EBERERERERERERERG00ciIiIiIiIiIiIiIiIjc44qGajRo1i9OjRdmUJCQns3LkTgPfee49Zs2axadMm8vLyyMrKws/PzwGRiji/Ps1CuKZVGP6eruzPLOS9Hw6x52RBpXUviw/ksa4xdmUlZRaun7LR9tnP04U7LmxE64Y+1Hc38WtqPu/+cJDUXHO19kNERJxDtyaB9GkajK+nC4ezivlo41H2ZRRVWrdzY38GdWxkV1ZSbuGej7dVWv/OCxpwWZNAZm48xte70s957CIi4lx6JgTRt3kIfp6uHMwsYur6I6SkF1Za95LYAB7oHGVXVlJu4bYZv9g+V7WP+4yfjvLFr2nnLnAREXFamjioAUlJSSxbtsz22cXl9B97YWEhvXr1olevXowYMcIR4YmcFzrHBDCwYyPeWXWQ3Wn5XNUilNF94rn/463kFJdV+kxBSRn3f7y1yjb/07MJ5RYrL36zl6KScq5uGcrzVyTw4LxtmMss1dUVERFxAsmRvtzSNpxpG46Skl7I5YlBPHFpY578Yhd55soPci0sKWf4l7tsn61VtN2uoQ+xQV5kFpZWQ+QiIuJsOkb7cfsFDXh/7WH2nCykT7Ng/tM9liELd5BbxVinsKScxxZsr7LNQX8YB7Vp6MPgTpGsO5h9LkMXEREnpomDGuDi4kJYWFil9x577DEAVq5cWXMBiZyHrm4Zyjc7T7J8d8Vbme+sOkj7SD+6JwTx6S/HK33GaoXsosp/0I7wdScxtD4PztvK4axiACauOsj021pzcWwAS/X2p4hIndYrMZiVKZms2pcFwLT1R2kV4cMlsQF8uf1kpc9YocrJ7N/4e7pwW/sIXvl2P0MvaXyuwxYRESd0RbMQlu/JYOXeTADeX3OYtg19uDQukM+2naj0GSvWP805f7zXvpEvvx7PJy2/5NwFLiJ1htFgcHQIUg00cVAD9uzZQ0REBB4eHnTs2JGxY8cSGRnp6LBEzhsuRgNxQfX45OdUW5kV+OVoLomh9at8ztPVxPv9W2IwGNiXXsCHG47YJglcjRVHwJSWnX4f1AqUlltpFuatiQMRkTrMZDQQHeDJF9tPb+VgBbYfzyMuyKvK5zxcjLx+dSIG4GBWEfN+Oc7RnNPb3xmAwR0jWbTjpF25iIjUXSajgZhALxZuPT1BYAW2HsujSfCf5RwT469LwmCA/RmFzPk5lSPZxZXW9fVwoU1DX95ZffBchy8iIk5MhyNXs+TkZKZNm8aSJUuYOHEi+/fvp0uXLuTl5Tk6NJHzho+HCyajgewi+y0dsotK8fNyrfSZo9nFvPXdfl78Zg+vf7sPg8HAy1c3JbBeRf0j2cWk5Zm5/cKG1HMz4WI0cG2rMILru+FfRZsiIlI3eLubMBkNZ2wPkVNchq9H5TnieJ6Z99cdZtx3B5i05jAGg4Fne8Th73m6/hXNgim3WvlmV0a1xi8iIs7D51TOySm2H+vkFJfh51l5zjmWW8ykHw7xyop9jF91EKPBwPO94wmoYhxzSWwAxaXlrNc2RSIi8jtacVDNevfubfu6ZcuWJCcnExUVxdy5cxk4cOA/atNsNmM227+FVl5agsnV7V/FKlKX7EorYFfa6YOTdx7P550bm9OraQgzfzpKudXK2KV7efjixsy+sy3lFiu/HM3lp0PZaAGeiIj8XXvTC9n7u0Ms954s4KUrE7isSQCfbjlBtL8nPROCeG7JHgdGKSIi54M9JwvZc/J0ztmdls/r/ZrRPT6IuZtTz6jftUkgq/dlUWqp6vQdERGpizRxUMP8/PyIj49n7969/7iNsWPHMnr0aLuy+CvvIaHvoH8bnohTyi0uo9xiPeONGz9PV7LP8mDJcquVfRmFhPu428pS0gt5bP6veLmacDFVvFn6Sr+m7D1Z8CctiYjI+S7PXE65xYqPh/2P0r4eLme8EVqVcmvFdkUh9SvyTkJIPXw8XHjj6qa2Oiajgf5twumZEMTjn+88dx0QERGnkXsq5/xxRZuvh8sZK66rUm6FA5mFhP1urPObxJB6NPD14M3vDpyLcEVE5DyirYpqWH5+PikpKYSHh//jNkaMGEFOTo7dFdfrznMXpIiTKbNY2ZteQKsGPrYyA9AywoedJ/LPqg2jAaICPMmsZKKhsLSc3OIywn3ciQuqx7oD2ecochERcUblFisHMotI+t05OgagWVh9u1UFf8ZggIa+HraJhh/2Z/H0ot08s/j0lVlYyqIdJ3nl2/3V0Q0REXEC5ZaKF5xahHvbygxA83Bvu1UFf8ZggEb+nmRVMta5tEkgKemFHMwqOlchi4jIeUIrDqrZsGHD6Nu3L1FRURw7doyRI0diMpno378/AMePH+f48eO2FQhbt27F29ubyMhIAgICKm3T3d0dd3f7NwW0TZHUdZ9tOcFjXRuz92QBu08WcFWLUDxcjSzfXXGI8WNdG5NZUMqHG44AcFPbCHadyCc110w9N9Op8wvcWbrzpK3Nixr7k1Ncxsn8EqIDPLmnUyTrDmax+WiuQ/ooIiK1x5KdJ7m3YyP2ZxaxL6OQnglBuLsY+X5fFgCDOjYiq7CUeb8cB+Dq5iGkpBdyIq8ELzcTfZoGE1TPjZV7MwHILyknv6Tc7nuUW6zkFJdxPE8HJYuI1GVfbU/jgc5RpGQUkpJeQJ+mIbi7GFm5t+JMnAc7R5FZWMLsTRXbEF3XMow96QUcPzXW6ds8lOB6bqzYY3+GjqerkQ5Rfnz009Ea75OInF8M2tP5vKSJg2p25MgR+vfvT0ZGBsHBwXTu3Jm1a9cSHBwMwKRJk+y2Hbr44osBmDp1KnfeeacjQhZxSqv3ZeLr6cIt7Rvg7+XKvoxCRi3aTXZRxcGVwfXdsP5uy8767iYeujgafy9X8s3l7E0vYPhnOzicXWyr4+/lyt0dI/HzdCGrsJRv92Tw8aZjNd01ERGphdYdysHbw4VrW4bi6+HCoaxiXvl2v+3A5EAvV6y/Szz13EzcndwQXw8XCkrKOZBZxPNL93IsV5MCIiLy59YcyMbHw4UbW4fj5+nCgcwixi5LIee3nFPPFcvvc467iUGnxjEFJeXsyyjk2cW7OZpTbNdup2h/DAYDP+zPqtH+iIiIczBYfz+iEad11XsbHB2CiIjUEX71z9wfV0REpLqYS8v/upKIiMg58PEdbRwdglOasuGQo0NwOndfEOnoEP6SzjgQEREREREREREREREbTRyIiIiIiIiIiIiIiIiNJg5ERERERERERERERMRGhyOLiIiIiIiIiIiIyD+iN9PPT/p7FRERERERERERERERG604OE/0bRXi6BBERKSOaBHo6+gQRESkDsk2lzo6BBEREZE6RysORERERERERERERETERhMHIiIiIiIiIiIiIiJio4kDERERERERERERERGx0RkHIiIiIiIiIiIiIvKPGAwGR4cg1UATB9Vs1KhRjB492q4sISGBnTt3kpmZyciRI/nmm284dOgQwcHB9OvXj+effx5fXx08KfJ3/bzsczYsmkdBTibBjWLodtuDhMcmVlp394bVrPtiNtlpxygvK8M/rAHte19P0kXdbXVKiov4fu4H7N34I8X5ufgEh9G2Zz9aX3ZlTXVJRERqsWVfzmPxpzPJycqgUeMm3Hrf48QmJFVad+WShfywYhFHDuwDIDoukevvuN+u/uTXx7B6+Vd2z7Vo24Fhz79ZfZ0QERGnsGrxp6xYOJvc7EwaRMdy3T1DiGrSrNK6v6z9jqWffkh66lHKy8sIDm/IpVfdzAVde9nqWK1WFs/5gDVLv6CoMI/GiS24YdAwQiIa1VSXRESkltPEQQ1ISkpi2bJlts8uLhV/7MeOHePYsWO8+uqrNGvWjIMHD3Lfffdx7NgxPvnkE0eFK+KUdq5dycpZ79L9zkcIj01k09fz+eSV/3D3yx9Qz8f/jPoe9b3pcFV/AsIjMbm4kLJ5HUsmv4qXtx+NW7YHYOWsSRza/gt97huOb1AoB7ZtZNn0t6nvF0hc24413UUREalF1n2/lNmT3+SOh4YTm5DE1wvn8Oqzj/K/9+bi4xdwRv2dWzfR4eKexA1uiaubG1998iGvPvsIL74zm4CgEFu9Fu06cs9jz9o+u7q61kh/RESk9tq0ejkLpo7nxsHDiI5vxsov5zJxzFCefns23n5njnW86nvT47rbCW0YhYuLK9t++oFZ48dS39efpm2SAVi+YCbff/UJAx55moCQcBbNfp9Jzw9lxJszcHVzr+kuiohILaQzDmqAi4sLYWFhtisoKAiA5s2b8+mnn9K3b19iY2O57LLLePHFF/niiy8oKytzcNQizuWnJZ/SomtvWlx8OUENouhx56O4uruz7buvK60f2bQVTdp3JrBBJH6hEbS7/BqCG8VwdPc2W52je7aT1Lk7kU1b4RscRqtLryAkMobj+3bWVLdERKSWWrJgNpf0upqLe/SlQWQMdz70FG4eHnz/zReV1r/viTF0u/J6omLjiWgUzcBHnsZisbD9l5/s6rm6uuIXEGi76nn71ER3RESkFlv5xRw69ehLh25XENaoMTcOfgI3dw/Wrviy0vpNmrelVYdLCGsYTVBYA7peeSMRUbHs27EFqFht8N2X8+h5/e20uLALDaLjuPWRZ8jJzGDr+lU12TUREanFNHFQA/bs2UNERAQxMTEMGDCAQ4cOVVk3JycHHx8f26oEEflr5WWlnDiwh6ikNrYyg9FIZLM2HNu74y+ft1qtHPz1ZzJTD9MwsYWtvEGTZuz9eS15melYrVYObd9M5vGjRDVvVy39EBER51BWWsqBvTtJan2hrcxoNJLU+gL27tx6Vm2YzcWUl5dT/w8TAzu3buKhW3oxfNANTJvwP/Jzc85p7CIi4lzKSks5nLKb+FOroqEi58S3bM+BXb/+5fNWq5VdW34i7dghYpu1BiDjxDFyszOIb3WBrZ5nvfpENWnG/l3bqmhJRETqGv12upolJyczbdo0EhISSE1NZfTo0XTp0oVt27bh7e1tVzc9PZ3nn3+eQYMGOShaEedUlJeL1WI5Y0uier7+ZKYervI5c2EBkx7tT3lZKQajke63P0z07yYFLrvtQb6ZMo53H7sFo8mEwWCk592P0SixZbX1RUREar+83GwslnJ8/7Alka9fAKmHD55VG3OnTsAvIIhmrU//0qZFuw6069SV4LAI0lKP8sn0d3h15GM89+r7GE2mc9oHERFxDgV5OVgs5Xj/Ied4+wWQdrTqnFNUkM9z915DWWkJRqOJGwYNJfFUzsnLzqxow9d+/OTt509eVuY57oGIiDgrTRxUs969e9u+btmyJcnJyURFRTF37lwGDhxou5ebm8sVV1xBs2bNGDVq1J+2aTabMZvNdmWlJWbtQyjyN7l5eHL7CxMpLS7m4PafWTn7XXxDwols2gqAn5d+RmrKTq4ZMhqfwFAO79rKsg/HU98vkKjmbR0cvYiIOKsv505n3fdLeeqld3D73c9vHS7pafu6UXQcjaLjeOKea9mxdRNJv5tgEBER+Svunl48+dpUzMVF7N7yEwunjicwNIImGseISDUwODoAqRbaqqiG+fn5ER8fz969e21leXl59OrVC29vbxYsWPCXh+CNHTsWX19fu2vx9HeqO3SRWsvT2weD0UhBbpZdeUFOFvV8zzyg8jcGoxH/0AaERMVyQe/rib+gC+u/mANUTMatmjeVrrcMJrZNR4IjY2jb42oSky9hw2IdXi4iUpd5+/hhNJrIybZ/KzMnOxNf/6rzDsCiT2fw1Scf8sQLbxHZuMmf1g0Jb4C3jx9pf7J6TkREzm/1vH0xGk22VQK/ycvOxNsvsMrnjEYjweENadi4CZdd3Z9WHbuybP4MANvqhbwc+/FTXnYW3n+Rx0REpO7QxEENy8/PJyUlhfDwcKBipUHPnj1xc3Pj888/x8PD4y/bGDFiBDk5OXZX7zseqO7QRWotk4srodFNOPTrZluZ1WLh0PbNRMQ1Pet2rBYrZWWlAFjKy7CUl2Ew2M+bG4xGrFbLOYlbRESck4urK9FxiWzfvMFWZrFY2L55A3G/Oyvnj7765CM+nzOFx8eMo3GTv85PmeknyM/Lwdc/6JzELSIizsfF1ZVGsfHs3rLRVmaxWNi9ZSPRCUln3Y7VaqGstASAwNAIfPwC2b3lJ9v94sICDu7ZTuOE5ucueBERcWraqqiaDRs2jL59+xIVFcWxY8cYOXIkJpOJ/v372yYNCgsLmTFjBrm5ueTm5gIQHByMqYq9bN3d3XF3t9+WyNUtq9K6InVF+17XsXjyK4Q2bkJ4TCIbv5lPqbmY5hdfDsCid1+mvn8gF99YsUXYui9mE9o4Hr+QCMpLS9m3ZT3bf1xG9zseAcDdsx4NE1vy3ZzJuLi54xMUwpGdW9m+ehldbxnssH6KiEjt0Oua/kx+fQyNmzQlJr4ZX382B3NxMV16XAnAu6+Nwj8wmBvvfBCAr+Z9yPwZ73Hfk2MICokgOzMDAA9PTzw8vSguKmThrPdpf9Gl+PoHkpZ6lI+nvE1IeENatOvgsH6KiIjjde17MzPffpHIuEQimzTluy/mUmIuIvmyKwCY8ebz+AYG0/fW+wBY+ulHNIpNJCgsgrKyUrZvXMOG777mxkHDADAYDFxy5Q1888l0gsMbERgazqLZ7+MbEEiLC7s4rJ8iIlK7aOKgmh05coT+/fuTkZFBcHAwnTt3Zu3atQQHB7Ny5UrWrVsHQFxcnN1z+/fvJzo62gERizinxA5dKczL4Yf5H1KYk0VwZAzXP/Ei9U4d+JWbkWa3eqDUXMyy6W+Tn5mOi5s7AeGN6DN4OIkdutrq9H3gP3w/bwqLJr1EcX4ePkEhdL7+TlpddmVNd09ERGqZ5It7kJuTzfwZ75GTlUFkTDzDxozD179i24jMkycwGk4v7l2xaD5lZaWM/+8Iu3b63XIP1wy4F6PRyOEDe1m9fBGFBXn4BwST1OZCrrttMK6ubjXaNxERqV3adu5Gfm42i2a/T252Jg0bx3Hfs6/hc2rLoaz0ExiMp3NOibmIeZNfIycjDVc3d0IaRHHbo8/RtnM3W51u1wygxFzMx5Nepqggn5imLbjv2dd0dqKIiNgYrFar1dFByL83ed1BR4cgIiJ1RItAX0eHICIidUi2udTRIYiISB3RKynY0SE4pQ9/0plcf9ft7Rs5OoS/pBUHIiIiIiIiIiIiIvKPGP9wPqScH3Q4soiIiIiIiIiIiIiI2GjiQEREREREREREREREbDRxICIiIiIiIiIiIiIiNpo4EBERERERERERERERGx2OfJ5YfzDP0SGIiEgdcSirxNEhiIhIHVJQUu7oEEREpI7olRTs6BBEag1NHIiIiIiIiIiIiIjIP2JwdABSLbRVkYiIiIiIiIiIiIiI2GjiQEREREREREREREREbLRVUTUbNWoUo0ePtitLSEhg586dAAwePJhly5Zx7Ngx6tevT6dOnfjf//5HYmKiI8IVcWpd4wK4PCEIXw8XDmcXM/vnVA5kFlVat1O0H3dd2NCurLTcwgOfbgfAZIB+LUJpHuZNcH03ikrL2XEin0+3nCCnuKza+yIiIrXfnlVfsmvFfIpzs/Br0Jg21w0mMCrhL587tOk71k5/hYgWHeh8zzN293KPH2bLF1M5uXcbFks5PqGRdLp7BPUCQqqrGyIi4gQuivbj0rhAvN1NHMs1s2DrCQ5lF//lc60jvLm9fQO2puYxdcNRW3l9dxNXNg0hIcQLTxcT+zILmb/1BOkFpdXZDRERcSKaOKgBSUlJLFu2zPbZxeX0H3u7du0YMGAAkZGRZGZmMmrUKHr27Mn+/fsxmUyOCFfEKbVv5MONrcKYsfEY+zOL6N4kkMcujubZxbvJM1d+oF5hSTnPLtlj+2y1Wm1fu7kYifTz5KvtaRzOKaaeq4mb2oTzUOcoXlyWUu39ERGR2u3Qpu/5ZcH7tLvxQQKiE9iz8jO+n/gcvZ9+Fw9vvyqfK8g4wS8LpxAUm3TGvfz0VFa8+SSNO/QgqfcAXD28yEk9hMnVrRp7IiIitV3rCG+uTgph3pYTHMoq4uKYAAZ1aMRLK/aR/yeHh/t7unJVUggpGYVn3Lv7goaUW61MWX+U4lILXWP9ua9jJC9/u4+ScmslrYmISF2jrYpqgIuLC2FhYbYrKCjIdm/QoEFcfPHFREdH07ZtW1544QUOHz7MgQMHHBewiBPqER/Eqn1Z/Hggm9RcMzM2HqOkzMJFjf3/9Lnc4jLb9fsJhqJSC298f4CfjuRyIq+EfZlFzN6USnSAJwFertXdHRERqeV2r1xITKfLadyhB75hkbS78UFc3NzZv3Zplc9YLOWs/ehVknoPoH5g2Bn3t375IeHN2tPq6rvxbxhL/aBwGrRI/tOJCBEROf9dEhvA2kM5bDicw4n8Ej7ZcpzScgsXRvpW+YwBuLVdOF/vSifjD6sIguu5Eh3gySdbjnM4u5iTBSV8suUEriYDbRr4VHNvRETEWWjioAbs2bOHiIgIYmJiGDBgAIcOHaq0XkFBAVOnTqVx48Y0atSohqMUcV4mo4Eof092nMi3lVmBHWn5xAZ6Vfmcu4uRl66I539XJvDgRZFE+Lj/6ffxdDVisVop/JO3ekRE5PxXXlZK1uG9hMa3tpUZjEZC4luTcWBnlc9tXzIHj/q+xHTsecY9q8VC6vafqB8SwXcTn+Wzpwew7PWhHN2ypjq6ICIiTsJkgIa+Huw+WWArswK70wuJ9ves8rmeCUHkm8tZdyjnjHsuxopfBZX9bmWBFSizWGkcUPX4SUSkKgaDrr97OQNNHFSz5ORkpk2bxpIlS5g4cSL79++nS5cu5OXl2eq888471K9fn/r167N48WKWLl2Km5uWpIucrfpuJkxGA7lm+7MHcovL8PGofEe243lmpm84yoQfDvHBusMYDDD8shj8PSuv72I0cF3LMDYcyqG4zHLO+yAiIs6jpCAXq8WC+x9WAnh4+1Gcl1XpMydTfmX/2m9of/PDld4vzs+hzFzEzmWfEJbYjovvf54GLTryw5T/krZ367nugoiIOIl6bi6YjAby/jDWyTOX4V3FWKdxgCfJkb7M/eV4pfdP5JvJLCzliqbBeLoaMRngsrgA/D1d8fHQlskiIlJBZxxUs969e9u+btmyJcnJyURFRTF37lwGDhwIwIABA+jRowepqam8+uqr3Hjjjfzwww94eHhU2qbZbMZsNtuVlZeWaP9bkb9hX0YR+zJOH5yckn6IMb2acHFsAJ9tS7OrazLA4I6NwAAzNh6r6VBFRMTJlRYXsn7G67S/+WHc61exrYS1YlK6QfMOJFzaDwD/hjFkHNhByg+LCYlrUUPRioiIM3M3GbmlTThzfzlOQRUrpS1WmLbhCDe1DufF3vGUW6zsSS+wW8EtIiKiiYMa5ufnR3x8PHv37rWV+fr64uvrS5MmTejQoQP+/v4sWLCA/v37V9rG2LFjGT16tF1Zm+vvp90ND1Rr7CK1VX5JOeUWKz7u9v9L8/FwIbe4rIqn7JVb4VB2MSH17SfgKiYNIgms58prKw9otYGIiOBWzweD0Yg5L9uuvDgvGw/vM8/WyU8/TkHmCVZPHmMrs1ortoeYN+Qqej/9Lp5+QRiMJnzC7Ler9A5tRPq+7ee+EyIi4hQKSsoot1jx/sNYx9vdhbxKxjqB9VwJrOfGwAsb2sp+2xLjlSsTeGnFPjIKSzmSY+a17w7g4WLEZDRQUFLOo12iOJxdXK39ERER56GJgxqWn59PSkoKt912W6X3rVYrVqv1jBUFvzdixAiGDh1qV/bYF3urqC1y/iu3WDmYVUTT0PpsPlaxDZgBaBpSnxV7M86qDYMBGvh6sC319DZiv00ahHi78erK/VW+sSMiInWLycUV/0ZxnNj9Cw1adgQqzihI2/0LcV2uPKO+T2hDLh8+3q5s66IZlBUX0ubaQXj6BWFycSUgsgl5aUft6uWnHaWef0j1dUZERGq1ciscySmmSVA9th2vWBFgAJoEebF6/5nb46Xll/Dyt/vsynonBuPuYmThthNkF9kflPzbi1FB9Vxp5OfB4p0nq6cjIiLidDRxUM2GDRtG3759iYqK4tixY4wcORKTyUT//v3Zt28fH3/8MT179iQ4OJgjR47w0ksv4enpSZ8+faps093dHXd3+0NctU2R1HVLd6dz94UNOZBZxP7MIrrHB+LmYuSHUz9M331hA7KKyliw9QQAVzYLZl9GEWn5ZrxcTVyeGESglyurTtU3GeC+TpFE+nvy9qqDGA0G23kJBadWOIiISN0V37Uf62e+QUBkEwIi49n93WeUlRTTOLk7AOtmvIanbyAt+96JydUN34hou+fdPOsB2JUnXHYta6e/TFBsEiFNWnJ8x0aO/bqerg+NraluiYhILfRdSib924RzOKeIQ1nFXBLjj5vJyPrDFQcf928TTm5xGV/tOEmZxcrxvBK754tKKyYHfl/eKtyb/JJysopKCfdx55rmoWxLzWf3ycKa65iIiNRqmjioZkeOHKF///5kZGQQHBxM586dWbt2LcHBwZSWlrJq1SrGjRtHVlYWoaGhXHzxxfz444+EhOjNMpG/46fDuXi7H+fq5iH4eLhwOLuYN78/QJ65YpVAgJcb1t/9rt/LzcTt7SPw8XChsKScg1nFvLRiH6m5Fat9/Dxdad3AB4CRl8fZfa9Xvt3P7pMFNdMxERGplSLbXow5P4dti2ZQnJuFX8MYLr5vDB4+FVsVFWadxGAw/q02G7bqRNsbH2Dn0nlsnv8e3iEN6HT3fwiOTaqOLoiIiJPYfCyP+m4meiUE4+Nu4miumffWHib/1FjH39PVbqxzNnw8XLiqeQje7hXbu/50OIelu9OrIXoRqQsMv+2JJucVg9X6d9OL1Eb3zt3m6BBERKSOCPNx/+tKIiIi54i2ixQRkZry+lWJjg7BKc3++ehfVxI7/ds0cHQIf+nvvQYlIiIiIiIiIiIiIiLnNU0ciIiIiIiIiIiIiIiIjSYORERERERERERERETERhMHIiIiIiIiIiIiIiJi4+LoAERERERERERERETEOenN9POTJg7OE9c3D3V0CCIiUkcYDQZHhyAiInWIFaujQxARERGpczQhJCIiIiIiIiIiIiIiNpo4EBERERERERERERERG00ciIiIiIiIiIiIiIiIjSYORERERERERERERETERocjV7NRo0YxevRou7KEhAR27txpV2a1WunTpw9LlixhwYIF9OvXrwajFDk/fL/oU1YsnE1udiYNomO5/p4hRMU3q7Tuj998zvqVS0g9tA+ARrEJ9B0w2K5+bnYmn384kZ2b11NUkE9sUiuuv2cIIRGNaqQ/IiJSu3236FOWL5h1Ku/EccO9Q4iuIu/88M3nrP92MccO7QcgMjaBvrcOtqufm53JZ9PfYcepvBOX1Job7lXeERGRirHO8gW/G+v8Zc75w1in0pxzeqwTl9SK65VzROQfMhgMjg5BqoFWHNSApKQkUlNTbdfq1avPqDNu3Dj9IxP5FzatXs6CqePpddNdPPHaBzSIjuOdMUPJy86qtP6eX3+mXZfuPPz82wx96V38g0J5Z/RQsjNOAhWTee+PHUHGiWPcO+Ilnnx9KgHBYUwY9Rjm4qKa7JqIiNRCG1cvY8GUt+l9890Mf30KDaLjmDD6T/LOtk2069KDR59/i8f/9y5+QSFMGDXELu+8N/Yp0k8cY/B//sdTb1TknbdHPqq8IyJSx21cvZwFU8bT++a7ePL1U2OdP8k5e7dVjHUeef5thv7v1FhnlP1YZ/Kpsc6g/7zE8FM5Z/xIjXVEROQ0TRzUABcXF8LCwmxXUFCQ3f3Nmzfz2muvMWXKFAdFKOL8vv18Dp169KVDtysIb9SYG+97Ajd3D9Yu/7LS+ncMGUmX3tfSsHETQhtG0f+B4VisFnZv+QmAk8cOc2D3r9w4+HGimjQltEEkNw4eRqnZzMZVy2qyayIiUgut+OxjOvXsS8dTeefm+5/Azd2dNVXknTuHjuLiPtfSMCaesIZRDHjwKaxWC7tO5Z20Y4c5sOtXbr5v2Km8E8VN9w2jtMTMxlVLa7BnIiJS23z72Rw69jw91rnp/oqxTlU5546hI0/lnCaENYzilgeH2+Wck6dyzk33/W6sY8s5GuuIiEgFTRzUgD179hAREUFMTAwDBgzg0KFDtnuFhYXccsstTJgwgbCwMAdGKeK8ykpLOZyym4RW7W1lRqORhJbt2b/r17Nqo6TEjKW8DK/6PhVtlpUC4OLqbtemi6sb+3ZsOYfRi4iIs6nIO7tIaHmBrcxoNJLQqj37d207qzZKSoop/33eKf0t77jZteni4kbKduUdEZG6yjbWafmHsU6r9hz4G2Od8vIy6p2Rc/4w1lHOERGR39HEQTVLTk5m2rRpLFmyhIkTJ7J//366dOlCXl4eAEOGDKFTp05cffXVDo5UxHkV5OVgsZTj7RtgV+7tF0BedsZZtfH5h+/g4x9km3wIbRCFf3AoX8yYRGF+LmWlpSydP4PsjDRys86uTREROT/l52VX5B0/+7zj4xtAblbmWbXx2fSJ+PoHkXgq74Q1rMg7n3/07hl5J0d5R0SkzvptrOPzh5zj7Rtw1uOSz6a/g+/vxzqncs4XH2msIyIiVdPhyNWsd+/etq9btmxJcnIyUVFRzJ07l+DgYFasWMHPP//8t9o0m82YzWa7spISM25u7lU8ISJ/ZumnH7Fp9XIefv5tXE/9OzK5uDBw+IvMHv8ST93WB6PRRHyrdjRr2wGr1ergiEVExJl98+lHbFy9jEdfGG+Xd+4d/l9mjh/Lk7f2xmg0kdCqPc3adnBwtCIi4sy+OTXWeeQF+7HOPcNfZNb4lxh+a59TOefUWAeNdUREpIImDmqYn58f8fHx7N27l61bt5KSkoKfn59dneuuu44uXbqwcuXKStsYO3Yso0ePtisb8MAwbnvwyWqKWqR2q+fti9FoIi/H/i3PvOxMvP0C//TZ5QtnsWz+TB4cPY4G0XF29yJjExn+xjSKCvIpKyvF29ef1568l0axiee8DyIi4jzqe/tV5J1s+7yTm5OJj39AFU9VWLZwFks/ncFDYyrJO3GJjBg33S7vvPLEvUTGKe+IiNRVv411cv+Qc/JyMvHxP4uxzqczq8w5T42zH+u8qpwjIv+QwdEBSLXQVkU1LD8/n5SUFMLDw3nqqafYsmULmzdvtl0Ab7zxBlOnTq2yjREjRpCTk2N33XTvozXUA5Hax8XVlUax8ezestFWZrFY2LV1I40Tkqp8btmCmXw9bzr3Pffqn/6A7FmvPt6+/qQdO8yhlF20SO5yTuMXERHnUpF3EmyHTEJF3tm9ZSONE5pX+dzS+TNZMncaD4x8jai4plXWs887O2l5YedzGr+IiDiPqsY6u7dsJPrPxjrzZ7Jk7nTuH/k3xzoXaqwjIiIVtOKgmg0bNoy+ffsSFRXFsWPHGDlyJCaTif79+xMcHFzpgciRkZE0bty4yjbd3d1xd7fflsjNzVxFbZG64dKrbmbGWy/SKDaRqCZNWfnlXEqKi0judgUAH735PL4BwVx1230ALJ0/g0WzP+COoSMJDAm37eXp7uGJu6cXAD//sIL6vn74B4Vy7OA+5n/wJi0v7ELT1hc6ppMiIlJrXHb1TXz05otExiUS3aQZ334xF3NxMR1O5Z0Pxz2Pb2AQV992P1CRd76a9f6f5p1NP6ygvo8fAcEVeeeT98dV5J02yY7ppIiI1AqXXn0zM07lnKgmTVn5xVzMxUV2Occv8A9jnVlnMdbx8cP/VM759P1TY502GuuIiEgFTRxUsyNHjtC/f38yMjIIDg6mc+fOrF27luDgYEeHJnJeadu5G/m52Sya8z65WZk0bBzH/c+9ZjtELOvkCQyG04usfliykPKyUqa8/IxdO71uuos+Nw8EIDcrgwVTx9uWAV/YtReX33BnjfVJRERqr3adu5Ofk81Xs98nLyuTBo2b8ODI03kn8+QJDIbTi7ZXLV5AWVkpH/wh7/S+6W6u6H8678yf8rYt7yR37UWvG++quU6JiEit1K5ztz/knDgeGFn1WGf14oVV5Jy76HMq5+RkZTB/iv1Yp9eNd9ZYn0REpPYzWHXK53nh6+0nHR2CiIjUEUaDdrAUEZGao8NaRUSkpvRsqhd9/4l5m485OgSnc0PrCEeH8Jd0xoGIiIiIiIiIiIiIiNhoqyIRERERERERERER+UcMWpV+XtKKAxERERERERERERERsdHEgYiIiIiIiIiIiIiI2GjiQEREREREREREREREbHTGwXni+4NZjg5BRETqiFtbN3B0CCIiUofkFJY6OgQRERGROkcrDkRERERERERERERExEYrDkRERERERERERETkH9Gb6ecn/b2KiIiIiIiIiIiIiIiNVhxUs1GjRjF69Gi7soSEBHbu3AlA165d+e677+zuDx48mEmTJtVYjCLni72rvmL3ivkU52XhG9GYNtcNJiAq/i+fO7zpe9Z9+AoRzZPpdM8zdvdyjx9m6xfTOJmyDaulHJ/QRnS8ewRe/iHV1Q0REXESixZ8zII5H5KdmUF0XDz3PvIk8U2bV1r30P4UZk2dSMquHZw8kcrdDz7OVTcMsKtz701XcPJE6hnP9u53A4MfG1EtfRAREeew7It5LP50JjlZGTRq3IRb73+c2ISkSuuuXLKQH5Yv4sjBfQBExyVy/R3329Wf/PoYVi/7yu65Fu06MOz5N6uvEyIi4lQ0cVADkpKSWLZsme2zi4v9H/u9997LmDFjbJ+9vLxqLDaR88XhTavYsvB92t74IAFR8ez57nNWTXqOy/8zCQ9vvyqfK8g4wZbPphAUc+YP3fnpqax8azjRHXrQrPctuHp4kXv8EEYXt2rsiYiIOIPVK75myjuvc//Q/xDftAWffzKT0U88yISPFuDnH3BGfbO5mLDwBlx0SQ+mTHit0jZffXcGlvJy2+dD+1MYOex+Ol3So9r6ISIitd+675Yye/Kb3PHQcGITk/h64RxeffZR/vfeXHz8zsw5O7dsosMlPYlr2hJXNze+mvchrz7zCC9OnE1A0OkXoFq068g9Q561fXZ1da2R/oiIiHPQxEENcHFxISwsrMr7Xl5ef3pfRP7a7pULadzxcqKTuwPQ9oYHSN2+gQPrlpLY/YZKn7Faylk/4zWa9b6F9JRfKS0qsLu/7auPCGvWjpZX3WUrqx8UXn2dEBERp/HZvJn0vOIauvW+GoD7hz7NxrWrWb7oM64bcNcZ9ZskJtEksWKS+sP33qq0TV8/f7vPn86aSlhEQ5q3bneOoxcREWeyZMFsLul1NRf37AvAnQ89xS8bfuT7b77gyhvvOKP+fU+Osfs88NGn+emHb9n+y0907tbHVu7q6opfQGD1Bi8iIk5LZxzUgD179hAREUFMTAwDBgzg0KFDdvdnzpxJUFAQzZs3Z8SIERQWFjooUhHnZCkrJfvIXkLiW9nKDEYjofGtyTiwq8rntn89B/f6vjTu0POMe1aLhePbf6J+cANWTXyOL565leWvP87RLWuqpQ8iIuI8SktLSdm1g5btkm1lRqORVu2S2bV9yzn7Ht8tXUy3PldjMBjOSZsiIuJ8ykpLObB3J0mtL7SVGY1GklpfwN6dW8+qDbO5mPLycurX97Er37l1Ew/178Xwe29g2vj/kZ+bc05jFxER56YVB9UsOTmZadOmkZCQQGpqKqNHj6ZLly5s27YNb29vbrnlFqKiooiIiGDLli0MHz6cXbt2MX/+fEeHLuI0zAW5WC0WPLzt39R09/Yj98SRSp9J3/crB9YupfsTle/hac7PocxcxK7ln5DU51Za9L2T4zs3smbqWC558EWC41qc836IiIhzyMvJxmIpxy/AfnsIX/8Ajhw6cE6+x7rV31KQn0e3Xledk/ZERMQ55eVW5BzfP2yD5+sXQOrhg2fVxtypE/ALCKJZmwtsZS3adaBdp64Eh0aQlnqUT6a/w6vPPcZzr72P0WQ6p30QkfOfXnQ5P2nioJr17t3b9nXLli1JTk4mKiqKuXPnMnDgQAYNGmS736JFC8LDw+nWrRspKSnExsZW2qbZbMZsNtuVlZWW4OKqfddFzkZpcSHrZ7xO25sewr2+b6V1rFYLABHNk4nv2g8Av4YxZOzfyb4flmjiQEREqtWyRQtpm9yJgKBgR4ciIiJO7Mu501n33VKe+t87uLm528o7XHJ61XWjxnE0ahzHEwOvZcfWTSS1vqCypkREpI7RVkU1zM/Pj/j4ePbu3Vvp/eTkiiXvVd0HGDt2LL6+vnbXjx+/Wy3xijgD93o+GIxGivOy7MrNedl4+PifUb8g/TiFmWn8+P7zfDr0aj4dejUHf/qWY7+u59OhV5OfnnqqTRM+YZF2z3qHNqIw+2S19kdERGo3b18/jEYT2ZmZduU5WZn4n4O9otOOH2PLxvX0uOKaf92WiIg4N2+fipyTk/WHnJOdiW/AmQcj/96iT2fw1bwPeeKFt4hs3ORP64aEN8Dbx4+0Y4f/dcwiInJ+0MRBDcvPzyclJYXw8MoPWN28eTNAlfcBRowYQU5Ojt3V6abB1RGuiFMwurji1zCOtD2n95W2Wiyk7f6FwOiEM+p7hzakx/DxdH/iLdsVkXQhwXEt6P7EW3j5BWF0ccU/sgl5afZbHeWfPIqXv97+FBGpy1xdXYlNaMqWTettZRaLhS0b15PQrOW/bn/54s/x9QugfYfO/7otERFxbi6urkTHJbL9lw22MovFwvbNG4hLrHoV9FfzPuLz2VN4/PlxNI5v+pffJzP9BPl5OfgGBJ2TuEVExPlpq6JqNmzYMPr27UtUVBTHjh1j5MiRmEwm+vfvT0pKCrNmzaJPnz4EBgayZcsWhgwZwsUXX0zLllUPOt3d3XF3d7cr0zZFUtfFd+3Hhllv4N8ojoDIePZ89xllJcVEJ3cHYP2M1/H0DaRF3zswubrhGx5l97yrZz0Au/KEy65l7fSXCYptTkhcC47v3ETqr+u55KH/1lzHRESkVrr6hgG8OXYkcQnNaNI0iS8+mUVxcRHdelecSTDuv88SGBTCbYMeBioOOz58YB8AZWWlZKansW/PLjw9PQlveHp1m8ViYcWSz7n08isxuehHdRERgV7X9Gfy62No3KQpMfHN+PqzOZjNxXTpcSUA7746Cv/AYG6860EAvpr3IfM/eo/7nhxDUEgE2ZkZAHh4euLh6UVxUSELZ71P+4suxdc/kLTUo3w85W1CwhvSol0Hh/VTRERqF41GqtmRI0fo378/GRkZBAcH07lzZ9auXUtwcDDFxcUsW7aMcePGUVBQQKNGjbjuuut45plnHB22iNNp1LYL5oIcti+eSXFuFr4NYug8eLTtwOTCrJN/+7CeBi070vaGB9i1bB6b57+Hd3ADOt41gqCYpOrogoiIOJHOl11OTnYWs6dOJCszg8ZxCYx8eTx+p7YqOnniOAbD6cW9meknGXpvf9vnhR9/xMKPPyKpVTtefHOyrfyXjes4eeI43fpcXXOdERGRWi35kh7k5mYz/6P3yMnKIDImnmFjxuHrX5FzMk+ewGg8nXNWfDWfsrJSxv93hF07/W65h2tuvRej0cjh/XtZvWwRhQV5+AcEk9T2Qq67bTCueilRREROMVitVqujg5B/7+nFux0dgoiI1BG3tm7g6BBERKQOySksdXQIIiJSR3SI9XN0CE5p4Zbjjg7B6fRrGeboEP6SzjgQEREREREREREREREbTRyIiIiIiIiIiIiIiIiNJg5ERERERERERERERMRGEwciIiIiIiIiIiIiImKjiQMREREREREREREREbFxcXQAcm5E+Lg5OgQREakjTAaDo0MQEZE6xNWk991ERERqMw0Rz0/6CUxERERERERERERERGw0cSAiIiIiIiIiIiIiIjaaOBARERERERERERERERtNHIiIiIiIiIiIiIiIiI0OR65mo0aNYvTo0XZlCQkJ7Ny50/Z5zZo1PP3006xbtw6TyUTr1q35+uuv8fT0rOlwRZzaL8s/Z9OSTyjMySSoUQyXDHiAsJjEv3xu97qVLHl3LDFtOnLlw6Ns5VarlXULP2Tb90swF+YTEdeMS29/BL/QBtXYCxERcRZfLfiY+XOmk5WZQePYeAY/Opz4ps0rrXtwfwozp7xDyu4dpB1P5Z6HhnH1DQPs6syaOonZ0961K2sQGc2kjxZUWx9ERMQ5fPP5XL78ZAY5mRlExjThjgeeIC4xqdK6KxYtYNWyRRw+mAJA47hEbrrrQVv9srIy5k2byOYNP5CWehTPevVp3uZC+g98CP/A4Brrk4iI1G5acVADkpKSSE1NtV2rV6+23VuzZg29evWiZ8+erF+/ng0bNvDQQw9hNOqvRuTv2L1+Jas+fo/kqwZw88gJBDWK4bPXn6YwN/tPn8tNP86quZOJiD/zFz0bF89l87LPuPT2h7npmTdxcfdg4Wv/oay0pJp6ISIizmLViq95f8Jr9L9jMOMmz6JxbDzPDXuA7KzMSuubi4sJi2jIHYMewT8gqMp2IxvH8uH8pbbrf29Pqa4uiIiIk1iz8htmvDeOawfcw4sTPiIypgkvPf0wOdmV55ztWzbS6dKePPPyREa/MYXA4FBe+s9DZKanAVBiLmb/3p1cc8tAXpzwEUOee5nUIwd5deTjNdktETmPGDHo+puXM9Bvp2uAi4sLYWFhtiso6PRgcciQITzyyCM89dRTJCUlkZCQwI033oi7u7sDIxZxPj9/PZ/mF/eiWZfLCWwQxWW3P4KLmzvbV31d5TMWSzlfv/c/Olx9G77B4Xb3rFYrm5cu5MK+/Ylt04mgRjH0vOdJCrIz2Lfpx+rujoiI1HIL587g8iuvpXufq4mMjuWBx5/G3cODpYsWVlo/vmkSd98/hIu79cLVzbXKdk0mE/6BQbbL18+/mnogIiLOYtH8WVzaqx9dL7+KhlExDHxkBO7uHnz39eeV1n/oqRfo0fcGomMTaBAZzaAhz2C1Wtn28wYAvOrV5z8vTaDDJT2IaBRNk6YtuPPBJ9i/ZwfpacdrsmsiIlKLaeKgBuzZs4eIiAhiYmIYMGAAhw4dAiAtLY1169YREhJCp06dCA0N5ZJLLrFbkSAif628rJS0g3to1KytrcxgNNKoWRtSU7ZX+dz6z2fi6e1H0sW9zriXe/I4hTmZdm26e9UjNCaR1JQd57YDIiLiVEpLS9m7ewet2iXbyoxGI63bJbPr1y3/qu1jRw5xx7U9uOfmK3n1+f+QdiL134YrIiJOrKy0lP17dtK87YW2MqPRSPM2F7Jn+9azasNsLqasrIz63j5V1iksyMdgMOBVr/6/jllERM4PmjioZsnJyUybNo0lS5YwceJE9u/fT5cuXcjLy2Pfvn1AxTkI9957L0uWLKFt27Z069aNPXv2ODhyEedRlJeL1WLBy8fPrtzLx5/CnKxKnzm2exu/rvqabnc+Vun9wtzMU238sU0/CnMqXxIsIiJ1Q25OFpbycvz9A+zK/fwDycrM+MftxjdtzmNPjWHUKxN4YOh/OJF6lKcevpvCwoJ/G7KIiDipvNxsLJZyfP3sc46vfwDZWWeXc2Z/8Db+gUF2kw+/V1JiZvYH4+nYtacmDkRExEaHI1ez3r17275u2bIlycnJREVFMXfuXJo2bQrA4MGDueuuuwBo06YNy5cvZ8qUKYwdO7bSNs1mM2az2a6stMSMq5u2NxI5GyVFhXzz/st0u+MxPL19HR2OiIgIAO07dLZ93Tg2nvimLRh4Ux9Wf/sNPa+4xoGRiYiIs/r842msWbmUZ1+ZhFslvzMoKyvjrRdHAFbufvipmg9QRERqLa04qGF+fn7Ex8ezd+9ewsMr9lRv1qyZXZ2mTZvatjOqzNixY/H19bW7vvloYrXGLVKbeXr7YDAazzgIuTA3Cy/fM/eGzjmZSm76Cb546znevqc3b9/Tmx0/LmPf5rW8fU9vstOO4eUTcKqNP7aZjZdvwBltiohI3eHj64/RZCLrDwchZ2dl4B8QeM6+T31vbyIaRpJ69PA5a1NERJyLt48fRqPpjIOQc7Iy8fP/85zz5byP+Pzj6YwY+zaRMU3OuP/bpEH6ieOMGDteqw1ERMSOJg5qWH5+PikpKYSHhxMdHU1ERAS7du2yq7N7926ioqKqbGPEiBHk5OTYXT1vu7+6QxeptUwuroRENeHwjp9tZVaLhcM7NhMe2+yM+v7hjRgw5l1uGTXRdsW07kDDxFbcMmoi3gHB+ASH4eUbwOHtp9s0FxVwYt9OwmOb1ki/RESkdnJ1dSUuvilbNq6zlVksFn7ZtJ6EpJbn7PsUFRZy/NgR/AOCzlmbIiLiXFxcXWncJJFfTx1sDBU559fNG2jSrEWVz30x90MWzPqA4S++RUz8mWOi3yYNjh89xH9emoD3H7ZoFRH5OwwGXX/3cgbaqqiaDRs2jL59+xIVFcWxY8cYOXIkJpOJ/v37YzAYeOKJJxg5ciStWrWidevWTJ8+nZ07d/LJJ59U2aa7uzvu7vZLDF3dtOe61G1tLr+Wpe+/Smh0PKGNE9i8dAFl5mKade4JwDeTX6aefxAXXX83Lq5uBDaMtnve3avi7Zrfl7fu0Y8NX87GL7QBPsFhrF0wnXp+gcS07VRT3RIRkVqq34238sbY54hLbEZ8YnM++2QWxUVFdO99NQCvv/gMgcEh3DHoEaDiQOXDByrOtyorLSUjPY19e3bh4elJRMNIAD5453Uu7HQxIaERZGakMWvKJIxGI5d07+WYToqISK3Q59pbmPTqaGLimxKbkMTiBbMpLi7ikp59AXjn5ZEEBAVz890PAfD5x9P55KN3eWj4CwSHhpOdmQ6Ah6cXHp5elJWV8ebzw9m/dydPjHkDi6XcVqe+ty8urq6O6aiIiNQqmjioZkeOHKF///5kZGQQHBxM586dWbt2LcHBwQA89thjFBcXM2TIEDIzM2nVqhVLly4lNjbWwZGLOJf4C7tSlJfD2oUfUpCTRXCjGK4e8qJtq6K8zJMYjH9vkVW73jdSZi5mxfQ3MRfmE9EkiauHvoiLq1t1dEFERJxIl8suJyc7i5lTJpKVmUFMXAKjX5lg26roZNpxu7yTmX6SR++52fZ5wZwPWTDnQ5q3bsfYN98HIOPkCV4dM4Lc3Bx8/fxp1qI1r0788IwDMUVEpG7p2LUnuTnZfPLhu2RnZRAVE89TL76F76mtijJOHsdoPP366rKvPqWstJRxLwy3a+faW+/l+tsGkZWexsa13wMw4oEBdnWeeXkSzVq1q+YeiYiIMzBYrVaro4OQf2/CDwccHYKIiNQRPWJDHB2CiIjUIXnFZY4OQURE6oh20T6ODsEpfbnthKNDcDpXNg91dAh/SWcciIiIiIiIiIiIiIiIjSYORERERERERERERETERmcciIiIiIiIiIiIiMg/YsDw15XE6WjFgYiIiIiIiIiIiIiI2GjiQEREREREREREREREbLRV0XnC31N/lSIiUjM2HM10dAgiIlKHGLT7gYiI1JB20T6ODkGk1tCKAxERERERERERERERsdHEgYiIiIiIiIiIiIiI2Gh/GxERERERERERERH5R7St4PlJKw5ERERERERERERERMRGKw6q2ahRoxg9erRdWUJCAjt37gTg+PHjPPHEEyxdupS8vDwSEhJ4+umnue666xwRrohTW//NQn78Yi75OZmERcbS+86HaRCXWGndHetXsWrhLDJPHMVSXk5AWAM6XnEDrbr0sNVZOPF//PL9N3bPxba8gFtHvFSt/RAREeew4ZuF/PhlRd4JjYyl9x1/nndWf/aHvNPnBlr+Lu8AnDx6kOWzJ3NwxxYslnKCG0Rxw2Mj8Q0KrYkuiYhILXWuxzpQkXOWzbLPOTcOUc4REZEKmjioAUlJSSxbtsz22cXl9B/77bffTnZ2Np9//jlBQUHMmjWLG2+8kZ9++ok2bdo4IlwRp7Rtzbd889Ekrhj4GA3jElm7eD4zXhrOQ69No56v/xn1Pet70+WaAQRFNMLk4sruTWv4bNLL1PPxI67VBbZ6ca0u4Or7nrR9Nrm41kh/RESkdvt1zbd8M2MSV9z9GA3iElm3eD4zXxrOg3+Wd/oNIPBU3tmzaQ2fvfsyXr/LO5knjjFt9KO07tqbS66/A3fPepw8cgAXV7ea7p6IiNQi1THWyTxxjKmjHqVN1950vf4O3L3qcfKwco6IiJymrYpqgIuLC2FhYbYrKCjIdu/HH3/k4Ycf5sILLyQmJoZnnnkGPz8/Nm7c6MCIRZzP2q8+oe1lfWjTtRfBDaO5cuBjuLq58/PKJZXWj27WmqYXdCa4QRQBoRF06H0doZExHNq1za6eydWV+n4BtsuzvndNdEdERGq5NYs+oe2lfWh9Ku9cMfAxXN3d+fm7qvNO4u/yTvKpvHP4d3nn248/IK51Mj1uGUx4dBMCQiNIaNep0l8KiYhI3VEdY50VH39Ak9bJ9BgwmPDGp3JOe+UcERE5TRMHNWDPnj1EREQQExPDgAEDOHTokO1ep06d+Pjjj8nMzMRisTBnzhyKi4vp2rWr4wIWcTLlZaUc27+bmOZtbWUGo5GY5m05smf7Xz5vtVrZt20TGalHiEpsYXfvwPZfeGXwdYwfegdffjCOwryccx6/iIg4l/KyUlL376bxH/JO43+QdyKbVuQdq8XCns3rCAxryIyxw3n1vut4/9kH2blhdbX1Q0REar/qGOtYLRb2/LyOgPCKnPPK4Ot4/xnlHBERsaetiqpZcnIy06ZNIyEhgdTUVEaPHk2XLl3Ytm0b3t7ezJ07l5tuuonAwEBcXFzw8vJiwYIFxMXFVdmm2WzGbDbblZWWmHF1c6/u7ojUSoW5OVgtljPejqnn60/6scNVPldcmM/rD9xEeVkpBqORK+56lNiW7W3341pdQNMLuuAXEkbWiWMs//gDZv5vBAPHvI3RaKq2/oiISO1WmPfP884bD57OO33uepTYFhV5pyA3m5LiIn74Yg6X3nAX3fvfy94tG5g7bhS3P/Ma0U1bVWufRESkdqqOsY4t53w+h0tvPJVzftnAx2+M4o5nXiO6mXKOiPw9RgyODkGqgSYOqlnv3r1tX7ds2ZLk5GSioqKYO3cuAwcO5NlnnyU7O5tly5YRFBTEwoULufHGG1m1ahUtWrSotM2xY8eeceDytYOGcN3godXaF5HzjbuHF/e99B4lxUXs27aJr2dMxD80nOhmrQFo3ukyW93QyBhCI2N467HbOLD9F7s3fkRERM6Gu4cXg8dW5J39v27imxkT8Q+pyDtWqwWAhHad6NDnegDCouM4svtXNi77QhMHIiLyt/zZWMdqOZ1zOv4u5xz+Ledo4kBERNDEQY3z8/MjPj6evXv3kpKSwvjx49m2bRtJSUkAtGrVilWrVjFhwgQmTZpUaRsjRoxg6FD7SYIF209We+witZWXjy8Go5GCnCy78oKcLOr7BVT5nMFoJCCsAVDxg3L6sUOs/my2beLgj/xDI/Dy9iXz+FFNHIiI1GFe3uco7xw9nXe8vH0xmkwENYiyeyaoQeQZ5++IiEjdUR1jHS+fipwTXEnOOaycIyIip+iMgxqWn59PSkoK4eHhFBYWAmA02v81mEwmLKfeAKiMu7s7Pj4+dpe2KZK6zOTiSkTjePZt+9lWZrVY2PfrzzRs0uys27FarJSVllZ5PzfjJIX5uXj7Bf6reEVExLmZXFwJbxzP/l/t887+v5t3rFbKy0ptbUbEJJCRar/tREbqEfyCQs9N4CIi4nSqY6xTVc7JTD2Cr3KOiIicoomDajZs2DC+++47Dhw4wI8//sg111yDyWSif//+JCYmEhcXx+DBg1m/fj0pKSm89tprLF26lH79+jk6dBGn0uGK69n07Vds/u5rTh49yJdTxlFqLqb1JZcDsOCdl1g2+31b/VULZ5Gy5SeyThzj5NGD/PjlXLasXkrLzt0AKCku4puZ73Jkz3ayTx5n37ZNzHntWQJCI4ht1b7SGEREpO7o2Kci7/zyfUXe+WrKOEqLT+edhe+8xPI5p/PO6s9mkbL1dN5Z81VF3mlxKu8AdLryJn5ds5JNK74i8/hR1n+9kN2b1tC++1U13j8REak9zvVYB6BT35vYtmYlG5efzjm7Nq3hgh7KOSIiUkFbFVWzI0eO0L9/fzIyMggODqZz586sXbuW4OBgABYtWsRTTz1F3759yc/PJy4ujunTp9OnTx8HRy7iXJp3vJTC3BxWfjKN/OwswqJiGfDUS7bluznpaRgMpw/rKTUXs2jqW+RmnMTFzZ2giEZc8+AImne8FKhY2pt2aB+/fP8NxQX5ePsHEtuyPZfecCcurm4O6aOIiNQeSR0vpeB3eSc0KpZbnnqJ+r6n8k5GGgbj6bxTYi5m8ZS3yM38Xd55YARJp/IOQOIFnbli4GP88NlslkwfT2BEI258bBSRiZWfeyUiInXDuR7rADS9oDNXDnyM1Z//LucMUc4REZHTDFar1eroIOTfm7XpiKNDEBGROkI/OYiISE363e9DRUREqtUtbRs6OgSn9LXOXv3bLm8W7OgQ/pK2KhIRERERERERERERERtNHIiIiIiIiIiIiIiIiI0mDkRERERERERERERExEYTByIiIiIiIiIiIiIiYqOJAxERERERERERERERsXFxdABybuSXlDs6BBERqSOaBvg4OgQREalDss0ljg5BRERE/oTB4OgIpDpoxYGIiIiIiIiIiIiIiNho4kBERERERERERERERGw0cSAiIiIiIiIiIiIiIjY646CajRo1itGjR9uVJSQksHPnTgBSUlIYNmwYq1evxmw206tXL95++21CQ0MdEa6IU/t52ef8tHgeBTmZBDeK4bJbHyQ8NrHSunt+Ws26L2aTnXaM8rIy/MMa0L7X9TS7qLutTkFOFqvmvs+BbRsxFxbQMKEFl936IP5hDWqqSyIiUout+OoTvp4/g5ysTBo1jqP/4MeJiU+qtO73Xy9kzYrFHD24D4CouASuuf3+M+ofO7yfT6dNYPe2nykvLyeiUWPuHzGWwJCwau+PiIjUXj8sns/Kz+eQl51JeFQs1wx8lMgmzSqtu3XtdyyfP4P040cpLy8jOLwhl/S9iXaXXG5XZ803n3Fk324K83MZ8soHNGjcpKa6IyIiTkATBzUgKSmJZcuW2T67uFT8sRcUFNCzZ09atWrFihUrAHj22Wfp27cva9euxWjUghCRs7Vz3Uq+m/0u3e94hPDYRDZ+PZ9PX/0Pd//vA7x8/M+o71HPm+S+/QmIiMRkcmHfL+tY8v6rePn4Ed2iPVarlc/eHIXRZKLfo6Nx8/Ri45JPmffycO4aOxlXd08H9FJERGqL9auWMvf9N7n1weHExCex7PM5jHvuMV6Y9DE+fgFn1N+1dRMXXtyD2KYtcXV1Y/GnH/HGc48yZsIs/ANDAEhLPcL/hg+mc4++XH3LvXh41ePYoX24urnVdPdERKQW2fzDcj6fPoHrBj1OZJNmrPpqHpNfGMaTb83E2/fMsY5nfR+6XXcbIQ0iMbm4smPjj3w84SXq+/qT0PpCAErMxUQ3bUmrTpcxb9LLNd0lERFxApo4qAEuLi6EhZ35ltgPP/zAgQMH+Pnnn/Hx8QFg+vTp+Pv7s2LFCrp3737GMyJSuY1LPqXFJb1pfnHFWzQ97nyU/b+sZ+v3X5N85c1n1G/UtJXd57Y9r+HX1Us5unsb0S3ak3XiKKkpO7jjxfcIahgNQPc7HmHiIzexY81KWnbtXe19EhGR2mvpwtl0ufxqOne/EoBbHxjOlg0/snrpl/S54fYz6t87bIzd5zsf/g+bfvyWHb/8RKfL+gCw4KNJtGjXiRvuethWLyS8YTX2QkREnMF3X8wlufuVXHgqX1w36HF2bFrDhhVfcdk1t55RP655G7vPXa64gZ9WLmH/ji22iYPfVh9kpqVWc/QiUhcYMDg6BKkGeqW9BuzZs4eIiAhiYmIYMGAAhw4dAsBsNmMwGHB3d7fV9fDwwGg0snr1akeFK+J0ystKOXFgD5FJp39ANhiNRCa1IXXvjr983mq1cvDXn8lMPUyDhBYVbZaWAuDievotT4PRiMnVlWN7tp3jHoiIiDMpKy3l4N5dNGt1ga3MaDTStPUF7Nu19azaKDEXU15eTr36FS+PWCwWtvz0I6ENInnjuUcZcmtvXnz8bn5e81219EFERJxDWWkpR/ftJr5le1uZ0WikSYt2HNz1618+b7Va2bNlI2nHDhPTrNVf1hcREfmNVhxUs+TkZKZNm0ZCQgKpqamMHj2aLl26sG3bNjp06EC9evUYPnw4//3vf7FarTz11FOUl5eTmqpZf5GzVZSXi9Viod4flul6+fqTmXq4yufMhQW8+1h/ystKMRiNdLv9YaKbtwMgILwR3oEhrJo3hR53PYqruwcbv55PfmY6+dmZ1dofERGp3fJzs7FYyvHxt9+SyMfPn+NHDpxVG59Mm4BfQBDNWldMPuTlZGEuKmTxJx/S79bBXHfng2zbuJZ3xj7FsBcnkNCi7bnuhoiIOIGCvBwslnLq/2Gs4+0XQNrRQ1U+V1SQz/ODr6OstASj0cS19wwh/ncT3iIiIn9FEwfVrHfv09uZtGzZkuTkZKKiopg7dy4DBw5k3rx53H///bz11lsYjUb69+9P27Zt//R8A7PZjNlstisrLTHj6uZexRMiUhk3D09ue34ipcXFHNr+M9/Nfhe/4HAaNW2FycWFqx9+jq+nvM6EB67DYDQSldSWxi0vwGq1Ojp0ERFxYovmfcj6Vct44r8TbD+/WS0WAFonX0zPfv0BiIyJJ2XnFr5bskATByIi8re4e3ox9JUPMBcXsWfrRj6fPoGA0IgztjESERGpiiYOapifnx/x8fHs3bsXgJ49e5KSkkJ6ejouLi74+fkRFhZGTExMlW2MHTuW0aNH25VdOfBR+t4zpFpjF6mtPL19MBiNFORk2ZUX5mRRz/fMAyp/YzAa8Q9tAEBIVCwZxw6x7ss5tvMPQhvHc/vzkzAXFlBeVoqXjx8zRz9MaOP46uuMiIjUevV9/DAaTeRm2a9Ay83Owtc/8E+f/Xr+TBZ/+iGPP/82jRo3sWvTZDIRERltVz+8UTR7tv9yzmIXERHnUs/bF6PRRP4fxjp52Zn4+FU91jEajQSdOienQeMmpB09yIoFMzRxICIiZ01nHNSw/Px8UlJSCA8PtysPCgrCz8+PFStWkJaWxlVXXVVlGyNGjCAnJ8fu6nX7A9UdukitZXJxJTS6CYe2b7aVWS0WDm3fTHhc07Nux2q1Ul5Weka5u1c9vHz8yDp+lBP79xDXpuO5CFtERJyUi6srUXEJ7NiywVZmsVjY+csGYk6dlVOZxZ9+xJcfT+GxUeOIbmKfn1xcXYlu0ozjR+y3nThx9DCBwfY/N4qISN3h4upKg5h49mzdaCuzWCzs3bqJqISks27HarFSVnrmWEdERKQqWnFQzYYNG0bfvn2Jiori2LFjjBw5EpPJRP/+FUvQp06dStOmTQkODmbNmjU8+uijDBkyhISEhCrbdHd3tztQGcDVLauK2iJ1Q7te17Fk8iuENW5CWEwim76eT6m5mOZdLgdg8bsvU98/kC43DgRg3RezCW0cj19IBOVlpez/ZT07flxGt9sfsbW5a/33eHn74h0YQvqR/Xw7cyJx7ToR3aJ9pTGIiEjd0aNff6a88TxRcU1pHN+MZZ99jLm4mIu6XwHAB6+Pxi8wmOvuqHi5Y/EnH/LZzMncO2w0QaHh5GRlAODu4YmHpxcAl187gHdffob45q1JaNGOXzet5Zf1q3nivxMc00kREakVLul7I3PGj6VhbAKRcU1Z9dU8SsxFXHBpHwBmv/UivoFB9BkwGIDl82fQKDaBwLAGlJWWsGPTWjZ+/zXX3fu4rc3CvFyy0k+Qm5UOwMljFRPX3n4B+PzF6jkRkT8yGhwdgVQHTRxUsyNHjtC/f38yMjIIDg6mc+fOrF27luDgYAB27drFiBEjyMzMJDo6mqeffpohQ7TlkMjflZjclaLcHH6Y/yGFOVkER8Zw3bAXbQcm52amYfhdJis1F7P8w7fJz0zHxc0d//BG9B48nMTkrrY6BdkZrJw9icKcbOr5BZB0UXc6XD2gprsmIiK10IVdepCfk81nMyeTm5VBo5gmPDb6DdtWRRknj2MwnM47KxfPp6yslIkv/ceunb79B3L1LfcC0LZjV257YDiL5k1n9ntvENYgkvtHjKVJUusa65eIiNQ+rS/qRn5uNl/PmUJediYR0XHc8/SreJ/aqigr/YTdWKfEXMT8ya+TnXkSVzd3QiIiueWRZ2h9UTdbnV9/+oGPJ4y1fZ7xRsV2yD1uuJPLb7q7hnomIiK1mcGqUz7PC++tPejoEEREpI5oGuDj6BBERKQOyTaXODoEERGpI/q2CHV0CE5p+c50R4fgdLolBjk6hL+kMw5ERERERERERERERMRGEwciIiIiIiIiIiIiImKjiQMREREREREREREREbHR4cgiIiIiIiIiIiIi8o8YMPx1JXE6WnEgIiIiIiIiIiIiIiI2WnFwnri9fZSjQxARERERERERERGR84BWHIiIiIiIiIiIiIiIiI0mDkRERERERERERERExEYTByIiIiIiIiIiIiIiYqMzDkRERERERERERETkHzEYHB2BVAetOKgBR48e5dZbbyUwMBBPT09atGjBTz/9ZLtvtVp57rnnCA8Px9PTk+7du7Nnzx4HRizinObMmknvHpdxQZsWDLj5BrZu2fKn9b/5ejFXX9mLC9q04Lp+fVn1/Xd2961WKxPefpNul3TmwrYtGTTwTg4ePFCNPRAREWeivCMiIjVFOUdERGqaJg6qWVZWFhdddBGurq4sXryY7du389prr+Hv72+r8/LLL/PWW28xadIk1q1bR7169bj88sspLi52YOQizmXJ4kW8+vJYBj/wIHPmLSAhIZH7Bw8kIyOj0vqbf97EU088zjXXXs/Hnyzk0su68djDD7Jnz25bnakfTGb2zI94ZuQoZsyei6enJ/cPGojZbK6pbomISC2lvCMiIjVFOUdERBzBYLVarY4O4nz21FNP8cMPP7Bq1apK71utViIiInj88ccZNmwYADk5OYSGhjJt2jRuvvnms/o+xWXnLGQRpzTg5htIat6C/zzzHAAWi4We3S6h/y23MfDeQWfUf+LxxygqKmL8O+/aym7tfyMJiYk8O3IMVquV7l27cPudd3HHXQMByMvL47KLOzHmxZfo3eeKmumYiIjUSso7IiJSU5RzRGqOhzZ1/0e+3VX5RKZU7dKEQEeH8Je04qCaff7557Rv354bbriBkJAQ2rRpw+TJk2339+/fz/Hjx+nevbutzNfXl+TkZNasWeOIkEWcTmlJCTu2/0qHjp1sZUajkQ4dOrHll58rfWbL5s106NDRrqzTRZ3ZsnkzAEePHCE9/STJHU636e3tTYuWrapsU0RE6gblHRERqSnKOSIi4iiaOKhm+/btY+LEiTRp0oSvv/6a+++/n0ceeYTp06cDcPz4cQBCQ0PtngsNDbXd+yOz2Uxubq7dpeWEUpdlZWdRXl5OYKD9bG1gYCDp6emVPpOenk5gYNCZ9TPST90/WVEWdPZtiohI3aC8IyIiNUU5R0REHEUTB9XMYrHQtm1b/vvf/9KmTRsGDRrEvffey6RJk/5xm2PHjsXX19fueuV/Y89h1CIiIiIiIiIiIiJ/zaD//vZ/zkATB9UsPDycZs2a2ZU1bdqUQ4cOARAWFgbAiRMn7OqcOHHCdu+PRowYQU5Ojt31xPAR1RC9iHPw9/PHZDKdcThYRkYGQUFBlT4TFBRERkb6mfVPvZkTFBRcUZZ+9m2KiEjdoLwjIiI1RTlHREQcRRMH1eyiiy5i165ddmW7d+8mKioKgMaNGxMWFsby5ctt93Nzc1m3bh0dO9rvSfgbd3d3fHx87C53d/fq64RILefq5kbTZkmsW3v6XBCLxcK6dWto2apNpc+0bN2adWvX2pWtXfMjLVu3BqBBw4YEBQWzbt3pNvPz89m65Zcq2xQRkbpBeUdERGqKco6IiDiKJg6q2ZAhQ1i7di3//e9/2bt3L7NmzeK9997jwQcfBMBgMPDYY4/xwgsv8Pnnn7N161Zuv/12IiIi6Nevn2ODF3Eit91xF/M/mcvnCxewLyWFF8aMoqioiH7XXAvA0yOe5M03XrPVH3Dr7fz4wyqmT5vC/n0pTJzwNr9u28bNt9wKVPzbHHDb7Ux+dyIrVyxnz+5dPDPiSYJDQrisW/fKQhARkTpEeUdERGqKco6IiDiCi6MDON9dcMEFLFiwgBEjRjBmzBgaN27MuHHjGDBggK3Ok08+SUFBAYMGDSI7O5vOnTuzZMkSPDw8HBi5iHPp1bsPWZmZvDP+LdLTT5KQ2JR33n2fwFNLbY+npmI0nJ4rbd2mLWNffpXxb43j7XGvExkVzbi3J9CkSbytzl0D76WoqIgxo54jLy+XNm3b8c6772uFj4iIKO+IiEiNUc4RERFHMFitVqujg5B/r7jM0RGIiIiIiIiIiIg4Lw+9Yv2PrNyV6egQnE7XhABHh/CX9M9BRERERERERERERP4Ro8HREUh10BkHIiIiIiIiIiIiIiJio4kDERERERERERERERGx0cSBiIiIiIiIiIiIiIjYaOJARERERERERERERERsdDjyeeLa99c7OgQREakjbmof7ugQRESkDtmbXuzoEEREpI54vlcTR4cgUmto4kBERERERERERERE/hEDBkeHINVAWxWJiIiIiIiIiIiIiIiNJg5ERERERERERERERMRGWxXVgKNHjzJ8+HAWL15MYWEhcXFxTJ06lfbt2wMwf/58Jk2axMaNG8nMzOTnn3+mdevWjg1axAldmRTCda3D8fd0ZX9GIRN/OMjutIIq69dzM3HHhQ3p1Ngfbw8X0vJKePfHg/x0KOcftykiInXHT998xrqv5pKfk0loZCw973iIiNjESuvu3LCKHz+bTdaJo1jKy/EPbUByn+tp0aWHrc5/B3Sv9NnL+t9LhytvqpY+iIiIc9iz6kt2rZhPcW4Wfg0a0+a6wQRGJfzlc4c2fcfa6a8Q0aIDne95xu5e7vHDbPliKif3bsNiKccnNJJOd4+gXkBIdXVDRESciCYOqllWVhYXXXQRl156KYsXLyY4OJg9/2fvvsOjrNI+jv9m0oEkhBSSACmEEFoCoSgEpIuABUXBQgcBEUXAFzVWll2JKLooHdSIgqCoIBZAUEFWmjRDUaqAhJpeSJ95/4AdnE0QRDKTId/PXs91bc7cz+E++16+t+Gec87Bg/Lx8bHE5Obmql27durbt6+GDx9ux2wBx9U+ooaGx4Voxg9H9evZHN0dHah/3h6lEYuTlJlfXCre2WjQy3dEKSOvWJPXHFJKbqECqrkpt7D4mucEAFQe+zZ9r28XzVH3oU8oOKKhflr1qZa88oxGTk1UVW+fUvEeVT3VttdD8g2uIydnFx3cuVlfzntNVb2rq25MK0nSmJkfW71z+Oet+mr+64q66RabrAkAUDEd3/GDfl72tlr0Ha0aYVE6uO5z/TD7RfV4bq7cPatf9r3c1DP6efm78otoXOqznJRT+u7NpxTe+lY17tFPLu5VlHnquJxcXMtxJQAAR0LjoJxNmTJFderUUWJiomUsPDzcKmbAgAGSpKNHj9oyNeCGck9MoFb9ck5r9qdIkmb8cFStQqurWwN/Ld11qlR8twZ+8nRz1pPLf1GJySxJOptd+LfmBABUHltXfqpmnXqqaYfukqQeQ8fq0K4t+nn9KsXd9WCp+NBGzax+vql7b+3e8I1+37/H0jioVr2GVczB7RsV2qiZfAKCy2cRAACHcGDdctWNu03hrS/sUmvRd7RO7ftJv21eo4a39inzHZOpRJs/mKrGPfop5cheFeZZ75re/eX7CmrUUk17DbWMVfMLKr9FAAAcDncclLMVK1aoZcuW6tOnjwICAhQbG6v58+fbOy3ghuJsNKief1XtOnHpiCGzpF0nstSgZrUy37k5zEe/nMnRo+1CtWhgrGb1baK+sUEyGq59TgBA5VBSXKRTvx1QWJPmljGD0ajwJs2VfHDfFd83m836bc8OpZ06oZAGMWXG5GSm69CuLWp2sTEBAKicSoqLlP77IdWs38wyZjAaFVC/mVKP/nrZ9/atWiL3at6q26Zbqc/MJpNO7dumagHBWj/7BX3+XD+tfWO8kpM2lccSAFQCBgPPX30cAY2DcnbkyBHNnj1bkZGRWr16tUaNGqUxY8ZowYIF9k4NuGF4uTvLyWhQep718UEZeUWqUcWlzHcCPd3Urm4NGQ0GvfT1fi3ZflK9mwbpgebB1zwnAKByOJ+dKbPJVOpIoqpePsrNTL/se/nnc/Ta0Ds0ZVB3fTz1OXUbOFrh0S3KjN39wzdyda+iqFYcUwQAlVlhbpbMJpPc/udIInfP6srPLrvmnDu8V79t/kYtH3i8zM/zczJVXJCnX9d+osAGLdR+1D9VK7qNfnx3ss4e2n29lwAAcFAcVVTOTCaTWrZsqcmTJ0uSYmNjtWfPHs2ZM0eDBg26pjkLCgpUUFBgNVZSVMhZhMBfYDQYlJFXpOk//CaTWTqUcl6+VV11b9NAfbj9pL3TAwDcgNzcq2jY5Lkqys/T0b07tXbRHFUPCCp1jJEk/bx+lRq37SxnV/79DgBw9Yryz2vrwjfU8oHH5VbNu+wgs0mSVKtJa0V1uluS5FO7rlKP/qLDP65UQL1oG2ULAKjIaByUs6CgIDVq1MhqrGHDhvr000+vec6EhAT94x//sBqrd/vDiryDi5VROWXlF6vEZJaPh/X/S6vu4aK080VlvpN2vlDFJrMuXm8gSfo9PU81qrrK2Wi4pjkBAJVDFU9vGYzGUrsLcrPSy7wY+b8MRqNqBNaSJNUMq6eUk8e1ccXiUo2D47/uVtqp33XP489f99wBAI7FtaqXDEajCrIzrMbzszPk7lm65uSknFZu2hn9Z/4ky5jZfOGXnqXj7lKP5+bKo7qfDEYneQXWsXrXs2YdpRy58pF7AIDKgaOKylnbtm21f/9+q7EDBw4oNDT0mueMj49XZmam1VP3tmvbvQDcCIpNZh06l6umtS59o8YgqVktL/16JqfMd/adzlGwt7v+eKxcreruSs290FC4ljkBAJWDk7OLgsLr6+jeHZYxs8mko3t2qlZkoz9505rZbFJJcelm9M/rViowvL5qhkZcl3wBAI7LydlFPnXq6cyBny1jZpNJZw/8LN+wBqXivWrW1m1Pz1C3CW9ZnuAmNyugXrS6TXhLHtX95OTsohohkco+m2z1bs7ZZFX1CSj3NQEAHAM7DsrZuHHjFBcXp8mTJ6tv377aunWr5s2bp3nz5lli0tLSdPz4cZ08eeF4lP82GgIDAxUYGFhqTjc3N7m5uVmNcUwRKrtlSac1vlNdHTyXqwNnc9QrJlBuLkat2X9OkvRkp7pKzS3Ue1tPSJK+2ntWdzapqZFtQ/XFnjMK9nZT39hgrdhz+qrnBABUXjf1uFdfzH1VQeFRCo6I0tZVn6moIF8xFy8zXjH7FXn6+KnTAw9LkjZ+/qGC6kapes0glRQV6fCurdrzn7XqPuQJq3kLzufq160/qMtDI22+JgBAxVS/493auujfqhESqRoh9XVg/ecqLsxX+M1dJUlbFr4uD29fxdw5WE4urvIODrN639WjqiRZjUd17q3NC16VX0RjBUTG6PQv23Vy71Z1fCzBVssCAFRwNA7KWatWrbRs2TLFx8dr0qRJCg8P17Rp09SvXz9LzIoVKzRkyBDLzw888IAk6aWXXtLEiRNtnTLgkH44nCYvd2cNaFVLPlVcdCTlvF78ar8yLl5u7O/pKpMunUuUkluo57/arxFxIZrZp4lScwv1+e7T+mTXqaueEwBQeTVq00nnszP1wyfvKTczXTVDI3T/0wmqdvGooqzUszIYLm3uLSzI16rEt5Sddk7Orm7yDa6ju0Y9o0ZtOlnNu2/z9zKbzWoUZz0OAKi8Qpq3V0FOpvZ8vVD5WemqXruu2j8ySe5eF2rO+fRzVjXnatRuGqfmfR/Vr2uWatdn8+QZUEtxQ5+Vf0Tj8lgCgBuc4cohcEAG838Pu4ND6zlnq71TAABUEve3DLJ3CgCASuRQSr69UwAAVBL/7B5p7xQc0o8H068cBCttIy9/N1pFwR0HAAAAAAAAAADAgsYBAAAAAAAAAACwoHEAAAAAAAAAAAAsaBwAAAAAAAAAAAALZ3snAAAAAAAAAABwTEaDwd4poBzQOLhBZOUU2DsFAEAl8e2BdHunAACoRDL4XQcAAMDmOKoIAAAAAAAAAABY0DgAAAAAAAAAAAAWNA4AAAAAAAAAAIAFjQMAAAAAAAAAAGDB5cg2kJycrKefflorV67U+fPnVa9ePSUmJqply5YqKirS888/r6+//lpHjhyRt7e3unbtqldeeUXBwcH2Th1wKL2bBenBVrVVo6qrDp/L0b+/PaxfTudcNr6am5NGtAtT+0g/ebk760xWvt78/og2/3bh4tehcSEaGhdq9c6x1PPql7i9XNcBAHAMXSJ91bOhv7w9nPV7er4+2J6sI6l5Zca2C/fRiDZ1rMYKS0x6+KM9ZcYPblVLnSN9tWj7Sa3en3LdcwcAOJaejQJ0T9NA+Xi46Le085r343EdPJdbZmzn+r4a27Gu1VhhsUn3vXvp95jqHs4adFMdNavtpWpuTtp7KkdzfzymU1lcRg7grzPYOwGUCxoH5Sw9PV1t27ZVp06dtHLlSvn7++vgwYPy8fGRJJ0/f147duzQCy+8oKZNmyo9PV1PPPGE7rrrLm3bts3O2QOOo3OUnx7rWFdT1x7SvlPZ6ts8WG/c10QPvrtdGeeLSsU7Gw36d59opZ8v0gsrftG5nAIFerkrp6DYKu5ISq7Gfrzb8nOJ2VzuawEAVHw3h3jroeZBeu+nZB1OOa/bGvhpQqdwPfXFfmUXlJT5zvnCEj395X7Lz5erKC1qeynCr4rSyqhfAIDKp13dGhrWpo5mbTimA2dzdFd0Tf2jZ32N+mi3MvOLy3wnt7BYoz7aXeZnkvRst0iVmMx6+ZtDyissUa+Ymvrn7VEavXSPCopN5bUUAIADoXFQzqZMmaI6deooMTHRMhYeHm75797e3lqzZo3VOzNmzNBNN92k48ePKyQkxGa5Ao7sgZa19MXu0/p6zxlJ0mtrDqlN3Rq6o0lNLdx6olT87dE15eXurEc+/Fklpgt/dXO6jG/XlJjM/MUNAKCU7g38te5wmjYcubBL7b2tyWoa7KUOETX05b5zZb5jli77Fzz/5ePhrAEtg/Xa979pfIfwP40FAFQOvWJq6ptfz+nbAxd2oM3acEwtQ6qra5SfPv35dJnvmM1SRl7ZNSfY200NalbT6KW79Xt6viRp9oZjWjCgmdpH1NAadroBAETjoNytWLFCt912m/r06aP169erVq1aevTRRzV8+PDLvpOZmSmDwaDq1avbLlHAgTkbDapf01MfbLnUIDBL2nY8Q42Dvcp8p12Er/aczNaTXSLUrp6vMvKKtOaXc1q09XeZ/vAV0No+Hlr+yE0qLDZpz8lszd1wVGey2b4LAJWZk9GgsBoe+mLfWcuYWdK+09mq51flsu+5Oxv1Rq8GMkg6lp6npT+fVnLmpZpikDSyTYi+/uWc1TgAoPJyNhpUz6+qPtl5yjJmlvRzcpYa1Kx22fc8XJz09oMxMhgMOpKSq/d/OmFpErgYL1x3WVR86Rcfs6SiErMaBXrSOAAASOJy5HJ35MgRzZ49W5GRkVq9erVGjRqlMWPGaMGCBWXG5+fn6+mnn9aDDz4oL6+y/8KzoKBAWVlZVo+puLA8lwFUaN4eLnI2GpSWa/3PQVpuoXyrupT5TrC3uzrW95PRaNCEz/bqvU3H9UDLWhrU+tIun32nsjV55QE9+ckeTV17SEHe7pr5YIw8XJzKdT0AgIrN081JTkaDsv5n90BmfrG83cuuO6ezC/T2lt81bf1Rzdn0uwwGg164tZ58PC7F397IXyVms77Zn1qu+QMAHIeXu7OcjAZl5Fnvgs7IK1L1KmXXnOSMfL21/je9/M1BvfH9ERkMBr3aq6Hld6MTGfk6m12ggTfVVlVXJzkbDerdNFD+1Vzlc5k5AQCVD42DcmYymdS8eXNNnjxZsbGxGjFihIYPH645c+aUii0qKlLfvn1lNps1e/bsy86ZkJAgb29vq+fEdwvLcxnADcdokDLOF+rVbw5q/5kcfbc/Re9v/l29mgZZYjb/lq7vD6TocMp5bT2aoQmf7VE1N2d1jvKzY+YAAEd0KOW8fvwtQ8cz8rX/bK7e+uGosguK1TmyhiQpzMdD3aL8NH/z73bOFADg6PafzdX3B1P1W2qe9p7KVsI3h5SVV6zuDQMkXbi3LWHNIQV7u2vx4OZaOrSFYoK9tO14hszc6QYAuIijispZUFCQGjVqZDXWsGFDffrpp1Zj/20aHDt2TN99991ldxtIUnx8vMaPH2811n3WT9cvacDBZOYVqdhkVo2qrlbjNaq6KjW37PsJUnKLVGIyWR1LdCztvPyqucrZaFCxqfS/MOcUlOj39DzV9vG4rvkDABxLdkGJSkxmeblb/6u0t7uzMvOv7l6cEvOF44oCqrlJkqICqsrL3Vn/7tXQEuNkNOjB2CB1i/LTkyt+vX4LAAA4jKz8YpWYzKruYb0ToLqHizKu8i62ErNZR1LPK8jLzTJ2OOW8xn62V1VcnOTsdGEX3Wt3N9Shc7nXNX8AlYTB3gmgPNA4KGdt27bV/v37rcYOHDig0NBQy8//bRocPHhQ33//vXx9ff90Tjc3N7m5uVmNGZ1dLxMN3PiKTWYdOJOtFiHVteHQheMdDJJahFTXZztPlvnO7uRM3dowQAZdOM9Tkur4eCglp6DMpoEkebgYVcvbXatzOBoMACqzEpNZR9Py1LhmNe04kSXpQt1pFFhNaw9c3TFDBoNU29tdSaeyJUk//pauPaezrWImdKqrjb+l64eLFzADACqfYpNZh1Jy1bSWl7Ycy5B0oebEBHvpq71nrmoOo0EKreGhbcczS312vqhEKpKCvNxUz6+qFv2UfB2zBwA4MhoH5WzcuHGKi4vT5MmT1bdvX23dulXz5s3TvHnzJF1oGtx3333asWOHvvzyS5WUlOj06dOSpBo1asjVlYYAcDWWbEvWcz2i9OuZbP1yKlt9W9SSh4tRX+258C/Tz/eor3M5hZq74agkafnPp3RvbLCe6ByhT3eeVG0fdw24uY4+2XGp0TC6Q7h+PJym01n58qvmqmFxoSoxS2t/PWePJQIAKpBVv57T8DZ19Ftano6knle3KD+5ORstf8k/ok0dpZ8v0tKfL/x7Xa8mATqccl5nsgtVxdVJPRv6y6+qq9YdSpMk5RSWKKewxOrPKDGZlZlfrNPZXJQMAJXZ50lnNLZjuA6dy9WBc7m6K7qm3F2M+vbAhUuMx3YMV1pukd7/6YQk6f7mwdp/JkensgpU1dXp4v0Fblrzh99j2ob7KDO/WOdyChVWw0MPx4Voy7F07UrOsssaAQAVD42DctaqVSstW7ZM8fHxmjRpksLDwzVt2jT169dPkpScnKwVK1ZIkpo1a2b17vfff6+OHTvaOGPAMX23P0XVq7jo4bahqlHFVYfO5ejJT/Yq/eL23ZpeblbHEp3NLtT4T/ZoTKe6em9Qc6XkFGjpjpNatPXS2dL+nm6aeEeUvNxdlJFXpKTkLI1ctKvUxWQAgMpny/FMebo7q3dMTXm7O+t4er5e+/43y4XJvlVcrM6JrurqpKE315a3u7NyC0t0NC1P/1xzSCezaAoAAP7cf46kydvDWQ+1rCWfKi46knpeE78+oIy8CzXHv5qr/ng1QTU3Jz3WPkw+VVyUU1CiQym5evrzX/R7Rr4lxqeKi4a2CVF1D2elny/S9wdT9dGOsndrAwAqJ4OZm29uCO2mbrB3CgCASqJusLe9UwAAVCIZOTTYAAC2sWJEK3un4JA2H86wdwoOp3VEdXuncEVGeycAAAAAAAAAAAAqDo4qAgAAAAAAAABcE4MM9k4B5YAdBwAAAAAAAAAAwILGAQAAAAAAAAAAsKBxAAAAAAAAAAAALAxms9ls7yTw9+UX2zsDAAAAAAAAwHG5cxvsNdlyONPeKTicmyO87Z3CFbHjAAAAAAAAAAAAWNBHAwAAAAAAAABcE4PB3hmgPLDjAAAAAAAAAAAAWNA4sIHk5GT1799fvr6+8vDwUHR0tLZt22b5fOLEiWrQoIGqVq0qHx8fde3aVVu2bLFjxoBjWvLhIvW4tbNaxUar3wN9tDsp6U/jv1m9Ur3u6K5WsdG69+47teGH9Vafm81mzZz+prp0aKebmsdoxLDBOnbsaDmuAADgSKg7AABboeYAAGyNxkE5S09PV9u2beXi4qKVK1dq3759ev311+Xj42OJqV+/vmbMmKHdu3frP/F3xNkAAK23SURBVP/5j8LCwtStWzedO3fOjpkDjmXVyq819dUEjXx0tJYsXaaoqAYaNXKYUlNTy4zftXOHnpnwpO7pfZ8++mS5OnXuorGPj9bBgwcsMYnvzNfiRR/o+ZcmauHij+Xh4aFRI4apoKDAVssCAFRQ1B0AgK1QcwAA9mAwm81meydxI3vmmWf0448/asOGDVf9TlZWlry9vbV27Vp16dLlqt7JL77WDIEbQ78H+qhxk2g9+/yLkiSTyaRuXTrowYcGaNjwEaXiJzw5Vnl5eZoxa65lrP+DfRXVoIFeeGmSzGazuna8RQMHD9GgIcMkSdnZ2ercPk6TXn5FPXrebpuFAQAqJOoOAMBWqDmA7bhzG+w12Xok094pOJyb6nrbO4UrYsdBOVuxYoVatmypPn36KCAgQLGxsZo/f/5l4wsLCzVv3jx5e3uradOmNswUcFxFhYX6Zd9etW4TZxkzGo1q3TpOST/vLPOdpF271Lp1G6uxuLbtlLRrlyQp+cQJpaSc082tL83p6emp6Jiml50TAFA5UHcAALZCzQEA2AuNg3J25MgRzZ49W5GRkVq9erVGjRqlMWPGaMGCBVZxX375papVqyZ3d3f9+9//1po1a+Tn52enrAHHkp6RrpKSEvn6+lqN+/r6KiUlpcx3UlJS5OvrVzo+NeXi5xeOCvP1u/o5AQCVA3UHAGAr1BwAjsDA85cfR8AGnHJmMpnUsmVLTZ48WZIUGxurPXv2aM6cORo0aJAlrlOnTtq1a5dSUlI0f/589e3bV1u2bFFAQECpOQsKCkqdO2h2cpObm1v5LgYAAAAAAAAAcMNjx0E5CwoKUqNGjazGGjZsqOPHj1uNVa1aVfXq1VPr1q31zjvvyNnZWe+8806ZcyYkJMjb29vqeW1KQrmtAajofKr7yMnJqdTlYKmpqZfduePn56fU1JTS8Re/mePn539hLOXq5wQAVA7UHQCArVBzAAD2QuOgnLVt21b79++3Gjtw4IBCQ0P/9D2TyVRqV8F/xcfHKzMz0+qZ8HT8dcsZcDQurq5q2KixtmzeZBkzmUzasmWTYprGlvlOTLNm2rJ5s9XY5k0bFdOsmSSpVu3a8vPz15Ytl+bMycnR7qSfLzsnAKByoO4AAGyFmgMAsBeOKipn48aNU1xcnCZPnqy+fftq69atmjdvnubNmydJys3N1csvv6y77rpLQUFBSklJ0cyZM5WcnKw+ffqUOaebW+ljifKLy30pQIU2YNAQvfDs02rcuImaRMdo4QcLlJeXp7vv6S1Jei7+KQUE1NQT456UJPXrP1DDBg/QgvfeVfv2HbRq5dfau2ePXpg4SZJkMBjUb8BAzZ87W6EhoapVu7ZmTn9T/gEB6tylq93WCQCoGKg7AABboeYAAOyBxkE5a9WqlZYtW6b4+HhNmjRJ4eHhmjZtmvr16ydJcnJy0q+//qoFCxZcvMDIV61atdKGDRvUuHFjO2cPOI7uPXoqPS1Ns2a8pZSUc4pq0FCz5r4t34tbbU+fOiWj4dImq2axzZXw6lTNeGuapk97QyGhYZo2faYiI+tbYoYMG668vDxNmviisrOzFNu8hWbNfZv7RAAA1B0AgM1QcwAA9mAwm81meyeBv48dBwAAAAAAAMC1c+cr1tfkp98y7Z2Cw2kV7m3vFK6IOw4AAAAAAAAAAIAFjQMAAAAAAAAAAGBB4wAAAAAAAAAAAFjQOAAAAAAAAAAAABY0DgAAAAAAAAAAgAV3hQMAAAAAAAAArolBBnungHLAjgMAAAAAAAAAAGBB4wAAAAAAAAAAAFjQOAAAAAAAAAAAABY0DgAAAAAAAAAAgAWNAxtITk5W//795evrKw8PD0VHR2vbtm1lxj7yyCMyGAyaNm2abZMEbgBLPlykHrd2VqvYaPV7oI92JyX9afw3q1eq1x3d1So2Wvfefac2/LDe6nOz2ayZ099Ulw7tdFPzGI0YNljHjh0txxUAABwJdQcAYCvUHACArdE4KGfp6elq27atXFxctHLlSu3bt0+vv/66fHx8SsUuW7ZMmzdvVnBwsB0yBRzbqpVfa+qrCRr56GgtWbpMUVENNGrkMKWmppYZv2vnDj0z4Und0/s+ffTJcnXq3EVjHx+tgwcPWGIS35mvxYs+0PMvTdTCxR/Lw8NDo0YMU0FBga2WBQCooKg7AABboeYAqOgMBp6/+jgCGgflbMqUKapTp44SExN10003KTw8XN26dVNERIRVXHJysh5//HEtWrRILi4udsoWcFwfLEhU7/v66u577lVEvXp6/qV/yN3dXcs/+7TM+EUL31dcu1s0eOjDqhsRocfGjFXDRo205MOFki58A2fRB+9r+MhR6tS5q+pHNdC/El7VubNn9d23a225NABABUTdAQDYCjUHAGAPNA7K2YoVK9SyZUv16dNHAQEBio2N1fz5861iTCaTBgwYoAkTJqhx48Z2yhRwXEWFhfpl3161bhNnGTMajWrdOk5JP+8s852kXbvUunUbq7G4tu2UtGuXJCn5xAmlpJzTza0vzenp6anomKaXnRMAUDlQdwAAtkLNAQDYC42DcnbkyBHNnj1bkZGRWr16tUaNGqUxY8ZowYIFlpgpU6bI2dlZY8aMuao5CwoKlJWVZfWwnRCVWXpGukpKSuTr62s17uvrq5SUlDLfSUlJka+vX+n41JSLn5+7MOZ39XMCACoH6g4AwFaoOQAAe6FxUM5MJpOaN2+uyZMnKzY2ViNGjNDw4cM1Z84cSdL27dv15ptv6r333pPhKg+4SkhIkLe3t9Xz2pSE8lwGAAAAAAAAAKCSoHFQzoKCgtSoUSOrsYYNG+r48eOSpA0bNujs2bMKCQmRs7OznJ2ddezYMT355JMKCwsrc874+HhlZmZaPROeji/vpQAVlk91Hzk5OZW6HCw1NVV+fn5lvuPn56fU1JTS8Re/mePn539hLOXq5wQAVA7UHQCArVBzAAD2QuOgnLVt21b79++3Gjtw4IBCQ0MlSQMGDFBSUpJ27dpleYKDgzVhwgStXr26zDnd3Nzk5eVl9bi5uZX7WoCKysXVVQ0bNdaWzZssYyaTSVu2bFJM09gy34lp1kxbNm+2Gtu8aaNimjWTJNWqXVt+fv7asuXSnDk5Odqd9PNl5wQAVA7UHQCArVBzADgCA89ffhyBs70TuNGNGzdOcXFxmjx5svr27autW7dq3rx5mjdvnqQLZwj+71mFLi4uCgwMVFRUlD1SBhzSgEFD9MKzT6tx4yZqEh2jhR8sUF5enu6+p7ck6bn4pxQQUFNPjHtSktSv/0ANGzxAC957V+3bd9CqlV9r7549emHiJEmSwWBQvwEDNX/ubIWGhKpW7dqaOf1N+QcEqHOXrnZbJwCgYqDuAABshZoDALAHGgflrFWrVlq2bJni4+M1adIkhYeHa9q0aerXr5+9UwNuKN179FR6WppmzXhLKSnnFNWgoWbNfVu+F7fanj51SkbDpU1WzWKbK+HVqZrx1jRNn/aGQkLDNG36TEVG1rfEDBk2XHl5eZo08UVlZ2cptnkLzZr7Njt8AADUHQCAzVBzAAD2YDCbzWZ7J4G/L7/Y3hkAAAAAAAAAjsudr1hfkx1Hs+ydgsNpHuZl7xSuiDsOAAAAAAAAAACABY0DAAAAAAAAAABgwQYcAAAAAAAAAMC1Mdg7AZQHdhwAAAAAAAAAAAALGgcAAAAAAAAAAMCCxgEAAAAAAAAAALCgcQAAAAAAAAAAACxoHAAAAAAAAAAAAAtneycAAAAAAAAAAHBMBhnsnQLKATsObCA5OVn9+/eXr6+vPDw8FB0drW3btlk+Hzx4sAwGg9XTvXt3O2YMOKYlHy5Sj1s7q1VstPo90Ee7k5L+NP6b1SvV647uahUbrXvvvlMbflhv9bnZbNbM6W+qS4d2uql5jEYMG6xjx46W4woAAI6EugMAsBVqDgDA1mgclLP09HS1bdtWLi4uWrlypfbt26fXX39dPj4+VnHdu3fXqVOnLM/ixYvtlDHgmFat/FpTX03QyEdHa8nSZYqKaqBRI4cpNTW1zPhdO3fomQlP6p7e9+mjT5arU+cuGvv4aB08eMASk/jOfC1e9IGef2miFi7+WB4eHho1YpgKCgpstSwAQAVF3QEA2Ao1BwBgDwaz2Wy2dxI3smeeeUY//vijNmzYcNmYwYMHKyMjQ8uXL7/mPye/+JpfBW4I/R7oo8ZNovXs8y9Kkkwmk7p16aAHHxqgYcNHlIqf8ORY5eXlacasuZax/g/2VVSDBnrhpUkym83q2vEWDRw8RIOGDJMkZWdnq3P7OE16+RX16Hm7bRYGAKiQqDsAAFuh5gC2486h7tdk57Fse6fgcGJDPe2dwhWx46CcrVixQi1btlSfPn0UEBCg2NhYzZ8/v1TcunXrFBAQoKioKI0aNeqy3xwAUFpRYaF+2bdXrdvEWcaMRqNat45T0s87y3wnadcutW7dxmosrm07Je3aJUlKPnFCKSnndHPrS3N6enoqOqbpZecEAFQO1B0AgK1QcwAA9kLjoJwdOXJEs2fPVmRkpFavXq1Ro0ZpzJgxWrBggSWme/fuev/99/Xtt99qypQpWr9+vXr06KGSkhI7Zg44jvSMdJWUlMjX19dq3NfXVykpKWW+k5KSIl9fv9LxqSkXPz93Yczv6ucEAFQO1B0AgK1QcwAA9sIGnHJmMpnUsmVLTZ48WZIUGxurPXv2aM6cORo0aJAk6YEHHrDER0dHKyYmRhEREVq3bp26dOlSas6CgoJS5w6andzk5uZWjisBAAAAAAAAAGsGg70zQHlgx0E5CwoKUqNGjazGGjZsqOPHj1/2nbp168rPz0+HDh0q8/OEhAR5e3tbPa9NSbiueQOOxKe6j5ycnEod8ZWamio/P78y3/Hz81Nqakrp+IvfzPHz878wlnL1cwIAKgfqDgDAVqg5AAB7oXFQztq2bav9+/dbjR04cEChoaGXfefEiRNKTU1VUFBQmZ/Hx8crMzPT6pnwdPx1zRtwJC6urmrYqLG2bN5kGTOZTNqyZZNimsaW+U5Ms2basnmz1djmTRsV06yZJKlW7dry8/PXli2X5szJydHupJ8vOycAoHKg7gAAbIWaAwCwFxoH5WzcuHHavHmzJk+erEOHDunDDz/UvHnzNHr0aEkXivOECRO0efNmHT16VN9++6169eqlevXq6bbbbitzTjc3N3l5eVk9HFOEym7AoCH67JOPtWL5Mh05fFj/mjRReXl5uvue3pKk5+Kf0pv/ft0S36//QG38cYMWvPeufjtyWLNnTtfePXv0wEP9JUkGg0H9BgzU/Lmzte67b3XwwH49H/+U/AMC1LlLV3ssEQBQgVB3AAC2Qs0BANgDdxyUs1atWmnZsmWKj4/XpEmTFB4ermnTpqlfv36SJCcnJyUlJWnBggXKyMhQcHCwunXrpn/+8580A4C/oHuPnkpPS9OsGW8pJeWcoho01Ky5b8v34lbb06dOyWi41CttFttcCa9O1Yy3pmn6tDcUEhqmadNnKjKyviVmyLDhysvL06SJLyo7O0uxzVto1ty3+WcTAEDdAQDYDDUHAGAPBrPZbLZ3Evj78ovtnQEAAAAAAADguNz5ivU12XU8294pOJxmIZ72TuGK+McBAAAAAAAAAHBNDPZOAOWCOw4AAAAAAAAAAKigZs6cqbCwMLm7u+vmm2/W1q1bLxs7f/583XLLLfLx8ZGPj4+6du36p/GXQ+MAAAAAAAAAAIAK6KOPPtL48eP10ksvaceOHWratKluu+02nT17tsz4devW6cEHH9T333+vTZs2qU6dOurWrZuSk5P/0p/LHQc3CO44AAAAAAAAAK4ddxxcm5+54+Ava/oX7ji4+eab1apVK82YMUOSZDKZVKdOHT3++ON65plnrvh+SUmJfHx8NGPGDA0cOPCq/1x2HAAAAAAAAAAAYCMFBQXKysqyegoKCkrFFRYWavv27eratatlzGg0qmvXrtq0adNV/Vnnz59XUVGRatSo8ZdypHEAAAAAAAAAAICNJCQkyNvb2+pJSEgoFZeSkqKSkhLVrFnTarxmzZo6ffr0Vf1ZTz/9tIKDg62aD1eDDTgAAAAAAAAAgGtjsHcCjic+Pl7jx4+3GnNzc7vuf84rr7yiJUuWaN26dXJ3d/9L79I4AAAAAAAAAADARtzc3K6qUeDn5ycnJyedOXPGavzMmTMKDAz803enTp2qV155RWvXrlVMTMxfzpGjigAAAAAAAAAAqGBcXV3VokULffvtt5Yxk8mkb7/9Vm3atLnse6+++qr++c9/atWqVWrZsuU1/dnsOAAAAAAAAAAAoAIaP368Bg0apJYtW+qmm27StGnTlJubqyFDhkiSBg4cqFq1alnuSJgyZYpefPFFffjhhwoLC7PchVCtWjVVq1btqv9cdhzYQHJysvr37y9fX195eHgoOjpa27Zts4r55ZdfdNddd8nb21tVq1ZVq1atdPz4cTtlDDimJR8uUo9bO6tVbLT6PdBHu5OS/jT+m9Ur1euO7moVG617775TG35Yb/W52WzWzOlvqkuHdrqpeYxGDBusY8eOluMKAACOhLoDALAVag4AVF7333+/pk6dqhdffFHNmjXTrl27tGrVKsuFycePH9epU6cs8bNnz1ZhYaHuu+8+BQUFWZ6pU6f+pT+XxkE5S09PV9u2beXi4qKVK1dq3759ev311+Xj42OJOXz4sNq1a6cGDRpo3bp1SkpK0gsvvPCXL6wAKrNVK7/W1FcTNPLR0VqydJmiohpo1MhhSk1NLTN+184dembCk7qn93366JPl6tS5i8Y+PloHDx6wxCS+M1+LF32g51+aqIWLP5aHh4dGjRimgoICWy0LAFBBUXcAALZCzQEAPPbYYzp27JgKCgq0ZcsW3XzzzZbP1q1bp/fee8/y89GjR2U2m0s9EydO/Et/psFsNpuvU/4owzPPPKMff/xRGzZsuGzMAw88IBcXF33wwQfX/OfkF1/zq8ANod8DfdS4SbSeff5FSRfOe+vWpYMefGiAhg0fUSp+wpNjlZeXpxmz5lrG+j/YV1ENGuiFlybJbDara8dbNHDwEA0aMkySlJ2drc7t4zTp5VfUo+fttlkYAKBCou4AAGyFmgPYjjuHul+TpN9z7J2Cw4mpc/VHBtkLOw7K2YoVK9SyZUv16dNHAQEBio2N1fz58y2fm0wmffXVV6pfv75uu+02BQQE6Oabb9by5cvtlzTgYIoKC/XLvr1q3SbOMmY0GtW6dZySft5Z5jtJu3apdWvrS2Ti2rZT0q5dkqTkEyeUknJON7e+NKenp6eiY5pedk4AQOVA3QEA2Ao1BwBgLzQOytmRI0c0e/ZsRUZGavXq1Ro1apTGjBmjBQsWSJLOnj2rnJwcvfLKK+revbu++eYb3XPPPerdu7fWr19/hdkBSFJ6RrpKSkrk6+trNe7r66uUlJQy30lJSZGvr1/p+NSUi5+fuzDmd/VzAgAqB+oOAMBWqDkAAHthA045M5lMatmypSZPnixJio2N1Z49ezRnzhwNGjRIJpNJktSrVy+NGzdOktSsWTNt3LhRc+bMUYcOHUrNWVBQUOrcQbOTm9zc3Mp5NQAAAAAAAACAGx07DspZUFCQGjVqZDXWsGFDHT9+XJLk5+cnZ2fnP435XwkJCfL29rZ6XpuSUD4LAByAT3UfOTk5lbocLDU1VX5+fmW+4+fnp9TUlNLxF7+Z4+fnf2Es5ernBABUDtQdAICtUHMAAPZC46CctW3bVvv377caO3DggEJDQyVJrq6uatWq1Z/G/K/4+HhlZmZaPROeji+fBQAOwMXVVQ0bNdaWzZssYyaTSVu2bFJM09gy34lp1kxbNm+2Gtu8aaNimjWTJNWqXVt+fv7asuXSnDk5Odqd9PNl5wQAVA7UHQCArVBzAAD2wlFF5WzcuHGKi4vT5MmT1bdvX23dulXz5s3TvHnzLDETJkzQ/fffr/bt26tTp05atWqVvvjiC61bt67MOd3cSh9LlF9cnqsAKr4Bg4bohWefVuPGTdQkOkYLP1igvLw83X1Pb0nSc/FPKSCgpp4Y96QkqV//gRo2eIAWvPeu2rfvoFUrv9bePXv0wsRJkiSDwaB+AwZq/tzZCg0JVa3atTVz+pvyDwhQ5y5d7bZOAEDFQN0BANgKNQcAYA80DspZq1attGzZMsXHx2vSpEkKDw/XtGnT1K9fP0vMPffcozlz5ighIUFjxoxRVFSUPv30U7Vr186OmQOOpXuPnkpPS9OsGW8pJeWcoho01Ky5b8v34lbb06dOyWi4tMmqWWxzJbw6VTPemqbp095QSGiYpk2fqcjI+paYIcOGKy8vT5Mmvqjs7CzFNm+hWXPf5j4RAAB1BwBgM9QcABWdwWDvDFAeDGaz2WzvJPD3seMAAAAAAAAAuHbufMX6muw+kWPvFBxOdO1q9k7hirjjAAAAAAAAAAAAWNA4AAAAAAAAAAAAFjQOAAAAAAAAAACABY0DAAAAAAAAAABgwZUfAAAAAAAAAIBrYrB3AigXNA5uED6tHrN3CgCASuKD956zdwoAgErk+yMZ9k4BAFBJzLynob1TACoMjioCAAAAAAAAAAAWNA4AAAAAAAAAAIAFjQMAAAAAAAAAAGDBHQc2kJycrKefflorV67U+fPnVa9ePSUmJqply5aSJIOh7CtEXn31VU2YMMGWqQIOq23zCI0b2FXNG4UoyN9bfcfN0xfrkv70nVtaRGrKk73VKCJQJ05n6JW3V2nhF1usYkb2ba9xg7qopq+Xdh9I1vgpS7Vt77HyXAoAwEFsXrVMG75YopyMNAWG1tMdQ8eoTr2yz8Xdu+UHrVu2UGmnk1VSUiLfwFpqd+f9im3fzRLz7ceJStr4nTJTz8nJ2Vm16tbXrQ88rDqRjWy1JABABdU+3EddI2vIy91ZyZkF+jjptI6l55cZ2zrEWwNaBFuNFZWYNHbFfqux2xv6qW2YjzxcjDqSmqclu07pXG5Rua0BAOBYaByUs/T0dLVt21adOnXSypUr5e/vr4MHD8rHx8cSc+rUKat3Vq5cqWHDhunee++1dbqAw6rq4abdB5L1/ueb9NEbI64YHxrsq2XTH9Hbn/xHQ557T51uitLsFx/S6ZQsrd30iyTpvm7NNeXJe/T4yx/ppz1H9dhDnbRi1mg1vXuSzqXnlPeSAAAVWNLG7/T1+7PUa/h41YlsqB+/+kTvvTxB46Z9oGrePqXiPap5qmPvAfIPDpGTs7P279ikz2a9ompe1RXZ7CZJkl9wHd059AnVqBmsosIC/fjVUiX+a4KenL5IVb2q23iFAICKonktT/WODtCSXad1ND1PnSJq6LG4EP1jzWHlFJaU+U5eUYkmrTls+dn8P5/fGumrjnVr6IMdJ5WSW6Q7G/nrsbYh+ufaIyo2/W80AFxB2d+JhoOjcVDOpkyZojp16igxMdEyFh4ebhUTGBho9fPnn3+uTp06qW7dujbJEbgRfPPjPn3z476rjh9+XzsdTU7VM28skyTt/+2M4mIj9Hi/TpbGwZj+nZX42UZ9sGKzJOnxl5eoxy2NNejuNpqauOb6LwIA4DB+/HKpWna5XS069ZAk9Ro+Xvt3bNb2779Wh7v7lYqv2zjW6ue4nvdpx/rVOvrrbkvjoGm7rlYxPQeO1vbvvtbpY4cVEd2inFYCAKjoutTz1cajGdp8PFOStGTXaTUJrKY2YdW15kBqme+YzVJWQdlNBUnqVK+GVu1PUdKpC1+IWrDtpF7pGammQZ7anpx1/RcBAHA43HFQzlasWKGWLVuqT58+CggIUGxsrObPn3/Z+DNnzuirr77SsGHDbJglUPnc3DRc32+x3qq7ZuMvujnmQmPPxdlJsQ3r6Ls/xJjNZn23Zb9uirFu/gEAKpfi4iKdPLJf9f7wl/lGo1H1olvo+IErN7HNZrMO796ulJO/K7xR08v+GT+t/ULuVaoqMDTiuuUOAHAsTgapTnV3/Xou1zJmlvTruVzVreFx2ffcnI3652319K/b6mlk69oK8nS1fOZbxUXe7s7a/4c584tNOpqep/A/mRMAULmw46CcHTlyRLNnz9b48eP17LPP6qefftKYMWPk6uqqQYMGlYpfsGCBPD091bt3bztkC1QeNX29dCYt22rsbFqWvD095O7mIh+vKnJ2dtLZ/41JzVJUWE1bpgoAqGDOZ2XKZDKpWvUaVuPVqvvo3Mnjl30v/3yOpoy8T8XFRTIajbpz2DjVi2lpFfPr9o36aNokFRUWqFp1Xw15/nWOKQKASqyam7OcjAZl/8/ugez8EgVWcyvznTM5hVq445ROZuXL3dlJXSNr6MkOYfrX2iPKyC+Wl/uFvwrKyi89538/AwCAilDOTCaTWrZsqcmTJ0uSYmNjtWfPHs2ZM6fMxsG7776rfv36yd3d/bJzFhQUqKCgwGrMbCqRweh0fZMHAADAdePqXkWPvfa2CvLzdGT3Dq18f6Zq1AyyOsaobuNYPfba28rNytS2b7/Skn9P1COTZ5d5bwIAAGX5LS1Pv6XlWX4+knZeL3aNULtwH335yzk7ZgYAcCQcVVTOgoKC1KhRI6uxhg0b6vjx0t9G27Bhg/bv36+HH374T+dMSEiQt7e31VN8Zvt1zRu40Z1JzVLNGp5WYwE1vJSZnaf8giKlpOeouLhEAf8b4+ul06mc+QkAlVkVL28ZjUblZKRZjedkpJfahfBHRqNRvoG1FRwWqXZ33q/GrTto/fIPrWJc3T3kG1hbIfUbq/eop2R0ctL2774ul3UAACq+nIJilZjM8nSz/qKgp7uTsgqKr2oOk1n6PTNf/lVdJElZ+Rfe83IvY878q5sTAHDjo3FQztq2bav9+63PUT9w4IBCQ0NLxb7zzjtq0aKFmjYt+6zb/4qPj1dmZqbV41yTC/OAv2LLz7+p401RVmNdWjfQlqTfJElFxSXa+cvv6nTzpRiDwaBON9XX1osxAIDKydnZRcF1o3R4zw7LmMlk0uE92xVSv9GfvGnNbDKrpKjwz2PMZhVfIQYAcOMqMUu/Z+Qryr+qZcwgKcq/qo78YVfBnzFICvZyU+bFRkPq+SJl5hdbzenubFSYj4fVTgUAuFoG/vOX/+MIOKqonI0bN05xcXGaPHmy+vbtq61bt2revHmaN2+eVVxWVpaWLl2q119//Ypzurm5yc3N+ixDjilCZVfVw1URdfwtP4fV8lVM/VpKzzqv30+na9Ljdyk4wFsPv/CBJGn+J//RIw+018tP9NKCzzerY6v6uvfWWN0zZo5ljrcWfqf5kwZo+77j2rbnqB57qJOqeLjp/c8323x9AICKpe0dffTpzATVqhul2vUaauPXn6iwIF8tOvaQJC2dMVleNfx020MjJEnrly1SrYgo1agZrOKiIh3YuVm7Nnyjux4eJ0kqzM/Tus8WqkHLOHn6+Op8dqY2r1qurLRzatKmo72WCQCoAL49lKqBLYJ1PCNfR9Pz1DmihtycjNp8LEOSNLBFkDLyirVi34VjiHpE+em39DydyylUFZcLdxzUqOKijUczLHN+fyhN3aP8dDanUKnni3RHQ39l5hfr51PZZWQAAKiMaByUs1atWmnZsmWKj4/XpEmTFB4ermnTpqlfv35WcUuWLJHZbNaDDz5op0wBx9a8Uai+efsJy8+v/t+9kqQPVmzWiJcWKtDPS3UCLx0fcexkqu55fI5e/b/eGv1QRyWfydCoSR9q7aZfLDGffLNDfj7V9OKo21XT11NJ+5PVa/TMUhcmAwAqn5i4zsrNytC3HycqOyNNQWH1NPjZVy1HFWWmnJHBcOmbRIUFeVrx9r+VmXpOLq5u8q8Voj6PP6eYuM6SJIPRqHMnj2vH66t1PjtTVTy9VCuigYb/Y7pq1gm3yxoBABXDjuRsebqd1R0N/eXp5qTkzALN3HjccmGyj4eLzOZL8VVcjeoXGyRPNyflFZl0PCNfr68/qtPZl3awrTmYKldngx6KDZKHi1GHU/M0c+PvKjaZ//ePBwBUUgaz2UxVuAF4xD5m7xQAAJXEB+89Z+8UAACVyPdHMuydAgCgkph5T0N7p+CQ9ibn2jsFh9O4VtUrB9kZdxwAAAAAAAAAAAALGgcAAAAAAAAAAMCCOw4AAAAAAAAAANfkD1d74QbCjgMAAAAAAAAAAGBB4wAAAAAAAAAAAFgYzGaz2d5J4O/LL7Z3BgAAAAAAAIDjcudQ92uy72SuvVNwOI2Cq9o7hStixwEAAAAAAAAAALCgcQAAAAAAAAAAACzYgAMAAAAAAAAAuCYGeyeAcsGOAwAAAAAAAAAAYEHjwAaSk5PVv39/+fr6ysPDQ9HR0dq2bZvl85ycHD322GOqXbu2PDw81KhRI82ZM8eOGQOOacmHi9Tj1s5qFRutfg/00e6kpD+N/2b1SvW6o7taxUbr3rvv1IYf1lt9bjabNXP6m+rSoZ1uah6jEcMG69ixo+W4AgCAI6HuAABshZoDALA1GgflLD09XW3btpWLi4tWrlypffv26fXXX5ePj48lZvz48Vq1apUWLlyoX375RWPHjtVjjz2mFStW2DFzwLGsWvm1pr6aoJGPjtaSpcsUFdVAo0YOU2pqapnxu3bu0DMTntQ9ve/TR58sV6fOXTT28dE6ePCAJSbxnflavOgDPf/SRC1c/LE8PDw0asQwFRQU2GpZAIAKiroDALAVag4AwB4MZrPZbO8kbmTPPPOMfvzxR23YsOGyMU2aNNH999+vF154wTLWokUL9ejRQ//617+u6s/JL/7bqQIOrd8DfdS4SbSeff5FSZLJZFK3Lh304EMDNGz4iFLxE54cq7y8PM2YNdcy1v/Bvopq0EAvvDRJZrNZXTveooGDh2jQkGGSpOzsbHVuH6dJL7+iHj1vt83CAAAVEnUHAGAr1BzAdty5Dfaa/HIy194pOJyGwVXtncIVseOgnK1YsUItW7ZUnz59FBAQoNjYWM2fP98qJi4uTitWrFBycrLMZrO+//57HThwQN26dbNT1oBjKSos1C/79qp1mzjLmNFoVOvWcUr6eWeZ7yTt2qXWrdtYjcW1baekXbskScknTigl5Zxubn1pTk9PT0XHNL3snACAyoG6AwCwFWoOAMBeaByUsyNHjmj27NmKjIzU6tWrNWrUKI0ZM0YLFiywxEyfPl2NGjVS7dq15erqqu7du2vmzJlq3769HTMHHEd6RrpKSkrk6+trNe7r66uUlJQy30lJSZGvr1/p+NSUi5+fuzDmd/VzAgAqB+oOAMBWqDkAHIKB5y8/DoANOOXMZDKpZcuWmjx5siQpNjZWe/bs0Zw5czRo0CBJFxoHmzdv1ooVKxQaGqoffvhBo0ePVnBwsLp27VpqzoKCglLnDpqd3OTm5lb+CwIAAAAAAAAA3NDYcVDOgoKC1KhRI6uxhg0b6vjx45KkvLw8Pfvss3rjjTd05513KiYmRo899pjuv/9+TZ06tcw5ExIS5O3tbfW8NiWh3NcCVFQ+1X3k5ORU6nKw1NRU+fn5lfmOn5+fUlNTSsdf/GaOn5//hbGUq58TAFA5UHcAALZCzQEA2AuNg3LWtm1b7d+/32rswIEDCg0NlSQVFRWpqKhIRqP1/ymcnJxkMpnKnDM+Pl6ZmZlWz4Sn48tnAYADcHF1VcNGjbVl8ybLmMlk0pYtmxTTNLbMd2KaNdOWzZutxjZv2qiYZs0kSbVq15afn7+2bLk0Z05OjnYn/XzZOQEAlQN1BwBgK9QcAIC9cFRRORs3bpzi4uI0efJk9e3bV1u3btW8efM0b948SZKXl5c6dOigCRMmyMPDQ6GhoVq/fr3ef/99vfHGG2XO6eZW+lii/OJyXwpQoQ0YNEQvPPu0GjduoibRMVr4wQLl5eXp7nt6S5Kei39KAQE19cS4JyVJ/foP1LDBA7TgvXfVvn0HrVr5tfbu2aMXJk6SJBkMBvUbMFDz585WaEioatWurZnT35R/QIA6dyl9hBgAoHKh7gAAbIWaAwCwBxoH5axVq1ZatmyZ4uPjNWnSJIWHh2vatGnq16+fJWbJkiWKj49Xv379lJaWptDQUL388st65JFH7Jg54Fi69+ip9LQ0zZrxllJSzimqQUPNmvu2fC9utT196pSMhks7e5rFNlfCq1M1461pmj7tDYWEhmna9JmKjKxviRkybLjy8vI0aeKLys7OUmzzFpo1923uEwEAUHcAADZDzQEA2IPBbDab7Z0E/j52HAAAAAAAAADXzp2vWF+TX0+dt3cKDqdBUBV7p3BF3HEAAAAAAAAAAAAsaBwAAAAAAAAAAAALGgcAAAAAAAAAAMCCxgEAAAAAAAAAALCgcQAAAAAAAAAAACy4KxwAAAAAAAAAcE0MBntngPLAjgMAAAAAAAAAAGBB4wAAAAAAAAAAAFjQOAAAAAAAAAAAABY0DmwgOTlZ/fv3l6+vrzw8PBQdHa1t27ZZPj9z5owGDx6s4OBgValSRd27d9fBgwftmDHgmJZ8uEg9bu2sVrHR6vdAH+1OSvrT+G9Wr1SvO7qrVWy07r37Tm34Yb3V52azWTOnv6kuHdrppuYxGjFssI4dO1qOKwAAOBLqDgDAVqg5AABbo3FQztLT09W2bVu5uLho5cqV2rdvn15//XX5+PhIulCs7777bh05ckSff/65du7cqdDQUHXt2lW5ubl2zh5wHKtWfq2pryZo5KOjtWTpMkVFNdCokcOUmppaZvyunTv0zIQndU/v+/TRJ8vVqXMXjX18tA4ePGCJSXxnvhYv+kDPvzRRCxd/LA8PD40aMUwFBQW2WhYAoIKi7gAAbIWaAwCwB4PZbDbbO4kb2TPPPKMff/xRGzZsKPPzAwcOKCoqSnv27FHjxo0lSSaTSYGBgZo8ebIefvjhq/pz8ouvW8qAQ+r3QB81bhKtZ59/UdKFf466demgBx8aoGHDR5SKn/DkWOXl5WnGrLmWsf4P9lVUgwZ64aVJMpvN6trxFg0cPESDhgyTJGVnZ6tz+zhNevkV9eh5u20WBgCokKg7AABboeYAtuPubO8MHNOB0+ftnYLDqR9Yxd4pXBE7DsrZihUr1LJlS/Xp00cBAQGKjY3V/PnzLZ//t5vv7u5uGTMajXJzc9N//vMfm+cLOKKiwkL9sm+vWreJs4wZjUa1bh2npJ93lvlO0q5dat26jdVYXNt2Stq1S5KUfOKEUlLO6ebWl+b09PRUdEzTy84JAKgcqDsAAFuh5gAA7IXGQTk7cuSIZs+ercjISK1evVqjRo3SmDFjtGDBAklSgwYNFBISovj4eKWnp6uwsFBTpkzRiRMndOrUKTtnDziG9Ix0lZSUyNfX12rc19dXKSkpZb6TkpIiX1+/0vGpKRc/P3dhzO/q5wQAVA7UHQCArVBzAAD2wgaccmYymdSyZUtNnjxZkhQbG6s9e/Zozpw5GjRokFxcXPTZZ59p2LBhqlGjhpycnNS1a1f16NFDlztFqqCgoNS5g2YnN7m5uZX7egAAAAAAAAAANzZ2HJSzoKAgNWrUyGqsYcOGOn78uOXnFi1aaNeuXcrIyNCpU6e0atUqpaamqm7dumXOmZCQIG9vb6vntSkJ5boOoCLzqe4jJyenUpeDpaamys/Pr8x3/Pz8lJqaUjr+4jdz/Pz8L4ylXP2cAIDKgboDALAVag4AwF5oHJSztm3bav/+/VZjBw4cUGhoaKlYb29v+fv76+DBg9q2bZt69epV5pzx8fHKzMy0eiY8HV8u+QOOwMXVVQ0bNdaWzZssYyaTSVu2bFJM09gy34lp1kxbNm+2Gtu8aaNimjWTJNWqXVt+fv7asuXSnDk5Odqd9PNl5wQAVA7UHQCArVBzAAD2wlFF5WzcuHGKi4vT5MmT1bdvX23dulXz5s3TvHnzLDFLly6Vv7+/QkJCtHv3bj3xxBO6++671a1btzLndHMrfSxRfnG5LgOo8AYMGqIXnn1ajRs3UZPoGC38YIHy8vJ09z29JUnPxT+lgICaemLck5Kkfv0HatjgAVrw3rtq376DVq38Wnv37NELEydJkgwGg/oNGKj5c2crNCRUtWrX1szpb8o/IECdu3S12zoBABUDdQcAYCvUHAAVnsHeCaA80DgoZ61atdKyZcsUHx+vSZMmKTw8XNOmTVO/fv0sMadOndL48eN15swZBQUFaeDAgXrhhRfsmDXgeLr36Kn0tDTNmvGWUlLOKapBQ82a+7Z8L261PX3qlIyGS5usmsU2V8KrUzXjrWmaPu0NhYSGadr0mYqMrG+JGTJsuPLy8jRp4ovKzs5SbPMWmjX3be4TAQBQdwAANkPNAQDYg8F8uRt44VDYcQAAAAAAAABcO3e+Yn1NDpw5b+8UHE79mlXsncIVcccBAAAAAAAAAACwoHEAAAAAAAAAAAAsaBwAAAAAAAAAAAALTu4CAAAAAAAAAFwTgwz2TgHlgB0HAAAAAAAAAADAgsYBAAAAAAAAAACwoHEAAAAAAAAAAAAsaBwAAAAAAAAAAAALGgcAAAAAAAAAAMDC2d4JAAAAAAAAAAAck8Fg7wxQHthxUM7CwsJkMBhKPaNHj5Yk5efna/To0fL19VW1atV077336syZM3bOGnBMSz5cpB63dlar2Gj1e6CPdicl/Wn8N6tXqtcd3dUqNlr33n2nNvyw3upzs9msmdPfVJcO7XRT8xiNGDZYx44dLccVAAAcCXUHAGAr1BwAgK3ROChnP/30k06dOmV51qxZI0nq06ePJGncuHH64osvtHTpUq1fv14nT55U79697Zky4JBWrfxaU19N0MhHR2vJ0mWKimqgUSOHKTU1tcz4XTt36JkJT+qe3vfpo0+Wq1PnLhr7+GgdPHjAEpP4znwtXvSBnn9pohYu/lgeHh4aNWKYCgoKbLUsAEAFRd0BANgKNQcAYA8Gs9lstncSlcnYsWP15Zdf6uDBg8rKypK/v78+/PBD3XfffZKkX3/9VQ0bNtSmTZvUunXrq543v7i8MgYcQ78H+qhxk2g9+/yLkiSTyaRuXTrowYcGaNjwEaXiJzw5Vnl5eZoxa65lrP+DfRXVoIFeeGmSzGazuna8RQMHD9GgIcMkSdnZ2ercPk6TXn5FPXrebpuFAQAqJOoOAMBWqDmA7bhzqPs1OXQ2z94pOJx6AR72TuGK2HFgQ4WFhVq4cKGGDh0qg8Gg7du3q6ioSF27drXENGjQQCEhIdq0aZMdMwUcS1FhoX7Zt1et28RZxoxGo1q3jlPSzzvLfCdp1y61bt3GaiyubTsl7dolSUo+cUIpKed0c+tLc3p6eio6pull5wQAVA7UHQCArVBzAAD2QuPAhpYvX66MjAwNHjxYknT69Gm5urqqevXqVnE1a9bU6dOnbZ8g4KDSM9JVUlIiX19fq3FfX1+lpKSU+U5KSop8ff1Kx6emXPz83IUxv6ufEwBQOVB3AAC2Qs0BANgLG3Bs6J133lGPHj0UHBz8t+YpKCgode6g2clNbm5uf2teAAAAAAAAAPgrDPZOAOWCHQc2cuzYMa1du1YPP/ywZSwwMFCFhYXKyMiwij1z5owCAwMvO1dCQoK8vb2tntemJJRX6kCF51PdR05OTqUuB0tNTZWfn1+Z7/j5+Sk1NaV0/MVv5vj5+V8YS7n6OQEAlQN1BwBgK9QcAIC90DiwkcTERAUEBOj22y9dMtSiRQu5uLjo22+/tYzt379fx48fV5s2bcqaRpIUHx+vzMxMq2fC0/Hlmj9Qkbm4uqpho8basvnS3SAmk0lbtmxSTNPYMt+JadZMWzZvthrbvGmjYpo1kyTVql1bfn7+2rLl0pw5OTnanfTzZecEAFQO1B0AgK1QcwAA9sJRRTZgMpmUmJioQYMGydn50v/k3t7eGjZsmMaPH68aNWrIy8tLjz/+uNq0aaPWrVtfdj43t9LHEuUXl1v6gEMYMGiIXnj2aTVu3ERNomO08IMFysvL09339JYkPRf/lAICauqJcU9Kkvr1H6hhgwdowXvvqn37Dlq18mvt3bNHL0ycJEkyGAzqN2Cg5s+drdCQUNWqXVszp78p/4AAde7S9bJ5AAAqB+oOAMBWqDkAAHugcWADa9eu1fHjxzV06NBSn/373/+W0WjUvffeq4KCAt12222aNWuWHbIEHFv3Hj2VnpamWTPeUkrKOUU1aKhZc9+W78WttqdPnZLRcGmTVbPY5kp4dapmvDVN06e9oZDQME2bPlORkfUtMUOGDVdeXp4mTXxR2dlZim3eQrPmvs19IgAA6g4AwGaoOQAAezCYzWazvZPA38eOAwAAAAAAAODaufMV62ty+GyevVNwOBEBHvZO4Yr4xwEAAAAAAAAAcG0M9k4A5YHLkQEAAAAAAAAAgAWNAwAAAAAAAAAAYEHjAAAAAAAAAAAAWNA4AAAAAAAAAAAAFlyOfIP4cu8pe6cAAKgkqjg72TsFAEAlUmQy2TsFAEAl0Ss60N4pABUGjQMAAAAAAAAAwDUxyGDvFFAOOKoIAAAAAAAAAABY0DgAAAAAAAAAAAAWHFVUzsLCwnTs2LFS448++qhmzpypefPm6cMPP9SOHTuUnZ2t9PR0Va9e3faJAjeAzauWacMXS5STkabA0Hq6Y+gY1anXsMzYvVt+0LplC5V2OlklJSXyDayldnfer9j23Swx336cqKSN3ykz9ZycnJ1Vq2593frAw6oT2chWSwIAVGD/WfmZvlu+WNkZaQoOi1Dvh8cq9DI1Imnzeq359AOlnEqWqaRYfkG11fGu+9WqY3dLjNls1qol72jTmi+Ufz5HYQ2i1WfEk/IPrmOrJQEAKqiNK5dp/Yolys5IU1BohHoNe0IhkWX/rrN78w/67rOFSj2drJKLNaf9nX3VosNtkqSS4mKtXvy2ft25WalnTsm9SlVFRrdQj/4j5V3Dz5bLAgBUYAaz2Wy2dxI3snPnzqmkpMTy8549e3Trrbfq+++/V8eOHTVt2jTl5+dLkuLj46+5cfDJz1yOjMotaeN3+mRGgnoNH686kQ3141efaM/mdRo37QNV8/YpFX9k707l5ebIPzhETs7O2r9jk1a+P0sDn3lFkc1ukiT9/J+1qupVXTVqBquosEA/frVUezat15PTF6mqV3UbrxCoOLgcGZB2/udbLXrrZfUZ+aRC6zfS+i+X6ueN3yt++ofyrF667hzas1Pnc7JVs3aInJxdtHfbRq14b6aGPzdFDWJvliR9+9kirf1soR4a86x8A4K0cvE7Onn8sJ558wO5uLrZeolAhcHlyKjsdv34nT6aPlm9R4xXSGQjbfhqqXZvWqcJby0s83edw3t2Ki83W/61QuTs7KJftm/Slwtmacizryiq2U3Ky83Rwtdf1E1d71BQaD3l5WZrxbvTZTKZ9MSr8+ywQqDi4HLka3PkXL69U3A4df3d7Z3CFXFUUTnz9/dXYGCg5fnyyy8VERGhDh06SJLGjh2rZ555Rq1bt7ZzpoBj+/HLpWrZ5Xa16NRDAbXD1Gv4eLm4umv791+XGV+3cawa33SLAmqHyjewluJ63qeaoRE6+utuS0zTdl1VL6alatQMVs064eo5cLQK8nJ1+thhWy0LAFBBrfviI7W59U7d3OV2BdYJV5+R/ydXN3dt+e6rMuPrNYlVTOv2qlk7TH6BtdThjj4KCq2rI79cqDtms1nrv/xY3e4bqOibblFwWD09NOY5ZaWlavfWDbZcGgCggtnwxce6uesdatW5p2rWCVPvEU/Kxc1dP31X9u86EU1i1eTmCzXHN7CW2t1+nwJD6+roxZrjUbWahr/4hprGdVZArRCF1m+sux9+QslH9iv93BlbLg0AUIHROLChwsJCLVy4UEOHDpXBwG3jwPVSXFykk0f2q150C8uY0WhUvegWOn5g3xXfN5vNOrx7u1JO/q7wRk0v+2f8tPYLuVepqsDQiOuWOwDA8RQXFenE4QOqH2NddyJjWurY/r1XfN9sNutA0jadO/m7Ii7WndQzp5Sdkab6TVta4jyqVlNoZEMdvYo5AQA3puKiIiUfOaB6/1tzoltcdc05mLRd507+rvBGMZeNyz+fK4PBII+q1a5L3gAqF4OB568+joA7Dmxo+fLlysjI0ODBg+2dCnBDOZ+VKZPJpGrVa1iNV6vuo3Mnj1/2vfzzOZoy8j4VFxfJaDTqzmHjVC+mpVXMr9s36qNpk1RUWKBq1X015PnXOaYIACq53OxMmUwl8vyfuuNZ3Udnk0vfbfVfebk5mji8t4qLCmU0Oum+EeMV1ayVJCk7I1WSSh05Ua16DWWnp13nFQAAHIWl5pSqDz46m3z533XycnP08sj7LDXnnofHqn7TVmXGFhUW6OuFc9W0bRe5V6l6XfMHADguGgc29M4776hHjx4KDg7+W/MUFBSooKDAaqyosICzb4G/yNW9ih577W0V5OfpyO4dWvn+TNWoGaS6jWMtMXUbx+qx195Wblamtn37lZb8e6IemTy7zLNEAQD4M24eVfR/r7+rwvw8HUjaruWJM+RbM1j1msRe+WUAAP4CN48qGvva2yrMz9PB3Tv0xYJZqlEzWBH/U3NKiou18I2JMpvN6j1ivJ2yBQBURBxVZCPHjh3T2rVr9fDDD//tuRISEuTt7W31LHtn+nXIEnBMVby8ZTQalZNh/Y3MnIz0UrsQ/shoNMo3sLaCwyLV7s771bh1B61f/qFVjKu7h3wDayukfmP1HvWUjE5O2n6Zs0QBAJVDVU9vGY1Oyv6fupOdkS6v6r6Xfc9oNMo/qLZqhUeqU68H1LRNB6397ANJkufF93Iy063eyclIk6fP5WsZAODGZqk5pepDeqmdb39kNBrlF1RbweGR6nDX/Ypu00HfL1tkFXOhafCSMs6d0fAXX2e3AQDACo0DG0lMTFRAQIBuv/32vz1XfHy8MjMzrZ57hj1+HbIEHJOzs4uC60bp8J4dljGTyaTDe7YrpH6jq57HbDKrpKjwz2PMZhVfIQYAcGNzdnFR7Yj6OpC03TJmMpl0MGm7QqMaX/U8F2pKkSTJt2aQPKvXsJoz/3yujh38RWF/YU4AwI3F2cVFterW16Hd1jXn0O4df63mmEyWmiNdahqknErW8BffUFVP7+uaNwDA8XFUkQ2YTCYlJiZq0KBBcna2/p/89OnTOn36tA4dOiRJ2r17tzw9PRUSEqIaNcr+9oCbm5vc3KyPJXJxzS2f5AEH0faOPvp0ZoJq1Y1S7XoNtfHrT1RYkK8WHXtIkpbOmCyvGn667aERkqT1yxapVkSUatQMVnFRkQ7s3KxdG77RXQ+PkyQV5udp3WcL1aBlnDx9fHU+O1ObVy1XVto5NWnT0V7LBABUEB3vvF8fTp+sOvUaKDSyodZ/sVSFBXm6uXNPSdKiN/8lb18/3dH/EUnS2k8/UJ2IBvINrKWS4kLt275Z29avVp8RT0qSDAaDOtzRV2s+WSD/oNqqUTNIKxe/La8avoq+6Ra7rRMAYH+33NlXH89IUO2IBqpTr4H+89UnKizIU8tOF37XWfLWy/L29VePfhd+1/nus4WqHREl38BaKi4q1K87tmjHD9/onuEXjiIqKS7WB1NfVPJvBzQk/hWZTSXKTr9w145HNS85u7jYZ6EAgAqFxoENrF27VsePH9fQoUNLfTZnzhz94x//sPzcvn17SRd2KHCJMnD1YuI6KzcrQ99+nKjsjDQFhdXT4GdftRxVlJlyRoY/XFtfWJCnFW//W5mp5+Ti6ib/WiHq8/hzionrLEkyGI06d/K4dry+WuezM1XF00u1Ihpo+D+mq2adcLusEQBQccS266KcrAytWvyOsjLSVCu8nka+MNVybER6yhkZjH+sO/n6ZP4bykw9KxdXNwXUClX/J15QbLsulpjO9zykwoI8fTznNeXl5ii8YbRGvjCVe6wAoJJr1vbC7zrfLHlX2RlpCg6rp2HPvWapORkpZ2UwXjpQorAgX8vm/1uZaRd+1wkIDtEDY55Xs7YXftfJTDunfdt+lCRN+79hVn/WyInTSt2DAABXYrhyCByQwWw2m+2dBP6+T34+Ze8UAACVRBVnJ3unAACoRIpMJnunAACoJHpFB9o7BYd0NCXf3ik4nDA/d3uncEXccQAAAAAAAAAAACxoHAAAAAAAAAAAAAsaBwAAAAAAAAAAwILGAQAAAAAAAAAAsHC2dwIAAAAAAAAAAAdlsHcCKA80Dm4QdzQOsncKAAAAAAAAAIAbAEcVAQAAAAAAAAAACxoHAAAAAAAAAADAgsYBAAAAAAAAAACwoHEAAAAAAAAAAAAsaByUs7CwMBkMhlLP6NGjlZaWpscff1xRUVHy8PBQSEiIxowZo8zMTHunDTikJR8uUo9bO6tVbLT6PdBHu5OS/jT+m9Ur1euO7moVG617775TG35Yb/W52WzWzOlvqkuHdrqpeYxGDBusY8eOluMKAACOhLoDALAVag6AiszAf/7yfxwBjYNy9tNPP+nUqVOWZ82aNZKkPn366OTJkzp58qSmTp2qPXv26L333tOqVas0bNgwO2cNOJ5VK7/W1FcTNPLR0VqydJmiohpo1MhhSk1NLTN+184dembCk7qn93366JPl6tS5i8Y+PloHDx6wxCS+M1+LF32g51+aqIWLP5aHh4dGjRimgoICWy0LAFBBUXcAALZCzQEA2IPBbDab7Z1EZTJ27Fh9+eWXOnjwoAyG0t2lpUuXqn///srNzZWzs/NVz5tffD2zBBxPvwf6qHGTaD37/IuSJJPJpG5dOujBhwZo2PARpeInPDlWeXl5mjFrrmWs/4N9FdWggV54aZLMZrO6drxFAwcP0aAhF5p52dnZ6tw+TpNefkU9et5um4UBACok6g4AwFaoOYDtuF/9X8XhD46l0nT8q0J93eydwhWx48CGCgsLtXDhQg0dOrTMpoEkZWZmysvL6y81DYDKrqiwUL/s26vWbeIsY0ajUa1bxynp551lvpO0a5dat25jNRbXtp2Sdu2SJCWfOKGUlHO6ufWlOT09PRUd0/SycwIAKgfqDgDAVqg5AAB7oXFgQ8uXL1dGRoYGDx5c5ucpKSn65z//qREjSn9jAMDlpWekq6SkRL6+vlbjvr6+SklJKfOdlJQU+fr6lY5PTbn4+bkLY35XPycAoHKg7gAAbIWaAwCwF77WbkPvvPOOevTooeDg4FKfZWVl6fbbb1ejRo00ceLEP52noKCg1LmDZic3ublV/C0uAAAAAAAAAICKjR0HNnLs2DGtXbtWDz/8cKnPsrOz1b17d3l6emrZsmVycXH507kSEhLk7e1t9bw2JaG8UgcqPJ/qPnJycip1OVhqaqr8/PzKfMfPz0+pqSml4y9+M8fPz//CWMrVzwkAqByoOwAAW6HmAHAEBgPPX30cAY0DG0lMTFRAQIBuv936kqGsrCx169ZNrq6uWrFihdzd3a84V3x8vDIzM62eCU/Hl1fqQIXn4uqqho0aa8vmTZYxk8mkLVs2KaZpbJnvxDRrpi2bN1uNbd60UTHNmkmSatWuLT8/f23ZcmnOnJwc7U76+bJzAgAqB+oOAMBWqDkAAHvhqCIbMJlMSkxM1KBBg6wuPf5v0+D8+fNauHChsrKylJWVJUny9/eXk5NTmfO5uZU+lii/uPzyBxzBgEFD9MKzT6tx4yZqEh2jhR8sUF5enu6+p7ck6bn4pxQQUFNPjHtSktSv/0ANGzxAC957V+3bd9CqlV9r7549emHiJEmSwWBQvwEDNX/ubIWGhKpW7dqaOf1N+QcEqHOXrnZbJwCgYqDuAABshZoDALAHGgc2sHbtWh0/flxDhw61Gt+xY4e2bNkiSapXr57VZ7/99pvCwsJslSLg8Lr36Kn0tDTNmvGWUlLOKapBQ82a+7Z8L261PX3qlIyGS5usmsU2V8KrUzXjrWmaPu0NhYSGadr0mYqMrG+JGTJsuPLy8jRp4ovKzs5SbPMWmjX3be4TAQBQdwAANkPNAQDYg8FsNpvtnQT+PnYcAAAAAAAAANfOna9YX5PjaQX2TsHhhNSo+I1a7jgAAAAAAAAAAAAW9NEAAAAAAAAAANfEYO8EUC7YcQAAAAAAAAAAACxoHAAAAAAAAAAAAAsaBwAAAAAAAAAAwILGAQAAAAAAAAAAsKBxAAAAAAAAAAAALJztnQAAAAAAAAAAwDEZDPbOAOWBHQcAAAAAAAAAAMCCxgEAAAAAAAAAALCgcVDOwsLCZDAYSj2jR4+WJI0cOVIRERHy8PCQv7+/evXqpV9//dXOWQOOacmHi9Tj1s5qFRutfg/00e6kpD+N/2b1SvW6o7taxUbr3rvv1IYf1lt9bjabNXP6m+rSoZ1uah6jEcMG69ixo+W4AgCAI6HuAABshZoDALA1Ggfl7KefftKpU6csz5o1ayRJffr0kSS1aNFCiYmJ+uWXX7R69WqZzWZ169ZNJSUl9kwbcDirVn6tqa8maOSjo7Vk6TJFRTXQqJHDlJqaWmb8rp079MyEJ3VP7/v00SfL1alzF419fLQOHjxgiUl8Z74WL/pAz780UQsXfywPDw+NGjFMBQUFtloWAKCCou4AAGyFmgMAsAeD2Ww22zuJymTs2LH68ssvdfDgQRnKuDkkKSlJTZs21aFDhxQREXHV8+YXX88sAcfT74E+atwkWs8+/6IkyWQyqVuXDnrwoQEaNnxEqfgJT45VXl6eZsyaaxnr/2BfRTVooBdemiSz2ayuHW/RwMFDNGjIMElSdna2OreP06SXX1GPnrfbZmEAgAqJugMAsBVqDmA77s72zsAxnUin6fhX1fZxs3cKV8SOAxsqLCzUwoULNXTo0DKbBrm5uUpMTFR4eLjq1KljhwwBx1RUWKhf9u1V6zZxljGj0ajWreOU9PPOMt9J2rVLrVu3sRqLa9tOSbt2SZKST5xQSso53dz60pyenp6Kjml62TkBAJUDdQcAYCvUHACOwcDzl5+Kj8aBDS1fvlwZGRkaPHiw1fisWbNUrVo1VatWTStXrtSaNWvk6up62XkKCgqUlZVl9bCdEJVZeka6SkpK5OvrazXu6+urlJSUMt9JSUmRr69f6fjUlIufn7sw5nf1cwIAKgfqDgDAVqg5AAB7oXFgQ++884569Oih4OBgq/F+/fpp586dWr9+verXr6++ffsqPz//svMkJCTI29vb6nltSkJ5pw8AAAAAAAAAqARoHNjIsWPHtHbtWj388MOlPvP29lZkZKTat2+vTz75RL/++quWLVt22bni4+OVmZlp9Ux4Or480wcqNJ/qPnJycip1OVhqaqr8/PzKfMfPz0+pqSml4y9+M8fPz//CWMrVzwkAqByoOwAAW6HmAADshcaBjSQmJiogIEC33/7nlwyZzWaZzeY/PXrIzc1NXl5eVo+bW8W/UAMoLy6urmrYqLG2bN5kGTOZTNqyZZNimsaW+U5Ms2basnmz1djmTRsV06yZJKlW7dry8/PXli2X5szJydHupJ8vOycAoHKg7gAAbIWaAwCwFxoHNmAymZSYmKhBgwbJ2fnS9exHjhxRQkKCtm/fruPHj2vjxo3q06ePPDw81LNnTztmDDieAYOG6LNPPtaK5ct05PBh/WvSROXl5enue3pLkp6Lf0pv/vt1S3y//gO18ccNWvDeu/rtyGHNnjlde/fs0QMP9ZckGQwG9RswUPPnzta6777VwQP79Xz8U/IPCFDnLl3tsUQAQAVC3QEA2Ao1BwBgD85XDsHftXbtWh0/flxDhw61Gnd3d9eGDRs0bdo0paenq2bNmmrfvr02btyogIAAO2ULOKbuPXoqPS1Ns2a8pZSUc4pq0FCz5r4t34tbbU+fOiWj4VKvtFlscyW8OlUz3pqm6dPeUEhomKZNn6nIyPqWmCHDhisvL0+TJr6o7OwsxTZvoVlz32aHDwCAugMAsBlqDoCKzmCwdwYoDwaz2Wy2dxL4+/KL7Z0BAAAAAAAA4Ljc+Yr1NUnOKLR3Cg6nVnVXe6dwRRxVBAAAAAAAAAAALGgcAAAAAAAAAAAACxoHAAAAAAAAAADAgsYBAAAAAAAAAACw4MoPAAAAAAAAAMA1Mdg7AZQLGgc3iA93Hrd3CgCASuKm4Br2TgEAUInk5BfbOwUAQCXROqK6vVMAKgyOKgIAAAAAAAAAABY0DgAAAAAAAAAAgAWNAwAAAAAAAAAAYMEdB+UsLCxMx44dKzX+6KOPaubMmZafzWazevbsqVWrVmnZsmW6++67bZglcGPYseZzbflqqXIz0xQQEqGuA0crOKJBmbH7f9qgzSsWK/3MSZlKSuRTM1itet6nJu1utcQU5udp/Udv68C2jcrPyZK3f6Ba3Ha3YrvcaaslAQAqsJXLP9bnH72vjLRUhUVEatjjTymyYZMyY4//dlhL3pujIwd+0bkzpzTk0Sd1x30PWcWUlJTo4wVz9cPalcpIS5WPr586db9T9/V/WAYDV84BQGW29oulWvnpImWmp6pOeKT6j3pSEVGNy4xdt2q5fvz2a504dkSSFFavge4bNOqy8e9Nf0Xfr1ymh0aM1W13P1huawAAOBYaB+Xsp59+UklJieXnPXv26NZbb1WfPn2s4qZNm8YvhMDf8Mvmdfpu0Vx1GzJGwfUaatuqz/TxlHgNf+1dVfX2KRXvUdVLbe56SDWC68jJ2UWHd27W1/OmqopXddWNaSVJ+m7RHB3bu0t3jnpG3v419dvu7frmvbdUrbqvIlvE2XqJAIAK5Mfvv9F7s9/QyLHPKrJhE3356Yf659OPafqCz+TtU/oC8cKCfNUMqqW4Dl2VOOv1MudcvmSBVq/4RI8/8w/VCYvQ4f37NOPVf6hK1Wq6vTd/kQMAldWW9Wu0eP6bGvTY04po0Firly/R1Bee0JR5H8ureuma82vSDrXu0E31GsbIxdVVXy19X1OfH6OXZy9WDb8Aq9htG9fp8P49qu7rb6vlALgB8VeaNyaOKipn/v7+CgwMtDxffvmlIiIi1KFDB0vMrl279Prrr+vdd9+1Y6aAY/tp5adq2qmHYjp0l1+tUN025Am5uLlp9/rVZcaHNGqq+q3aya9WqHxqBqtl994KqFNXJ/bvtcQkH9ynJrfcqpBGTeXtH6hmnW9XQEiETh3Zb6tlAQAqqC+WLlTXnveoc4+7VCesrkaOe1Zubu76duXnZcbXa9BYgx4Zq3adb5OLi2uZMfv3/qxWbTuqRetbFBAYrDYduqppy9Y69OveMuMBAJXDqmWL1aF7L7XvdqdqhdTV4Meekaubu3745osy4x95apK63HGfQiPqK7hOmIY98ZxMJpP2/bzNKi4t5awWzp6qkRMmydmJ75UCAKzROLChwsJCLVy4UEOHDrXsLjh//rweeughzZw5U4GBgXbOEHBMJcVFOv3bAYU2bm4ZMxiNCmvcXMmH9l3xfbPZrKN7dijt9AnVaRBtGa8V2UiHdmxSdlqKzGazju3bpfTTJxQe3aJc1gEAcAxFRUU6fOBXxbS4yTJmNBoV0+ImHdi3+5rnjWrcVLt3bNXJ3y8cc3n08AH9umeXYm9ilxsAVFbFRUU6euhXNW5mXXMaN2ulQ79eXc0pKMhXSUmJqlXzsoyZTCbNmzpRPe/tr9qhda973gAAx0dL2YaWL1+ujIwMDR482DI2btw4xcXFqVevXvZLDHBw57MzZTaZSh1JVMXbR6mnfr/sewXnczXz8QdUUlwkg9GoboPHWDUFug4crdXvTNOsMQ/K6OQkg8Go7sPGqU6DmHJbCwCg4svOzJDJVKLqPr5W494+vko+fvSa573nwcE6n5ujMYPvldFolMlk0kPDHlX7rj3/ZsYAAEeVnXWh5vzvMXje1Wvo1O+l71Msy8eJM1W9hp8axbayjH219H0ZnZx0a6/7r2u+AIAbB40DG3rnnXfUo0cPBQcHS5JWrFih7777Tjt37vxL8xQUFKigoMBqrKiwQC6ubtctV6AycHX30JCX56iwIE/H9u7Ud4vmqLp/kEIaNZUkbf/mc5089IvuHT9JXn419fuvSVqzYLqq+fgqrEnzK8wOAMBfs3HdGm34dpXGPvey6oTV1W+HDihx1uvy8fVXp9vutHd6AAAH9OXHC7Rl/Ro9M2WWXC/+ncFvB3/RmhUf6R9vvc9diwCAy6JxYCPHjh3T2rVr9dlnn1nGvvvuOx0+fFjVq1e3ir333nt1yy23aN26dWXOlZCQoH/84x9WY3c9PFa9Roy73mkDDqGKp7cMRqNyM9Otxs9nppd5MfJ/GYxG+QTWkiTVDK2n1OTj2vTFYoU0aqqiwgL98PG76j12oiJib5YkBYTU1dljh7X1q6U0DgCgEvP0ri6j0UkZ6alW45npqapew++a531/7pu658HBatf5NklSaN1IpZw5pc8+TKRxAACVlKfXhZqTmZ5mNZ6ZkSbvGqUvRv6jrz9dqK+Wvq+nXp6hkPBIy/iBvbuUlZGu8YMunXxgMpVo8dtv6ZvlH+n195Zf1zUAABwTjQMbSUxMVEBAgG6//XbL2DPPPKOHH37YKi46Olr//ve/deedl//lMD4+XuPHj7caW7z7zPVNGHAgTs4uCgyvr2N7d6p+y7aSJLPJpKN7d6rFrVd/DJjZbFZJUZEkyVRcLFNJsWS0/gaOwegks9l0/ZIHADgcFxcXRdRvoN07ftLN7TpJunBWdNKOn9Tj7r7XPG9BQX6pb34anYwym81/K18AgONydnFRWL0G2vfzT2oR10HShZqzb9dP6npnn8u+99XSD/TFR4n6v3+9qfD6Da0+a9u5p9WdCZL02gtPqG3nHrrl1juu/yIA3PAMYvfSjYjGgQ2YTCYlJiZq0KBBcna+9D95YGBgmRcih4SEKDw8/LLzubm5yc3N+lgiF9eM65Yv4Iha9bhXX819VYHh9RUUEaVtq5apqCBf0R0ufGvzyzlT5Onjpw73D5MkbVqxWIHh9eVTM1jFRYU68vNW7f1xrboNHiNJcqtSVXUaxGjd4vlycXGTl1+Afv81SXv/s0ad+z1it3UCACqGO/v01/RXXlJEVENFNmiiLz/9UAX5eerc/S5J0lsJL6qGn7/6D39c0oULlU8cOyJJKi4uUmrKWf12aL/cPaooqFYdSVLLNrfo00Xvyr9moOqERei3g7/qi6WL1LkHd2EBQGXW/Z4HNf+NSQqPbKi69Rtp9edLVFCQb/lL/rlTJ8rH1199h4yWdOH+gs8+mKdHnpokv4BgZaRd2CHn7uEhd48qqublrWpe3lZ/hrOTs7x9aiiodqhtFwcAqLBoHNjA2rVrdfz4cQ0dOtTeqQA3rIatO+p8Vob+8+kC5WamKyA0Qn2fmmw5qigr5azVtziLCvK15r23lJ2WImdXN9UIrqM7Rj2jhq07WmLueuw5rf/oHX0xO0H5Odny8qupW/oMUbMufAsHACq7tp26KTMjXUsS5ygjPVXhEfX1/JTpql7jwoXJKWdPy/CHXWvpqef0fyMesvy84uMPtOLjD9S4aQtN+vc8SdLDjz+lxe/O1rxprygrI10+vn669Y571WfgcNsuDgBQodzc4VZlZWXosw/mKTM9VSF16+v/Jk2Tt8+FmpN27oyMRqMl/ruvPlNxcZFmTI63mufuhx7WPf2pKQCAq2Mws/f5hvDuT8ftnQIAoJK4KfjPz9MFAOB6yskvtncKAIBKonVEdXun4JBOZxbZOwWHE+jtYu8Ursh45RAAAAAAAAAAAFBZ0DgAAAAAAAAAAAAW3HEAAAAAAAAAALg2hiuHwPGw4wAAAAAAAAAAAFjQOAAAAAAAAAAAABYcVXSDCK7iYe8UAACVxNaTafZOAQBQiXi5utg7BQBApVHd3gkAFQY7DgAAAAAAAAAAgAWNAwAAAAAAAAAAYMFRRQAAAAAAAACAa2KwdwIoF+w4AAAAAAAAAAAAFuw4KGdhYWE6duxYqfFHH31UM2fOVMeOHbV+/Xqrz0aOHKk5c+bYKkXghrFh5af6bvliZWWkqVZYhO59eJxCIxuVGfvz5vVa8+n7SjmVrJKSYvkH1Vanux5Qq47dLTFms1krl7yjTWu+UN75bIU3iFafEf+ngOA6tloSAKAC27Hmc235aqlyM9MUEBKhrgNHKziiQZmx+3/aoM0rFiv9zEmZSkrkUzNYrXrepybtbrXEFObnaf1Hb+vAto3Kz8mSt3+gWtx2t2K73GmrJQEAKqjNq5ZpwxdLlJORpsDQerpj6BjVqdewzNi9W37QumULlXY6WSUlJfINrKV2d96v2PbdLDHffpyopI3fKTP1nJycnVWrbn3d+sDDqnOZ358AAJUPjYNy9tNPP6mkpMTy8549e3TrrbeqT58+lrHhw4dr0qRJlp+rVKli0xyBG8GO/3yrZYkz1Hfk/ymsfiOt+/JjzZ40Xs9NXyzP6j6l4qtU89St9w5UzdqhcnZ20Z5tP+rDGQmq5u2jhrE3S5K+XbZIP3z1ifqNeU41AoL09eK3Neef4xX/5kK5uLrZeokAgArkl83r9N2iueo2ZIyC6zXUtlWf6eMp8Rr+2ruq6l267nhU9VKbux5SjeA6cnJ20eGdm/X1vKmq4lVddWNaSZK+WzRHx/bu0p2jnpG3f039tnu7vnnvLVWr7qvIFnG2XiIAoIJI2vidvn5/lnoNH686kQ3141ef6L2XJ2jctA9UrayaU81THXsPkH9wiJycnbV/xyZ9NusVVfOqrshmN0mS/ILr6M6hT6hGzWAVFRbox6+WKvFfE/Tk9EWq6lXdxisEAFREHFVUzvz9/RUYGGh5vvzyS0VERKhDhw6WmCpVqljFeHl52TFjwDGt+2KJ4m69U6273K7AOuHqO3KCXN3ctfm7L8uMj2zSXE1bd1Bg7TD5BdZSxzv6Kjg0Qkd+SZJ0YbfB+i+Xqtt9AxV90y2qFVZP/cc8r8y0VO3eusGWSwMAVEA/rfxUTTv1UEyH7vKrFarbhjwhFzc37V6/usz4kEZNVb9VO/nVCpVPzWC17N5bAXXq6sT+vZaY5IP71OSWWxXSqKm8/QPVrPPtCgiJ0Kkj+221LABABfTjl0vVssvtatGphwJqh6nX8PFycXXX9u+/LjO+buNYNb7pFgXUDpVvYC3F9bxPNUMjdPTX3ZaYpu26ql5MS9WoGayadcLVc+BoFeTl6vSxw7ZaFgCggqNxYEOFhYVauHChhg4dKoPh0rUhixYtkp+fn5o0aaL4+HidP3/ejlkCjqe4qEi/Hz6g+jEtLWNGo1H1Y1rq6B/+QuZyzGaz9idt09mTxxXRqJkkKfXMSWVlpKp+01aWOI+q1RQa2Ui/7d9z3dcAAHAcJcVFOv3bAYU2bm4ZMxiNCmvcXMmH9l3xfbPZrKN7dijt9AnVaRBtGa8V2UiHdmxSdlqKzGazju3bpfTTJxQe3aJc1gEAqPiKi4t08sh+1ftDLTAajaoX3ULHD1xdzTm8e7tSTv6u8EZNL/tn/LT2C7lXqarA0IjrljsAwLFxVJENLV++XBkZGRo8eLBl7KGHHlJoaKiCg4OVlJSkp59+Wvv379dnn3122XkKCgpUUFBgNVZYWCBXjk5BJZWbnSmTqUSe1WtYjXtWr6GzyaXvGPmvvNwcvTj8HhUXFcpodFKfEePVoNmFRkF2RtqFOf5n669ndR9lp6dd5xUAABzJ+exMmU2mUkcSVfH2Ueqp3y/7XsH5XM18/AGVFBfJYDSq2+AxVk2BrgNHa/U70zRrzIMyOjnJYDCq+7BxqtMgptzWAgCo2M5nZcpkMqna//yuU626j86dPH7Z9/LP52jKyPtUXFwko9GoO4eNU70/fNFKkn7dvlEfTZukosICVavuqyHPv84xRQCuyR++H40bCI0DG3rnnXfUo0cPBQcHW8ZGjBhh+e/R0dEKCgpSly5ddPjwYUVElN3pT0hI0D/+8Q+rsX6j/k/9Rz9VPokDNyg3jyp66vVEFeTn6UDSNi1PnCHfmsGKbNL8yi8DAPAXubp7aMjLc1RYkKdje3fqu0VzVN0/SCEXvwG6/ZvPdfLQL7p3/CR5+dXU778mac2C6arm46swahMA4C9wda+ix157WwX5eTqye4dWvj9TNWoGqW7jWEtM3caxeuy1t5Wblalt336lJf+eqEcmzy7z3gQAQOVD48BGjh07prVr1/7pTgJJuvnmC5eyHjp06LKNg/j4eI0fP95qbN3hrOuTKOCAqnp6y2h0suwS+K/sjDR5Vve97HtGo1H+QbUlSbXDI3XmxDGt/WyhIps0t+xeyM5Ml3cNvz/Mma5a4fXKYRUAAEdRxdNbBqNRuZnpVuPnM9PLvBj5vwxGo3wCa0mSaobWU2rycW36YrFCGjVVUWGBfvj4XfUeO1ERsRf+fTAgpK7OHjusrV8tpXEAAJVUFS9vGY1G5fzP7zo5GemldiH8kdFolG/ghd91gsMidTb5mNYv/9CqceDq7iHfwNryDaytkPqN9caYftr+3dfqcE+/8lkMAMChcMeBjSQmJiogIEC33377n8bt2rVLkhQUFHTZGDc3N3l5eVk9HFOEyszZxUV1IurrQNJ2y5jJZNKBpO0Ki2p81fOYzSYVFxVKknxrBsuruq8OJG2zfJ5/PlfHDu5TeFST65c8AMDhODm7KDC8vo7t3WkZM5tMOrp3p2rVa3TV85jNZpUUFUmSTMXFMpUUS0brfd4Go5PMZtP1SRwA4HCcnV0UXDdKh/fssIyZTCYd3rNdIfX/Qs0xmVVy8Xedy8aYzZbfhwAAYMeBDZhMJiUmJmrQoEFydr70P/nhw4f14YcfqmfPnvL19VVSUpLGjRun9u3bKyaGs2yBv6LjnQ9o0fSXFVKvgUIiG2r9Fx+rsCBPN3e+0Kxb+OY/5e3rrzv7PyJJWvPpB6oT0UB+gcEqLi7Svu2b9NP61eo74v8kSQaDQR3u6KNvPlkg/6A68q0ZpK8Xvy3vGr6KvukWu60TAFAxtOpxr76a+6oCw+srKCJK21YtU1FBvqI73CZJ+nLOFHn6+KnD/cMkSZtWLFZgeH351AxWcVGhjvy8VXt/XKtug8dIktyqVFWdBjFat3i+XFzc5OUXoN9/TdLe/6xR536P2G2dAAD7a3tHH306M0G16kapdr2G2vj1JyosyFeLjj0kSUtnTJZXDT/d9tCFo5DXL1ukWhFRqlEzWMVFRTqwc7N2bfhGdz08TpJUmJ+ndZ8tVIOWcfL08dX57ExtXrVcWWnn1KRNR3stEwBQwdA4sIG1a9fq+PHjGjp0qNW4q6ur1q5dq2nTpik3N1d16tTRvffeq+eff95OmQKOq3m7LsrJytDXi99WVkaaaofX0yMvvC6vi9t301POyGC8tMmqsCBPS+e/rszUs3JxdVNArVANeOJFNW/XxRLT5Z5+KizI10dzXlVebo7qNozWIy+8Lhd2+ABApdewdUedz8rQfz5doNzMdAWERqjvU5MtRxVlpZyV4Q+3xBUV5GvNe28pOy1Fzq5uqhFcR3eMekYNW3e0xNz12HNa/9E7+mJ2gvJzsuXlV1O39BmiZl3usPXyAAAVSExcZ+VmZejbjxOVnZGmoLB6Gvzsq5ajijJTzljVnMKCPK14+9/KTD0nF1c3+dcKUZ/Hn1NMXGdJF47OO3fyuHa8vlrnszNVxdNLtSIaaPg/pqtmnXC7rBEAUPEYzGaz2d5J4O9btfecvVMAAFQSJ8/n2TsFAEAl4uXqYu8UAACVxH1NL390OC7vXHaxvVNwOP6eFf/7/NxxAAAAAAAAAAAALGgcAAAAAAAAAAAACxoHAAAAAAAAAADAgsYBAAAAAAAAAACwoHEAAAAAAAAAAAAsKv71zbgqQZ7u9k4BAFBJ1POvZu8UAACVSFGJyd4pAACAP2OwdwIoD+w4AAAAAAAAAAAAFjQOAAAAAAAAAACABY0DAAAAAAAAAABgwR0H5SwsLEzHjh0rNf7oo49q5syZkqRNmzbpueee05YtW+Tk5KRmzZpp9erV8vDwsHW6gENb9fnH+mLpB8pIS1VoRKSGjp6geg2alBm79utl+mHNV/r96GFJUt3Ihnpw6KNW8WazWR8vmKtvVy5Tbk6OGjRuqofHPKOg2iE2WQ8AoGL78rMl+nTxAqWnpSo8or4eGfu0ohpFlxl77LdDWvjObB3av+//27vv+JqvP47jr5u9iBAjsYIMK4g9SmLVqBStUVTtPWur3VotapRSe1XNmlWpUX4VKza1g0ZtEiNGZNzfH9GrtxKjJYP38/G4j4d77ud77udE9ZNzzz3fw7Url2nTpRd1GnycaN9LF85m3neTqF2/MW279nldQxARkVRi/colrFw8n1vhN/Hw9KZN1z5450t4rhN2LpRFc6YSevI4169epmWnnrxfv4lZTJuG73H96uWnrq1Rpz7tuvd/LWMQEZHURTsOXrOQkBAuX75semzcuBGA+vXrA/GLBtWrV+fdd99lz549hISE0LlzZyws9Fcj8jJ2bP2F+d+Np97Hbfhy6kJy5vZmRP8u3I4ITzD+2KF9lKtYjSFjpjF84hwyZMzM8H6dCb9xzRSzesk8fl61mDbd+jPym7nY2tkxon8XHj2KSqphiYhICvW/zUHMmDyOxs3bMWnmD+Ty9GZQz47cSqTuRD18SBa3rDRv1w2X9K7P7PvU8aNsWLOcXHm8X0fqIiKSymzfEsTsb7/mo+Zt+XrGIjzyeDGsd6fEa05UfM35pG3XRGvO2O8WMmfFL6bHsLFTASjrX/W1jUNERFIXfTr9mmXMmJEsWbKYHuvWrSNPnjz4+/sD8Omnn9K1a1f69etHgQIF8PHxoUGDBtja2iZz5iKpy7oV31O5Rh0qVn+fbDlz06Zbf2xs7fg1aE2C8V37D6fa+/Xx8PQhaw4P2vcYiNFo5MiBPUD8boP1K3/ggyatKFE2gJy5vejc93Mibl4nJHhrEo5MRERSopVLFlA98AOqvleHHLny0LnXQOzs7Pjlp1UJxnvnK0irTj3wr1IdaxvrRPt9cP8+Yz7/jC59BuOUJs1ryl5ERFKT1cu+59336lK5Rm2ye+SmQ48B2NrZsXn96gTjvfIWoHmHTylfuRpW1gnXHOd0LrhkcDU9Qnb+jyzu2ShYpNjrHIqIvKEMerz0IzXQwkESevToEQsXLqRly5YYDAauXbvG7t27yZQpE2XLliVz5sz4+/uzffv25E5VJFWJiY7m7KkT+BYtZWqzsLDAt2hJTh07/EJ9REU9JCYmBqc0zgBcu3KRW+E3KeRX0hTj4OiEZ96CnDp25NUOQEREUpXo6GjOnDpOkWLmdadI8VKc+P3F6k5ipo4fSYky5fErXvq/pikiIm+A6OhoQk8ep9A/ak7hYqU4+YJznRd5j20bf6ZyzdoYDKnl4ywREXndtHCQhFatWsWtW7do3rw5AGfPngVg6NChtGnThg0bNlC0aFEqV67M6dOnkzFTkdTlzu1bxMXFks4lvVl7Opf03Iq4+UJ9fD/zG9JncMW3aPxCwa3w+OucXTKYxTm/RJ8iIvJmunM7grjYWNKlN68R6VwyEHHzxr/ud9umDZw5dYLm7br+1xRFROQNcfevuU5687mOs0t6IsJfzbxk9/ZfuRd5l8rV338l/YmIyJtBhyMnoVmzZlGjRg3c3d0BiIuLA6Bdu3a0aNECAD8/PzZv3szs2bMZNWpUgv1ERUURFWV+j/VHUY+w0e2NRP6VVYvnErz1F4aO/Q4bG/07EhGRpHf96hWmT/qK4V9P0+90IiKSpDatX0XRUmVJ75oxuVMREZEURDsOksgff/zBpk2baN26tanNzc0NgPz585vF5suXj7CwsET7GjVqFM7OzmaPWd+Oez2Ji6QCaZ3TYWFh+dThYLciwkn3jx0D/7Rm2QJWLZ7LwFGTyZnby9T+17dIb/9jd8HtF+hTRETebGmdXbCwtDTtTvvLrYibuGR49sHHiTlz8hi3IsLp2roRgQHFCAwoxpGD+1iz/AcCA4oRGxv7KlIXEZFUJs1fc51w87nO7YhwXNL/93nJtSuXOLxvD1Xfq/uf+xIRkTeLFg6SyJw5c8iUKRPvvfeeqc3DwwN3d3dOnjxpFnvq1Cly5syZaF/9+/fn9u3bZo9WHXu+ttxFUjora2tye+fl6OODjSF+R8/RAyF45y+U6HWrl8xjxcKZfDbyG/L4mC/gZcqSlXTpM3DkQIip7f69SM6cOIp3ft9XPwgREUk1rK2t8fTOx8F95nXn4L495C2QeN15lsLFSzFl3nK+mb3E9PDKm5+AqjX5ZvYSLC0tX1X6IiKSilhbW5PHJx+H95vXnMP79uDzjLnOi9r88xqc06WneOl3/nNfIiLyZtGtipJAXFwcc+bMoVmzZlhZPfmRGwwGevfuzZAhQyhcuDBFihRh3rx5nDhxguXLlyfan62tLbb/2MJuc+vua8tfJDWo9WETpnw1lNze+fH0KcD6lYuIeviAgGqBAEz+cjDpXTPRuFVnIP72REvnf0fX/sPJlMWNW+Hx96S2s3fAzt4Bg8FAzbqN+HHRLNyyZieTW1YWz52KS4aMlCgXkFzDFBGRFKJuw6Z8PXIQXnnz452vIKuXfc/DBw+oWrM2AOOGDySDayaat48/ryA6Opqw86EAxETHcPP6NUJPn8De3gH3bDlwcHDEI7en2XvY2dmT1tn5qXYREXm71K7fhImjhuDpkx+vfAVYu3wRDx8+oHKN+DMJJowcRAbXTDRt2wWIrzkXzsefqRgTE034jWucPX0Se3t73LLlMPUbFxfHlg1rqFitFpZW+nhIRP49nav+ZlJlSAKbNm0iLCyMli1bPvVa9+7defjwIZ9++inh4eEULlyYjRs3kidPnmTIVCT1KhvwLnduRbB03jRuRdzEI483n438xnRboRvXrmAwPNlktXHdCmKio/n6875m/dRr2oYGn7QDoHbDZkQ9fMh3E0ZyP/IueQsW4bNRk3QOgoiIUKFyNW7fimDhrKlEhN8gt6cPn4/91nTbiOtXL2P42wwq/MY1urb8yPT8x8Xz+XHxfHyLFGP0N7OSPH8REUk93qkUX3N+mDOViPCb5PL0YchXk023V71+1XyuE37jOj3aNDI9X7VkAauWLKBA4WKMmDjD1H5o326uX71C5ceL3iIiIn9nMBqNxuROQv67Q2HacSAiIknD0U7fOxARkaQTHRuX3CmIiMhbIp+bY3KnkCrdvBeT3CmkOhkcU/68WmcciIiIiIiIiIiIiIiIiRYORERERERERERERETERAsHIiIiIiIiIiIiIiJikvJvpiQiIiIiIiIiIiIiKZIBQ3KnIK+BdhyIiIiIiIiIiIiIiIiJwWg0GpM7Cfnv7Ev1Tu4URETkbRHzKLkzEBGRt4mFZXJnICIib4kHIV8ndwqpUvi92OROIdVJ75jyf7/RjgMRERERERERERERETHRwoGIiIiIiIiIiIiIiJho4UBEREREREREREREREyskjsBEREREREREREREUmdDIbkzkBeB+04eM08PDwwGAxPPTp16gTAlStXaNq0KVmyZMHR0ZGiRYuyYsWKZM5aJHVqV68sJ1b2J+J/I/nfrC4Uz5890VgrSwv6t6rC7yv6EfG/kexe+ClVS/uYxVhYGBjcrhrHV/YnfNtIfl/Rj34tq7zuYYiISCrRrv47nFg7mIgdY/nfvE8pXiBHorFWVhb0b1ON31cPImLHWHb/0IeqZfKaxTg52DKmZ11OrhtCePAYfp3dnWL5E+9TRETeHu3ql+PE6oFEbP+S/83pRvFn1AcrSwv6t36X31d+RsT2L9n9fa+nao6FhYHB7atzfNUAwn/7kt9Xfka/VlVf9zBERCQV0cLBaxYSEsLly5dNj40bNwJQv359AD755BNOnjzJmjVrOHLkCB988AENGjTgwIEDyZm2SKpTr0phvuwWyIhZGynTbAKHz1xizcTWZHRxTDB+aPvqtK5Tmh7jVuH30Vhm/riLJV82o7C3uymmZ9OKtPmgDJ+OXUmRj8YwcMpP9PjYn44NyiXVsEREJIWqV9WPL3vUZcT0IMo0GcPhU5dYM7kDGV2cEowf2uE9Wn9Qlh5frcCv/ihmrghmydhWFPbJaoqZOugjKpXyoeWghRRv+CWbdp3gp6kdcc/onFTDEhGRFKhe1SJ82b02I2YGUabp1xw+fYk137R9Rs2pSeu6ZegxZiV+Db9k5o87WPJVCwp7P6k5PT+pRJsPy/LpmB8p0mA0A79ZR4+mFenYsHxSDUtERFI4LRy8ZhkzZiRLliymx7p168iTJw/+/v4A7Nixgy5dulCyZEly587NwIEDSZcuHfv27UvmzEVSl66NKjBn9W4WrNvLiXPX6DL6Rx48jKZZYMkE4xvXKMpX87YQtOME5y+FM+PHnQTtPEG3xv6mmNKFcrLuf7+zIfgEYZcjWLnlCJv3nH7mt3tEROTt0PXjAOas3MGCtbs5ce4qXUYu5cHDRzSrXTrB+MbvleCr2RsJCj7G+Ys3mbE8mKDg43T7uBIAdrbW1KlUmAGT1hB8IJSzf95gxPQNhF64QZt6WrAWEXmbdW3sz5xVu1iwNiS+5oxaHj/XeT+RuU7NYnw1dxNBO45z/mI4M1bsIGjHcbp9HGCKKV3Ig3XbfmdD8PHHc53DbN596pm750RE5O2ihYMk9OjRIxYuXEjLli0xPL75V9myZVmyZAnh4eHExcWxePFiHj58SEBAQPImK5KKWFtZ4pc3K1v2nDa1GY1GtoScpqRvzgSvsbGx4mFUtFnbg4fRlC3sYXq+6/AfVCzuiWd2VwB8vdwoU9iDX3aeePWDEBGRVCO+7mRny55Tpjaj0ciWPaco6euR4DU21lY8fBRj1vYgKpqyRXIB8beVsLKy5GGUeczDqGjKFsn9agcgIiKpRnzNyfbyNScqgZpTOJfp+a7D56lYwgvPHBkB8PVyp0zhXPyy4/irH4SIiKRKOhw5Ca1atYpbt27RvHlzU9vSpUtp2LAhGTJkwMrKCgcHB1auXImnp2ei/URFRREVFWXWZoyLwWChv055O7mmc8TKypJr4ZFm7dfCI/HJmSnBazbtOkXXxhXYfvAcZ/+8ScUSntSuWBBLiyfrqWPn/0paR1sOLe1NbJwRSwsDQ6ZtYHGQbiUmIvI2M9Wdm3fN2q/dvIuPR2J15wRdmwSwfX/8boKKJb2pXamQqe5E3o9i16Fz9G/9LifPXeFq+F0aVCtGKV8PQi9cf+1jEhGRlOnJXOcfNSf8WTXnJF2b+LP9QOjjuY4XtSv6ms915m0hrZMdh5b1fTLXmfozizfsf63jERGR1EOfNCehWbNmUaNGDdzdn9xDfdCgQdy6dYtNmzbh6urKqlWraNCgAb/99hu+vr4J9jNq1CiGDRtm1mbpXgbrbNrGLvKien29mm8/q8ehJb0xGo2cvXiT+ev20qxWCVNMvSqF+Kh6UZoPXsSxs1cp5O3OmE/f5/L1O3y/XrcTExGRF9drzAq+HfQRh1Z8Fl93/rzB/DW7afZ+KVNMy8EL+G5wY84GfUFMTCwHT/zJ0qD9+OXLloyZi4hIatNr3Eq+HdCAQ8v6PZnrrN1Ds8AnNadelcLxc52BC5/MdXrU4fL123z/095kzF5ERFIKLRwkkT/++INNmzbx448/mtpCQ0OZPHkyR48epUCBAgAULlyY3377jSlTpjBt2rQE++rfvz89evQwa8tUecjrS14khbtx6x4xMbFkSm9+OFim9E5c+cc3c/5+TYM+87C1sSKDswOXrt9heKeanLt00xQzskstxs7/lWUbDwHwe+gVcmRxoXezSlo4EBF5i5nqToY0Zu2ZMqThyo1n1J2esx7XHUcuXb/N8C6BnLv4pO6c+/Mm77b9Bgc7G9I62XHlxh0WjGpmFiMiIm+XJ3Odf9Sc9Gm4cvMZNaf3HPOa07mW+VynWyBj521h2caDAPweepkcbi70bl5ZCwciIgLojIMkM2fOHDJlysR7771nart//z4AFhbmfw2WlpbExcUl2petrS1p06Y1e+g2RfI2i46J5cCJi1Qs8eQWXwaDgYolPNlz5I9nXhv1KIZL1+9gZWlBnYq+rPvf76bX7O2siYszmsXHxsVhYWF4tQMQEZFUJb7uXKBiCW9TW3zd8WbPkfPPvDa+7tzGysqCOpULs27b0adi7j98xJUbd0iXxp4qZfKybuuRVz0EERFJJeJrzp9ULOFlaouvOV4vXnMsLahTqZBZzbG3tUlgrmPEwqC5joiIxNOnzUkgLi6OOXPm0KxZM6ysnvzI8+bNi6enJ+3atWPs2LFkyJCBVatWsXHjRtatW5eMGYukPpN++B8zBjdk3/E/2XvsAp0/Ko+DnQ3z14UAMHPIR1y6fpvB3/4MQIkC2XHP6MyhU5fImsmZAa2rYmFh4OsFW019rv/tOH1bVOLC1QiOnb1KEe+sdG1UgflrQ5JhhCIikpJMWriVGcOasO94GHuPhtG5sT8O9jbMX7MbgJnDmsTXncnxv9OVKJjzcd25SNaMzgxoVwMLg4Gv52029VmlTF4MwKk/rpEne0ZGdnufU+evMX/t7uQYooiIpBCTFm1jxpBG7Dt+gb2/h9G50eOas3YPADOHNuLS9TsMnvITACUK5MA9099qTttq8XOd+VtMfa7f/jt9W1ThwpUIjp29QhGfbHRt7M/8NXuSZYwiIpLyaOEgCWzatImwsDBatmxp1m5tbc369evp168fgYGBREZG4unpybx586hZs2YyZSuSOi3fdAjXdI4MbluNzBnScPjUJWp3n2k6MDl75nRm36ixtbFmSPvq5HJPT+SDRwTtOEGroYu5HfnQFNNj3CqGtKvGxN4fkNHFics37jBr5S5GztqU5OMTEZGUZfnGA7i6ODG4fU0yZ0jL4VN/UrvLNNPhldmzuBBn/HvdsWJIx/fIlTUDkQ+iCNp+jFaDFnA78oEpxtnJjs87B5I1UzrC79xj9eZDDPn2J2JiEt+JKiIib77lGw/ims6Jwe2qP645F6nddfqTuc4/a46tNUPa13hSc4KP02rwIvO5zpiVDGlfg4l9PySjSxou37jNrB93MnLmL0k+PhERSZkMRqPR+PwwSensS/VO7hRERORtEfMouTMQEZG3iYVlcmcgIiJviQchXyd3CqlSxP3Y5E4h1XFxSPm/32jHgYiIiIiIiIiIiIj8Kzoe5c2kw5FFRERERERERERERMRECwciIiIiIiIiIiIiImKihQMRERERERERERERETHRwoGIiIiIiIiIiIiIiJjocOQ3hWO65M5ARERERERERERERN4AWjgQERERERERERERkX/FgCG5U5DXQLcqEhEREREREREREREREy0ciIiIiIiIiIiIiIiIiRYOROSN0a52MU4s6kTEhr78b0pziud1TzTWytKC/k3f4feFHYnY0JfdM1pTtUTuRON7NSrDgy0DGNOp6utIXUREUiHVHRERSSqqOSIiktS0cPAfREdHJ3cKIvJYvYB8fNmhCiPm/0aZdrM4HHqNNV9+RMZ0DgnGD23pT+vAovT4Jgi/Ft8xc+1+lnxej8KemZ+KLebjRqtaRTkcevV1D0NERFIJ1R0REUkqqjkiIpIcUtXCwYYNG3jnnXdIly4dGTJkoFatWoSGhppe//PPP2nUqBHp06fH0dGR4sWLs3v3btPra9eupUSJEtjZ2eHq6krdunVNrxkMBlatWmX2funSpWPu3LkAnD9/HoPBwJIlS/D398fOzo7vv/+emzdv0qhRI7JmzYqDgwO+vr788MMPZv3ExcXx1Vdf4enpia2tLTly5GDEiBEAVKpUic6dO5vFX79+HRsbGzZv3vwqfmwib4Wu9UsxZ/1BFmw4zIk/btBl/HoeRMXQrEbhBOMbV/Xlq++DCdodyvnLt5ixZj9Bu0PpVr+UWZyjnTVzPqtNx3E/cevuw6QYioiIpAKqOyIiklRUc0REJDmkqoWDe/fu0aNHD/bu3cvmzZuxsLCgbt26xMXFERkZib+/PxcvXmTNmjUcOnSIPn36EBcXB8BPP/1E3bp1qVmzJgcOHGDz5s2ULFnypXPo168f3bp14/jx41SrVo2HDx9SrFgxfvrpJ44ePUrbtm1p2rQpe/bsMV3Tv39/Ro8ezaBBgzh27BiLFi0ic+b4lf7WrVuzaNEioqKiTPELFy4ka9asVKpU6T/+xETeDtZWFvh5u7Fl3zlTm9EIW/ado2T+bAleY2NtycNHMWZtD6KiKeub3axtQrfqbNh9hl/3n3/leYuISOqkuiMiIklFNUdEUgODQY+XfaQGVsmdwMv48MMPzZ7Pnj2bjBkzcuzYMXbs2MH169cJCQkhffr0AHh6eppiR4wYwUcffcSwYcNMbYULJ7w6/yzdu3fngw8+MGvr1auX6c9dunQhKCiIpUuXUrJkSe7evcvEiROZPHkyzZo1AyBPnjy88847AHzwwQd07tyZ1atX06BBAwDmzp1L8+bNMaSW/4pEkpmrswNWlhZci7hn1n4t4h4+OTIkeM2mvWfpWr8U2w+HcfZSBBWL5qJ2+bxYWjz5d1e/Yn6KeGXhnQ6zX2v+IiKSuqjuiIhIUlHNERGR5JKqdhycPn2aRo0akTt3btKmTYuHhwcAYWFhHDx4ED8/P9OiwT8dPHiQypUr/+ccihcvbvY8NjaWL774Al9fX9KnT4+TkxNBQUGEhYUBcPz4caKiohJ9bzs7O5o2bcrs2fHFev/+/Rw9epTmzZsnmkNUVBR37twxexjjYhKNF5Gn9Zq8kdA/wzk0tz13funP+K7VmL/hEHFGIwDZMqZhTKeqtBi5mqjo2GTOVkREUjvVHRERSSqqOSIi8iqkqh0HgYGB5MyZkxkzZuDu7k5cXBwFCxbk0aNH2NvbP/Pa571uMBgwPi6if0no8GNHR0ez52PGjGHixIlMmDABX19fHB0d6d69O48ePXqh94X42xUVKVKEP//8kzlz5lCpUiVy5syZaPyoUaPMdk4AWHpUxDrXf18YEUmNbty+T0xsHJlczP99ZnJx5Er4vUSvaTB4ObbWlmRwduDSjbsMb1ORc5dvAeDn7Ubm9E7s/K6V6RorSwveKZSD9nWK41xtNHFxxgT7FhGRN5vqjoiIJBXVHBERSS6pZuHg5s2bnDx5khkzZlC+fHkAtm/fbnq9UKFCzJw5k/Dw8AR3HRQqVIjNmzfTokWLBPvPmDEjly9fNj0/ffo09+/ff25ewcHB1K5dm48//hiIPwj51KlT5M+fHwAvLy/s7e3ZvHkzrVu3TrAPX19fihcvzowZM1i0aBGTJ09+5nv279+fHj16mLVlen/8c3MVeVNFx8Rx4NRlKhb1YG3wKSD+fnEVi3owbdXeZ14bFR3LpRt3sbK0oE6FvKzYehyAX/efp1jL6Wax0/vU4uSFm4z7Yad+kRYReYup7oiISFJRzRERkeSSahYOXFxcyJAhA9OnT8fNzY2wsDD69etner1Ro0aMHDmSOnXqMGrUKNzc3Dhw4ADu7u6UKVOGIUOGULlyZfLkycNHH31ETEwM69evp2/fvgBUqlSJyZMnU6ZMGWJjY+nbty/W1tbPzcvLy4vly5ezY8cOXFxc+Prrr7l69app4cDOzo6+ffvSp08fbGxsKFeuHNevX+f333+nVasnq/utW7emc+fOODo6Urdu3We+p62tLba2tmZtBotU81cp8lpMWrabGf3eZ9/Jy+w9cYnOH5bEwc6a+RsOAzCzXyCXbtxl8MytAJTI6457xjQcOnOVrK5pGNCsPBYGA18v3glA5INHHDt/3ew97j2MJvzOg6faRUTk7aO6IyIiSUU1R0REkkOq+bTZwsKCxYsX07VrVwoWLIiPjw+TJk0iICAAABsbG3755Rd69uxJzZo1iYmJIX/+/EyZMgWAgIAAli1bxhdffMHo0aNJmzYtFSpUMPU/btw4WrRoQfny5XF3d2fixIns27fvuXkNHDiQs2fPUq1aNRwcHGjbti116tTh9u3bpphBgwZhZWXF4MGDuXTpEm5ubrRv396sn0aNGtG9e3caNWqEnZ3dK/iJibxdlm89jms6Rwa38CeziyOHQ69Su+9i0yFi2TM5m31zxtbGiiEt/Mnl7kLkg0cE7T5Dq1FruH0vKrmGICIiqYjqjoiIJBXVHBFJ6QzPD5FUyGD85439JVmcP3+ePHnyEBISQtGiRV/6evtKI15DViIiIiIiIiIiIm+HB1sGJHcKqdLdh3HJnUKqk8bOIrlTeK5Us+PgTRUdHc3NmzcZOHAgpUuX/leLBiIiIiIiIiIiIiIir0rKX9p4wwUHB+Pm5kZISAjTpk1L7nRERERERERERERE5C2nHQfJLCAgAN0tSkRERERERERERERSCu04EBERERERERERERERE+04EBEREREREREREZF/x5DcCcjroIWDN8Tiia2SOwUREXlLZHGwT+4URETkLfIoNi65UxARERF56+hWRSIiIiIiIiIiIiIiYqKFAxERERERERERERERMdHCgYiIiIiIiIiIiIiImGjhQERERERERERERERETHQ4soi8MXb8vJJtaxZz91Y4bjnzULtVN3J45Usw9siu/7Hlx4XcvHKR2NgYXN2yUSGwAcX8qwEQGxND0A8zOXFgFzevXsbOwREv32LU+Lgdzuldk3JYIiKSQm1au4z1KxZyO+Im2XN50bRDL/L4FEgw9tcNqwje/BN//nEWAA/PvNRv1jHR+DnfjOLXn1fSuO2nVK/T6LWNQUREUoctPy0n6MeF3I4IJ3suTxq160lu74RryP+CVrFzy89cfFxzcnr6UPeTDk/FX7pwjhVzp3Dq6AFiY2Nxz56LDv1HkSFTltc+HhF5sxgwJHcK8hpo4QCIjo7G2to6udMQkf/gYPAW1s6bwgdte5DDKz+//bSMWcN70XvSQpycXZ6Kd3BKQ+UPPyZj1hxYWVlzfN9Olk35EidnF3yKlORR1EMunjtF5Xqf4JbTkwf37rJm9jfMHf0Z3b6angwjFBGRlGTXto0smjGB5p37kSdvAYJWLWbMoK58NX0ZadOlfyr+xOF9lPavhle+Qljb2PDTsvmMGdiFkVMXk941k1ns3h2/EnryKC4ZMibVcEREJAXb89tGls6cyMed+pLbuwCb1ixmwuDuDJ+2JMGac/LIfkpWqEqefIWwtrbh5xULGD+4G59PWYRLhviac+3yn3zZtx3vVA2kduM22Dk4cinsLNY2Nkk9PBERSaGS9VZFAQEBdOnShe7du+Pi4kLmzJmZMWMG9+7do0WLFqRJkwZPT09+/vln0zWxsbG0atWKXLlyYW9vj4+PDxMnTnyq79mzZ1OgQAFsbW1xc3Ojc+fOptcMBgNTp07l/fffx9HRkREjRgAwdepU8uTJg42NDT4+PixYsOCZ+YeEhFC1alVcXV1xdnbG39+f/fv3m15v3LgxDRs2NLsmOjoaV1dX5s+fD8Ddu3dp0qQJjo6OuLm5MX78eAICAujevftL/zxF3ma/rV1KqSq1KFGpJpmze/BB255Y29oRsmV9gvF5CvpRsFQFMmfzIEOWrLzzXj2y5MzN+eNHALB3dKLN4K8pXLYSmbLmIKd3Aeq07sbFsyeJuH41KYcmIiIp0IaViwioXocK7waSNUdumnfuh62tHdt+WZtgfIc+X1ClVj1y5vHGPbsHrboNIC7OyLFDIWZx4TeusWDqONr3/hxLS33HR0REYOOqHyhfrTbvVKmFe45cfNyxLza2dmzfuC7B+Da9Pqfie/XIkdsbt+weNO/yGca4OI4f2muKWblgGr7FylK/RRdy5PEhk1s2ipSqkOBChIiIvJ2S/YyDefPm4erqyp49e+jSpQsdOnSgfv36lC1blv379/Puu+/StGlT7t+/D0BcXBzZsmVj2bJlHDt2jMGDB/PZZ5+xdOlSU59Tp06lU6dOtG3bliNHjrBmzRo8PT3N3nfo0KHUrVuXI0eO0LJlS1auXEm3bt3o2bMnR48epV27drRo0YJff/010dzv3r1Ls2bN2L59O7t27cLLy4uaNWty9+5dAJo0acLatWuJjIw0XRMUFMT9+/epW7cuAD169CA4OJg1a9awceNGfvvtN7PFBxF5vpjoaC6ePYVnoWKmNgsLC7x8i/HHyd+fe73RaOT04X1cv3SBXPkLJRr38P49DAYD9o5OryRvERFJnWKiozl/5gQFipQwtVlYWJC/SAnOnDjyQn1ERT0kNjYGR6e0pra4uDi+GzuEmh9+TLaceV553iIikvrEREfzx5mT5C9sXnPyFSnB2ZMvVnMeRT0kNjbWVHPi4uI4vHcHmbPmYPzgbnz6cQ1G9GzJgZ3bXssYREQkdUr2rzEVLlyYgQMHAtC/f39Gjx6Nq6srbdq0AWDw4MFMnTqVw4cPU7p0aaytrRk2bJjp+ly5crFz506WLl1KgwYNABg+fDg9e/akW7duprgSJUrwd40bN6ZFixam540aNaJ58+Z07NgRiP9Af9euXYwdO5aKFSsmmHulSpXMnk+fPp106dKxbds2atWqRbVq1XB0dGTlypU0bdoUgEWLFvH++++TJk0a7t69y7x581i0aBGVK1cGYM6cObi7uz/zZxYVFUVUVJRZW/SjKKxtbJ95ncib6t7d28TFxZLmH7ckckrnwrWLYYle9+BeJCPa1SMm+hEWFpbUbd0d78IlEoyNfhTF+oXfUbhcZewcHF9p/iIikrrcvXOLuLhY0rqYfyvTOV16Ll/444X6WDJnMi7pXSngV9LU9tOy+VhaWvFu7YbPuFJERN4mkYnUnLTpXLjy5/kX6mP53CmkS+9K/scL3ndvRxD14D4/L59PnY/b8WHzThzdt4tvR/Wj14gp+PgWfdXDEBGRVCjZdxwUKvTk272WlpZkyJABX19fU1vmzJkBuHbtmqltypQpFCtWjIwZM+Lk5MT06dMJCwszxV26dMn0QXxiihcvbvb8+PHjlCtXzqytXLlyHD9+PNE+rl69Sps2bfDy8sLZ2Zm0adMSGRlpysXKyooGDRrw/fffA3Dv3j1Wr15NkyZNADh79izR0dGULPlkwujs7IyPj88zcx81ahTOzs5mj+Uzv3nmNSLyNFt7B7qPmUnX0d9RrVFr1s77ltCjB56Ki42JYeHXQzEajXzQtkcyZCoiIm+StUvnsXvbRroO+gqbx1/8OHf6OL+sWUybHoMxGHS4nIiIvBrrl81nz2+b6PjZaNOXDY1xcQAUKVWBd+s0Ikdub2rW/4RCJcqxbcPK5ExXRERSkGTfcfDPQ4kNBoNZ218Tp7jHhW3x4sX06tWLcePGUaZMGdKkScOYMWPYvXs3APb29i/0vo6O//0bw82aNePmzZtMnDiRnDlzYmtrS5kyZXj06JEppkmTJvj7+3Pt2jU2btyIvb091atX/0/v279/f3r0MP/w8pfTEf+pT5HUzDGNMxYWlty9bf7vIPJWBGmecY9OCwsLXN2yAeCey4trF//g15Xfk6egnykmftFgCLeuX6Xt0PHabSAiIqRJmw4LC0vuRISbtd++FY5z+gzPvHb9ioX8tGwefUZMJkcuL1P7yd8PcudWBJ82e9/UFhcXyw8zJ/LLqsV8PXf1qx2EiIikCk6J1Jw7tyJwdnl2zQn68Xt+XjGfnl98Q/a/1RyntOmwtLTEPYeHWbxbdg9OHzv0ynIXkbeHvvfyZkr2hYOXFRwcTNmyZU23FAIIDQ01/TlNmjR4eHiwefPmRG8xlJB8+fIRHBxMs2bNzN4rf/78z8zl22+/pWbNmgBcuHCBGzdumMWULVuW7Nmzs2TJEn7++Wfq169vWhjJnTs31tbWhISEkCNHDgBu377NqVOnqFChQqLva2tri62t+W2JrG3uv/BYRd40VtbWZM3tzZkj+yhYsjwQv9h45sh+ytao+8L9GOPiiImONj3/a9HgxuWLtBs6Acc0zq88dxERSX2srK3x8MzL74dCKFY2AIivO8cO7qVKYP1Er/tp2XzWLJlD7+GTyO1t/jtmuUo1KFikpFnbmEFdKVupBhWqBr7yMYiISOpgZW1NTk8fjh8Owa+MPxBfc04cCqHie4nXnJ9XLGD90rl0HzYRD698T/Xp4ZWfK3+a39b16sULZMjo9uoHISIiqVKqWzjw8vJi/vz5BAUFkStXLhYsWEBISAi5cuUyxQwdOpT27duTKVMmatSowd27dwkODqZLly6J9tu7d28aNGiAn58fVapUYe3atfz4449s2rTpmbksWLCA4sWLc+fOHXr37p3gjofGjRszbdo0Tp06ZXbYcpo0aWjWrBm9e/cmffr0ZMqUiSFDhmBhYaEt6iIvqXxgA5ZOHkW2PHnJ7pmX7T8t51HUA4pXrAHA4kkjcM6QkRpN2gKw5ceFZMvjQ4YsWYmJfsSJ/bvZ/79fqNsmfjdPbEwMC8YO5uK5U7ToPxpjXCx3I24CYO+UFqt/7JYSEZG3S/W6jZnx9TByeeUjt3cBflm9mKioB1SoWguA78YOwSVDJhq06ATAumXz+HHBdDr0+QLXTG7cCo//somdvQN29g6kSZuONGnTmb2HpaUVzi4ZcMuWM0nHJiIiKUvVOo2YPf4LcnrmI5d3fjatXkLUw4eUq/IeALO+Hka6DBn5sFn8Fyx/Xj6f1d/PoE2vYbhmduP243mMrZ09dvYOAFT7oAnffTUQ74JF8PEtxu/7d3Foz3Z6j5ySPIMUEZEUJ9UtHLRr144DBw7QsGFDDAYDjRo1omPHjvz888+mmGbNmvHw4UPGjx9Pr169cHV1pV69es/st06dOkycOJGxY8fSrVs3cuXKxZw5cwgICEj0mlmzZtG2bVuKFi1K9uzZGTlyJL169XoqrkmTJowYMYKcOXM+dY7C119/Tfv27alVqxZp06alT58+XLhwATs7u5f7wYi85YqUq8S9O7f4ZfFs7t4Kx93Dk1YDxphuVXTrxjUMFk+OdXkU9ZCVM8ZzO/w61ja2ZHLPwUddB1KkXPyh57fDr3NsbzAAE3q1MnuvdkMnmN3OSERE3j6l/aty904EPy6Yzu2Im+TI7U3vzyeabhtx8/pVs7qz5acfiYmJ5puR/cz6qdO4NR983DZJcxcRkdSlZPmqRN6+xervZ3An4ibZc3vRfdj4v9WcK2ZfPtz6c3zNmTr6M7N+Ahu1onbjNgAULRNA0459Wb9sHj9MH0+WrDno0H8UXgWKJNm4REQkZTMYjUZjcichT9y7d4+sWbMybtw4WrVq9fwLHlt95MprzEpEROSJLA4vdp6QiIjIq/AoNi65UxARkbdEeW+X5E4hVbr3SB8vvyxHm5R/t5lUt+PgTXPgwAFOnDhByZIluX37Np9//jkAtWvXTubMRERERERERERERORtpIWDFGDs2LGcPHkSGxsbihUrxm+//Yarq2typyUiIiIiIiIiIiLyTCn/u/Pyb2jhIJn5+fmxb9++5E5DRERERERERERERAQAi+eHiIiIiIiIiIiIiIjI20ILByIiIiIiIiIiIiIiYmIwGo069voNYF9ldHKnICIib4u42OTOQERE3iYG3TlZRESSxoPNnyV3CqnS/Uf6ePllOdik/N9vtONARERERERERERERERMdDiyiIiIiIiIiIiIiPw7Kf/L8/IvJOuOAw8PDyZMmPDC8efPn8dgMHDw4MHXltPfzZ07l3Tp0iXJe4mIiIiIiIiIiIiIpATJuuMgJCQER0fHV9rn3Llz6d69O7du3Xql/YpIytfu/aJ82qAUmdM7ciT0Gj0mb2TvycsJxlpZWtC7URk+frcg7q5pOHUhnIEzf2VjyDlTTJtAP9oE+pEzszMAx/+4wcgFwfwScjZJxiMiIilbu9rF+LRhaTKnd+JI6FV6fPMLe09cSjDWytKC3o3L8nG1Qo/rzk0GTt/CxkRqSq9GZfiiTSUmr9hD7ykbX+cwREQkFWhXu9jjuc7fas6z5jqNy/Lxu75Pas6MX81qTpvAorR5v+jf5jrXGblgO7/s0VxHRETiJeuOg4wZM+Lg4JCcKYjIG6JeQF6+bF+JEQu2U6b9HA6fvcaa0Q3JmC7h/8cMbVGB1rWK0GPyRvxazWDmugMsGfoBhT0zm2IuXr/LoJlbKdtxLuU6zmXrgT9Y9vmH5MvpmlTDEhGRFKpeQD6+7FCFEfN/o0y7WRwOvcaaLz9KvO609Kd1YFF6fBOEX4vvmLl2P0s+r2dWd/5SzMeNVrWKcjj06usehoiIpAL1AvLxZfvKjJi/nTLtZ79YzanlR49vfsGv5XRmrj3AkmEfms91btxh0IxfKdthNuU6znk816mvuY6IiJi88MLBunXrSJcuHbGxsQAcPHgQg8FAv379TDGtW7fm448/Nj3fvn075cuXx97enuzZs9O1a1fu3btnev2ftyo6ceIE77zzDnZ2duTPn59NmzZhMBhYtWqVWS5nz56lYsWKODg4ULhwYXbu3AnA1q1badGiBbdv38ZgMGAwGBg6dCgAUVFR9OrVi6xZs+Lo6EipUqXYunWrWb9z584lR44cODg4ULduXW7evPncn0vfvn3x9vbGwcGB3LlzM2jQIKKjowE4deoUBoOBEydOmF0zfvx48uTJY3q+Zs0avLy8sLOzo2LFisybNw+DwaBdEyIvoeuHJZmz/hALgo5wIuwmXSZs4EFUNM2qF0owvnGVAny1aCdBe85y/vJtZqw9QNCes3SrV8IUs37XGYL2nCX0YgRnLkYwdM7/iHzwiJL53JNqWCIikkJ1rV+KOesPsmDDYU78cYMu49fzICqGZjUKJxjfuKovX30fTNDuUM5fvsWMNfsJ2h1Kt/qlzOIc7ayZ81ltOo77iVt3HybFUEREJIXrWq9kfM0JelxzJvwcX3OqJ1JzqhTkq0U7CNrzuOasfbrmrN95hqA9ofFznT/DGTp7W/xcJ3/WpBqWiIikcC+8cFC+fHnu3r3LgQMHANi2bRuurq5mH75v27aNgIAAAEJDQ6levToffvghhw8fZsmSJWzfvp3OnTsn2H9sbCx16tTBwcGB3bt3M336dAYMGJBg7IABA+jVqxcHDx7E29ubRo0aERMTQ9myZZkwYQJp06bl8uXLXL58mV69egHQuXNndu7cyeLFizl8+DD169enevXqnD59GoDdu3fTqlUrOnfuzMGDB6lYsSLDhw9/7s8lTZo0zJ07l2PHjjFx4kRmzJjB+PHjAfD29qZ48eJ8//33Ztd8//33NG7cGIBz585Rr1496tSpw6FDh2jXrl2i4xaRhFlbWeDnnYUt+8+b2oxG2LL/fKK/+NrYWPHwUYxZ24OoaMoWzJ5gvIWFgfoB+XC0s2b3sYuvLHcREUl94uuOG1v2Pbm9ndEIW/ado2T+bAleY2NtmXDd8TWvOxO6VWfD7jP8+reaJiIiby9TzXlqrnPuGXOdBGrOoxjKFky4RllYGKhfMb/mOiIiYuaFzzhwdnamSJEibN26leLFi7N161Y+/fRThg0bRmRkJLdv3+bMmTP4+/sDMGrUKJo0aUL37t0B8PLyYtKkSfj7+zN16lTs7OzM+t+4cSOhoaFs3bqVLFmyADBixAiqVq36VC69evXivffeA2DYsGEUKFCAM2fOkDdvXpydnTEYDKY+AMLCwpgzZw5hYWG4u7ub+tiwYQNz5sxh5MiRTJw4kerVq9OnTx8g/kP/HTt2sGHDhmf+XAYOHGj6s4eHB7169WLx4sWmfpo0acLkyZP54osvgPhdCPv27WPhwoUAfPfdd/j4+DBmzBgAfHx8OHr0KCNGjHjeX4mIPObq7ICVpQXXIu6ZtV+LuIdP9gwJXrNp71m61ivB9iMXOHspgop+HtR+xwdLC4NZXIFcGdk6qSl2NlZEPnhEw6E/ciLs+buRRETkzfXMupPjGXWnfim2Hw6LrztFc1G7fF6zulO/Yn6KeGXhnQ6zX2v+IiKSevyruU7IObrWK/m3mvOMuc43zZ7MdYas4MQfN17bWETkzWXA8PwgSXVe6owDf39/tm7ditFo5LfffuODDz4gX758bN++nW3btuHu7o6XlxcAhw4dYu7cuTg5OZke1apVIy4ujnPnzj3V98mTJ8mePbvZB/4lS5ZMMI9ChZ7cesTNzQ2Aa9euJZr3kSNHiI2Nxdvb2yyfbdu2ERoaCsDx48cpVcp8q3iZMmWe+zNZsmQJ5cqVI0uWLDg5OTFw4EDCwsJMr3/00UecP3+eXbt2AfG7DYoWLUrevHlN4y5RooRZn4mN+y9RUVHcuXPH7GGMi3nmNSJirteUTYRejODQ7Dbc2dCH8V2qMj/oMHFGo1ncqQs3KdVuNhU6z2PG2gPM6FOLvIl8KCQiIpKYXpM3EvpnOIfmtufOL/0Z37Ua8zccMtWdbBnTMKZTVVqMXE1UdGwyZysiIqlZrykbCb0YzqE57bgT1I/xXaolPtdpO4sKneYyY81+ZvQNJK/OOBARkcdeeMcBQEBAALNnz+bQoUNYW1uTN29eAgIC2Lp1KxEREabdBgCRkZG0a9eOrl27PtVPjhw5/lPS1tbWpj8bDPErWnFxcYnGR0ZGYmlpyb59+7C0tDR7zcnJ6V/nsXPnTpo0acKwYcOoVq0azs7OLF68mHHjxplismTJQqVKlVi0aBGlS5dm0aJFdOjQ4V+/J8Tv5hg2bJhZm2WuyljnrvKf+hVJrW7cvk9MbByZXBzN2jO5OHLlH9/MeXLNAxoM+RFba0sypLXn0s1IhrcO4NzlW2Zx0TFxnL0U33bg9FWK+bjR6YPidJkQ9DqGIiIiqcAz6054YnXnPg0GL4+vO84OXLpxl+FtKprqjp+3G5nTO7Hzu1ama6wsLXinUA7a1ymOc7XRxMUZE+xbRETeXP++5qx4XHPsuXQj0qzm/CV+rhMBwIHTVx7PdUrQZfzPr2UsIiKSurzUwsFf5xyMHz/etEgQEBDA6NGjiYiIoGfPnqbYokWLcuzYMTw9PV+obx8fHy5cuMDVq1fJnDkzACEhIS+THgA2NjamA5z/4ufnR2xsLNeuXaN8+fIJXpcvXz52795t1vbXLoHE7Nixg5w5c5qdSfDHH388FdekSRP69OlDo0aNOHv2LB999JHpNR8fH9avX28W/7xx9+/fnx49epi1Zaoz6ZnXiLzJomPiOHDqChWLerB2R/y5JQYDVPTLybTV+595bVR0LJduRmJlaUGd8j6s2Hb8mfEWBgO21i/1v04REXnDxNedy/F1J/gU8LjuFPVg2qq9z7w2KjqWSzfuxtedCnlZsTW+7vy6/zzFWk43i53epxYnL9xk3A87tWggIvKWMtUcv3/UHD8Ppq3a98xr42vOS8x1LAzYWls+M0ZERN4eL3WrIhcXFwoVKsT3339vOgS5QoUK7N+/n1OnTpntOOjbty87duwwHTZ8+vRpVq9enejhyFWrViVPnjw0a9aMw4cPExwcbDo/4K9dBS/Cw8ODyMhINm/ezI0bN7h//z7e3t40adKETz75hB9//JFz586xZ88eRo0axU8//QRA165d2bBhA2PHjuX06dNMnjz5uecbeHl5ERYWxuLFiwkNDWXSpEmsXLnyqbgPPviAu3fv0qFDBypWrGg6ZwGgXbt2nDhxgr59+3Lq1CmWLl3K3LlznzluW1tb0qZNa/YwWOiDTHm7TVqxhxY1C9OkakF8cmRgUrdqONjZMH/DYQBm9q3F562e/D+qRF43ar/jjYebM+UKZmPNqAZYWBj4esmTBcTPW/lTzjc7OTI7UyBXRj5v5U+FwjlYvPn3JB+fiIikLJOW7abFe340edc3vu50r4GDnfWTutMvkM9bB5jiS+R1p3Z5Hzzc0lHONztrvvwIC4OBrxfvBCDywSOOnb9u9rj3MJrwOw84dv56cgxRRERSiEnL99DivSJP15ygv+Y6gXzeKsAUXyKvO7Xf+VvNGf1XzXny5cjPWwX8Y64TQIXCOVm8+WhSD09ERFKol/602d/fn4MHD5oWDtKnT0/+/Pm5evUqPj4+prhChQqxbds2BgwYQPny5TEajeTJk4eGDRsm2K+lpSWrVq2idevWlChRgty5czNmzBgCAwOfOkj5WcqWLUv79u1p2LAhN2/eZMiQIQwdOpQ5c+YwfPhwevbsycWLF3F1daV06dLUqlULgNKlSzNjxgyGDBnC4MGDqVKlCgMHDjQdapyQ999/n08//ZTOnTsTFRXFe++9x6BBgxg6dKhZXJo0aQgMDGTp0qXMnm1+2F2uXLlYvnw5PXv2ZOLEiZQpU4YBAwbQoUMHbG1tX3jcIm+75VtP4OrswODm5cns4sjh0GvU7r+Ea7fuA5A9U1qzb2va2lgxpEUFcrmlI/LBI4L2nKXVl+u4fS/KFJMxnQOz+tYiS3pHbt+L4ui56wT2W8KW/eeTengiIpLCLN96HNd0jgxu4f+47lyldt/FpsMrs2dyTqDu+JPL3SW+7uw+Q6tRa8zqjoiISEKWbz3+eK5T4UnN6bfkbzUnrdn5BbY2Vgxp6f9krrM7lFajzWtORhcHZvULJEt6p/i5ztlrBPb7gS37zif18EREJIUyGI3GFLvvOTg4mHfeeYczZ86QJ0+e5E4nyYwYMYJp06Zx4cKFF77Gvsro15iRiIjI38Tp4FYREUlCL7EDXURE5L94sPmz5E4hVXoYk9wZpD52qeDmMSkqxZUrV+Lk5ISXlxdnzpyhW7dulCtX7o1fNPj2228pUaIEGTJkIDg4mDFjxiR6SycRERERERERERERkdfppc44eN3u3r1Lp06dyJs3L82bN6dEiRKsXr06udN67U6fPk3t2rXJnz8/X3zxBT179nzqdkciIiIiIiIiIiIi8vaZMmUKHh4e2NnZUapUKfbs2fPM+GXLlpE3b17s7Ozw9fVl/fr1L/2eKfpWRfLidKsiERFJMrpVkYiIJCXdqkhERJKIblX07+hWRS/vZW5VtGTJEj755BOmTZtGqVKlmDBhAsuWLePkyZNkypTpqfgdO3ZQoUIFRo0aRa1atVi0aBFffvkl+/fvp2DBgi/8vlo4eENo4UBERJKMFg5ERCQpaeFARESSiBYO/h0tHLy8l1k4KFWqFCVKlGDy5MkAxMXFkT17drp06UK/fv2eim/YsCH37t1j3bp1prbSpUtTpEgRpk2b9sLvm6JuVSQiIiIiIiIiIiIi8iaLiorizp07Zo+oqKin4h49esS+ffuoUqWKqc3CwoIqVaqwc+fOBPveuXOnWTxAtWrVEo1PTIo6HFn+vQebnl5dEpFni4qKYtSoUfTv3x9bW9vkTkdERN5gqjkiIpJUVHNEJKm9zLfnJd7Q4aMYNmyYWduQIUOeOvf2xo0bxMbGkjlzZrP2zJkzc+LEiQT7vnLlSoLxV65ceakcteNARN5aUVFRDBs2LMEVXRERkVdJNUdERJKKao6ISMrXv39/bt++bfbo379/cqdlRutBIiIiIiIiIiIiIiJJxNbW9oV2hbm6umJpacnVq1fN2q9evUqWLFkSvCZLliwvFZ8Y7TgQEREREREREREREUlhbGxsKFasGJs3bza1xcXFsXnzZsqUKZPgNWXKlDGLB9i4cWOi8YnRjgMRERERERERERERkRSoR48eNGvWjOLFi1OyZEkmTJjAvXv3aNGiBQCffPIJWbNmZdSoUQB069YNf39/xo0bx3vvvcfixYvZu3cv06dPf6n31cKBiLy1bG1tGTJkiA4MExGR1041R0REkopqjojIm6Vhw4Zcv36dwYMHc+XKFYoUKcKGDRtMByCHhYVhYfHkxkJly5Zl0aJFDBw4kM8++wwvLy9WrVpFwYIFX+p9DUaj0fhKRyIiIiIiIiIiIiIiIqmWzjgQERERERERERERERETLRyIiIiIiIiIiIiIiIiJFg5ERERERERERERERMRECwci8tbaunUrBoOBW7duvdJYERGR/2ro0KEUKVLE9Lx58+bUqVMn2fIREZFXw2g00rZtW9KnT4/BYODgwYPJnZKIiEiCtHAgIm+tsmXLcvnyZZydnV9prIiIiIiISEI2bNjA3LlzWbduHZcvX+bOnTsEBgbi7u6OwWBg1apVyZ2iiIgIoIUDEUmlHj169J/7sLGxIUuWLBgMhlcaKyIib7ZXUYNEROTtFBoaipubG2XLliVLlizcu3ePwoULM2XKlOROLVGqeyIibyctHIhIihAQEEDnzp3p3Lkzzs7OuLq6MmjQIIxGIwAeHh588cUXfPLJJ6RNm5a2bdsCsH37dsqXL4+9vT3Zs2ena9eu3Lt3z9RvVFQUffv2JXv27Nja2uLp6cmsWbOAp28/9McffxAYGIiLiwuOjo4UKFCA9evXJxgLsGLFCgoUKICtrS0eHh6MGzfObEweHh6MHDmSli1bkiZNGnLkyMH06dNf149QRERek79qVPfu3XF1daVatWocPXqUGjVq4OTkRObMmWnatCk3btwwXRMXF8dXX32Fp6cntra25MiRgxEjRphe79u3L97e3jg4OJA7d24GDRpEdHR0cgxPRESSSPPmzenSpQthYWEYDAY8PDyoUaMGw4cPp27dui/cj9FoZOjQoeTIkQNbW1vc3d3p2rWr6fVnzYEAtm3bRsmSJbG1tcXNzY1+/foRExNjej2hugc8t/aJiMibRQsHIpJizJs3DysrK/bs2cPEiRP5+uuvmTlzpun1sWPHUrhwYQ4cOMCgQYMIDQ2levXqfPjhhxw+fJglS5awfft2OnfubLrmk08+4YcffmDSpEkcP36c7777DicnpwTfv1OnTkRFRfG///2PI0eO8OWXXyYau2/fPho0aMBHH33EkSNHGDp0KIMGDWLu3LlmcePGjaN48eIcOHCAjh070qFDB06ePPnff1giIpKk5s2bh42NDcHBwYwePZpKlSrh5+fH3r172bBhA1evXqVBgwam+P79+zN69GgGDRrEsWPHWLRoEZkzZza9niZNGubOncuxY8eYOHEiM2bMYPz48ckxNBERSSITJ07k888/J1u2bFy+fJmQkJB/1c+KFSsYP3483333HadPn2bVqlX4+vqaXn/WHOjixYvUrFmTEiVKcOjQIaZOncqsWbMYPny42Xv8ve5NmzaNW7duPbf2iYjIG8YoIpIC+Pv7G/Ply2eMi4sztfXt29eYL18+o9FoNObMmdNYp04ds2tatWplbNu2rVnbb7/9ZrSwsDA+ePDAePLkSSNg3LhxY4Lv+euvvxoBY0REhNFoNBp9fX2NQ4cOfaHYxo0bG6tWrWoW07t3b2P+/PlNz3PmzGn8+OOPTc/j4uKMmTJlMk6dOvUZPwkREUlp/P39jX5+fqbnX3zxhfHdd981i7lw4YIRMJ48edJ4584do62trXHGjBkv/B5jxowxFitWzPR8yJAhxsKFC5ueN2vWzFi7du1/PQYREUkZxo8fb8yZM2eCrwHGlStXPrePcePGGb29vY2PHj166rXnzYE+++wzo4+Pj9m8a8qUKUYnJydjbGys0Wh8uu4Zjc+vfSIi8ubRjgMRSTFKly5tdoZAmTJlOH36NLGxsQAUL17cLP7QoUPMnTsXJycn06NatWrExcVx7tw5Dh48iKWlJf7+/i/0/l27dmX48OGUK1eOIUOGcPjw4URjjx8/Trly5czaypUrZ5YvQKFChUx/NhgMZMmShWvXrr1QPiIiknIUK1bM9OdDhw7x66+/mtWfvHnzAvH3rj5+/DhRUVFUrlw50f6WLFlCuXLlyJIlC05OTgwcOJCwsLDXPg4REUldRo4caVZvwsLCqF+/Pg8ePCB37ty0adOGlStXmm419Lw50PHjxylTpozZvKtcuXJERkby559/mtr+Xvfg+bVPRETePFo4EJFUw9HR0ex5ZGQk7dq14+DBg6bHoUOHOH36NHny5MHe3v6l+m/dujVnz56ladOmHDlyhOLFi/PNN9/8p5ytra3NnhsMBuLi4v5TnyIikvT+XoMiIyMJDAw0qz8HDx7k9OnTVKhQ4bn1Z+fOnTRp0oSaNWuybt06Dhw4wIABA3T4pIiIPKV9+/Zmtcbd3Z3s2bNz8uRJvv32W+zt7enYsSMVKlQgOjr6pedAiUlo7vWs2iciIm8eq+ROQETkL7t37zZ7vmvXLry8vLC0tEwwvmjRohw7dgxPT88EX/f19SUuLo5t27ZRpUqVF8ohe/bstG/fnvbt29O/f39mzJhBly5dnorLly8fwcHBZm3BwcF4e3snmq+IiLwZihYtyooVK/Dw8MDK6ulfp728vLC3t2fz5s20bt36qdd37NhBzpw5GTBggKntjz/+eK05i4hI6pQ+fXrSp0//VLu9vT2BgYEEBgbSqVMn8ubNy5EjR547B8qXLx8rVqzAaDSadh0EBweTJk0asmXLlmgez6t9IiLy5tGOAxFJMcLCwujRowcnT57khx9+4JtvvqFbt26Jxvft25cdO3bQuXNn07ddVq9ebToc2cPDg2bNmtGyZUtWrVrFuXPn2Lp1K0uXLk2wv+7duxMUFMS5c+fYv38/v/76K/ny5UswtmfPnmzevJkvvviCU6dOMW/ePCZPnkyvXr3++w9CRERStE6dOhEeHk6jRo0ICQkhNDSUoKAgWrRoQWxsLHZ2dvTt25c+ffowf/58QkND2bVrF7NmzQLiFxbCwsJYvHgxoaGhTJo0iZUrVybzqEREJDlERkaavr0PmG65+qzb182dO5dZs2Zx9OhRzp49y8KFC7G3tydnzpzPnQN17NiRCxcu0KVLF06cOMHq1asZMmQIPXr0wMIi8Y+Inlf7RETkzaOFAxFJMT755BMePHhAyZIl6dSpE926daNt27aJxhcqVIht27Zx6tQpypcvj5+fH4MHD8bd3d0UM3XqVOrVq0fHjh3Jmzcvbdq04d69ewn2FxsbS6dOnciXLx/Vq1fH29ubb7/9NsHYokWLsnTpUhYvXkzBggUZPHgwn3/+Oc2bN/9PPwMREUn53N3dCQ4OJjY2lnfffRdfX1+6d+9OunTpTB+6DBo0iJ49ezJ48GDy5ctHw4YNTWfcvP/++3z66ad07tyZIkWKsGPHDgYNGpScQxIRkWSyd+9e/Pz88PPzA6BHjx6meU1i0qVLx4wZMyhXrhyFChVi06ZNrF27lgwZMgDPngNlzZqV9evXs2fPHgoXLkz79u1p1aoVAwcOfGaeL1L7RETkzWIwGo3G5E5CRCQgIIAiRYowYcKE5E5FRERERERERETkraZlYRERERERERERERERMdHCgYiIiIiIiIiIiIiImOhWRSIiIiIiIiIiIiIiYqIdByIiIiIiIiIiIiIiYqKFAxERERERERERERERMdHCgYiIiIiIiIiIiIiImGjhQERERERERERERERETLRwICIiIiIiIiIiIiIiJlo4EBEREREREREREREREy0ciIiIiIiIiIiIiIiIiRYORERERERERERERETERAsHIiIiIiIiIiIiIiJi8n8bbIxHv0I8PwAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 2000x2000 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import seaborn as sns\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "report = classification_report(test_labels_labels.reshape(-1), y_pred_labels.reshape(-1), zero_division=0, output_dict=True)\n",
    "plt.subplots(figsize=(20, 20))\n",
    "sns.heatmap(pd.DataFrame(report).iloc[:-1, :].T, annot=True, cmap='Blues', fmt='.2f')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "387f0c9d",
   "metadata": {},
   "source": [
    "In the case of NER task, all three metrics - precision, recall, and F1 score - are important.\n",
    "\n",
    "* Precision measures the proportion of predicted entities that are actually correct. In NER, precision means how many of the predicted named entities are actually true named entities.\n",
    "\n",
    "* Recall measures the proportion of actual entities that are correctly identified by the model. In NER, recall means how many true named entities are correctly identified by the model.\n",
    "\n",
    "* F1 score is the harmonic mean of precision and recall. It is a balanced metric that takes into account both precision and recall. F1 score is commonly used in NER evaluation as it takes into account both false positives and false negatives.\n",
    "\n",
    "A high precision score means that the model is making very few false predictions, while a high recall score means that the model is identifying a high proportion of the true named entities. A high F1 score indicates that the model is both precise and recallful."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "2745ce74",
   "metadata": {},
   "outputs": [],
   "source": [
    "# def clean_word(word):\n",
    "    \n",
    "#     # remove non-alphanumeric characters and extra whitespaces\n",
    "#     word = re.sub(r'[^\\w\\s]','',word)\n",
    "#     word = re.sub(r'\\s+',' ',word)\n",
    "    \n",
    "#     # convert to lowercase\n",
    "#     word = word.lower()\n",
    "    \n",
    "#     if word not in STOP_WORDS:\n",
    "#         return word\n",
    "    \n",
    "#     return ''\n",
    "\n",
    "# def tokenize_text(text):\n",
    "#     # Tokenize the text into a list of words\n",
    "#     tokens = []\n",
    "#     for sentence in text.split('\\n'):\n",
    "#         for word in sentence.split():\n",
    "#             word = clean_word(word)\n",
    "#             if word.strip():\n",
    "#                 tokens.append(word)\n",
    "#     return tokens\n",
    "\n",
    "# def predict(text):\n",
    "    \n",
    "#     sentences = re.split(r' *[\\.\\?!][\\'\"\\)\\]]* *', text)\n",
    "#     sent_tokens = []\n",
    "#     sequences = []\n",
    "#     for sentence in sentences:\n",
    "#         tokens = tokenize_text(sentence)\n",
    "#         sequence = tokenizer.texts_to_sequences([' '.join(token for token in tokens)])\n",
    "#         sequences.append(sequence[0])\n",
    "#         sent_tokens.append(tokens)\n",
    "        \n",
    "#     padded_sequence = pad_sequences(sequences, maxlen=MAX_LENGTH, padding='post')\n",
    "\n",
    "#     # tokens = re.findall(r'\\b\\w+\\b', text)\n",
    "# #     tokens = tokenize_text(text)\n",
    "# #     sequence = tokenizer.texts_to_sequences([' '.join(token for token in tokens)])\n",
    "# #     padded_sequence = pad_sequences(sequence, maxlen=MAX_LENGTH, padding='post')\n",
    "\n",
    "#     # Make the prediction\n",
    "#     prediction = model.predict(np.array(padded_sequence))\n",
    "\n",
    "#     # Decode the prediction\n",
    "#     predicted_labels = np.argmax(prediction, axis=-1)\n",
    "\n",
    "#     predicted_labels = [[\n",
    "#         index_to_label[i] for i in sent_predicted_labels]for sent_predicted_labels in predicted_labels]\n",
    "\n",
    "# #     # Print the predicted named entities\n",
    "#     print(\"Predicted Named Entities:\")\n",
    "#     for i in range(len(sent_tokens)):\n",
    "#         for j in range(len(sent_tokens[i])):\n",
    "#             if predicted_labels[i][j] == 'O':\n",
    "#                 print(f\"{sent_tokens[i][j]}: {predicted_labels[i][j]}\")\n",
    "#             else:\n",
    "#                 print(f\"{sent_tokens[i][j]}: {acronyms_to_entities[ predicted_labels[i][j][2:]]}\")\n",
    "#         print(\"\\n\\n\\n\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "05963a19",
   "metadata": {},
   "source": [
    "## Save the model as an .h5 file"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "955f026a",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.save(os.path.join(model_dir, 'model_1.h5'))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4407206c",
   "metadata": {},
   "source": [
    "## Load the model "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "44b70c5a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Register the custom metric function\n",
    "tf.keras.utils.get_custom_objects()[precision.__name__] = precision\n",
    "tf.keras.utils.get_custom_objects()[recall.__name__] = recall\n",
    "tf.keras.utils.get_custom_objects()[f1_score.__name__] = f1_score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "51a930ee",
   "metadata": {},
   "outputs": [],
   "source": [
    "model_1 = tf.keras.models.load_model(os.path.join(model_dir, 'model_1.h5'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "add60e79",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "28/28 [==============================] - 0s 16ms/step - loss: 0.4219 - accuracy: 0.9355 - precision: 0.9491 - recall: 0.9317 - f1_score: 0.9403\n",
      "Test loss: 0.4219094216823578\n",
      "Test accuracy: 0.9355235695838928\n",
      "Test precision: 0.9491192102432251\n",
      "Test recall: 0.9317142367362976\n",
      "Test f1_score: 0.9403346180915833\n"
     ]
    }
   ],
   "source": [
    "# Evaluate the model on the test set\n",
    "test_loss, test_accuracy, test_precision, test_recall, test_f1_score = model_1.evaluate(test_sequences_padded, test_labels)\n",
    "\n",
    "# Print the test loss and accuracy\n",
    "print('Test loss:', test_loss)\n",
    "print('Test accuracy:', test_accuracy)\n",
    "print('Test precision:', test_precision)\n",
    "print('Test recall:', test_recall)\n",
    "print('Test f1_score:', test_f1_score)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "071fbea0",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1/1 [==============================] - 0s 14ms/step\n",
      "Predicted Named Entities:\n",
      "patient: O\n",
      "underwent: O\n",
      "electrophysiologic: Diagnostic_procedure\n",
      "study: Diagnostic_procedure\n",
      "mapping: Diagnostic_procedure\n",
      "accessory: Biological_structure\n",
      "pathway: Biological_structure\n",
      "followed: Biological_structure\n",
      "radiofrequency: O\n",
      "ablation: O\n",
      "interruption: O\n",
      "pathway: O\n",
      "using: O\n",
      "heat: O\n",
      "generated: Therapeutic_procedure\n",
      "electromagnetic: Therapeutic_procedure\n",
      "waves: O\n",
      "tip: O\n",
      "ablation: O\n",
      "catheter: O\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">The patient underwent an \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    electrophysiologic\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    study\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
       "</mark>\n",
       " with \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    mapping\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
       "</mark>\n",
       " of the \n",
       "<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    accessory\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    pathway\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
       "</mark>\n",
       ", \n",
       "<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    followed\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
       "</mark>\n",
       " by radiofrequency ablation (interruption of the pathway using the heat \n",
       "<mark class=\"entity\" style=\"background: #e6ccb2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    generated\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Therapeutic_procedure</span>\n",
       "</mark>\n",
       " by \n",
       "<mark class=\"entity\" style=\"background: #e6ccb2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    electromagnetic\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Therapeutic_procedure</span>\n",
       "</mark>\n",
       " waves at the tip of an ablation catheter).</div></span>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "predict(\n",
    "    \"The patient underwent an electrophysiologic study with mapping of the accessory pathway, followed by radiofrequency ablation (interruption of the pathway using the heat generated by electromagnetic waves at the tip of an ablation catheter).\",\n",
    "    model_1, \n",
    "    index_to_label,\n",
    "    acronyms_to_entities, \n",
    "    MAX_LENGTH\n",
    ")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "1f5e8611",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-04-16 06:09:30.892629: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1/1 [==============================] - 0s 363ms/step\n",
      "Predicted Named Entities:\n",
      "57: Age\n",
      "year: Age\n",
      "old: Age\n",
      "man: Sex\n",
      "presented: Nonbiological_location\n",
      "emergency: Nonbiological_location\n",
      "department: Duration\n",
      "2: Duration\n",
      "day: O\n",
      "history: Sign_symptom\n",
      "worsening: Sign_symptom\n",
      "shortness: Biological_structure\n",
      "breath: Sign_symptom\n",
      "chest: History\n",
      "pain: History\n",
      "reported: History\n",
      "recent: History\n",
      "travel: History\n",
      "sick: History\n",
      "contacts: History\n",
      "medical: History\n",
      "history: History\n",
      "significant: History\n",
      "hypertension: History\n",
      "dyslipidemia: History\n",
      "type: History\n",
      "2: Sign_symptom\n",
      "diabetes: History\n",
      "mellitus: Diagnostic_procedure\n",
      "examination: O\n",
      "tachycardic: Detailed_description\n",
      "tachypneic: Detailed_description\n",
      "oxygen: Biological_structure\n",
      "saturation: Diagnostic_procedure\n",
      "88: Detailed_description\n",
      "room: O\n",
      "air: Distance\n",
      "chest: Distance\n",
      "radiography: O\n",
      "revealed: Distance\n",
      "bilateral: O\n",
      "opacities: O\n",
      "consistent: O\n",
      "pulmonary: Detailed_description\n",
      "edema: Distance\n",
      "patient: Distance\n",
      "admitted: Distance\n",
      "intensive: Medication\n",
      "care: Therapeutic_procedure\n",
      "unit: Medication\n",
      "management: Dosage\n",
      "acute: Dosage\n",
      "decompensated: Dosage\n",
      "heart: Clinical_event\n",
      "failure: Other_entity\n",
      "started: Nonbiological_location\n",
      "intravenous: Date\n",
      "diuretics: Date\n",
      "inotropic: O\n",
      "support: O\n",
      "dobutamine: O\n",
      "next: O\n",
      "several: O\n",
      "days: O\n",
      "symptoms: O\n",
      "improved: O\n",
      "discharged: O\n",
      "home: O\n",
      "instructions: O\n",
      "follow: O\n",
      "primary: O\n",
      "care: O\n",
      "provider: O\n",
      "1: O\n",
      "week: O\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">A \n",
       "<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    57\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
       "</mark>\n",
       "-\n",
       "<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    year\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
       "</mark>\n",
       "-\n",
       "<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    old\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    man\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sex</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    presented\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
       "</mark>\n",
       " to the \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    emergency\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #ffdfba; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    department\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Duration</span>\n",
       "</mark>\n",
       " with a \n",
       "<mark class=\"entity\" style=\"background: #ffdfba; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    2\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Duration</span>\n",
       "</mark>\n",
       "-day \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    history\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
       "</mark>\n",
       " of \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    worsening\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    shortness\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
       "</mark>\n",
       " of \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    breath\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
       "</mark>\n",
       " and \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    chest\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    pain\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       ". He \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    reported\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " no \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    recent\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    travel\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " or \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    sick\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    contacts\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       ". His \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    medical\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    history\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " was \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    significant\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " for \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    hypertension\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       ", \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    dyslipidemia\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       ", and \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    type\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    2\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    diabetes\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    mellitus\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
       "</mark>\n",
       ". On examination, he was \n",
       "<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    tachycardic\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
       "</mark>\n",
       " and \n",
       "<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    tachypneic\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
       "</mark>\n",
       ", with \n",
       "<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    oxygen\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    saturation\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
       "</mark>\n",
       " of \n",
       "<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    88\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
       "</mark>\n",
       "% on room \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    air\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       ". \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    Chest\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       " radiography \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    revealed\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       " bilateral opacities consistent with \n",
       "<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    pulmonary\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    edema\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       ". The \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    patient\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       " was \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    admitted\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       " to the \n",
       "<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    intensive\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e6ccb2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    care\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Therapeutic_procedure</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    unit\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
       "</mark>\n",
       " for \n",
       "<mark class=\"entity\" style=\"background: #b9e8d8; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    management\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Dosage</span>\n",
       "</mark>\n",
       " of \n",
       "<mark class=\"entity\" style=\"background: #b9e8d8; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    acute\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Dosage</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #b9e8d8; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    decompensated\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Dosage</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #77c5d5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    heart\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Clinical_event</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #d5f5e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    failure\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Other_entity</span>\n",
       "</mark>\n",
       ". He was \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    started\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
       "</mark>\n",
       " on \n",
       "<mark class=\"entity\" style=\"background: #f1f0d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    intravenous\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Date</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #f1f0d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    diuretics\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Date</span>\n",
       "</mark>\n",
       " and inotropic support with dobutamine. Over the next several days, his symptoms improved and he was discharged to home with instructions to follow up with his primary care provider in 1 week.</div></span>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "predict(\n",
    "    \"A 57-year-old man presented to the emergency department with a 2-day history of worsening shortness of breath and chest pain. He reported no recent travel or sick contacts. His medical history was significant for hypertension, dyslipidemia, and type 2 diabetes mellitus. On examination, he was tachycardic and tachypneic, with oxygen saturation of 88% on room air. Chest radiography revealed bilateral opacities consistent with pulmonary edema. The patient was admitted to the intensive care unit for management of acute decompensated heart failure. He was started on intravenous diuretics and inotropic support with dobutamine. Over the next several days, his symptoms improved and he was discharged to home with instructions to follow up with his primary care provider in 1 week.\",\n",
    "    model_1, \n",
    "    index_to_label,\n",
    "    acronyms_to_entities, \n",
    "    MAX_LENGTH\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "df05127c",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1/1 [==============================] - 0s 15ms/step\n",
      "Predicted Named Entities:\n",
      "57: Age\n",
      "year: Age\n",
      "old: Age\n",
      "man: Sex\n",
      "presented: Nonbiological_location\n",
      "emergency: Nonbiological_location\n",
      "department: Duration\n",
      "2: Duration\n",
      "day: O\n",
      "history: Sign_symptom\n",
      "worsening: Sign_symptom\n",
      "shortness: Biological_structure\n",
      "breath: Sign_symptom\n",
      "chest: O\n",
      "pain: O\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "reported: O\n",
      "recent: History\n",
      "travel: History\n",
      "sick: O\n",
      "contacts: O\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "medical: O\n",
      "history: O\n",
      "significant: History\n",
      "hypertension: History\n",
      "dyslipidemia: History\n",
      "type: History\n",
      "2: History\n",
      "diabetes: History\n",
      "mellitus: History\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "examination: Diagnostic_procedure\n",
      "tachycardic: Sign_symptom\n",
      "tachypneic: Diagnostic_procedure\n",
      "oxygen: Diagnostic_procedure\n",
      "saturation: O\n",
      "88: Detailed_description\n",
      "room: Detailed_description\n",
      "air: O\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "chest: Biological_structure\n",
      "radiography: Diagnostic_procedure\n",
      "revealed: Detailed_description\n",
      "bilateral: O\n",
      "opacities: Distance\n",
      "consistent: Distance\n",
      "pulmonary: O\n",
      "edema: O\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "patient: O\n",
      "admitted: Biological_structure\n",
      "intensive: Nonbiological_location\n",
      "care: Nonbiological_location\n",
      "unit: Detailed_description\n",
      "management: Detailed_description\n",
      "acute: Distance\n",
      "decompensated: Distance\n",
      "heart: O\n",
      "failure: O\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "started: Administration\n",
      "intravenous: Medication\n",
      "diuretics: Medication\n",
      "inotropic: Medication\n",
      "support: O\n",
      "dobutamine: O\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "next: Age\n",
      "several: Age\n",
      "days: Nonbiological_location\n",
      "symptoms: Clinical_event\n",
      "improved: History\n",
      "discharged: Nonbiological_location\n",
      "home: Date\n",
      "instructions: Date\n",
      "follow: O\n",
      "primary: O\n",
      "care: O\n",
      "provider: O\n",
      "1: O\n",
      "week: O\n",
      "\n",
      "\n",
      "\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">A \n",
       "<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    57\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
       "</mark>\n",
       "-\n",
       "<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    year\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
       "</mark>\n",
       "-\n",
       "<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    old\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    man\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sex</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    presented\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
       "</mark>\n",
       " to the \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    emergency\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #ffdfba; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    department\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Duration</span>\n",
       "</mark>\n",
       " with a \n",
       "<mark class=\"entity\" style=\"background: #ffdfba; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    2\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Duration</span>\n",
       "</mark>\n",
       "-day \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    history\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
       "</mark>\n",
       " of \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    worsening\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    shortness\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
       "</mark>\n",
       " of \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    breath\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
       "</mark>\n",
       " and chest pain. He reported no \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    recent\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    travel\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " or sick contacts. His medical history was \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    significant\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " for \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    hypertension\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       ", \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    dyslipidemia\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       ", and \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    type\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    2\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    diabetes\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    mellitus\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       ". On \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    examination\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
       "</mark>\n",
       ", he was \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    tachycardic\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Sign_symptom</span>\n",
       "</mark>\n",
       " and \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    tachypneic\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
       "</mark>\n",
       ", with \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    oxygen\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
       "</mark>\n",
       " saturation of \n",
       "<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    88\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
       "</mark>\n",
       "% on \n",
       "<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    room\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
       "</mark>\n",
       " air. \n",
       "<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    Chest\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #c5b4e3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    radiography\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Diagnostic_procedure</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    revealed\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
       "</mark>\n",
       " bilateral \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    opacities\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    consistent\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       " with pulmonary edema. The patient was \n",
       "<mark class=\"entity\" style=\"background: #9ddfd3; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    admitted\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Biological_structure</span>\n",
       "</mark>\n",
       " to the \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    intensive\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    care\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    unit\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
       "</mark>\n",
       " for \n",
       "<mark class=\"entity\" style=\"background: #ffb347; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    management\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Detailed_description</span>\n",
       "</mark>\n",
       " of \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    acute\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #bde0fe; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    decompensated\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Distance</span>\n",
       "</mark>\n",
       " heart failure. He was \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    started\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Administration</span>\n",
       "</mark>\n",
       " on \n",
       "<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    intravenous\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    diuretics\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
       "</mark>\n",
       " and \n",
       "<mark class=\"entity\" style=\"background: #f9d5e5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    inotropic\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Medication</span>\n",
       "</mark>\n",
       " support with dobutamine. Over the \n",
       "<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    next\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #f6c3d0; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    several\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Age</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    days\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
       "</mark>\n",
       ", his \n",
       "<mark class=\"entity\" style=\"background: #77c5d5; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    symptoms\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Clinical_event</span>\n",
       "</mark>\n",
       " \n",
       "<mark class=\"entity\" style=\"background: #e2f0cb; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    improved\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">History</span>\n",
       "</mark>\n",
       " and he was \n",
       "<mark class=\"entity\" style=\"background: #f7a399; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    discharged\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Nonbiological_location</span>\n",
       "</mark>\n",
       " to \n",
       "<mark class=\"entity\" style=\"background: #f1f0d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    home\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Date</span>\n",
       "</mark>\n",
       " with \n",
       "<mark class=\"entity\" style=\"background: #f1f0d2; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
       "    instructions\n",
       "    <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">Date</span>\n",
       "</mark>\n",
       " to follow up with his primary care provider in 1 week.</div></span>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "predict_multi_line_text(\n",
    "    \n",
    "    \"A 57-year-old man presented to the emergency department with a 2-day history of worsening shortness of breath and chest pain. He reported no recent travel or sick contacts. His medical history was significant for hypertension, dyslipidemia, and type 2 diabetes mellitus. On examination, he was tachycardic and tachypneic, with oxygen saturation of 88% on room air. Chest radiography revealed bilateral opacities consistent with pulmonary edema. The patient was admitted to the intensive care unit for management of acute decompensated heart failure. He was started on intravenous diuretics and inotropic support with dobutamine. Over the next several days, his symptoms improved and he was discharged to home with instructions to follow up with his primary care provider in 1 week.\",\n",
    "    model_1, \n",
    "    tokenizer, \n",
    "    index_to_label,\n",
    "    acronyms_to_entities, \n",
    "    MAX_LENGTH\n",
    "    \n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ee5fc391",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}