--- a +++ b/config.py @@ -0,0 +1,159 @@ +entity_to_acronyms = { + 'Activity': 'ACT', + 'Administration': 'ADM', + 'Age': 'AGE', + 'Area': 'ARA', + 'Biological_attribute': 'BAT', + 'Biological_structure': 'BST', + 'Clinical_event': 'CLE', + 'Color': 'COL', + 'Coreference': 'COR', + 'Date': 'DAT', + 'Detailed_description': 'DET', + 'Diagnostic_procedure': 'DIA', + 'Disease_disorder': 'DIS', + 'Distance': 'DIS', + 'Dosage': 'DOS', + 'Duration': 'DUR', + 'Family_history': 'FAM', + 'Frequency': 'FRE', + 'Height': 'HEI', + 'History': 'HIS', + 'Lab_value': 'LAB', + 'Mass': 'MAS', + 'Medication': 'MED', + 'Nonbiological_location': 'NBL', + 'Occupation': 'OCC', + 'Other_entity': 'OTH', + 'Other_event': 'OTE', + 'Outcome': 'OUT', + 'Personal_background': 'PER', + 'Qualitative_concept': 'QUC', + 'Quantitative_concept': 'QUC', + 'Severity': 'SEV', + 'Sex': 'SEX', + 'Shape': 'SHA', + 'Sign_symptom': 'SIG', + 'Subject': 'SUB', + 'Texture': 'TEX', + 'Therapeutic_procedure': 'THP', + 'Time': 'TIM', + 'Volume': 'VOL', + 'Weight': 'WEI' +} + +index_to_label = {1: 'B-ACT', + 2: 'B-ADM', + 3: 'B-AGE', + 4: 'B-ARA', + 5: 'B-BAT', + 6: 'B-BST', + 7: 'B-CLE', + 8: 'B-COL', + 9: 'B-COR', + 10: 'B-DAT', + 11: 'B-DET', + 12: 'B-DIA', + 13: 'B-DIS', + 14: 'B-DOS', + 15: 'B-DUR', + 16: 'B-FAM', + 17: 'B-FRE', + 18: 'B-HEI', + 19: 'B-HIS', + 20: 'B-LAB', + 21: 'B-MAS', + 22: 'B-MED', + 23: 'B-NBL', + 24: 'B-OCC', + 25: 'B-OTE', + 26: 'B-OTH', + 27: 'B-OUT', + 28: 'B-PER', + 29: 'B-QUC', + 30: 'B-SEV', + 31: 'B-SEX', + 32: 'B-SHA', + 33: 'B-SIG', + 34: 'B-SUB', + 35: 'B-TEX', + 36: 'B-THP', + 37: 'B-TIM', + 38: 'B-VOL', + 39: 'B-WEI', + 40: 'I-ACT', + 41: 'I-ADM', + 42: 'I-AGE', + 43: 'I-ARA', + 44: 'I-BAT', + 45: 'I-BST', + 46: 'I-CLE', + 47: 'I-COL', + 48: 'I-COR', + 49: 'I-DAT', + 50: 'I-DET', + 51: 'I-DIA', + 52: 'I-DIS', + 53: 'I-DOS', + 54: 'I-DUR', + 55: 'I-FAM', + 56: 'I-FRE', + 57: 'I-HEI', + 58: 'I-HIS', + 59: 'I-LAB', + 60: 'I-MAS', + 61: 'I-MED', + 62: 'I-NBL', + 63: 'I-OCC', + 64: 'I-OTE', + 65: 'I-OTH', + 66: 'I-OUT', + 67: 'I-PER', + 68: 'I-QUC', + 69: 'I-SEV', + 70: 'I-SHA', + 71: 'I-SIG', + 72: 'I-SUB', + 73: 'I-TEX', + 74: 'I-THP', + 75: 'I-TIM', + 76: 'I-VOL', + 77: 'I-WEI', + 78: 'O', + 0: '<PAD>'} + +MAX_LENGTH = 100 + +acronyms_to_entities = {v: k for k, v in entity_to_acronyms.items()} + + +models = { + "model_1": { + "path": "../models/model_1.h5", + "title": "Bidirectional LSTM Model with single LSTM layer" + }, + "model_2": { + "path": "../models/model_2.h5", + "title": "Bidirectional LSTM Model with two LSTM layers and one Hidden Dense Layer" + }, + "model_3": { + "path": "../models/model_3.h5", + "title": "Bidirectional LSTM model with BioWordVecEmbedding Layers followed two LSTM layers and one Hidden Dense Layer" + }, + "model_4": { + "path": "../models/model_4.h5", + "title": "Bidirectional LSTM Model with Time Distributed Dense Layers - Single LSTM layer and Two time distributed dense layers" + }, + "model_5": { + "path": "../models/model_5.h5", + "title": "Bidirectional LSTM Model with two LSTM layers and one Hidden Dense Layer" + }, + "model_6": { + "path": "../models/model_6.h5", + "title": "Bidirectional LSTM Time Distirbuted Dense Layers and Convolutional 1D layer" + }, + "model_7": { + "path": "../models/model_7.h5", + "title": "Bidirectional LSTM CRF model with BioWordVecEmbedding Layers followed two LSTM layers, Time Distirbuted Dense Layers and Convolutional 1D layer" + } +}