[2b4aea]: / baselines / models.py

Download this file

610 lines (530 with data), 26.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib import rnn
import tensorflow.contrib.layers as layers
import sklearn
import numpy as np
import os, time, shutil, collections
PADDING_ID = 1016
WORDS_NUM = 1017
MASK_ARRAY = [[1.]] * PADDING_ID + [[0.]] + [[1.]] * (WORDS_NUM - PADDING_ID - 1)
class BaseModel(object):
"""
Base Model for basic networks with sequential data, i.e., RNN, CNN.
"""
def __init__(self):
self.regularizers = []
def loss(self, logits):
# Define loss and optimizer
with tf.name_scope('cross_entropy'):
labels = tf.to_int64(self.ph_labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
cross_entropy = tf.reduce_mean(cross_entropy)
with tf.name_scope('regularization'):
regularization = self.regularization
regularization *= tf.add_n(self.regularizers)
loss = cross_entropy + regularization
# Summaries for TensorBoard.
tf.summary.scalar('loss/cross_entropy', cross_entropy)
tf.summary.scalar('loss/regularization', regularization)
tf.summary.scalar('loss/total', loss)
with tf.name_scope('averages'):
averages = tf.train.ExponentialMovingAverage(0.9)
op_averages = averages.apply([cross_entropy, regularization, loss])
tf.summary.scalar('loss/avg/cross_entropy', averages.average(cross_entropy))
tf.summary.scalar('loss/avg/regularization', averages.average(regularization))
tf.summary.scalar('loss/avg/total', averages.average(loss))
with tf.control_dependencies([op_averages]):
loss_average = tf.identity(averages.average(loss), name='control')
return loss, loss_average
def predict(self, data, labels=None, sess=None):
loss = 0
size = data.shape[0]
predictions = np.empty(size)
sess = self._get_session(sess)
for begin in range(0, size, self.batch_size):
end = begin + self.batch_size
end = min([end, size])
batch_data = np.zeros((self.batch_size, data.shape[1], data.shape[2]))
tmp_data = data[begin:end, :, :]
if type(tmp_data) is not np.ndarray:
tmp_data = tmp_data.toarray() # convert sparse matrices
batch_data[:end-begin] = tmp_data
feed_dict = {self.ph_data: batch_data, self.ph_dropout: 1, self.ph_training: False}
# Compute loss if labels are given.
if labels is not None:
batch_labels = np.zeros(self.batch_size)
batch_labels[:end-begin] = labels[begin:end]
feed_dict[self.ph_labels] = batch_labels
batch_pred, batch_loss = sess.run([self.op_prediction, self.op_loss], feed_dict)
loss += batch_loss
else:
batch_pred = sess.run(self.op_prediction, feed_dict)
predictions[begin:end] = batch_pred[:end-begin]
if labels is not None:
return predictions, loss * self.batch_size / size
else:
return predictions
def training(self, loss, learning_rate, decay_steps, decay_rate=0.95, momentum=0.9):
"""Adds to the loss model the Ops required to generate and apply gradients."""
with tf.name_scope('training'):
# Learning rate.
global_step = tf.Variable(0, name='global_step', trainable=False)
if decay_rate != 1:
learning_rate = tf.train.exponential_decay(
learning_rate, global_step, decay_steps, decay_rate, staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
# Optimizer.
if momentum == 0:
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
else:
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
grads = optimizer.compute_gradients(loss)
op_gradients = optimizer.apply_gradients(grads, global_step=global_step)
# Histograms.
for grad, var in grads:
if grad is None:
print('warning: {} has no gradient'.format(var.op.name))
else:
tf.summary.histogram(var.op.name + '/gradients', grad)
# The op return the learning rate.
with tf.control_dependencies([op_gradients]):
op_train = tf.identity(learning_rate, name='control')
return op_train
def fit(self, X_tr, y_tr, X_vl, y_vl):
t_process, t_wall = time.process_time(), time.time()
sess = tf.Session(graph=self.graph)
shutil.rmtree(self._get_path('summaries'), ignore_errors=True)
writer = tf.summary.FileWriter(self._get_path('summaries'), self.graph)
shutil.rmtree(self._get_path('checkpoints'), ignore_errors=True)
os.makedirs(self._get_path('checkpoints'))
path = os.path.join(self._get_path('checkpoints'), 'model')
sess.run(self.op_init)
# Training.
count = 0
bad_counter = 0
accuracies = []
aucs = []
losses = []
indices = collections.deque()
num_steps = int(self.num_epochs * X_tr.shape[0] / self.batch_size)
estop = False # early stop
if type(X_vl) is not np.ndarray:
X_vl = X_vl.toarray()
for step in range(1, num_steps+1):
# Be sure to have used all the samples before using one a second time.
if len(indices) < self.batch_size:
indices.extend(np.random.permutation(X_tr.shape[0]))
idx = [indices.popleft() for i in range(self.batch_size)]
count += len(idx)
batch_data, batch_labels = X_tr[idx, :, :], y_tr[idx]
if type(batch_data) is not np.ndarray:
batch_data = batch_data.toarray() # convert sparse matrices
feed_dict = {self.ph_data: batch_data, self.ph_labels: batch_labels, self.ph_dropout: self.dropout, self.ph_training: True}
learning_rate, loss_average = sess.run([self.op_train, self.op_loss_average], feed_dict)
# Periodical evaluation of the model.
if step % self.eval_frequency == 0 or step == num_steps:
print ('Seen samples: %d' % count)
epoch = step * self.batch_size / X_tr.shape[0]
print('step {} / {} (epoch {:.2f} / {}):'.format(step, num_steps, epoch, self.num_epochs))
print(' learning_rate = {:.2e}, loss_average = {:.2e}'.format(learning_rate, loss_average))
string, auc, accuracy, loss, predictions = self.evaluate(X_vl, y_vl, sess)
aucs.append(auc)
accuracies.append(accuracy)
losses.append(loss)
print(' validation {}'.format(string))
# print(predictions.tolist()[:50])
print(' time: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall))
# Summaries for TensorBoard.
summary = tf.Summary()
summary.ParseFromString(sess.run(self.op_summary, feed_dict))
summary.value.add(tag='validataion/auc', simple_value=auc)
summary.value.add(tag='validation/loss', simple_value=loss)
writer.add_summary(summary, step)
# Save model parameters (for evaluation).
self.op_saver.save(sess, path, global_step=step)
if len(aucs) > (self.patience+5) and auc > np.array(aucs).max():
bad_counter = 0
if len(aucs) > (self.patience+5) and auc <= np.array(aucs)[:-self.patience].max():
bad_counter += 1
if bad_counter > self.patience:
print('Early Stop!')
estop = True
break
if estop:
break
print('validation accuracy: peak = {:.2f}, mean = {:.2f}'.format(max(accuracies), np.mean(accuracies[-10:])))
print('validation auc: peak = {:.2f}, mean = {:.2f}'.format(max(aucs), np.mean(aucs[-10:])))
writer.close()
sess.close()
t_step = (time.time() - t_wall) / num_steps
print ("Optimization Finished!")
return aucs, accuracies, losses
def evaluate(self, data, labels, sess=None):
"""
Runs one evaluation against the full epoch of data.
Return the precision and the number of correct predictions.
Batch evaluation saves memory and enables this to run on smaller GPUs.
sess: the session in which the model has been trained.
op: the Tensor that returns the number of correct predictions.
"""
t_process, t_wall = time.process_time(), time.time()
predictions, loss = self.predict(data, labels, sess)
fpr, tpr, _ = sklearn.metrics.roc_curve(labels, predictions)
auc = 100 * sklearn.metrics.auc(fpr, tpr)
ncorrects = sum(predictions == labels)
accuracy = 100 * sklearn.metrics.accuracy_score(labels, predictions)
string = 'auc: {:.2f}, accuracy: {:.2f} ({:d} / {:d}), loss: {:.2e}'.format(auc, accuracy, ncorrects, len(labels), loss)
if sess is None:
string += '\ntime: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall)
# return string, auc, loss, predictions
return string, auc, accuracy, loss, predictions
def inference(self, data, dropout, is_training):
"""
It builds the model, i.e. the computational graph, as far as
is required for running the network forward to make predictions,
i.e. return logits given raw data.
data: size N x M
N: number of signals (samples)
M: number of vertices (features)
"""
# TODO: optimizations for sparse data
logits = self._inference(data, dropout, is_training)
return logits
def _weight_variable(self, shape):
initial = tf.truncated_normal_initializer(0, 0.1)
var = tf.get_variable('weights', shape, tf.float32, initializer=initial)
if self.isReg:
self.regularizers.append(tf.nn.l2_loss(var))
tf.summary.histogram(var.op.name, var)
return var
def _bias_variable(self, shape):
initial = tf.constant_initializer(0.1)
var = tf.get_variable('bias', shape, tf.float32, initializer=initial)
if self.isReg:
self.regularizers.append(tf.nn.l2_loss(var))
tf.summary.histogram(var.op.name, var)
return var
def fc(self, x, Mout, relu=True):
"""Fully connected layer with Mout features."""
N, Min = x.get_shape()
W = self._weight_variable([int(Min), Mout])
b = self._bias_variable([Mout])
x = tf.matmul(x, W) + b
return tf.nn.relu(x) if relu else x
def normalize(self, inputs, epsilon = 1e-8, scope="ln", reuse=None):
'''Applies layer normalization.
Args:
inputs: A tensor with 2 or more dimensions, where the first dimension has
`batch_size`.
epsilon: A floating number. A very small number for preventing ZeroDivision Error.
scope: Optional scope for `variable_scope`.
reuse: Boolean, whether to reuse the weights of a previous layer
by the same name.
Returns:
A tensor with the same shape and data dtype as `inputs`.
'''
with tf.variable_scope(scope, reuse=reuse):
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
beta= tf.Variable(tf.zeros(params_shape))
gamma = tf.Variable(tf.ones(params_shape))
normalized = (inputs - mean) / ( (variance + epsilon) ** (.5) )
outputs = gamma * normalized + beta
return outputs
# Helper methods.
def _get_path(self, folder):
path = '../../models/'
return os.path.join(path, folder, self.dir_name)
def _get_session(self, sess=None):
"""Restore parameters if no session given."""
if sess is None:
sess = tf.Session(graph=self.graph)
filename = tf.train.latest_checkpoint(self._get_path('checkpoints'))
self.op_saver.restore(sess, filename)
return sess
def _get_prediction(self, logits):
"""Return the predicted classes."""
with tf.name_scope('prediction'):
prediction = tf.argmax(logits, axis=1)
return prediction
# Methods to construct the computational graph
def build_model(self):
"""Build the computational graph with memory network of the model."""
self.graph = tf.Graph()
with self.graph.as_default():
# Inputs.
with tf.name_scope('inputs'):
# tf Graph input
self.ph_data = tf.placeholder(tf.int32, (self.batch_size, self.timesteps, self.code_size), 'data')
self.ph_labels = tf.placeholder(tf.int32, (self.batch_size), 'labels')
self.ph_dropout = tf.placeholder(tf.float32, (), 'dropout')
self.ph_training = tf.placeholder(tf.bool, name='trainingFlag')
# Construct model
op_logits, self.op_represent = self.inference(self.ph_data, self.ph_dropout, self.ph_training)
self.op_loss, self.op_loss_average = self.loss(op_logits)
self.op_train = self.training(self.op_loss, self.learning_rate,
self.decay_steps, self.decay_rate, self.momentum)
self.op_prediction = self._get_prediction(op_logits)
# Initialize variables, i.e. weights and biases.
self.op_init = tf.global_variables_initializer()
# Summaries for TensorBoard and Save for model parameters.
self.op_summary = tf.summary.merge_all()
self.op_saver = tf.train.Saver(max_to_keep=5)
self.graph.finalize()
class vrnn(BaseModel):
"""
Build a vanilla recurrent neural network.
"""
def __init__(self, n_words, n_classes, timesteps, code_size, dir_name, init_std=0.05):
super().__init__()
# training parameters
self.learning_rate = 0.05
self.batch_size = 64
self.num_epochs = 200
self.dropout = 0.8
self.decay_rate = 0.9
self.decay_steps = 10000 / self.batch_size
self.momentum = 0.95
self.patience = 10
self.eval_frequency = self.num_epochs
self.regularization = 0.01
self.isReg = True
self.dir_name = dir_name
# Network Parameters
self.init_std = init_std
self.n_hidden = 256 # hidden dimensions of embedding
self.n_hidden_1 = 128
self.n_hidden_2 = 128
self.n_words = n_words
self.n_classes = n_classes
self.timesteps = timesteps
self.code_size = code_size
self.M = [self.n_hidden_1, self.n_classes]
self.build_model()
def build_emb(self, x):
self.Wemb = tf.Variable(tf.random_normal([self.n_words, self.n_hidden], stddev=self.init_std))
self.Wemb_mask = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False)
_x = tf.nn.embedding_lookup(self.Wemb, x) # recs size is (batch_size, mem_size, n_words)
_x_mask = tf.nn.embedding_lookup(self.Wemb_mask, x)
emb_vecs = tf.multiply(_x, _x_mask) # broadcast
emb_vecs = tf.reduce_sum(emb_vecs, 2)
return emb_vecs
def lstm(self, x):
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
# x = tf.unstack(x, self.timesteps, 1)
# lstm_cell = rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0) # Define a lstm cell with tensorflow
# h, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# print (h[-1].get_shape())
lstm_cell = rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0)
output, state = tf.nn.dynamic_rnn(lstm_cell, x, dtype=tf.float32)
output_sum = tf.reduce_sum(output, axis=1)
output = tf.transpose(output, [1, 0, 2])
last = tf.gather(output, int(output.get_shape()[0]) - 1)
return last
def gru(self, x):
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, self.timesteps, 1)
gru_cell = rnn.GRUCell(self.n_hidden) # Define a gru cell with tensorflow
h, states = rnn.static_rnn(gru_cell, x, dtype=tf.float32)
return h[-1]
def build_attention(self, x, output_size, initializer=layers.xavier_initializer(),
activation_fn=tf.tanh, scope=None):
'''similar to the method in Hierarchical Attention Networks for Document Classification'''
assert len(x.get_shape()) == 3 and x.get_shape()[-1].value is not None
attention_context_vector = tf.get_variable(name='attention_context_vector',
shape=[output_size],
initializer=initializer,
dtype=tf.float32)
x_projection = layers.fully_connected(x, output_size,
activation_fn=activation_fn,
scope=scope)
vector_attn = tf.reduce_sum(tf.multiply(x_projection, attention_context_vector), axis=2, keep_dims=True)
attention_weights = tf.nn.softmax(vector_attn, dim=1)
weighted_projection = tf.multiply(x_projection, attention_weights)
outputs = tf.reduce_sum(weighted_projection, axis=1)
return outputs
# Create model
def _inference(self, x, dropout, is_training=True):
# embedding
with tf.variable_scope("embedding"):
x = self.build_emb(x)
x = self.normalize(x)
# recurrent neural networks
with tf.variable_scope("rnn"):
# hout = self.gru(x)
hout = self.lstm(x)
with tf.variable_scope("dropout"):
h_ = layers.dropout(hout, keep_prob=dropout)
# fully connected layers
for i, dim in enumerate(self.M[:-1]):
with tf.variable_scope('fc{}'.format(i+1)):
h_ = self.fc(h_, dim)
h_ = tf.nn.dropout(h_, dropout)
# Logits linear layer, i.e. softmax without normalization.
with tf.variable_scope('logits'):
prob = self.fc(h_, self.M[-1], relu=False)
return prob
class birnn(BaseModel):
def __init__(self, n_words, n_classes, timesteps, code_size, dir_name, init_std=0.05):
super().__init__()
# training parameters
self.learning_rate = 0.05
self.batch_size = 64
self.num_epochs = 200
self.dropout = 0.8
self.decay_rate = 0.9
self.decay_steps = 10000 / self.batch_size
self.momentum = 0.95
self.patience = 10
self.eval_frequency = self.num_epochs
self.regularization = 0.01
self.isReg = True
self.dir_name = dir_name
# Network Parameters
self.init_std = init_std
self.n_hidden = 256 # hidden dimensions of embedding
self.n_hidden_1 = 128
self.n_hidden_2 = 128
self.n_words = n_words
self.n_classes = n_classes
self.timesteps = timesteps
self.code_size = code_size
self.M = [self.n_hidden_1, self.n_classes]
self.build_model()
def build_emb(self, x):
with tf.variable_scope("embed"):
self.Wemb = tf.Variable(tf.random_normal([self.n_words, self.n_hidden], stddev=self.init_std))
self.Wemb_mask = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False)
_x = tf.nn.embedding_lookup(self.Wemb, x) # recs size is (batch_size, mem_size, n_words)
_x_mask = tf.nn.embedding_lookup(self.Wemb_mask, x)
emb_vecs = tf.multiply(_x, _x_mask) # broadcast
emb_vecs = tf.reduce_sum(emb_vecs, 2)
return emb_vecs
def bilstm(self, x):
x = tf.unstack(x, self.timesteps, 1)
with tf.variable_scope('birnn') as scope:
with tf.variable_scope('forward'):
lstm_fw_cell = rnn.BasicLSTMCell(int(self.n_hidden/2), forget_bias=1.0)
# Backward direction cell
with tf.variable_scope('backward'):
lstm_bw_cell = rnn.BasicLSTMCell(int(self.n_hidden/2), forget_bias=1.0)
try:
outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
except Exception: # Old TensorFlow version only returns outputs not states
outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
return outputs[-1]
# Create model
def _inference(self, x, dropout, is_training=True):
# embedding
with tf.variable_scope("embedding"):
x = self.build_emb(x)
x = self.normalize(x)
# recurrent neural networks
with tf.variable_scope("birnn"):
# hout = self.gru(x)
hout = self.bilstm(x)
with tf.variable_scope("dropout"):
h_ = layers.dropout(hout, keep_prob=dropout)
# fully connected layers
for i, dim in enumerate(self.M[:-1]):
with tf.variable_scope('fc{}'.format(i+1)):
h_ = self.fc(h_, dim)
h_ = tf.nn.dropout(h_, dropout)
# Logits linear layer, i.e. softmax without normalization.
with tf.variable_scope('logits'):
prob = self.fc(h_, self.M[-1], relu=False)
return prob
class cnn(BaseModel):
def __init__(self, n_words, n_classes, timesteps, code_size, dir_name, init_std=0.05):
super().__init__()
# training parameters
self.learning_rate = 0.01
self.batch_size = 32
self.num_epochs = 200
self.dropout = 0.6
self.decay_rate = 0.9
self.decay_steps = 10000 / self.batch_size
self.momentum = 0.95
self.patience = 10
self.eval_frequency = self.num_epochs
self.regularization = 0.01
self.isReg = True
self.dir_name = dir_name
# Network Parameters
self.init_std = init_std
self.n_hidden = 256 # hidden dimensions of embedding
self.n_hidden_1 = 128
self.n_hidden_2 = 128
self.n_words = n_words
self.n_classes = n_classes
self.n_filters = 128
self.timesteps = timesteps
self.code_size = code_size
self.M = [self.n_hidden_1, self.n_classes]
self.filter_sizes = [3, 4, 5]
self.build_model()
def build_emb(self, x):
with tf.variable_scope("embed"):
self.Wemb = tf.Variable(tf.random_normal([self.n_words, self.n_hidden], stddev=self.init_std))
self.Wemb_mask = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False)
_x = tf.nn.embedding_lookup(self.Wemb, x) # recs size is (batch_size, mem_size, n_words)
_x_mask = tf.nn.embedding_lookup(self.Wemb_mask, x)
emb_vecs = tf.multiply(_x, _x_mask) # broadcast
emb_vecs = tf.reduce_sum(emb_vecs, 2)
self.emb_expanded = tf.expand_dims(emb_vecs, -1)
return emb_vecs
def build_conv(self, x, is_training):
'''Create a convolution + maxpool layer for each filter size'''
pooled_outputs = []
for i, filter_size in enumerate(self.filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, self.n_hidden, 1, self.n_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[self.n_filters]), name="b")
conv = tf.nn.conv2d(
self.emb_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.leaky_relu(tf.nn.bias_add(conv, b), name="relu")
h = layers.batch_norm(h, updates_collections=None,
decay=0.99,
scale=True, center=True,
is_training=is_training)
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, self.timesteps - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = self.n_filters * len(self.filter_sizes)
h_pool = tf.concat(pooled_outputs, 3)
h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total])
return h_pool_flat
# Create model
def _inference(self, x, dropout, is_training=True):
with tf.variable_scope("embedding"):
xemb = self.build_emb(x)
# convolutional network
with tf.variable_scope("conv"):
hout = self.build_conv(xemb, is_training)
with tf.variable_scope("dropout"):
h_ = layers.dropout(hout, keep_prob=dropout)
for i, dim in enumerate(self.M[:-1]):
with tf.variable_scope('fc{}'.format(i+1)):
h_ = self.fc(h_, dim)
h_ = tf.nn.dropout(h_, dropout)
# Logits linear layer, i.e. softmax without normalization.
with tf.variable_scope('logits'):
prob = self.fc(h_, self.M[-1], relu=False)
return prob