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Clinical	Risk	Prediction

Ø Patient	EHRs:	each	patient	has	a	sequence	of	vectors;
Ø Predictive	models:	build	for	clinical	risks,	such	as	in-hospital	mortality,	hospital	
readmission,	chronic	disease	onset,	condition	exacerbation,	etc.
• LR,	SVM,	k-Nearest	Neighbor,	Random	Forest,	MLP;
• RNN,	CNN.	



Limited	Patient	EHRs

How	about	patient	samples	that are insufficient?	

Ø it	is	expensive	and	sometimes	even	impossible	for	obtaining labeled new	samples

Ø reusing data on other domain/tasks becomes a feasible strategy

- transfer learning

- meta-learning (learning to transfer)

Using the	learning	experiences from	a	set	of	relevant tasks …



Problem Setup

Goal: is to predict the risks of target
disease with few labeled patients, which
give rise to a low-resource classification.

The idea: is to take advantage of labeled
patients from other relevant high-resource
domains and design the learning to transfer
framework with sources and a simulated
target.
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The MetaPred Framework

Outer Loop

Inner Loop
Optimization-Level	Adaptation

Objective-Level	Adaptation



Dataset

Algorithm 1 MetaPred Training
Require: Source domains Si ; Simulated target domain T s ;
Require: Hyperparameters � , �, µ;
1: Initialize model parameter � randomly
2: while Outer-Loop not done do
3: Sample batch of episodes {Depi } from DSi and DTs

4: while Inner-Loop not done do
5: {(XSi , ySi )}K�1

i=1 , {(XTs , yTs )} = {Depi }
6: Compute LSi = L(ySi , f (XSi ,�)), i = 1, · · · ,K � 1
7: Parameter fast adaption with gradient descent:
8: �0 = � � �r�

ÕK�1
i LSi

9: end for
10: Compute LTs = L(yTs , f (XTs ,�0))
11: Update � = � � �r�(LTs + µ

ÕK�1
i LSi ) using Adam

12: end while

not be too diverse. In real-world healthcare scenario, however, pa-
tients who su�ering di�erence diseases might have medical records
at various visits with heterogeneity. In this case, it is di�cult to
meta-learn during optimization loops. To alleviate this problem,
we propose to enhance some guarantee from the objective-level in
predictive modeling so that the scarcity of the fast adaptation in
the optimization-level can be compensated. In particular, we pro-
pose to improve the objective by incorporating supervision from
source domains. The �nal objective of MetaPred is given in the
mathematical form as:
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where {(XSi , ySi )}K�1
i=1 is a collection of medical records matrix

and label vectors of source domains. DT s

epi and DS i
epi are samples

from the source domain and the simulated target domain in episode
Depi , respectively. Hyperparameter µ balances the contributions
of the sources and simulated target in the meta-learn process. Note
that the parameter of source loss is � but not �0, as there is no
need to conduct fast adaptation for source domain. Now the newly
designed meta-gradient is updated by the following equation:

� = � � �r�(LTs + µ
K�1’
i

LSi ) (9)

So far the main architecture of MetaPred is introduced. With the
incorporated source loss on the basis of general meta-learning, our
parameter learning process need to be rede�ned as:

�⇤ = Learner
⇣
T s , {Si }K�1

i ;MetaLearner({Si }K�1
i )

⌘
(10)

The Algorithm 1 and Algorithm 2 are outlines of meta-training
and meta-testing of the MetaPred framework. Similar to meta-
training, episodes of the test set are consist of samples from the
source domain and genuine target domain. The procedure in meta-
test shows how to get a risk prediction for the given low-resource

Algorithm 2 MetaPred Testing
Require: Source domains Si ; target domain T 0;
Require: Learned parameter �;
1: Sample from DSi to construct testing episodes {Depi }
2: {(XSi , ySi )}K�1

i=1 , {(XT0 , yT0 )} = {Depi }
3: Compute LSi = L(ySi , f (XSi ,�)), i = 1, · · · ,K � 1
4: Parameter fast adaption with gradient descent:
5: �0 = � � �r�

ÕK�1
i LSi

6: Evaluate predicted results of Learner({(XT0 , yT0 )};�0)

Table 1: Statistics of datasets with disease domains.

Domain Case Control # of visit Ave. # of visit

MCI 1,965 4,388 161,773 22.24
Alzheimer’s 1,165 4,628 136,197 20.73
Parkinson’s 1,348 3,588 105,053 20.01

Dementia 3,438 1,591 98,187 18.06
Amnesia 2,974 4,215 180,091 21.60

disease by a few gradient steps. The test set of the target disease
domain is used to construct the meta-test episodes for the model
evaluation. Since MetaPred is model-agnostic, the gradient updat-
ing scheme can be easily extended to more sophisticated neural
networks including various attention mechanisms or gates with
prior medical knowledge [3, 7].

4 EXPERIMENTS

4.1 Dataset
In this section, experimental results on a real-world EHR dataset
are reported. The data warehouse we used in experiments is the
research data warehouse (RDW) fromOregon Health & Science Uni-
versity (OHSU) Hospital. The data warehouse which contains the
EHR of over 2.5 million patients with more than 20 million patient
encounters, is mined by Oregon Clinical and Translational Research
Center (OCTRI). For certain conditions, we may not have su�cient
patients for training and testing. In our study, we selected the con-
ditions including more than 1, 000 cases (MCI, Alzheimer’s disease,
Parkinson’s disease, Dementia, and Amnesia) as the di�erent tasks
in the multi-domain setting. For each domain, controls are patients
su�ering other cognitive disorders, which makes the classi�cation
tasks di�cult and meaningful in practice. Also, Dementia and Am-
nesia are used as source domains, while the more challenging tasks
MCI, Alzheimer, Parkinson are set as target domains.

We matched the case and controls by requiring their age di�er-
ence within a 5-year range so that the age distributions between
the case group and control group are consistent. For each patient,
we set a 2-year observation window to collect the training data, and
the prediction window is set to half a year (i.e., we are predicting
after half a year the onset risk of those conditions). In our exper-
iments, only patient diagnoses histories are used, which include
10,989 distinct ICD-9 codes in total. We further mapped them to
their �rst three digits, which ends up with 1,016 ICD-9 group codes.
The data statistics are summarized in Table 1.

t-SNE visualization

Abbreviations: AD, PD, DM, AM, MCI are Alzheimer’s 
Disease, Parkinson’s Disease, Dementia, and Amnesia, 
Mild Cognitive Impairment, respectively.  
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Compared	with	multi-task	learning	and	transfer	learning.



Conclusion

Ø Leverages	deep	predictive	modeling	with	the	model	agnostic	meta-
learning	to	exploit	the	medical	records	from	high-resource	domain.	

Ø Introduce	an objective- level	adaptation	for	MetaPred which	not	only	
take	advantage	of	fast	adaptation	from	optimization-level	but	also	take	
the	supervision	of	the	high-resources	domain	into	account.	

Ø Extensive	evaluation	involving	5	cognitive	diseases	is	conducted	on	
real-world	EHR	data	for	risk	prediction	tasks	under	various	
source/target	combinations.	

Ø Open Source Code:
https://github.com/sheryl-ai/MetaPred
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