|
a |
|
b/baselines/models.py |
|
|
1 |
from __future__ import print_function |
|
|
2 |
import tensorflow as tf |
|
|
3 |
from tensorflow.contrib import rnn |
|
|
4 |
import tensorflow.contrib.layers as layers |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
import sklearn |
|
|
8 |
import numpy as np |
|
|
9 |
import os, time, shutil, collections |
|
|
10 |
|
|
|
11 |
PADDING_ID = 1016 |
|
|
12 |
WORDS_NUM = 1017 |
|
|
13 |
MASK_ARRAY = [[1.]] * PADDING_ID + [[0.]] + [[1.]] * (WORDS_NUM - PADDING_ID - 1) |
|
|
14 |
|
|
|
15 |
class BaseModel(object): |
|
|
16 |
""" |
|
|
17 |
Base Model for basic networks with sequential data, i.e., RNN, CNN. |
|
|
18 |
""" |
|
|
19 |
def __init__(self): |
|
|
20 |
self.regularizers = [] |
|
|
21 |
|
|
|
22 |
def loss(self, logits): |
|
|
23 |
# Define loss and optimizer |
|
|
24 |
with tf.name_scope('cross_entropy'): |
|
|
25 |
labels = tf.to_int64(self.ph_labels) |
|
|
26 |
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels) |
|
|
27 |
cross_entropy = tf.reduce_mean(cross_entropy) |
|
|
28 |
with tf.name_scope('regularization'): |
|
|
29 |
regularization = self.regularization |
|
|
30 |
regularization *= tf.add_n(self.regularizers) |
|
|
31 |
loss = cross_entropy + regularization |
|
|
32 |
|
|
|
33 |
# Summaries for TensorBoard. |
|
|
34 |
tf.summary.scalar('loss/cross_entropy', cross_entropy) |
|
|
35 |
tf.summary.scalar('loss/regularization', regularization) |
|
|
36 |
tf.summary.scalar('loss/total', loss) |
|
|
37 |
with tf.name_scope('averages'): |
|
|
38 |
averages = tf.train.ExponentialMovingAverage(0.9) |
|
|
39 |
op_averages = averages.apply([cross_entropy, regularization, loss]) |
|
|
40 |
tf.summary.scalar('loss/avg/cross_entropy', averages.average(cross_entropy)) |
|
|
41 |
tf.summary.scalar('loss/avg/regularization', averages.average(regularization)) |
|
|
42 |
tf.summary.scalar('loss/avg/total', averages.average(loss)) |
|
|
43 |
with tf.control_dependencies([op_averages]): |
|
|
44 |
loss_average = tf.identity(averages.average(loss), name='control') |
|
|
45 |
return loss, loss_average |
|
|
46 |
|
|
|
47 |
def predict(self, data, labels=None, sess=None): |
|
|
48 |
loss = 0 |
|
|
49 |
size = data.shape[0] |
|
|
50 |
predictions = np.empty(size) |
|
|
51 |
sess = self._get_session(sess) |
|
|
52 |
for begin in range(0, size, self.batch_size): |
|
|
53 |
end = begin + self.batch_size |
|
|
54 |
end = min([end, size]) |
|
|
55 |
batch_data = np.zeros((self.batch_size, data.shape[1], data.shape[2])) |
|
|
56 |
tmp_data = data[begin:end, :, :] |
|
|
57 |
|
|
|
58 |
if type(tmp_data) is not np.ndarray: |
|
|
59 |
tmp_data = tmp_data.toarray() # convert sparse matrices |
|
|
60 |
batch_data[:end-begin] = tmp_data |
|
|
61 |
feed_dict = {self.ph_data: batch_data, self.ph_dropout: 1, self.ph_training: False} |
|
|
62 |
|
|
|
63 |
# Compute loss if labels are given. |
|
|
64 |
if labels is not None: |
|
|
65 |
batch_labels = np.zeros(self.batch_size) |
|
|
66 |
batch_labels[:end-begin] = labels[begin:end] |
|
|
67 |
feed_dict[self.ph_labels] = batch_labels |
|
|
68 |
batch_pred, batch_loss = sess.run([self.op_prediction, self.op_loss], feed_dict) |
|
|
69 |
loss += batch_loss |
|
|
70 |
else: |
|
|
71 |
batch_pred = sess.run(self.op_prediction, feed_dict) |
|
|
72 |
|
|
|
73 |
predictions[begin:end] = batch_pred[:end-begin] |
|
|
74 |
|
|
|
75 |
if labels is not None: |
|
|
76 |
return predictions, loss * self.batch_size / size |
|
|
77 |
else: |
|
|
78 |
return predictions |
|
|
79 |
|
|
|
80 |
def training(self, loss, learning_rate, decay_steps, decay_rate=0.95, momentum=0.9): |
|
|
81 |
"""Adds to the loss model the Ops required to generate and apply gradients.""" |
|
|
82 |
with tf.name_scope('training'): |
|
|
83 |
# Learning rate. |
|
|
84 |
global_step = tf.Variable(0, name='global_step', trainable=False) |
|
|
85 |
if decay_rate != 1: |
|
|
86 |
learning_rate = tf.train.exponential_decay( |
|
|
87 |
learning_rate, global_step, decay_steps, decay_rate, staircase=True) |
|
|
88 |
tf.summary.scalar('learning_rate', learning_rate) |
|
|
89 |
# Optimizer. |
|
|
90 |
if momentum == 0: |
|
|
91 |
optimizer = tf.train.GradientDescentOptimizer(learning_rate) |
|
|
92 |
else: |
|
|
93 |
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum) |
|
|
94 |
grads = optimizer.compute_gradients(loss) |
|
|
95 |
op_gradients = optimizer.apply_gradients(grads, global_step=global_step) |
|
|
96 |
# Histograms. |
|
|
97 |
for grad, var in grads: |
|
|
98 |
if grad is None: |
|
|
99 |
print('warning: {} has no gradient'.format(var.op.name)) |
|
|
100 |
else: |
|
|
101 |
tf.summary.histogram(var.op.name + '/gradients', grad) |
|
|
102 |
# The op return the learning rate. |
|
|
103 |
with tf.control_dependencies([op_gradients]): |
|
|
104 |
op_train = tf.identity(learning_rate, name='control') |
|
|
105 |
return op_train |
|
|
106 |
|
|
|
107 |
def fit(self, X_tr, y_tr, X_vl, y_vl): |
|
|
108 |
t_process, t_wall = time.process_time(), time.time() |
|
|
109 |
sess = tf.Session(graph=self.graph) |
|
|
110 |
shutil.rmtree(self._get_path('summaries'), ignore_errors=True) |
|
|
111 |
writer = tf.summary.FileWriter(self._get_path('summaries'), self.graph) |
|
|
112 |
shutil.rmtree(self._get_path('checkpoints'), ignore_errors=True) |
|
|
113 |
os.makedirs(self._get_path('checkpoints')) |
|
|
114 |
path = os.path.join(self._get_path('checkpoints'), 'model') |
|
|
115 |
sess.run(self.op_init) |
|
|
116 |
|
|
|
117 |
# Training. |
|
|
118 |
count = 0 |
|
|
119 |
bad_counter = 0 |
|
|
120 |
accuracies = [] |
|
|
121 |
aucs = [] |
|
|
122 |
losses = [] |
|
|
123 |
indices = collections.deque() |
|
|
124 |
num_steps = int(self.num_epochs * X_tr.shape[0] / self.batch_size) |
|
|
125 |
estop = False # early stop |
|
|
126 |
if type(X_vl) is not np.ndarray: |
|
|
127 |
X_vl = X_vl.toarray() |
|
|
128 |
|
|
|
129 |
for step in range(1, num_steps+1): |
|
|
130 |
# Be sure to have used all the samples before using one a second time. |
|
|
131 |
if len(indices) < self.batch_size: |
|
|
132 |
indices.extend(np.random.permutation(X_tr.shape[0])) |
|
|
133 |
idx = [indices.popleft() for i in range(self.batch_size)] |
|
|
134 |
count += len(idx) |
|
|
135 |
batch_data, batch_labels = X_tr[idx, :, :], y_tr[idx] |
|
|
136 |
|
|
|
137 |
if type(batch_data) is not np.ndarray: |
|
|
138 |
batch_data = batch_data.toarray() # convert sparse matrices |
|
|
139 |
feed_dict = {self.ph_data: batch_data, self.ph_labels: batch_labels, self.ph_dropout: self.dropout, self.ph_training: True} |
|
|
140 |
learning_rate, loss_average = sess.run([self.op_train, self.op_loss_average], feed_dict) |
|
|
141 |
|
|
|
142 |
# Periodical evaluation of the model. |
|
|
143 |
if step % self.eval_frequency == 0 or step == num_steps: |
|
|
144 |
print ('Seen samples: %d' % count) |
|
|
145 |
epoch = step * self.batch_size / X_tr.shape[0] |
|
|
146 |
print('step {} / {} (epoch {:.2f} / {}):'.format(step, num_steps, epoch, self.num_epochs)) |
|
|
147 |
print(' learning_rate = {:.2e}, loss_average = {:.2e}'.format(learning_rate, loss_average)) |
|
|
148 |
string, auc, accuracy, loss, predictions = self.evaluate(X_vl, y_vl, sess) |
|
|
149 |
aucs.append(auc) |
|
|
150 |
accuracies.append(accuracy) |
|
|
151 |
losses.append(loss) |
|
|
152 |
print(' validation {}'.format(string)) |
|
|
153 |
# print(predictions.tolist()[:50]) |
|
|
154 |
print(' time: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall)) |
|
|
155 |
|
|
|
156 |
# Summaries for TensorBoard. |
|
|
157 |
summary = tf.Summary() |
|
|
158 |
summary.ParseFromString(sess.run(self.op_summary, feed_dict)) |
|
|
159 |
summary.value.add(tag='validataion/auc', simple_value=auc) |
|
|
160 |
summary.value.add(tag='validation/loss', simple_value=loss) |
|
|
161 |
writer.add_summary(summary, step) |
|
|
162 |
|
|
|
163 |
# Save model parameters (for evaluation). |
|
|
164 |
self.op_saver.save(sess, path, global_step=step) |
|
|
165 |
|
|
|
166 |
if len(aucs) > (self.patience+5) and auc > np.array(aucs).max(): |
|
|
167 |
bad_counter = 0 |
|
|
168 |
|
|
|
169 |
if len(aucs) > (self.patience+5) and auc <= np.array(aucs)[:-self.patience].max(): |
|
|
170 |
bad_counter += 1 |
|
|
171 |
if bad_counter > self.patience: |
|
|
172 |
print('Early Stop!') |
|
|
173 |
estop = True |
|
|
174 |
break |
|
|
175 |
if estop: |
|
|
176 |
break |
|
|
177 |
print('validation accuracy: peak = {:.2f}, mean = {:.2f}'.format(max(accuracies), np.mean(accuracies[-10:]))) |
|
|
178 |
print('validation auc: peak = {:.2f}, mean = {:.2f}'.format(max(aucs), np.mean(aucs[-10:]))) |
|
|
179 |
writer.close() |
|
|
180 |
sess.close() |
|
|
181 |
t_step = (time.time() - t_wall) / num_steps |
|
|
182 |
print ("Optimization Finished!") |
|
|
183 |
return aucs, accuracies, losses |
|
|
184 |
|
|
|
185 |
def evaluate(self, data, labels, sess=None): |
|
|
186 |
""" |
|
|
187 |
Runs one evaluation against the full epoch of data. |
|
|
188 |
Return the precision and the number of correct predictions. |
|
|
189 |
Batch evaluation saves memory and enables this to run on smaller GPUs. |
|
|
190 |
sess: the session in which the model has been trained. |
|
|
191 |
op: the Tensor that returns the number of correct predictions. |
|
|
192 |
""" |
|
|
193 |
t_process, t_wall = time.process_time(), time.time() |
|
|
194 |
predictions, loss = self.predict(data, labels, sess) |
|
|
195 |
|
|
|
196 |
fpr, tpr, _ = sklearn.metrics.roc_curve(labels, predictions) |
|
|
197 |
auc = 100 * sklearn.metrics.auc(fpr, tpr) |
|
|
198 |
ncorrects = sum(predictions == labels) |
|
|
199 |
accuracy = 100 * sklearn.metrics.accuracy_score(labels, predictions) |
|
|
200 |
string = 'auc: {:.2f}, accuracy: {:.2f} ({:d} / {:d}), loss: {:.2e}'.format(auc, accuracy, ncorrects, len(labels), loss) |
|
|
201 |
|
|
|
202 |
if sess is None: |
|
|
203 |
string += '\ntime: {:.0f}s (wall {:.0f}s)'.format(time.process_time()-t_process, time.time()-t_wall) |
|
|
204 |
# return string, auc, loss, predictions |
|
|
205 |
return string, auc, accuracy, loss, predictions |
|
|
206 |
|
|
|
207 |
|
|
|
208 |
def inference(self, data, dropout, is_training): |
|
|
209 |
""" |
|
|
210 |
It builds the model, i.e. the computational graph, as far as |
|
|
211 |
is required for running the network forward to make predictions, |
|
|
212 |
i.e. return logits given raw data. |
|
|
213 |
data: size N x M |
|
|
214 |
N: number of signals (samples) |
|
|
215 |
M: number of vertices (features) |
|
|
216 |
""" |
|
|
217 |
# TODO: optimizations for sparse data |
|
|
218 |
logits = self._inference(data, dropout, is_training) |
|
|
219 |
return logits |
|
|
220 |
|
|
|
221 |
def _weight_variable(self, shape): |
|
|
222 |
initial = tf.truncated_normal_initializer(0, 0.1) |
|
|
223 |
var = tf.get_variable('weights', shape, tf.float32, initializer=initial) |
|
|
224 |
if self.isReg: |
|
|
225 |
self.regularizers.append(tf.nn.l2_loss(var)) |
|
|
226 |
tf.summary.histogram(var.op.name, var) |
|
|
227 |
return var |
|
|
228 |
|
|
|
229 |
def _bias_variable(self, shape): |
|
|
230 |
initial = tf.constant_initializer(0.1) |
|
|
231 |
var = tf.get_variable('bias', shape, tf.float32, initializer=initial) |
|
|
232 |
if self.isReg: |
|
|
233 |
self.regularizers.append(tf.nn.l2_loss(var)) |
|
|
234 |
tf.summary.histogram(var.op.name, var) |
|
|
235 |
return var |
|
|
236 |
|
|
|
237 |
def fc(self, x, Mout, relu=True): |
|
|
238 |
"""Fully connected layer with Mout features.""" |
|
|
239 |
N, Min = x.get_shape() |
|
|
240 |
W = self._weight_variable([int(Min), Mout]) |
|
|
241 |
b = self._bias_variable([Mout]) |
|
|
242 |
x = tf.matmul(x, W) + b |
|
|
243 |
return tf.nn.relu(x) if relu else x |
|
|
244 |
|
|
|
245 |
def normalize(self, inputs, epsilon = 1e-8, scope="ln", reuse=None): |
|
|
246 |
'''Applies layer normalization. |
|
|
247 |
|
|
|
248 |
Args: |
|
|
249 |
inputs: A tensor with 2 or more dimensions, where the first dimension has |
|
|
250 |
`batch_size`. |
|
|
251 |
epsilon: A floating number. A very small number for preventing ZeroDivision Error. |
|
|
252 |
scope: Optional scope for `variable_scope`. |
|
|
253 |
reuse: Boolean, whether to reuse the weights of a previous layer |
|
|
254 |
by the same name. |
|
|
255 |
|
|
|
256 |
Returns: |
|
|
257 |
A tensor with the same shape and data dtype as `inputs`. |
|
|
258 |
''' |
|
|
259 |
with tf.variable_scope(scope, reuse=reuse): |
|
|
260 |
inputs_shape = inputs.get_shape() |
|
|
261 |
params_shape = inputs_shape[-1:] |
|
|
262 |
|
|
|
263 |
mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True) |
|
|
264 |
beta= tf.Variable(tf.zeros(params_shape)) |
|
|
265 |
gamma = tf.Variable(tf.ones(params_shape)) |
|
|
266 |
normalized = (inputs - mean) / ( (variance + epsilon) ** (.5) ) |
|
|
267 |
outputs = gamma * normalized + beta |
|
|
268 |
return outputs |
|
|
269 |
|
|
|
270 |
# Helper methods. |
|
|
271 |
def _get_path(self, folder): |
|
|
272 |
path = '../../models/' |
|
|
273 |
return os.path.join(path, folder, self.dir_name) |
|
|
274 |
|
|
|
275 |
def _get_session(self, sess=None): |
|
|
276 |
"""Restore parameters if no session given.""" |
|
|
277 |
if sess is None: |
|
|
278 |
sess = tf.Session(graph=self.graph) |
|
|
279 |
filename = tf.train.latest_checkpoint(self._get_path('checkpoints')) |
|
|
280 |
self.op_saver.restore(sess, filename) |
|
|
281 |
return sess |
|
|
282 |
|
|
|
283 |
def _get_prediction(self, logits): |
|
|
284 |
"""Return the predicted classes.""" |
|
|
285 |
with tf.name_scope('prediction'): |
|
|
286 |
prediction = tf.argmax(logits, axis=1) |
|
|
287 |
return prediction |
|
|
288 |
|
|
|
289 |
# Methods to construct the computational graph |
|
|
290 |
def build_model(self): |
|
|
291 |
"""Build the computational graph with memory network of the model.""" |
|
|
292 |
self.graph = tf.Graph() |
|
|
293 |
with self.graph.as_default(): |
|
|
294 |
# Inputs. |
|
|
295 |
with tf.name_scope('inputs'): |
|
|
296 |
# tf Graph input |
|
|
297 |
self.ph_data = tf.placeholder(tf.int32, (self.batch_size, self.timesteps, self.code_size), 'data') |
|
|
298 |
self.ph_labels = tf.placeholder(tf.int32, (self.batch_size), 'labels') |
|
|
299 |
self.ph_dropout = tf.placeholder(tf.float32, (), 'dropout') |
|
|
300 |
self.ph_training = tf.placeholder(tf.bool, name='trainingFlag') |
|
|
301 |
|
|
|
302 |
# Construct model |
|
|
303 |
op_logits, self.op_represent = self.inference(self.ph_data, self.ph_dropout, self.ph_training) |
|
|
304 |
self.op_loss, self.op_loss_average = self.loss(op_logits) |
|
|
305 |
self.op_train = self.training(self.op_loss, self.learning_rate, |
|
|
306 |
self.decay_steps, self.decay_rate, self.momentum) |
|
|
307 |
self.op_prediction = self._get_prediction(op_logits) |
|
|
308 |
|
|
|
309 |
# Initialize variables, i.e. weights and biases. |
|
|
310 |
self.op_init = tf.global_variables_initializer() |
|
|
311 |
|
|
|
312 |
# Summaries for TensorBoard and Save for model parameters. |
|
|
313 |
self.op_summary = tf.summary.merge_all() |
|
|
314 |
self.op_saver = tf.train.Saver(max_to_keep=5) |
|
|
315 |
self.graph.finalize() |
|
|
316 |
|
|
|
317 |
|
|
|
318 |
class vrnn(BaseModel): |
|
|
319 |
""" |
|
|
320 |
Build a vanilla recurrent neural network. |
|
|
321 |
""" |
|
|
322 |
def __init__(self, n_words, n_classes, timesteps, code_size, dir_name, init_std=0.05): |
|
|
323 |
super().__init__() |
|
|
324 |
# training parameters |
|
|
325 |
self.learning_rate = 0.05 |
|
|
326 |
self.batch_size = 64 |
|
|
327 |
self.num_epochs = 200 |
|
|
328 |
self.dropout = 0.8 |
|
|
329 |
self.decay_rate = 0.9 |
|
|
330 |
self.decay_steps = 10000 / self.batch_size |
|
|
331 |
self.momentum = 0.95 |
|
|
332 |
self.patience = 10 |
|
|
333 |
self.eval_frequency = self.num_epochs |
|
|
334 |
self.regularization = 0.01 |
|
|
335 |
self.isReg = True |
|
|
336 |
self.dir_name = dir_name |
|
|
337 |
|
|
|
338 |
# Network Parameters |
|
|
339 |
self.init_std = init_std |
|
|
340 |
self.n_hidden = 256 # hidden dimensions of embedding |
|
|
341 |
self.n_hidden_1 = 128 |
|
|
342 |
self.n_hidden_2 = 128 |
|
|
343 |
self.n_words = n_words |
|
|
344 |
self.n_classes = n_classes |
|
|
345 |
self.timesteps = timesteps |
|
|
346 |
self.code_size = code_size |
|
|
347 |
self.M = [self.n_hidden_1, self.n_classes] |
|
|
348 |
self.build_model() |
|
|
349 |
|
|
|
350 |
def build_emb(self, x): |
|
|
351 |
self.Wemb = tf.Variable(tf.random_normal([self.n_words, self.n_hidden], stddev=self.init_std)) |
|
|
352 |
self.Wemb_mask = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False) |
|
|
353 |
|
|
|
354 |
_x = tf.nn.embedding_lookup(self.Wemb, x) # recs size is (batch_size, mem_size, n_words) |
|
|
355 |
_x_mask = tf.nn.embedding_lookup(self.Wemb_mask, x) |
|
|
356 |
emb_vecs = tf.multiply(_x, _x_mask) # broadcast |
|
|
357 |
emb_vecs = tf.reduce_sum(emb_vecs, 2) |
|
|
358 |
return emb_vecs |
|
|
359 |
|
|
|
360 |
def lstm(self, x): |
|
|
361 |
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input) |
|
|
362 |
# x = tf.unstack(x, self.timesteps, 1) |
|
|
363 |
# lstm_cell = rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0) # Define a lstm cell with tensorflow |
|
|
364 |
# h, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32) |
|
|
365 |
# print (h[-1].get_shape()) |
|
|
366 |
lstm_cell = rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0) |
|
|
367 |
output, state = tf.nn.dynamic_rnn(lstm_cell, x, dtype=tf.float32) |
|
|
368 |
output_sum = tf.reduce_sum(output, axis=1) |
|
|
369 |
output = tf.transpose(output, [1, 0, 2]) |
|
|
370 |
last = tf.gather(output, int(output.get_shape()[0]) - 1) |
|
|
371 |
return last |
|
|
372 |
|
|
|
373 |
def gru(self, x): |
|
|
374 |
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input) |
|
|
375 |
x = tf.unstack(x, self.timesteps, 1) |
|
|
376 |
gru_cell = rnn.GRUCell(self.n_hidden) # Define a gru cell with tensorflow |
|
|
377 |
h, states = rnn.static_rnn(gru_cell, x, dtype=tf.float32) |
|
|
378 |
return h[-1] |
|
|
379 |
|
|
|
380 |
def build_attention(self, x, output_size, initializer=layers.xavier_initializer(), |
|
|
381 |
activation_fn=tf.tanh, scope=None): |
|
|
382 |
'''similar to the method in Hierarchical Attention Networks for Document Classification''' |
|
|
383 |
assert len(x.get_shape()) == 3 and x.get_shape()[-1].value is not None |
|
|
384 |
|
|
|
385 |
attention_context_vector = tf.get_variable(name='attention_context_vector', |
|
|
386 |
shape=[output_size], |
|
|
387 |
initializer=initializer, |
|
|
388 |
dtype=tf.float32) |
|
|
389 |
x_projection = layers.fully_connected(x, output_size, |
|
|
390 |
activation_fn=activation_fn, |
|
|
391 |
scope=scope) |
|
|
392 |
|
|
|
393 |
vector_attn = tf.reduce_sum(tf.multiply(x_projection, attention_context_vector), axis=2, keep_dims=True) |
|
|
394 |
attention_weights = tf.nn.softmax(vector_attn, dim=1) |
|
|
395 |
weighted_projection = tf.multiply(x_projection, attention_weights) |
|
|
396 |
outputs = tf.reduce_sum(weighted_projection, axis=1) |
|
|
397 |
return outputs |
|
|
398 |
|
|
|
399 |
# Create model |
|
|
400 |
def _inference(self, x, dropout, is_training=True): |
|
|
401 |
# embedding |
|
|
402 |
with tf.variable_scope("embedding"): |
|
|
403 |
x = self.build_emb(x) |
|
|
404 |
x = self.normalize(x) |
|
|
405 |
|
|
|
406 |
# recurrent neural networks |
|
|
407 |
with tf.variable_scope("rnn"): |
|
|
408 |
# hout = self.gru(x) |
|
|
409 |
hout = self.lstm(x) |
|
|
410 |
|
|
|
411 |
with tf.variable_scope("dropout"): |
|
|
412 |
h_ = layers.dropout(hout, keep_prob=dropout) |
|
|
413 |
|
|
|
414 |
# fully connected layers |
|
|
415 |
for i, dim in enumerate(self.M[:-1]): |
|
|
416 |
with tf.variable_scope('fc{}'.format(i+1)): |
|
|
417 |
h_ = self.fc(h_, dim) |
|
|
418 |
h_ = tf.nn.dropout(h_, dropout) |
|
|
419 |
|
|
|
420 |
# Logits linear layer, i.e. softmax without normalization. |
|
|
421 |
with tf.variable_scope('logits'): |
|
|
422 |
prob = self.fc(h_, self.M[-1], relu=False) |
|
|
423 |
return prob |
|
|
424 |
|
|
|
425 |
|
|
|
426 |
class birnn(BaseModel): |
|
|
427 |
def __init__(self, n_words, n_classes, timesteps, code_size, dir_name, init_std=0.05): |
|
|
428 |
super().__init__() |
|
|
429 |
# training parameters |
|
|
430 |
self.learning_rate = 0.05 |
|
|
431 |
self.batch_size = 64 |
|
|
432 |
self.num_epochs = 200 |
|
|
433 |
self.dropout = 0.8 |
|
|
434 |
self.decay_rate = 0.9 |
|
|
435 |
self.decay_steps = 10000 / self.batch_size |
|
|
436 |
self.momentum = 0.95 |
|
|
437 |
self.patience = 10 |
|
|
438 |
self.eval_frequency = self.num_epochs |
|
|
439 |
self.regularization = 0.01 |
|
|
440 |
self.isReg = True |
|
|
441 |
self.dir_name = dir_name |
|
|
442 |
|
|
|
443 |
# Network Parameters |
|
|
444 |
self.init_std = init_std |
|
|
445 |
self.n_hidden = 256 # hidden dimensions of embedding |
|
|
446 |
self.n_hidden_1 = 128 |
|
|
447 |
self.n_hidden_2 = 128 |
|
|
448 |
self.n_words = n_words |
|
|
449 |
self.n_classes = n_classes |
|
|
450 |
self.timesteps = timesteps |
|
|
451 |
self.code_size = code_size |
|
|
452 |
self.M = [self.n_hidden_1, self.n_classes] |
|
|
453 |
self.build_model() |
|
|
454 |
|
|
|
455 |
def build_emb(self, x): |
|
|
456 |
with tf.variable_scope("embed"): |
|
|
457 |
self.Wemb = tf.Variable(tf.random_normal([self.n_words, self.n_hidden], stddev=self.init_std)) |
|
|
458 |
self.Wemb_mask = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False) |
|
|
459 |
|
|
|
460 |
_x = tf.nn.embedding_lookup(self.Wemb, x) # recs size is (batch_size, mem_size, n_words) |
|
|
461 |
_x_mask = tf.nn.embedding_lookup(self.Wemb_mask, x) |
|
|
462 |
emb_vecs = tf.multiply(_x, _x_mask) # broadcast |
|
|
463 |
emb_vecs = tf.reduce_sum(emb_vecs, 2) |
|
|
464 |
return emb_vecs |
|
|
465 |
|
|
|
466 |
def bilstm(self, x): |
|
|
467 |
x = tf.unstack(x, self.timesteps, 1) |
|
|
468 |
|
|
|
469 |
with tf.variable_scope('birnn') as scope: |
|
|
470 |
with tf.variable_scope('forward'): |
|
|
471 |
lstm_fw_cell = rnn.BasicLSTMCell(int(self.n_hidden/2), forget_bias=1.0) |
|
|
472 |
# Backward direction cell |
|
|
473 |
with tf.variable_scope('backward'): |
|
|
474 |
lstm_bw_cell = rnn.BasicLSTMCell(int(self.n_hidden/2), forget_bias=1.0) |
|
|
475 |
try: |
|
|
476 |
outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x, |
|
|
477 |
dtype=tf.float32) |
|
|
478 |
except Exception: # Old TensorFlow version only returns outputs not states |
|
|
479 |
outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x, |
|
|
480 |
dtype=tf.float32) |
|
|
481 |
return outputs[-1] |
|
|
482 |
|
|
|
483 |
# Create model |
|
|
484 |
def _inference(self, x, dropout, is_training=True): |
|
|
485 |
# embedding |
|
|
486 |
with tf.variable_scope("embedding"): |
|
|
487 |
x = self.build_emb(x) |
|
|
488 |
x = self.normalize(x) |
|
|
489 |
|
|
|
490 |
# recurrent neural networks |
|
|
491 |
with tf.variable_scope("birnn"): |
|
|
492 |
# hout = self.gru(x) |
|
|
493 |
hout = self.bilstm(x) |
|
|
494 |
|
|
|
495 |
with tf.variable_scope("dropout"): |
|
|
496 |
h_ = layers.dropout(hout, keep_prob=dropout) |
|
|
497 |
|
|
|
498 |
# fully connected layers |
|
|
499 |
for i, dim in enumerate(self.M[:-1]): |
|
|
500 |
with tf.variable_scope('fc{}'.format(i+1)): |
|
|
501 |
h_ = self.fc(h_, dim) |
|
|
502 |
h_ = tf.nn.dropout(h_, dropout) |
|
|
503 |
|
|
|
504 |
# Logits linear layer, i.e. softmax without normalization. |
|
|
505 |
with tf.variable_scope('logits'): |
|
|
506 |
prob = self.fc(h_, self.M[-1], relu=False) |
|
|
507 |
return prob |
|
|
508 |
|
|
|
509 |
|
|
|
510 |
class cnn(BaseModel): |
|
|
511 |
def __init__(self, n_words, n_classes, timesteps, code_size, dir_name, init_std=0.05): |
|
|
512 |
super().__init__() |
|
|
513 |
# training parameters |
|
|
514 |
self.learning_rate = 0.01 |
|
|
515 |
self.batch_size = 32 |
|
|
516 |
self.num_epochs = 200 |
|
|
517 |
self.dropout = 0.6 |
|
|
518 |
self.decay_rate = 0.9 |
|
|
519 |
self.decay_steps = 10000 / self.batch_size |
|
|
520 |
self.momentum = 0.95 |
|
|
521 |
self.patience = 10 |
|
|
522 |
self.eval_frequency = self.num_epochs |
|
|
523 |
self.regularization = 0.01 |
|
|
524 |
self.isReg = True |
|
|
525 |
self.dir_name = dir_name |
|
|
526 |
|
|
|
527 |
# Network Parameters |
|
|
528 |
self.init_std = init_std |
|
|
529 |
self.n_hidden = 256 # hidden dimensions of embedding |
|
|
530 |
self.n_hidden_1 = 128 |
|
|
531 |
self.n_hidden_2 = 128 |
|
|
532 |
self.n_words = n_words |
|
|
533 |
self.n_classes = n_classes |
|
|
534 |
self.n_filters = 128 |
|
|
535 |
self.timesteps = timesteps |
|
|
536 |
self.code_size = code_size |
|
|
537 |
self.M = [self.n_hidden_1, self.n_classes] |
|
|
538 |
self.filter_sizes = [3, 4, 5] |
|
|
539 |
self.build_model() |
|
|
540 |
|
|
|
541 |
def build_emb(self, x): |
|
|
542 |
with tf.variable_scope("embed"): |
|
|
543 |
self.Wemb = tf.Variable(tf.random_normal([self.n_words, self.n_hidden], stddev=self.init_std)) |
|
|
544 |
self.Wemb_mask = tf.get_variable("mask_padding", initializer=MASK_ARRAY, dtype="float32", trainable=False) |
|
|
545 |
|
|
|
546 |
_x = tf.nn.embedding_lookup(self.Wemb, x) # recs size is (batch_size, mem_size, n_words) |
|
|
547 |
_x_mask = tf.nn.embedding_lookup(self.Wemb_mask, x) |
|
|
548 |
emb_vecs = tf.multiply(_x, _x_mask) # broadcast |
|
|
549 |
emb_vecs = tf.reduce_sum(emb_vecs, 2) |
|
|
550 |
self.emb_expanded = tf.expand_dims(emb_vecs, -1) |
|
|
551 |
return emb_vecs |
|
|
552 |
|
|
|
553 |
def build_conv(self, x, is_training): |
|
|
554 |
'''Create a convolution + maxpool layer for each filter size''' |
|
|
555 |
pooled_outputs = [] |
|
|
556 |
for i, filter_size in enumerate(self.filter_sizes): |
|
|
557 |
with tf.name_scope("conv-maxpool-%s" % filter_size): |
|
|
558 |
# Convolution Layer |
|
|
559 |
filter_shape = [filter_size, self.n_hidden, 1, self.n_filters] |
|
|
560 |
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") |
|
|
561 |
b = tf.Variable(tf.constant(0.1, shape=[self.n_filters]), name="b") |
|
|
562 |
conv = tf.nn.conv2d( |
|
|
563 |
self.emb_expanded, |
|
|
564 |
W, |
|
|
565 |
strides=[1, 1, 1, 1], |
|
|
566 |
padding="VALID", |
|
|
567 |
name="conv") |
|
|
568 |
# Apply nonlinearity |
|
|
569 |
h = tf.nn.leaky_relu(tf.nn.bias_add(conv, b), name="relu") |
|
|
570 |
h = layers.batch_norm(h, updates_collections=None, |
|
|
571 |
decay=0.99, |
|
|
572 |
scale=True, center=True, |
|
|
573 |
is_training=is_training) |
|
|
574 |
# Maxpooling over the outputs |
|
|
575 |
pooled = tf.nn.max_pool( |
|
|
576 |
h, |
|
|
577 |
ksize=[1, self.timesteps - filter_size + 1, 1, 1], |
|
|
578 |
strides=[1, 1, 1, 1], |
|
|
579 |
padding='VALID', |
|
|
580 |
name="pool") |
|
|
581 |
pooled_outputs.append(pooled) |
|
|
582 |
|
|
|
583 |
# Combine all the pooled features |
|
|
584 |
num_filters_total = self.n_filters * len(self.filter_sizes) |
|
|
585 |
h_pool = tf.concat(pooled_outputs, 3) |
|
|
586 |
h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total]) |
|
|
587 |
return h_pool_flat |
|
|
588 |
|
|
|
589 |
# Create model |
|
|
590 |
def _inference(self, x, dropout, is_training=True): |
|
|
591 |
with tf.variable_scope("embedding"): |
|
|
592 |
xemb = self.build_emb(x) |
|
|
593 |
|
|
|
594 |
# convolutional network |
|
|
595 |
with tf.variable_scope("conv"): |
|
|
596 |
hout = self.build_conv(xemb, is_training) |
|
|
597 |
|
|
|
598 |
with tf.variable_scope("dropout"): |
|
|
599 |
h_ = layers.dropout(hout, keep_prob=dropout) |
|
|
600 |
|
|
|
601 |
for i, dim in enumerate(self.M[:-1]): |
|
|
602 |
with tf.variable_scope('fc{}'.format(i+1)): |
|
|
603 |
h_ = self.fc(h_, dim) |
|
|
604 |
h_ = tf.nn.dropout(h_, dropout) |
|
|
605 |
|
|
|
606 |
# Logits linear layer, i.e. softmax without normalization. |
|
|
607 |
with tf.variable_scope('logits'): |
|
|
608 |
prob = self.fc(h_, self.M[-1], relu=False) |
|
|
609 |
return prob |