--- a +++ b/finetune.py @@ -0,0 +1,808 @@ +""" Code for the MAML algorithm and network architecture. """ +import numpy as np +import sklearn +import tensorflow as tf +import os, time, shutil, collections + +from tensorflow.contrib import rnn +import tensorflow.contrib.layers as layers +from tensorflow.contrib.rnn import RNNCell + +from tensorflow.python.platform import flags + + +FLAGS = flags.FLAGS + +PADDING_ID = 1016 +WORDS_NUM = 1017 +MASK_ARRAY = [[1.]] * PADDING_ID + [[0.]] + [[1.]] * (WORDS_NUM - PADDING_ID - 1) + +SUMMARY_INTERVAL = 100 +SAVE_INTERVAL = 1000 +PRINT_INTERVAL = 100 +TEST_PRINT_INTERVAL = PRINT_INTERVAL*5 + + +class BaseModel(object): + """ + Base Model for basic networks with sequential data, i.e., RNN, CNN. + """ + def __init__(self): + self.regularizers = [] + self.regularization = 0.01 + self.isReg = True + + + def evaluate(self, data, labels, sess=None, prefix="metatest_"): + """ + Runs one evaluation against the full epoch of data. + Return the precision and the number of correct predictions. + Batch evaluation saves memory and enables this to run on smaller GPUs. + sess: the session in which the model has been trained. + op: the Tensor that returns the number of correct predictions. + """ + t_process, t_wall = time.process_time(), time.time() + predictions, loss = self.predict(data, labels, sess) + + fpr, tpr, _ = sklearn.metrics.roc_curve(labels, predictions) + auc = 100 * sklearn.metrics.auc(fpr, tpr) + ncorrects = sum(predictions == labels) + accuracy = 100 * sklearn.metrics.accuracy_score(labels, predictions) + string = 'auc: {:.2f}, accuracy: {:.2f} ({:d} / {:d}), loss: {:.2e}'.format(auc, accuracy, ncorrects, len(labels), loss) + + if sess is None: + string += '\ntime: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall) + # return string, auc, loss, predictions + return string, auc, accuracy, loss, predictions + + def fit(self, X_tr, y_tr, X_vl, y_vl): + + t_process, t_wall = time.process_time(), time.time() + sess = tf.Session(graph=self.graph) + shutil.rmtree(self._get_path('summaries'), ignore_errors=True) + writer = tf.summary.FileWriter(self._get_path('summaries'), self.graph) + shutil.rmtree(self._get_path('checkpoints'), ignore_errors=True) + os.makedirs(self._get_path('checkpoints')) + path = os.path.join(self._get_path('checkpoints'), 'model') + sess.run(self.op_init) + + # Training. + count = 0 + bad_counter = 0 + accuracies = [] + aucs = [] + losses = [] + indices = collections.deque() + num_steps = int(self.num_epochs * X_tr.shape[0] / self.batch_size) + estop = False # early stop + if type(X_vl) is not np.ndarray: + X_vl = X_vl.toarray() + + for step in range(1, num_steps+1): + + # Be sure to have used all the samples before using one a second time. + if len(indices) < self.batch_size: + indices.extend(np.random.permutation(X_tr.shape[0])) + idx = [indices.popleft() for i in range(self.batch_size)] + count += len(idx) + + batch_data, batch_labels = X_tr[idx, :, :], y_tr[idx] + if type(batch_data) is not np.ndarray: + batch_data = batch_data.toarray() # convert sparse matrices + feed_dict = {self.ph_data: batch_data, self.ph_labels: batch_labels, self.ph_dropout: self.dropout, self.ph_training: True} + + learning_rate, loss_average = sess.run([self.op_train, self.op_loss_average], feed_dict) + + # Periodical evaluation of the model. + if step % self.eval_frequency == 0 or step == num_steps: + print ('Seen samples: %d' % count) + epoch = step * self.batch_size / X_tr.shape[0] + print('step {} / {} (epoch {:.2f} / {}):'.format(step, num_steps, epoch, self.num_epochs)) + print(' learning_rate = {:.2e}, loss_average = {:.2e}'.format(learning_rate, loss_average)) + string, auc, accuracy, loss, predictions = self.evaluate(X_vl, y_vl, sess) + aucs.append(auc) + accuracies.append(accuracy) + losses.append(loss) + print(' validation {}'.format(string)) + print(' time: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall)) + + # Summaries for TensorBoard. + summary = tf.Summary() + summary.ParseFromString(sess.run(self.op_summary, feed_dict)) + summary.value.add(tag='validataion/auc', simple_value=auc) + summary.value.add(tag='validation/loss', simple_value=loss) + writer.add_summary(summary, step) + + # Save model parameters (for evaluation). + self.op_saver.save(sess, path, global_step=step) + + if len(aucs) > (self.patience+5) and auc > np.array(aucs).max(): + bad_counter = 0 + + if len(aucs) > (self.patience+5) and auc <= np.array(aucs)[:-self.patience].max(): + bad_counter += 1 + if bad_counter > self.patience: + print('Early Stop!') + estop = True + break + if estop: + break + print('validation accuracy: peak = {:.2f}, mean = {:.2f}'.format(max(accuracies), np.mean(accuracies[-10:]))) + print('validation auc: peak = {:.2f}, mean = {:.2f}'.format(max(aucs), np.mean(aucs[-10:]))) + + # store weights value for fine-tune + if self.is_finetune is not True: + feed_dict = {} + for k in self.op_weights: + self.weights_for_init[k] = sess.run([self.op_weights[k]], feed_dict)[0] + self.weights_for_finetune[k] = sess.run([self.op_weights[k]], feed_dict)[0] + + writer.close() + sess.close() + t_step = (time.time() - t_wall) / num_steps + return sess, aucs, accuracies + + + def loss(self, logits): + # Define loss and optimizer + with tf.name_scope('cross_entropy'): + labels = tf.to_int64(self.ph_labels) + cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels) + cross_entropy = tf.reduce_mean(cross_entropy) + if self.is_finetune and self.freeze_opt == 'mlp': + loss = cross_entropy + # Summaries for TensorBoard. + tf.summary.scalar('loss/cross_entropy', cross_entropy) + tf.summary.scalar('loss/total', loss) + with tf.name_scope('averages'): + averages = tf.train.ExponentialMovingAverage(0.9) + op_averages = averages.apply([cross_entropy, loss]) + tf.summary.scalar('loss/avg/cross_entropy', averages.average(cross_entropy)) + tf.summary.scalar('loss/avg/total', averages.average(loss)) + with tf.control_dependencies([op_averages]): + loss_average = tf.identity(averages.average(loss), name='control') + else: + with tf.name_scope('regularization'): + regularization = self.regularization + regularization *= tf.add_n(self.regularizers) + loss = cross_entropy + regularization + + # Summaries for TensorBoard. + tf.summary.scalar('loss/cross_entropy', cross_entropy) + tf.summary.scalar('loss/regularization', regularization) + tf.summary.scalar('loss/total', loss) + + with tf.name_scope('averages'): + averages = tf.train.ExponentialMovingAverage(0.9) + op_averages = averages.apply([cross_entropy, regularization, loss]) + tf.summary.scalar('loss/avg/cross_entropy', averages.average(cross_entropy)) + tf.summary.scalar('loss/avg/regularization', averages.average(regularization)) + tf.summary.scalar('loss/avg/total', averages.average(loss)) + with tf.control_dependencies([op_averages]): + loss_average = tf.identity(averages.average(loss), name='control') + return loss, loss_average + + def predict(self, data, labels=None, sess=None): + loss = 0 + size = data.shape[0] + predictions = np.empty(size) + sess = self._get_session(sess) + for begin in range(0, size, self.batch_size): + end = begin + self.batch_size + end = min([end, size]) + + batch_data = np.zeros((self.batch_size, data.shape[1], data.shape[2])) + tmp_data = data[begin:end, :, :] + + if type(tmp_data) is not np.ndarray: + tmp_data = tmp_data.toarray() # convert sparse matrices + batch_data[:end-begin] = tmp_data + feed_dict = {self.ph_data: batch_data, self.ph_dropout: 1, self.ph_training: False} + + # Compute loss if labels are given. + if labels is not None: + batch_labels = np.zeros(self.batch_size) + batch_labels[:end-begin] = labels[begin:end] + feed_dict[self.ph_labels] = batch_labels + batch_pred, batch_loss = sess.run([self.op_prediction, self.op_loss], feed_dict) + loss += batch_loss + else: + batch_pred = sess.run(self.op_prediction, feed_dict) + + predictions[begin:end] = batch_pred[:end-begin] + + if labels is not None: + return predictions, loss * self.batch_size / size + else: + return predictions + + def training(self, loss, learning_rate, decay_steps, decay_rate=0.95, momentum=0.9): + """Adds to the loss model the Ops required to generate and apply gradients.""" + with tf.name_scope('training'): + # Learning rate. + global_step = tf.Variable(0, name='global_step', trainable=False) + if decay_rate != 1: + learning_rate = tf.train.exponential_decay( + learning_rate, global_step, decay_steps, decay_rate, staircase=True) + tf.summary.scalar('learning_rate', learning_rate) + # Optimizer. + if momentum == 0: + optimizer = tf.train.GradientDescentOptimizer(learning_rate) + else: + optimizer = tf.train.MomentumOptimizer(learning_rate, momentum) + grads = optimizer.compute_gradients(loss) + op_gradients = optimizer.apply_gradients(grads, global_step=global_step) + # Histograms. + for grad, var in grads: + if grad is None: + print('warning: {} has no gradient'.format(var.op.name)) + else: + tf.summary.histogram(var.op.name + '/gradients', grad) + # The op return the learning rate. + with tf.control_dependencies([op_gradients]): + op_train = tf.identity(learning_rate, name='control') + return op_train + + # Helper methods. + def _get_path(self, folder): + path = '../../models/' + return os.path.join(path, folder, self.dir_name) + + def _get_session(self, sess=None): + """Restore parameters if no session given.""" + if sess is None: + sess = tf.Session(graph=self.graph) + filename = tf.train.latest_checkpoint(self._get_path('checkpoints')) + self.op_saver.restore(sess, filename) + return sess + + def _get_prediction(self, logits): + """Return the predicted classes.""" + with tf.name_scope('prediction'): + prediction = tf.argmax(logits, axis=1) + return prediction + + # Helper methods. + def _get_path(self, folder): + path = '../../models/' + return os.path.join(path, folder, self.dir_name) + + def _get_session(self, sess=None): + """Restore parameters if no session given.""" + if sess is None: + sess = tf.Session(graph=self.graph) + filename = tf.train.latest_checkpoint(self._get_path('checkpoints')) + self.op_saver.restore(sess, filename) + return sess + + + def weight_variable(self, shape, name='weights'): + initial = tf.truncated_normal_initializer(0, 0.1) + var = tf.get_variable(name, shape, tf.float32, initializer=initial) + + if self.isReg: + self.regularizers.append(tf.nn.l2_loss(var)) + tf.summary.histogram(var.op.name, var) + return var + + def bias_variable(self, shape, name='bias'): + initial = tf.constant_initializer(0.1) + var = tf.get_variable(name, shape, tf.float32, initializer=initial) + + if self.isReg: + self.regularizers.append(tf.nn.l2_loss(var)) + tf.summary.histogram(var.op.name, var) + return var + + def build_fc_weights(self, dim_in, weights): + for i, dim in enumerate(self.dim_hidden): + dim_out = dim + weights["fc_W"+str(i)] = self.weight_variable([int(dim_in), dim_out], name="fc_W"+str(i)) + weights["fc_b"+str(i)] = self.bias_variable([dim_out], name="fc_b"+str(i)) + dim_in = dim_out + return weights + + def fc(self, x, W, b, relu=True): + """Fully connected layer with Mout features.""" + x = tf.matmul(x, W) + b + return tf.nn.relu(x) if relu else x + + def normalize(self, inputs, epsilon = 1e-8, scope="ln", reuse=None): + '''Applies layer normalization. + + Args: + inputs: A tensor with 2 or more dimensions, where the first dimension has + `batch_size`. + epsilon: A floating number. A very small number for preventing ZeroDivision Error. + scope: Optional scope for `variable_scope`. + reuse: Boolean, whether to reuse the weights of a previous layer + by the same name. + + Returns: + A tensor with the same shape and data dtype as `inputs`. + ''' + with tf.variable_scope(scope, reuse=reuse): + inputs_shape = inputs.get_shape() + params_shape = inputs_shape[-1:] + + mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True) + beta= tf.Variable(tf.zeros(params_shape)) + gamma = tf.Variable(tf.ones(params_shape)) + normalized = (inputs - mean) / ( (variance + epsilon) ** (.5) ) + outputs = gamma * normalized + beta + return outputs + + +class RNN(BaseModel): + """ + Build a vanilla recurrent neural network. + """ + def __init__(self, data_loader, weights_for_finetune, init_std=0.05, freeze_opt=None, is_finetune=False): + super().__init__() + self.is_finetune = is_finetune + self.freeze_opt = freeze_opt + print ("freeze_opt: ", self.freeze_opt) + if self.is_finetune: + self.finetune_weights = weights_for_finetune + self.learning_rate = 0.00001 + self.batch_size = 128 + self.num_epochs = 30 + else: + self.learning_rate = 0.5 + self.batch_size = 128 + self.num_epochs = 200 + + # training parameters + self.dir_name = "rnn" + self.dropout = 1 + self.decay_rate = 0.9 + self.decay_steps = 10000 / self.batch_size + self.momentum = 0.95 + self.patience = 5 + self.eval_frequency = self.num_epochs + + # Network Parameters + self.init_std = init_std + self.n_hidden = 256 # hidden dimensions of embedding + self.n_hidden_1 = 128 + self.n_hidden_2 = 128 + self.n_words = data_loader.n_words + self.num_input = data_loader.dim_input + self.n_classes = FLAGS.n_classes + self.timesteps = data_loader.timesteps + self.code_size = data_loader.code_size + self.dim_hidden = [self.n_hidden_1, self.n_hidden_2, FLAGS.n_classes] + + self.weights_for_init = dict() # to store the value of learned params + self.weights_for_finetune = dict() + + self.build_model() + + print('method', self.dir_name, 'data shape:', self.num_input, 'batch size:', self.batch_size, 'learning rate:', self.learning_rate, \ + 'momentum:', self.momentum, 'patience:', self.patience) + + # Methods to construct the computational graph + def build_model(self): + """Build the computational graph with memory network of the model.""" + self.graph = tf.Graph() + with self.graph.as_default(): + # Inputs. + with tf.name_scope('inputs'): + # tf Graph input + self.ph_data = tf.placeholder(tf.int32, (self.batch_size, self.timesteps, self.code_size), 'data') + self.ph_labels = tf.placeholder(tf.int32, (self.batch_size), 'labels') + self.ph_dropout = tf.placeholder(tf.float32, (), 'dropout') + self.ph_training = tf.placeholder(tf.bool, name='trainingFlag') + + # Construct model + op_logits = self._inference(self.ph_data, self.ph_dropout, self.ph_training) + self.op_loss, self.op_loss_average = self.loss(op_logits) + self.op_train = self.training(self.op_loss, self.learning_rate, + self.decay_steps, self.decay_rate, self.momentum) + self.op_prediction = self._get_prediction(op_logits) + + # Initialize variables, i.e. weights and biases. + self.op_init = tf.global_variables_initializer() + if self.is_finetune is not True: + self.op_weights = self.get_op_variables() + else: + print (tf.trainable_variables()) + + # Summaries for TensorBoard and Save for model parameters. + self.op_summary = tf.summary.merge_all() + self.op_saver = tf.train.Saver(max_to_keep=5) + self.graph.finalize() + + def get_op_variables(self): + op_weights = dict() + op_var = tf.trainable_variables() + + # embedding + op_weights["emb_W"] = [v for v in op_var if "emb_W" in v.name][0] + # lstm + op_weights["lstm_W_xh"] = [v for v in op_var if "lstm_W_xh" in v.name][0] + op_weights["lstm_W_hh"] = [v for v in op_var if "lstm_W_hh" in v.name][0] + op_weights["lstm_b"] = [v for v in op_var if "lstm_b" in v.name][0] + # fully connected + for i, dim in enumerate(self.dim_hidden): + op_weights["fc_W"+str(i)] = [v for v in op_var if "fc_W"+str(i) in v.name ][0] + op_weights["fc_b"+str(i)] = [v for v in op_var if "fc_b"+str(i) in v.name][0] + print ('show variable') + print(op_var) + return op_weights + + + def build_emb_weights(self, weights): + weights["emb_W"] = tf.Variable(tf.random_normal([self.n_words, self.n_hidden], stddev=self.init_std), name="emb_W") + weights["emb_mask_W"] = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False) + return weights + + def embedding(self, x, Wemb, Wemb_mask): + _x = tf.nn.embedding_lookup(Wemb, x) # recs size is (batch_size, timesteps, n_words) + _x_mask = tf.nn.embedding_lookup(Wemb_mask, x) + emb_vecs = tf.multiply(_x, _x_mask) # broadcast + emb_vecs = tf.reduce_sum(emb_vecs, 2) + return emb_vecs + + def lstm_identity_initializer(self, scale): + def _initializer(shape, dtype=tf.float32, partition_info=None): + """Ugly cause LSTM params calculated in one matrix multiply""" + size = shape[0] + # gate (j) is identity + t = np.zeros(shape) + t[:, size:size * 2] = np.identity(size) * scale + t[:, :size] = self.orthogonal([size, size]) + t[:, size * 2:size * 3] = self.orthogonal([size, size]) + t[:, size * 3:] = self.orthogonal([size, size]) + return tf.constant(t, dtype=dtype) + return _initializer + + def orthogonal_initializer(self): + def _initializer(shape, dtype=tf.float32, partition_info=None): + return tf.constant(self.orthogonal(shape), dtype) + return _initializer + + def orthogonal(self, shape): + flat_shape = (shape[0], np.prod(shape[1:])) + a = np.random.normal(0.0, 1.0, flat_shape) + u, _, v = np.linalg.svd(a, full_matrices=False) + q = u if u.shape == flat_shape else v + return q.reshape(shape) + + def build_lstm_weights(self, weights): + # + # # Keep W_xh and W_hh separate here as well to reuse initialization methods + # with tf.variable_scope(scope or type(self).__name__): + weights["lstm_W_xh"] = tf.get_variable('lstm_W_xh', [self.n_hidden, 4 * self.n_hidden], + initializer=self.orthogonal_initializer()) + weights["lstm_W_hh"] = tf.get_variable('lstm_W_hh', [self.n_hidden, 4 * self.n_hidden], + initializer=self.lstm_identity_initializer(0.95),) + weights["lstm_b"] = tf.get_variable('lstm_b', [4 * self.n_hidden]) + return weights + + # Create model + def _inference(self, x, dropout, is_training=True): + with tf.variable_scope('pretrain_model', reuse=None) as training_scope: + if self.freeze_opt == None: + weights = {} + weights = self.build_emb_weights(weights) + weights = self.build_lstm_weights(weights) + weights = self.build_fc_weights(self.n_hidden, weights) + + # embedding + with tf.variable_scope("embedding"): + xemb = self.embedding(x, weights["emb_W"], weights["emb_mask_W"]) + + # recurrent neural networks + with tf.variable_scope("rnn"): + lstm_cell = LSTMCell(self.n_hidden, weights["lstm_W_xh"], weights["lstm_W_hh"], weights["lstm_b"]) + # lstm_cell = LSTMCell(self.n_hidden) + xemb = tf.unstack(xemb, self.timesteps, 1) + + #c, h + W_state_c = tf.random_normal([self.batch_size, self.n_hidden], stddev=0.1) + W_state_h = tf.random_normal([self.batch_size, self.n_hidden], stddev=0.1) + outputs, state = tf.nn.static_rnn(lstm_cell, xemb, initial_state=(W_state_c, W_state_h), dtype=tf.float32) + _, hout = state + + with tf.variable_scope("dropout"): + h_ = layers.dropout(hout, keep_prob=dropout) + + for i, dim in enumerate(self.dim_hidden[:-1]): + h_ = self.fc(h_, weights["fc_W"+str(i)], weights["fc_b"+str(i)]) + h_ = tf.nn.dropout(h_, dropout) + + # Logits linear layer, i.e. softmax without normalization. + N, Min = h_.get_shape() + i = len(self.dim_hidden)-1 + logits = self.fc(h_, weights["fc_W"+str(i)], weights["fc_b"+str(i)], relu=False) + + else: + with tf.variable_scope("embedding"): + Wemb = self.finetune_weights["emb_W"] + Wemb_mask = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False) + xemb = self.embedding(x, Wemb, Wemb_mask) + + + # convolutional network + with tf.variable_scope("rnn"): + lstm_cell = LSTMCell(self.n_hidden, self.finetune_weights["lstm_W_xh"], self.finetune_weights["lstm_W_hh"], self.finetune_weights["lstm_b"]) + xemb = tf.unstack(xemb, self.timesteps, 1) + W_state_c = tf.random_normal([self.batch_size, self.n_hidden], stddev=0.1) + W_state_h = tf.random_normal([self.batch_size, self.n_hidden], stddev=0.1) + outputs, state = tf.nn.static_rnn(lstm_cell, xemb, initial_state=(W_state_c, W_state_h), dtype=tf.float32) + _, hout = state + + with tf.variable_scope("dropout"): + h_ = layers.dropout(hout, keep_prob=dropout) + + for i, dim in enumerate(self.dim_hidden[:-1]): + Wfc = self.finetune_weights["fc_W"+str(i)] + bfc = self.finetune_weights["fc_b"+str(i)] + h_ = self.fc(h_, Wfc, bfc) + h_ = tf.nn.dropout(h_, dropout) + + # finetune the last layer + i = len(self.dim_hidden)-1 + weights = {} + dim_in = self.n_hidden_2 + weights["fc_W"+str(i)] = self.weight_variable([int(dim_in), FLAGS.n_classes], name="fc_W"+str(i)) + weights["fc_b"+str(i)] = self.bias_variable([FLAGS.n_classes], name="fc_b"+str(i)) + + # Logits linear layer, i.e. softmax without normalization. + N, Min = h_.get_shape() + i = len(self.dim_hidden)-1 + logits = self.fc(h_, weights["fc_W"+str(i)], weights["fc_b"+str(i)], relu=False) + return logits + + +class LSTMCell(RNNCell): + '''Vanilla LSTM implemented with same initializations as BN-LSTM''' + def __init__(self, num_units, W_xh, W_hh, bias): + self.num_units = num_units + self.W_xh = W_xh + self.W_hh = W_hh + self.bias = bias + + @property + def state_size(self): + return (self.num_units, self.num_units) + + @property + def output_size(self): + return self.num_units + + def __call__(self, x, state, scope=None): + with tf.variable_scope(scope or type(self).__name__, reuse=tf.AUTO_REUSE): + c, h = state + + # hidden = tf.matmul(x, W_xh) + tf.matmul(h, W_hh) + bias + # improve speed by concat. + concat = tf.concat([x, h], 1) + W_both = tf.concat([self.W_xh, self.W_hh], 0) + hidden = tf.matmul(concat, W_both) + self.bias + + i, j, f, o = tf.split(hidden, 4, axis=1) + + new_c = c * tf.sigmoid(f) + tf.sigmoid(i) * tf.tanh(j) + new_h = tf.tanh(new_c) * tf.sigmoid(o) + + return new_h, (new_c, new_h) + + +class CNN(BaseModel): + """ + Build a convolutional neural network. + """ + def __init__(self, data_loader, weights_for_finetune, init_std=0.05, freeze_opt=None, is_finetune=False): + super().__init__() + self.is_finetune = is_finetune + self.freeze_opt = freeze_opt + print ("freeze_opt: ", self.freeze_opt) + if self.is_finetune: + self.finetune_weights = weights_for_finetune + self.learning_rate = 0.00001 + self.batch_size = 64 + self.num_epochs = 30 + else: + self.learning_rate = 0.1 + self.batch_size = 128 + self.num_epochs = 200 + + # training parameters + self.dir_name = "cnn" + + self.dropout = 0.6 + self.decay_rate = 0.9 + self.decay_steps = 10000 / self.batch_size + self.momentum = 0.95 + self.patience = 10 + self.eval_frequency = self.num_epochs + + # Network Parameters + self.init_std = init_std + self.n_hidden = 256 # hidden dimensions of embedding + self.n_hidden_1 = 128 + self.n_hidden_2 = 128 + self.n_words = data_loader.n_words + self.n_classes = FLAGS.n_classes + self.n_filters = 128 + self.num_input = data_loader.dim_input + self.timesteps = data_loader.timesteps + self.code_size = data_loader.code_size + self.dim_hidden = [self.n_hidden_1, self.n_hidden_2, FLAGS.n_classes] + self.filter_sizes = [3, 4, 5] + + self.weights_for_init = dict() # to store the value of learned params + self.weights_for_finetune = dict() + + print('method', self.dir_name, 'data shape:', self.num_input, 'batch size:', self.batch_size, 'learning rate:', self.learning_rate, \ + 'momentum:', self.momentum, 'patience:', self.patience) + self.build_model() + + # Methods to construct the computational graph + def build_model(self): + """Build the computational graph with memory network of the model.""" + self.graph = tf.Graph() + with self.graph.as_default(): + # Inputs. + with tf.name_scope('inputs'): + # tf Graph input + self.ph_data = tf.placeholder(tf.int32, (self.batch_size, self.timesteps, self.code_size), 'data') + self.ph_labels = tf.placeholder(tf.int32, (self.batch_size), 'labels') + self.ph_dropout = tf.placeholder(tf.float32, (), 'dropout') + self.ph_training = tf.placeholder(tf.bool, name='trainingFlag') + + # Construct model + op_logits = self._inference(self.ph_data, self.ph_dropout, self.ph_training) + self.op_loss, self.op_loss_average = self.loss(op_logits) + self.op_train = self.training(self.op_loss, self.learning_rate, + self.decay_steps, self.decay_rate, self.momentum) + self.op_prediction = self._get_prediction(op_logits) + + # Initialize variables, i.e. weights and biases. + self.op_init = tf.global_variables_initializer() + if self.is_finetune is not True: + self.op_weights = self.get_op_variables() + else: + print (tf.trainable_variables()) + + # Summaries for TensorBoard and Save for model parameters. + self.op_summary = tf.summary.merge_all() + self.op_saver = tf.train.Saver(max_to_keep=5) + self.graph.finalize() + + def get_op_variables(self): + op_weights = dict() + op_var = tf.trainable_variables() + # embedding + op_weights["emb_W"] = [v for v in op_var if "emb_W" in v.name][0] + # cnn + for i, filter_size in enumerate(self.filter_sizes): + op_weights["conv_W"+str(filter_size)] = [v for v in op_var if "conv_W"+str(filter_size) in v.name][0] + op_weights["conv_b"+str(filter_size)] = [v for v in op_var if "conv_b"+str(filter_size) in v.name][0] + # fully connected + for i, dim in enumerate(self.dim_hidden): + op_weights["fc_W"+str(i)] = [v for v in op_var if "fc_W"+str(i) in v.name][0] + op_weights["fc_b"+str(i)] = [v for v in op_var if "fc_b"+str(i) in v.name][0] + return op_weights + + def build_emb_weights(self, weights): + weights["emb_W"] = tf.Variable(tf.random_normal([self.n_words, self.n_hidden], stddev=self.init_std), name="emb_W") + weights["emb_mask_W"] = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False) + return weights + + def embedding(self, x, Wemb, Wemb_mask): + _x = tf.nn.embedding_lookup(Wemb, x) # recs size is (batch_size, timesteps, n_words) + _x_mask = tf.nn.embedding_lookup(Wemb_mask, x) + emb_vecs = tf.multiply(_x, _x_mask) # broadcast + emb_vecs = tf.reduce_sum(emb_vecs, 2) + self.emb_expanded = tf.expand_dims(emb_vecs, -1) + return emb_vecs + + def build_conv_weights(self, weights): + for i, filter_size in enumerate(self.filter_sizes): + filter_shape = [filter_size, self.n_hidden, 1, self.n_filters] + weights["conv_W"+str(filter_size)] = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="conv_W"+str(filter_size)) + weights["conv_b"+str(filter_size)] = tf.Variable(tf.constant(0.1, shape=[self.n_filters]), name="conv_b"+str(filter_size)) + return weights + + def conv(self, weights, is_training): + '''Create a convolution + maxpool layer for each filter size''' + pooled_outputs = [] + for i, filter_size in enumerate(self.filter_sizes): + W = weights["conv_W"+str(filter_size)] + b = weights["conv_b"+str(filter_size)] + with tf.name_scope("conv-maxpool-%s" % filter_size): + # Convolution Layer + conv_ = tf.nn.conv2d( + self.emb_expanded, + W, + strides=[1, 1, 1, 1], + padding="VALID", + name="conv") + # Apply nonlinearity + h = tf.nn.leaky_relu(tf.nn.bias_add(conv_, b), name="relu") + # h = layers.batch_norm(h, updates_collections=None, + # decay=0.99, + # scale=True, center=True, + # is_training=is_training) + # Maxpooling over the outputs + pooled = tf.nn.max_pool( + h, + ksize=[1, self.timesteps - filter_size + 1, 1, 1], + strides=[1, 1, 1, 1], + padding='VALID', + name="pool") + pooled_outputs.append(pooled) + + # Combine all the pooled features + num_filters_total = self.n_filters * len(self.filter_sizes) + h_pool = tf.concat(pooled_outputs, 3) + h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total]) + return h_pool_flat + + # Create model + def _inference(self, x, dropout, is_training=True): + with tf.variable_scope('pretrain_model', reuse=None) as training_scope: + weights = {} + if self.freeze_opt == None: + weights = self.build_emb_weights(weights) + weights = self.build_conv_weights(weights) + weights = self.build_fc_weights(self.n_filters * len(self.filter_sizes), weights) + + with tf.variable_scope("embedding"): + self.embedding(x, weights["emb_W"], weights["emb_mask_W"]) + + # convolutional network + with tf.variable_scope("conv"): + hout = self.conv(weights, is_training) + + with tf.variable_scope("dropout"): + h_ = layers.dropout(hout, keep_prob=dropout) + + for i, dim in enumerate(self.dim_hidden[:-1]): + h_ = self.fc(h_, weights["fc_W"+str(i)], weights["fc_b"+str(i)]) + h_ = tf.nn.dropout(h_, dropout) + + # Logits linear layer, i.e. softmax without normalization. + N, Min = h_.get_shape() + i = len(self.dim_hidden)-1 + logits = self.fc(h_, weights["fc_W"+str(i)], weights["fc_b"+str(i)], relu=False) + + else: + with tf.variable_scope("embedding"): + Wemb = self.finetune_weights["emb_W"] + Wemb_mask = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False) + self.embedding(x, Wemb, Wemb_mask) + + # convolutional network + with tf.variable_scope("conv"): + # w = {} + # for i, filter_size in enumerate(self.filter_sizes): + # w["conv_W"+str(filter_size)] = self.finetune_weights["conv_W"+str(filter_size)] + # w["conv_b"+str(filter_size)] = self.finetune_weights["conv_b"+str(filter_size)] + hout = self.conv(self.finetune_weights, is_training) + + with tf.variable_scope("dropout"): + h_ = layers.dropout(hout, keep_prob=dropout) + + for i, dim in enumerate(self.dim_hidden[:-1]): + Wfc = self.finetune_weights["fc_W"+str(i)] + bfc = self.finetune_weights["fc_b"+str(i)] + h_ = self.fc(h_, Wfc, bfc) + h_ = tf.nn.dropout(h_, dropout) + + # finetune the last layer + i = len(self.dim_hidden)-1 + weights = {} + dim_in = self.n_hidden_2 + weights["fc_W"+str(i)] = self.weight_variable([int(dim_in), FLAGS.n_classes], name="fc_W"+str(i)) + weights["fc_b"+str(i)] = self.bias_variable([FLAGS.n_classes], name="fc_b"+str(i)) + + # Logits linear layer, i.e. softmax without normalization. + N, Min = h_.get_shape() + i = len(self.dim_hidden)-1 + logits = self.fc(h_, weights["fc_W"+str(i)], weights["fc_b"+str(i)], relu=False) + + return logits