[2b4aea]: / baselines / mlp.py

Download this file

308 lines (265 with data), 13.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import tensorflow as tf
import sklearn
import scipy.sparse
import numpy as np
import os, time, shutil, collections
class MLP(object):
"""
Build a 2-hidden layers fully connected neural network (a.k.a multilayer perceptron).
"""
def __init__(self, num_input, num_classes):
# Training Parameters
self.learning_rate = 0.1
self.batch_size = 64
self.num_epochs = 200
self.display_step = 10000
self.dropout = 0.8
self.decay_rate = 0.9
self.decay_steps = 5000/ self.batch_size
self.momentum = 0.95
self.patience = 5
self.eval_frequency = self.num_epochs
self.regularization = 0.01
self.regularizers = []
self.isReg = True
self.dir_name = "mlp"
# Network Parameters
self.n_hidden_1 = 128 # 1st layer number of neurons
self.n_hidden_2 = 128 # 2nd layer number of neurons
self.num_input = num_input
self.num_classes = num_classes
self.M = [self.n_hidden_1, self.n_hidden_2, self.num_classes]
self.build_model()
# Methods to construct the computational graph with mlp.
def build_model(self):
"""Build the computational graph with memory network of the model."""
self.graph = tf.Graph()
with self.graph.as_default():
# Inputs.
with tf.name_scope('inputs'):
# tf Graph input
self.ph_data = tf.placeholder(tf.float32, (self.batch_size, self.num_input), 'data')
self.ph_labels = tf.placeholder(tf.int32, (self.batch_size), 'labels')
self.ph_dropout = tf.placeholder(tf.float32, (), 'dropout')
# Construct model
op_logits = self.inference(self.ph_data, self.ph_dropout)
self.op_loss, self.op_loss_average = self.loss(op_logits)
self.op_train = self.training(self.op_loss, self.learning_rate,
self.decay_steps, self.decay_rate, self.momentum)
self.op_prediction = self._get_prediction(op_logits)
# Initialize variables, i.e. weights and biases.
self.op_init = tf.global_variables_initializer()
# Summaries for TensorBoard and Save for model parameters.
self.op_summary = tf.summary.merge_all()
self.op_saver = tf.train.Saver(max_to_keep=5)
self.graph.finalize()
def loss(self, logits):
# Define loss and optimizer
with tf.name_scope('cross_entropy'):
labels = tf.to_int64(self.ph_labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
cross_entropy = tf.reduce_mean(cross_entropy)
with tf.name_scope('regularization'):
regularization = self.regularization
regularization *= tf.add_n(self.regularizers)
loss = cross_entropy + regularization
# Summaries for TensorBoard.
tf.summary.scalar('loss/cross_entropy', cross_entropy)
tf.summary.scalar('loss/regularization', regularization)
tf.summary.scalar('loss/total', loss)
with tf.name_scope('averages'):
averages = tf.train.ExponentialMovingAverage(0.9)
op_averages = averages.apply([cross_entropy, regularization, loss])
tf.summary.scalar('loss/avg/cross_entropy', averages.average(cross_entropy))
tf.summary.scalar('loss/avg/regularization', averages.average(regularization))
tf.summary.scalar('loss/avg/total', averages.average(loss))
with tf.control_dependencies([op_averages]):
loss_average = tf.identity(averages.average(loss), name='control')
return loss, loss_average
def predict(self, data, labels=None, sess=None):
loss = 0
size = data.shape[0]
predictions = np.empty(size)
sess = self._get_session(sess)
for begin in range(0, size, self.batch_size):
end = begin + self.batch_size
end = min([end, size])
batch_data = np.zeros((self.batch_size, data.shape[1]))
tmp_data = data[begin:end, :]
if type(tmp_data) is not np.ndarray:
tmp_data = tmp_data.toarray() # convert sparse matrices
batch_data[:end-begin] = tmp_data
feed_dict = {self.ph_data: batch_data, self.ph_dropout: 1}
# Compute loss if labels are given.
if labels is not None:
batch_labels = np.zeros(self.batch_size)
batch_labels[:end-begin] = labels[begin:end]
feed_dict[self.ph_labels] = batch_labels
batch_pred, batch_loss = sess.run([self.op_prediction, self.op_loss], feed_dict)
loss += batch_loss
else:
batch_pred = sess.run(self.op_prediction, feed_dict)
predictions[begin:end] = batch_pred[:end-begin]
if labels is not None:
return predictions, loss * self.batch_size / size
else:
return predictions
def training(self, loss, learning_rate, decay_steps, decay_rate=0.95, momentum=0.9):
"""Adds to the loss model the Ops required to generate and apply gradients."""
with tf.name_scope('training'):
# Learning rate.
global_step = tf.Variable(0, name='global_step', trainable=False)
if decay_rate != 1:
learning_rate = tf.train.exponential_decay(
learning_rate, global_step, decay_steps, decay_rate, staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
# Optimizer.
if momentum == 0:
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
else:
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
grads = optimizer.compute_gradients(loss)
op_gradients = optimizer.apply_gradients(grads, global_step=global_step)
# Histograms.
for grad, var in grads:
if grad is None:
print('warning: {} has no gradient'.format(var.op.name))
else:
tf.summary.histogram(var.op.name + '/gradients', grad)
# The op return the learning rate.
with tf.control_dependencies([op_gradients]):
op_train = tf.identity(learning_rate, name='control')
return op_train
# Helper methods.
def _get_path(self, folder):
path = '../../models/'
return os.path.join(path, folder, self.dir_name)
def _get_session(self, sess=None):
"""Restore parameters if no session given."""
if sess is None:
sess = tf.Session(graph=self.graph)
filename = tf.train.latest_checkpoint(self._get_path('checkpoints'))
self.op_saver.restore(sess, filename)
return sess
def _get_prediction(self, logits):
"""Return the predicted classes."""
with tf.name_scope('prediction'):
prediction = tf.argmax(logits, axis=1)
return prediction
def weight_variable(self, shape):
initial = tf.truncated_normal_initializer(0, 0.1)
var = tf.get_variable('weights', shape, tf.float32, initializer=initial)
if self.isReg:
self.regularizers.append(tf.nn.l2_loss(var))
tf.summary.histogram(var.op.name, var)
return var
def bias_variable(self, shape):
initial = tf.constant_initializer(0.1)
var = tf.get_variable('bias', shape, tf.float32, initializer=initial)
if self.isReg:
self.regularizers.append(tf.nn.l2_loss(var))
tf.summary.histogram(var.op.name, var)
return var
def fc(self, x, Mout, relu=True):
"""Fully connected layer with Mout features."""
N, Min = x.get_shape()
W = self.weight_variable([int(Min), Mout])
b = self.bias_variable([Mout])
x = tf.matmul(x, W) + b
return tf.nn.relu(x) if relu else x
# Create model
def inference(self, x, dropout):
for i, dim in enumerate(self.M[:-1]):
with tf.variable_scope('fc{}'.format(i+1)):
x = self.fc(x, dim)
x = tf.nn.dropout(x, dropout)
# Logits linear layer, i.e. softmax without normalization.
with tf.variable_scope('logits'):
prob = self.fc(x, self.M[-1], relu=False)
return prob
def evaluate(self, data, labels, sess=None):
"""
Runs one evaluation against the full epoch of data.
Return the precision and the number of correct predictions.
Batch evaluation saves memory and enables this to run on smaller GPUs.
sess: the session in which the model has been trained.
op: the Tensor that returns the number of correct predictions.
"""
t_process, t_wall = time.process_time(), time.time()
predictions, loss = self.predict(data, labels, sess)
fpr, tpr, _ = sklearn.metrics.roc_curve(labels, predictions)
auc = 100 * sklearn.metrics.auc(fpr, tpr)
ncorrects = sum(predictions == labels)
accuracy = 100 * sklearn.metrics.accuracy_score(labels, predictions)
string = 'auc: {:.2f}, accuracy: {:.2f} ({:d} / {:d}), loss: {:.2e}'.format(auc, accuracy, ncorrects, len(labels), loss)
if sess is None:
string += '\ntime: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall)
# return string, auc, loss, predictions
return string, auc, accuracy, loss, predictions
def fit(self, X_tr, y_tr, X_vl, y_vl):
t_process, t_wall = time.process_time(), time.time()
sess = tf.Session(graph=self.graph)
shutil.rmtree(self._get_path('summaries'), ignore_errors=True)
writer = tf.summary.FileWriter(self._get_path('summaries'), self.graph)
shutil.rmtree(self._get_path('checkpoints'), ignore_errors=True)
os.makedirs(self._get_path('checkpoints'))
path = os.path.join(self._get_path('checkpoints'), 'model')
sess.run(self.op_init)
# Training.
count = 0
bad_counter = 0
accuracies = []
aucs = []
losses = []
indices = collections.deque()
num_steps = int(self.num_epochs * X_tr.shape[0] / self.batch_size)
estop = False # early stop
if type(X_vl) is not np.ndarray:
X_vl = X_vl.toarray()
for step in range(1, num_steps+1):
# Be sure to have used all the samples before using one a second time.
if len(indices) < self.batch_size:
indices.extend(np.random.permutation(X_tr.shape[0]))
idx = [indices.popleft() for i in range(self.batch_size)]
count += len(idx)
batch_data, batch_labels = X_tr[idx, :], y_tr[idx]
if type(batch_data) is not np.ndarray:
batch_data = batch_data.toarray() # convert sparse matrices
feed_dict = {self.ph_data: batch_data, self.ph_labels: batch_labels, self.ph_dropout: self.dropout}
learning_rate, loss_average = sess.run([self.op_train, self.op_loss_average], feed_dict)
# Periodical evaluation of the model.
if step % self.eval_frequency == 0 or step == num_steps:
print ('Seen samples: %d' % count)
epoch = step * self.batch_size / X_tr.shape[0]
print('step {} / {} (epoch {:.2f} / {}):'.format(step, num_steps, epoch, self.num_epochs))
print(' learning_rate = {:.2e}, loss_average = {:.2e}'.format(learning_rate, loss_average))
string, auc, accuracy, loss, predictions = self.evaluate(X_vl, y_vl, sess)
aucs.append(auc)
accuracies.append(accuracy)
losses.append(loss)
print(' validation {}'.format(string))
print(' time: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall))
# Summaries for TensorBoard.
summary = tf.Summary()
summary.ParseFromString(sess.run(self.op_summary, feed_dict))
summary.value.add(tag='validataion/auc', simple_value=auc)
summary.value.add(tag='validation/loss', simple_value=loss)
writer.add_summary(summary, step)
# Save model parameters (for evaluation).
self.op_saver.save(sess, path, global_step=step)
if len(aucs) > (self.patience+5) and auc > np.array(aucs).max():
bad_counter = 0
if len(aucs) > (self.patience+5) and auc <= np.array(aucs)[:-self.patience].max():
bad_counter += 1
if bad_counter > self.patience:
print('Early Stop!')
estop = True
break
if estop:
break
print('validation accuracy: peak = {:.2f}, mean = {:.2f}'.format(max(accuracies), np.mean(accuracies[-10:])))
print('validation auc: peak = {:.2f}, mean = {:.2f}'.format(max(aucs), np.mean(aucs[-10:])))
writer.close()
sess.close()
t_step = (time.time() - t_wall) / num_steps
return aucs, accuracies, losses