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Clinical Risk Prediction
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» Patient EHRs: each patient has a sequence of vectors;

» Predictive models: build for clinical risks, such as in-hospital mortality, hospital

readmission, chronic disease onset, condition exacerbation, etc.
* LR, SVM, k-Nearest Neighbor, Random Forest, MLP;
* RNN, CNN.



Limited Patient EHRs

How about patient samples that are insufficient?

» it is expensive and sometimes even impossible for obtaining labeled new samples
» reusing data on other domain/tasks becomes a feasible strategy
- transfer learning

- meta-learning (learning to transfer)

Using the learning experiences from a set of relevant tasks ...



Problem Setup

Goal: is to predict the risks of target
disease with few labeled patients, which
give rise to a low-resource classification.

The idea: is to take advantage of labeled

patients from other relevant high-resource

domains and design the learning to transfer
framework with sources and a simulated

target.
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4 steps:

v’ sample episode
v’ meta-train
v fine-tune

v’ predict
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The MetaPred Framework
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Table 1: Statistics of datasets with disease domains.

Domain Case Control | # of visit Ave. # of visit
[ MCI Y 1,965 4,388 | 161,773 22.24
Alzheimer’s | 1,165 4,628 136,197 20.73
Parkinson’s | 1,348 3,588 105,053 20.01
Dementia 3,438 1,591 98,187 18.06
Amnesia 2,974 4215 180,091 21.60
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Results
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Conclusion

» Leverages deep predictive modeling with the model agnostic meta-
learning to exploit the medical records from high-resource domain.

» Introduce an objective- level adaptation for MetaPred which not only
take advantage of fast adaptation from optimization-level but also take
the supervision of the high-resources domain into account.

» Extensive evaluation involving 5 cognitive diseases is conducted on
real-world EHR data for risk prediction tasks under various
source/target combinations.

» Open Source Code:
https://github.com/sheryl-ai/MetaPred
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