a b/config.py
1
entity_to_acronyms = {
2
    'Activity': 'ACT',
3
    'Administration': 'ADM',
4
    'Age': 'AGE',
5
    'Area': 'ARA',
6
    'Biological_attribute': 'BAT',
7
    'Biological_structure': 'BST',
8
    'Clinical_event': 'CLE',
9
    'Color': 'COL',
10
    'Coreference': 'COR',
11
    'Date': 'DAT',
12
    'Detailed_description': 'DET',
13
    'Diagnostic_procedure': 'DIA',
14
    'Disease_disorder': 'DIS',
15
    'Distance': 'DIS',
16
    'Dosage': 'DOS',
17
    'Duration': 'DUR',
18
    'Family_history': 'FAM',
19
    'Frequency': 'FRE',
20
    'Height': 'HEI',
21
    'History': 'HIS',
22
    'Lab_value': 'LAB',
23
    'Mass': 'MAS',
24
    'Medication': 'MED',
25
    'Nonbiological_location': 'NBL',
26
    'Occupation': 'OCC',
27
    'Other_entity': 'OTH',
28
    'Other_event': 'OTE',
29
    'Outcome': 'OUT',
30
    'Personal_background': 'PER',
31
    'Qualitative_concept': 'QUC',
32
    'Quantitative_concept': 'QUC',
33
    'Severity': 'SEV',
34
    'Sex': 'SEX',
35
    'Shape': 'SHA',
36
    'Sign_symptom': 'SIG',
37
    'Subject': 'SUB',
38
    'Texture': 'TEX',
39
    'Therapeutic_procedure': 'THP',
40
    'Time': 'TIM',
41
    'Volume': 'VOL',
42
    'Weight': 'WEI'
43
}
44
45
index_to_label = {1: 'B-ACT',
46
 2: 'B-ADM',
47
 3: 'B-AGE',
48
 4: 'B-ARA',
49
 5: 'B-BAT',
50
 6: 'B-BST',
51
 7: 'B-CLE',
52
 8: 'B-COL',
53
 9: 'B-COR',
54
 10: 'B-DAT',
55
 11: 'B-DET',
56
 12: 'B-DIA',
57
 13: 'B-DIS',
58
 14: 'B-DOS',
59
 15: 'B-DUR',
60
 16: 'B-FAM',
61
 17: 'B-FRE',
62
 18: 'B-HEI',
63
 19: 'B-HIS',
64
 20: 'B-LAB',
65
 21: 'B-MAS',
66
 22: 'B-MED',
67
 23: 'B-NBL',
68
 24: 'B-OCC',
69
 25: 'B-OTE',
70
 26: 'B-OTH',
71
 27: 'B-OUT',
72
 28: 'B-PER',
73
 29: 'B-QUC',
74
 30: 'B-SEV',
75
 31: 'B-SEX',
76
 32: 'B-SHA',
77
 33: 'B-SIG',
78
 34: 'B-SUB',
79
 35: 'B-TEX',
80
 36: 'B-THP',
81
 37: 'B-TIM',
82
 38: 'B-VOL',
83
 39: 'B-WEI',
84
 40: 'I-ACT',
85
 41: 'I-ADM',
86
 42: 'I-AGE',
87
 43: 'I-ARA',
88
 44: 'I-BAT',
89
 45: 'I-BST',
90
 46: 'I-CLE',
91
 47: 'I-COL',
92
 48: 'I-COR',
93
 49: 'I-DAT',
94
 50: 'I-DET',
95
 51: 'I-DIA',
96
 52: 'I-DIS',
97
 53: 'I-DOS',
98
 54: 'I-DUR',
99
 55: 'I-FAM',
100
 56: 'I-FRE',
101
 57: 'I-HEI',
102
 58: 'I-HIS',
103
 59: 'I-LAB',
104
 60: 'I-MAS',
105
 61: 'I-MED',
106
 62: 'I-NBL',
107
 63: 'I-OCC',
108
 64: 'I-OTE',
109
 65: 'I-OTH',
110
 66: 'I-OUT',
111
 67: 'I-PER',
112
 68: 'I-QUC',
113
 69: 'I-SEV',
114
 70: 'I-SHA',
115
 71: 'I-SIG',
116
 72: 'I-SUB',
117
 73: 'I-TEX',
118
 74: 'I-THP',
119
 75: 'I-TIM',
120
 76: 'I-VOL',
121
 77: 'I-WEI',
122
 78: 'O',
123
 0: '<PAD>'}
124
125
MAX_LENGTH = 100
126
127
acronyms_to_entities = {v: k for k, v in entity_to_acronyms.items()}
128
129
130
models = {
131
    "model_1": {
132
        "path": "../models/model_1.h5",
133
        "title": "Bidirectional LSTM Model with single LSTM layer"
134
    },
135
    "model_2": {
136
        "path": "../models/model_2.h5",
137
        "title": "Bidirectional LSTM Model with two LSTM layers and one Hidden Dense Layer"
138
    },
139
    "model_3": {
140
        "path": "../models/model_3.h5",
141
        "title": "Bidirectional LSTM model with BioWordVecEmbedding Layers followed two LSTM layers and one Hidden Dense Layer"
142
    },
143
    "model_4": {
144
        "path": "../models/model_4.h5",
145
        "title": "Bidirectional LSTM Model with Time Distributed Dense Layers - Single LSTM layer and Two time distributed dense layers"
146
    },
147
    "model_5": {
148
        "path": "../models/model_5.h5",
149
        "title": "Bidirectional LSTM Model with two LSTM layers and one Hidden Dense Layer"
150
    },
151
    "model_6": {
152
        "path": "../models/model_6.h5",
153
        "title": "Bidirectional LSTM Time Distirbuted Dense Layers and Convolutional 1D layer"
154
    },
155
    "model_7": {
156
        "path": "../models/model_7.h5",
157
        "title": "Bidirectional LSTM CRF model with BioWordVecEmbedding Layers followed two LSTM layers, Time Distirbuted Dense Layers and Convolutional 1D layer"
158
    }
159
}