4634 lines (4633 with data), 175.5 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/sAndreotti/MedicalMeadow/blob/main/Llama_3_2_1B%2B3B_Conversational_%2B_2x_faster_finetuning.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IqM-T1RTzY6C"
},
"source": [
"To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n",
"<div class=\"align-center\">\n",
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
" <a href=\"https://discord.gg/u54VK8m8tk\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord button.png\" width=\"145\"></a>\n",
" <a href=\"https://ko-fi.com/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png\" width=\"145\"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href=\"https://github.com/unslothai/unsloth\">Github</a> </i> ⭐\n",
"</div>\n",
"\n",
"To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth?tab=readme-ov-file#-installation-instructions).\n",
"\n",
"You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).\n",
"\n",
"**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**\n",
"\n",
"Features in the notebook:\n",
"1. Uses Maxime Labonne's [FineTome 100K](https://huggingface.co/datasets/mlabonne/FineTome-100k) dataset.\n",
"1. Convert ShareGPT to HuggingFace format via `standardize_sharegpt`\n",
"2. Train on Completions / Assistant only via `train_on_responses_only`\n",
"3. Unsloth now supports Torch 2.4, all TRL & Xformers versions & Python 3.12!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "2eSvM9zX_2d3"
},
"outputs": [],
"source": [
"%%capture\n",
"!pip install unsloth\n",
"# Also get the latest nightly Unsloth!\n",
"!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "r2v_X2fA0Df5"
},
"source": [
"* We support Llama, Mistral, Phi-3, Gemma, Yi, DeepSeek, Qwen, TinyLlama, Vicuna, Open Hermes etc\n",
"* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n",
"* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n",
"* [**NEW**] We make Gemma-2 9b / 27b **2x faster**! See our [Gemma-2 9b notebook](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing)\n",
"* [**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 324,
"referenced_widgets": [
"470008e304ad4102a760e39b93dc7428",
"13e72e122b75476eb9056c4a75089d71",
"972895da680d49de8bc58957ce4fe341",
"90346592f9244def90817ea11422648e",
"cef09d4426c84eb09a8772ad22b02903",
"e6c28d862df24f8ebfcd956921fa0c6d",
"cf45cca2721842f5bc51d8e3db6b1fa6",
"3af46468e29348adbf3c2749394767bc",
"e7490d0da8854fc6abca6b9ecfb2fdaf",
"0c356b068a6f498da7bcc5102d7a3f12",
"1a5e5be75adb4466b90b29d4aecc9d7b",
"f4c568c8e686433f8763c34879f46fd3",
"d37ee73737d144479b19aa9c84bcbda5",
"94b64d29515c49e788c9b0f02f97e131",
"e0c4626438754fcab9ba26ec84691906",
"ea9e76e320e0413083985d598cc62bd5",
"4a1ea4cd642b437db3abb2ff39c19563",
"a64e99e0c22c4bbf8e0bc70066475126",
"e9812c0a8e814202a128fd11860b6b0e",
"66179fda56844c47bb5a2207744370cb",
"e9eada4508064f3bb063b0640dc04224",
"1e1cad4d3d3c4612a158551589b5be1e",
"1dfa05dc7e56420ab071392e802eb233",
"bee09a78cbb24fd0b8d5edf7f48d2b1e",
"0153b850366f4f798ef485268e62c775",
"1a6a1710ac1e468685ec3ac850fbe225",
"4e44198b265744ad954ad5c71238284a",
"f5b0ed4646f84e9293198e8a78823f0d",
"41196d3b7ebb4b3e81ab190be3efdc0f",
"f9a52bdb2e6d4da49c4a79982aae354f",
"1a3bd31d499741e398d964904a9e636d",
"b47a9aebb5b447b282f0b29607bee5d3",
"3d87f57ad8bf4d6b8da431d141f31218",
"b84a3a5d44a9417aa3c2ad089edb962f",
"1fbe9f9d35d64921b567119369591fa5",
"a8126f821b164a99a0b5514ab8d8b513",
"e33feef2505d45f7bbfd8f2a73b07b1a",
"0a1843983b5c4744a7ef148a72dd06d5",
"e2235493048f44bbb957c5680a2c48e7",
"5959983c01fb4cbbb45a76d729beef52",
"5fa9619b96274aa795dff3a5906992d2",
"1a6c2123525f4ba9bb9967165c06a4a9",
"8301a8f379af4ba8bfbe8e4b7a2eb812",
"0ee49d6c54594cd7a5f4d9bdfe4c8a5c",
"45d7468b23d14ea99d103689c891749f",
"432ef064af77465b9da7d059179bd705",
"ba5349ad5a8344709e8924f9ba3a306b",
"5acddf8d428f4a3daff2b69a0ae45446",
"e5d0ac47ca4042349ceb9a23f1399bf9",
"ff04a0a610144d82aa271f72324a49ea",
"1984ff4e3cc243e1a791ce094ffa87d3",
"4726b87618454e858d3e7a2f982558df",
"33647f79114144feae792e43cf17e4b7",
"138d704d84ba403695d6d8c9538e29bc",
"bacd0d7737244fd7905d4e40ebd54f6d"
]
},
"id": "QmUBVEnvCDJv",
"outputId": "e96c2216-b3f6-4cc7-d555-afe838eda86e"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n",
"🦥 Unsloth Zoo will now patch everything to make training faster!\n",
"==((====))== Unsloth 2024.12.12: Fast Llama patching. Transformers: 4.47.1.\n",
" \\\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform: Linux.\n",
"O^O/ \\_/ \\ Torch: 2.5.1+cu121. CUDA: 7.5. CUDA Toolkit: 12.1. Triton: 3.1.0\n",
"\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.29. FA2 = False]\n",
" \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n",
"Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"model.safetensors: 0%| | 0.00/2.24G [00:00<?, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "470008e304ad4102a760e39b93dc7428"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"generation_config.json: 0%| | 0.00/184 [00:00<?, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "f4c568c8e686433f8763c34879f46fd3"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"tokenizer_config.json: 0%| | 0.00/54.6k [00:00<?, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "1dfa05dc7e56420ab071392e802eb233"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"tokenizer.json: 0%| | 0.00/9.09M [00:00<?, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "b84a3a5d44a9417aa3c2ad089edb962f"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"special_tokens_map.json: 0%| | 0.00/454 [00:00<?, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "45d7468b23d14ea99d103689c891749f"
}
},
"metadata": {}
}
],
"source": [
"from unsloth import FastLanguageModel\n",
"import torch\n",
"max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n",
"dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n",
"load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n",
"\n",
"# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n",
"fourbit_models = [\n",
" \"unsloth/Meta-Llama-3.1-8B-bnb-4bit\", # Llama-3.1 2x faster\n",
" \"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit\",\n",
" \"unsloth/Meta-Llama-3.1-70B-bnb-4bit\",\n",
" \"unsloth/Meta-Llama-3.1-405B-bnb-4bit\", # 4bit for 405b!\n",
" \"unsloth/Mistral-Small-Instruct-2409\", # Mistral 22b 2x faster!\n",
" \"unsloth/mistral-7b-instruct-v0.3-bnb-4bit\",\n",
" \"unsloth/Phi-3.5-mini-instruct\", # Phi-3.5 2x faster!\n",
" \"unsloth/Phi-3-medium-4k-instruct\",\n",
" \"unsloth/gemma-2-9b-bnb-4bit\",\n",
" \"unsloth/gemma-2-27b-bnb-4bit\", # Gemma 2x faster!\n",
"\n",
" \"unsloth/Llama-3.2-1B-bnb-4bit\", # NEW! Llama 3.2 models\n",
" \"unsloth/Llama-3.2-1B-Instruct-bnb-4bit\",\n",
" \"unsloth/Llama-3.2-3B-bnb-4bit\",\n",
" \"unsloth/Llama-3.2-3B-Instruct-bnb-4bit\",\n",
"\n",
" \"unsloth/Llama-3.3-70B-Instruct-bnb-4bit\" # NEW! Llama 3.3 70B!\n",
"] # More models at https://huggingface.co/unsloth\n",
"\n",
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
" model_name = \"unsloth/Llama-3.2-3B-Instruct\", # or choose \"unsloth/Llama-3.2-1B-Instruct\"\n",
" max_seq_length = max_seq_length,\n",
" dtype = dtype,\n",
" load_in_4bit = load_in_4bit,\n",
" # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SXd9bTZd1aaL"
},
"source": [
"We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "6bZsfBuZDeCL",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "34f0a776-1747-4b3a-989b-aff287497f2e"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Unsloth 2024.12.12 patched 28 layers with 28 QKV layers, 28 O layers and 28 MLP layers.\n"
]
}
],
"source": [
"model = FastLanguageModel.get_peft_model(\n",
" model,\n",
" r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n",
" target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
" \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
" lora_alpha = 16,\n",
" lora_dropout = 0, # Supports any, but = 0 is optimized\n",
" bias = \"none\", # Supports any, but = \"none\" is optimized\n",
" # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n",
" use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n",
" random_state = 3407,\n",
" use_rslora = False, # We support rank stabilized LoRA\n",
" loftq_config = None, # And LoftQ\n",
")"
]
},
{
"cell_type": "code",
"source": [
"from datasets import load_dataset\n",
"from unsloth.chat_templates import get_chat_template\n",
"\n",
"# Load the dataset\n",
"dataset = load_dataset(\"medalpaca/medical_meadow_medical_flashcards\", split=\"train\")\n",
"\n",
"def convert_to_conversations(examples):\n",
" \"\"\"Convert the dataset format to conversations\"\"\"\n",
" conversations = []\n",
" for instruction, input_text, output in zip(\n",
" examples['instruction'],\n",
" examples['input'],\n",
" examples['output']\n",
" ):\n",
" # Combine instruction and input\n",
" user_content = f\"{instruction}: {input_text}\"\n",
" conv = [\n",
" {\"role\": \"user\", \"content\": user_content},\n",
" {\"role\": \"assistant\", \"content\": output}\n",
" ]\n",
" conversations.append(conv)\n",
" return {\"conversations\": conversations}\n",
"\n",
"# Convert to conversation format\n",
"formatted_dataset = dataset.map(\n",
" convert_to_conversations,\n",
" batched=True,\n",
" remove_columns=dataset.column_names\n",
")\n",
"\n",
"# Set up the tokenizer with Llama-3.1 chat template\n",
"tokenizer = get_chat_template(\n",
" tokenizer,\n",
" chat_template=\"llama-3.1\",\n",
")\n",
"\n",
"def formatting_prompts_func(examples):\n",
" \"\"\"Apply the chat template to the conversations\"\"\"\n",
" convos = examples[\"conversations\"]\n",
" texts = [\n",
" tokenizer.apply_chat_template(\n",
" convo,\n",
" tokenize=False,\n",
" add_generation_prompt=False\n",
" ) for convo in convos\n",
" ]\n",
" return {\"text\": texts}\n",
"\n",
"# Apply the formatting\n",
"formatted_dataset = formatted_dataset.map(\n",
" formatting_prompts_func,\n",
" batched=True\n",
")\n",
"\n",
"# Save the formatted dataset to make it available in next cells\n",
"import pickle\n",
"with open('formatted_dataset.pkl', 'wb') as f:\n",
" pickle.dump(formatted_dataset, f)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 81,
"referenced_widgets": [
"a41034aac0fb4301ad12bbd8e2b0cc40",
"b635e3775c164f94b6acec4dd20b192e",
"356cc173337649588e8990e9b948e9cf",
"17996150ba4946bc8b9531db9f5f31b5",
"927a0a29edcd47e4a4d3d74df7a9ea2b",
"5ce59b62adfb416b85bc0effcced25dd",
"913b0f0ccc8848b0b2c3917950f70e93",
"5b0cadad0628423ea3b308a648c3c56e",
"5b0e393c08bc492aa4079297d6602aa7",
"5c9790a723f54ec3aa26d61e1e6880b5",
"48ca23b61bac4b9583993577ef4451c4",
"2959bb04464046fd9c5b78e39e4d31aa",
"5412eabb86f54fa6b39bda564fb08334",
"362a07edc2ba457d9939bad3ead4f683",
"d1937db6c00840ef895654c58c5cf844",
"9324776524bd44ed83972090e1def47e",
"b07669693dd840249f6d55d8ecc6f394",
"7fd6c7363ade4591824599e64f62a8d8",
"d06aac9749f14f74b1a9b4ea7fd4ab20",
"badae3344d2448d69f5d33f419344c29",
"afecd6f978f9451bace318a0ad92a593",
"982831102f1f45959043b619108119b9"
]
},
"id": "cDgml9s70ymR",
"outputId": "1e4276cc-1368-4792-bb37-f05e4c935954"
},
"execution_count": 10,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Map: 0%| | 0/33955 [00:00<?, ? examples/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "a41034aac0fb4301ad12bbd8e2b0cc40"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Map: 0%| | 0/33955 [00:00<?, ? examples/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "2959bb04464046fd9c5b78e39e4d31aa"
}
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"# Print an example to verify the format\n",
"print(\"Example of formatted conversation:\")\n",
"print(formatted_dataset[0]['text'])\n",
"\n",
"# The dataset is now ready for training\n",
"# You can access it as formatted_dataset['text']\n",
"\n",
"# If you need to split it into train/validation sets:\n",
"train_val = formatted_dataset.train_test_split(test_size=0.1, seed=42)\n",
"train_data = train_val['train']\n",
"val_data = train_val['test']\n",
"\n",
"print(\"\\nDataset sizes:\")\n",
"print(f\"Train: {len(train_data)}\")\n",
"print(f\"Validation: {len(val_data)}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "YPZSwk6319Dw",
"outputId": "f5deb7bb-1e8a-470e-ca58-49a05cb98ab8"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Example of formatted conversation:\n",
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
"\n",
"Cutting Knowledge Date: December 2023\n",
"Today Date: 26 July 2024\n",
"\n",
"<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
"\n",
"Answer this question truthfully: What is the relationship between very low Mg2+ levels, PTH levels, and Ca2+ levels?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
"\n",
"Very low Mg2+ levels correspond to low PTH levels which in turn results in low Ca2+ levels.<|eot_id|>\n",
"\n",
"Dataset sizes:\n",
"Train: 30559\n",
"Validation: 3396\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "idAEIeSQ3xdS"
},
"source": [
"<a name=\"Train\"></a>\n",
"### Train the model\n",
"Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"id": "95_Nn-89DhsL",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 49,
"referenced_widgets": [
"11f1c457989b4211a66099e84f6beb73",
"3aa2d2085fc64bfd89d2889621cfd2ae",
"6d85c1fb9dc8478899b39a8f49ba6fde",
"2794d95fbb924c58acd1d806c6f847ee",
"2a1e24790e2e4df99c29fc9e0fc2da9d",
"5b8c18ab8f934c33bab55beee17d7ac7",
"34e7a0da7e4b494ba248654e124638b3",
"e5c927adf18f44cdb054ae3123f8b526",
"98d8d0fed266494abd1ec14a7e3c4d05",
"ed3b09500a97415891a3c1cf1a681d6c",
"5beefaa4ac9347bf8edf5d9e62e6baf0"
]
},
"outputId": "85db7ebb-50ef-4b1b-e2d2-314c58a84947"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Map (num_proc=2): 0%| | 0/33955 [00:00<?, ? examples/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "11f1c457989b4211a66099e84f6beb73"
}
},
"metadata": {}
}
],
"source": [
"from trl import SFTTrainer\n",
"from transformers import TrainingArguments, DataCollatorForSeq2Seq\n",
"from unsloth import is_bfloat16_supported\n",
"\n",
"trainer = SFTTrainer(\n",
" model = model,\n",
" tokenizer = tokenizer,\n",
" train_dataset = formatted_dataset,\n",
" dataset_text_field = \"text\",\n",
" max_seq_length = max_seq_length,\n",
" data_collator = DataCollatorForSeq2Seq(tokenizer = tokenizer),\n",
" dataset_num_proc = 2,\n",
" packing = False, # Can make training 5x faster for short sequences.\n",
" args = TrainingArguments(\n",
" per_device_train_batch_size = 2,\n",
" gradient_accumulation_steps = 4,\n",
" warmup_steps = 5,\n",
" # num_train_epochs = 1, # Set this for 1 full training run.\n",
" max_steps = 60,\n",
" learning_rate = 2e-4,\n",
" fp16 = not is_bfloat16_supported(),\n",
" bf16 = is_bfloat16_supported(),\n",
" logging_steps = 1,\n",
" optim = \"adamw_8bit\",\n",
" weight_decay = 0.01,\n",
" lr_scheduler_type = \"linear\",\n",
" seed = 3407,\n",
" output_dir = \"outputs\",\n",
" report_to = \"none\", # Use this for WandB etc\n",
" ),\n",
")"
]
},
{
"cell_type": "markdown",
"source": [
"We also use Unsloth's `train_on_completions` method to only train on the assistant outputs and ignore the loss on the user's inputs."
],
"metadata": {
"id": "C_sGp5XlG6dq"
}
},
{
"cell_type": "code",
"source": [
"from unsloth.chat_templates import train_on_responses_only\n",
"trainer = train_on_responses_only(\n",
" trainer,\n",
" instruction_part = \"<|start_header_id|>user<|end_header_id|>\\n\\n\",\n",
" response_part = \"<|start_header_id|>assistant<|end_header_id|>\\n\\n\",\n",
")"
],
"metadata": {
"id": "juQiExuBG5Bt",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 49,
"referenced_widgets": [
"3be9f1c4ca424b08b995986b31bc6f73",
"cbaaf16637334b8c907be3c1eea8e36b",
"ab35ff19da2b4ab49ea4f6ab3bc32981",
"d9add78673484904995f4b3181c2d3d6",
"d44d61caea1f4aa79d3fae256b5e351e",
"4be9d0609a1d4a28b622ada5052fd653",
"fbf5b0b982d5483bb160f1c745e5fa1d",
"55be8a889c8a414f83c2af904513f96d",
"567af20e2fab400aae2131ade113d39d",
"a17fe71fa4f24581a5a5758d367888c3",
"106ddc5392a747e88905c314032671fa"
]
},
"outputId": "69af3385-fc25-41d3-8207-5fa2e9091867"
},
"execution_count": 13,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Map: 0%| | 0/33955 [00:00<?, ? examples/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "3be9f1c4ca424b08b995986b31bc6f73"
}
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"We verify masking is actually done:"
],
"metadata": {
"id": "Dv1NBUozV78l"
}
},
{
"cell_type": "code",
"source": [
"tokenizer.decode(trainer.train_dataset[5][\"input_ids\"])"
],
"metadata": {
"id": "LtsMVtlkUhja",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 55
},
"outputId": "f1c670d5-ed1b-4b00-df24-4ad6fc0909b0"
},
"execution_count": 14,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nAnswer this question truthfully: What does low Mobility and bulging of TM suggest?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nLow Mobility and bulging of TM is suggestive of Acute otitis media.<|eot_id|>'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 14
}
]
},
{
"cell_type": "code",
"source": [
"space = tokenizer(\" \", add_special_tokens = False).input_ids[0]\n",
"tokenizer.decode([space if x == -100 else x for x in trainer.train_dataset[5][\"labels\"]])"
],
"metadata": {
"id": "_rD6fl8EUxnG",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 36
},
"outputId": "05599f09-3443-4fc1-82c1-4fc35958ed7f"
},
"execution_count": 15,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"' \\n\\nLow Mobility and bulging of TM is suggestive of Acute otitis media.<|eot_id|>'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 15
}
]
},
{
"cell_type": "markdown",
"source": [
"[link text](https://)We can see the System and Instruction prompts are successfully masked!"
],
"metadata": {
"id": "3enWUM0jV-jV"
}
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"id": "2ejIt2xSNKKp",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "39fbd3c6-7979-484d-bf73-6bacf4dc8189"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"GPU = Tesla T4. Max memory = 14.748 GB.\n",
"3.324 GB of memory reserved.\n"
]
}
],
"source": [
"#@title Show current memory stats\n",
"gpu_stats = torch.cuda.get_device_properties(0)\n",
"start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
"max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
"print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
"print(f\"{start_gpu_memory} GB of memory reserved.\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "yqxqAZ7KJ4oL",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "3790f36d-d523-48c4-d930-718fb512a1a7"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1\n",
" \\\\ /| Num examples = 33,955 | Num Epochs = 1\n",
"O^O/ \\_/ \\ Batch size per device = 2 | Gradient Accumulation steps = 4\n",
"\\ / Total batch size = 8 | Total steps = 60\n",
" \"-____-\" Number of trainable parameters = 24,313,856\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='60' max='60' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [60/60 02:49, Epoch 0/1]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>1</td>\n",
" <td>1.291800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2</td>\n",
" <td>1.210600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3</td>\n",
" <td>1.020600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4</td>\n",
" <td>0.976700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>5</td>\n",
" <td>0.968400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>6</td>\n",
" <td>1.065500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>7</td>\n",
" <td>1.091000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>8</td>\n",
" <td>0.828600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>9</td>\n",
" <td>0.804600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>10</td>\n",
" <td>0.832100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>11</td>\n",
" <td>0.695600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>12</td>\n",
" <td>0.702200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>13</td>\n",
" <td>0.747300</td>\n",
" </tr>\n",
" <tr>\n",
" <td>14</td>\n",
" <td>0.753600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>15</td>\n",
" <td>0.803100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>16</td>\n",
" <td>0.856100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>17</td>\n",
" <td>0.883200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>18</td>\n",
" <td>0.863200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>19</td>\n",
" <td>0.730900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>20</td>\n",
" <td>0.716000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>21</td>\n",
" <td>0.851000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>22</td>\n",
" <td>0.849400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>23</td>\n",
" <td>0.736900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>24</td>\n",
" <td>0.807300</td>\n",
" </tr>\n",
" <tr>\n",
" <td>25</td>\n",
" <td>0.845800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>26</td>\n",
" <td>0.920700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>27</td>\n",
" <td>0.739800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>28</td>\n",
" <td>0.816900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>29</td>\n",
" <td>0.783700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>30</td>\n",
" <td>0.701500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>31</td>\n",
" <td>0.734100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>32</td>\n",
" <td>0.804600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>33</td>\n",
" <td>0.882300</td>\n",
" </tr>\n",
" <tr>\n",
" <td>34</td>\n",
" <td>0.776600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>35</td>\n",
" <td>0.731700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>36</td>\n",
" <td>1.109600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>37</td>\n",
" <td>0.821800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>38</td>\n",
" <td>0.616000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>39</td>\n",
" <td>0.712900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>40</td>\n",
" <td>0.735600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>41</td>\n",
" <td>0.902300</td>\n",
" </tr>\n",
" <tr>\n",
" <td>42</td>\n",
" <td>0.832600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>43</td>\n",
" <td>0.791600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>44</td>\n",
" <td>0.813500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>45</td>\n",
" <td>0.876400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>46</td>\n",
" <td>0.814500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>47</td>\n",
" <td>0.773300</td>\n",
" </tr>\n",
" <tr>\n",
" <td>48</td>\n",
" <td>0.739800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>49</td>\n",
" <td>0.830400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>50</td>\n",
" <td>0.934300</td>\n",
" </tr>\n",
" <tr>\n",
" <td>51</td>\n",
" <td>0.864700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>52</td>\n",
" <td>1.015700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>53</td>\n",
" <td>0.777400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>54</td>\n",
" <td>0.705100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>55</td>\n",
" <td>0.844800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>56</td>\n",
" <td>0.861400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>57</td>\n",
" <td>0.848500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>58</td>\n",
" <td>0.768700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>59</td>\n",
" <td>0.684100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>60</td>\n",
" <td>0.956200</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
]
},
"metadata": {}
}
],
"source": [
"trainer_stats = trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"id": "pCqnaKmlO1U9",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "df7922d2-20c8-4c99-99dd-10eff2caf2e6"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"178.5531 seconds used for training.\n",
"2.98 minutes used for training.\n",
"Peak reserved memory = 3.324 GB.\n",
"Peak reserved memory for training = 0.0 GB.\n",
"Peak reserved memory % of max memory = 22.539 %.\n",
"Peak reserved memory for training % of max memory = 0.0 %.\n"
]
}
],
"source": [
"#@title Show final memory and time stats\n",
"used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
"used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n",
"used_percentage = round(used_memory /max_memory*100, 3)\n",
"lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n",
"print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n",
"print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n",
"print(f\"Peak reserved memory = {used_memory} GB.\")\n",
"print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n",
"print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n",
"print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ekOmTR1hSNcr"
},
"source": [
"<a name=\"Inference\"></a>\n",
"### Inference\n",
"Let's run the model! You can change the instruction and input - leave the output blank!\n",
"\n",
"**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**\n",
"\n",
"We use `min_p = 0.1` and `temperature = 1.5`. Read this [Tweet](https://x.com/menhguin/status/1826132708508213629) for more information on why."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CrSvZObor0lY"
},
"source": [
" You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"
]
},
{
"cell_type": "code",
"source": [
"from unsloth.chat_templates import get_chat_template\n",
"from transformers import TextStreamer\n",
"\n",
"# Setup tokenizer with Llama-3.1 template\n",
"tokenizer = get_chat_template(\n",
" tokenizer,\n",
" chat_template = \"llama-3.1\",\n",
")\n",
"\n",
"# Enable faster inference\n",
"FastLanguageModel.for_inference(model)\n",
"\n",
"# Example medical question from our dataset\n",
"messages = [\n",
" {\"role\": \"user\", \"content\": \"Answer this question truthfully: What is the relationship between very low Mg2+ levels, PTH levels, and Ca2+ levels?\"},\n",
"]\n",
"\n",
"# Standard generation\n",
"inputs = tokenizer.apply_chat_template(\n",
" messages,\n",
" tokenize = True,\n",
" add_generation_prompt = True,\n",
" return_tensors = \"pt\",\n",
").to(\"cuda\")\n",
"\n",
"print(\"Standard Generation:\")\n",
"outputs = model.generate(\n",
" input_ids = inputs,\n",
" max_new_tokens = 128,\n",
" use_cache = True,\n",
" temperature = 0.7, # Lower temperature for medical answers to be more precise\n",
" min_p = 0.1\n",
")\n",
"print(tokenizer.batch_decode(outputs))\n",
"\n",
"# Streaming generation\n",
"print(\"\\nStreaming Generation:\")\n",
"text_streamer = TextStreamer(tokenizer, skip_prompt = True)\n",
"inputs = tokenizer.apply_chat_template(\n",
" messages,\n",
" tokenize = True,\n",
" add_generation_prompt = True,\n",
" return_tensors = \"pt\",\n",
").to(\"cuda\")\n",
"\n",
"_ = model.generate(\n",
" input_ids = inputs,\n",
" streamer = text_streamer,\n",
" max_new_tokens = 128,\n",
" use_cache = True,\n",
" temperature = 0.7,\n",
" min_p = 0.1\n",
")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qsrXkJwN3jvL",
"outputId": "4492cea0-4064-4be7-d623-b68bee1101ce"
},
"execution_count": 18,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Standard Generation:\n",
"['<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nAnswer this question truthfully: What is the relationship between very low Mg2+ levels, PTH levels, and Ca2+ levels?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nVery low Mg2+ levels, PTH levels, and Ca2+ levels are related.<|eot_id|>']\n",
"\n",
"Streaming Generation:\n",
"Very low Mg2+ levels are associated with very high PTH levels and very low Ca2+ levels.<|eot_id|>\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# New medical question\n",
"messages = [\n",
" {\"role\": \"user\", \"content\": \"Answer this question truthfully: Who is roberto baggio?\"},\n",
"]\n",
"\n",
"# Standard generation\n",
"inputs = tokenizer.apply_chat_template(\n",
" messages,\n",
" tokenize = True,\n",
" add_generation_prompt = True,\n",
" return_tensors = \"pt\",\n",
").to(\"cuda\")\n",
"\n",
"print(\"Standard Generation:\")\n",
"outputs = model.generate(\n",
" input_ids = inputs,\n",
" max_new_tokens = 128,\n",
" use_cache = True,\n",
" temperature = 0.7,\n",
" min_p = 0.1\n",
")\n",
"print(tokenizer.batch_decode(outputs))\n",
"\n",
"# Streaming generation\n",
"print(\"\\nStreaming Generation:\")\n",
"text_streamer = TextStreamer(tokenizer, skip_prompt = True)\n",
"inputs = tokenizer.apply_chat_template(\n",
" messages,\n",
" tokenize = True,\n",
" add_generation_prompt = True,\n",
" return_tensors = \"pt\",\n",
").to(\"cuda\")\n",
"\n",
"_ = model.generate(\n",
" input_ids = inputs,\n",
" streamer = text_streamer,\n",
" max_new_tokens = 128,\n",
" use_cache = True,\n",
" temperature = 0.7,\n",
" min_p = 0.1\n",
")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "fcRMYYe74ovE",
"outputId": "aba9c862-5ab7-418e-f875-b781cf9e8b0c"
},
"execution_count": 21,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Standard Generation:\n",
"['<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nAnswer this question truthfully: Who is roberto baggio?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nRoberto Baggio is a former Italian professional footballer who played as a midfielder for the Italy national team. He is widely regarded as one of the greatest players of his generation and is known for his exceptional dribbling skills and vision on the pitch. Baggio played for several top-tier clubs, including Juventus, AC Milan, and Inter Milan, and won numerous honors, including the FIFA World Cup Golden Ball award. He is also a legendary figure in Italian football, known for his iconic goal against Brazil in the 1994 World Cup. Baggio is now a coach and a commentator for Italian television, and is still widely respected and admired']\n",
"\n",
"Streaming Generation:\n",
"Roberto Baggio is an Italian former professional footballer and coach. He is a former Italy international and is considered one of the greatest players of his generation. Baggio is best known for his time with Juventus and AC Milan, where he won numerous titles and individual awards. He is also known for his iconic goals, including the famous \"Di Stéfano\" goal in the 1996 World Cup.<|eot_id|>\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Test with a novel medical question\n",
"messages = [\n",
" {\"role\": \"user\", \"content\": \"Answer this question truthfully: What are the potential risks and benefits of using ACE inhibitors in a patient with diabetic nephropathy who also has bilateral renal artery stenosis?\"},\n",
"]\n",
"\n",
"# Standard generation\n",
"inputs = tokenizer.apply_chat_template(\n",
" messages,\n",
" tokenize = True,\n",
" add_generation_prompt = True,\n",
" return_tensors = \"pt\",\n",
").to(\"cuda\")\n",
"\n",
"print(\"Standard Generation:\")\n",
"outputs = model.generate(\n",
" input_ids = inputs,\n",
" max_new_tokens = 2048, # Increased for more detailed response\n",
" use_cache = True,\n",
" temperature = 0.7,\n",
" min_p = 0.1\n",
")\n",
"print(tokenizer.batch_decode(outputs))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "rfXL8wK4544g",
"outputId": "93cfcb0c-bf4a-4042-be88-bd1844f74092"
},
"execution_count": 26,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Standard Generation:\n",
"[\"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nAnswer this question truthfully: What are the potential risks and benefits of using ACE inhibitors in a patient with diabetic nephropathy who also has bilateral renal artery stenosis?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nACE inhibitors are a type of medication that can be used to treat high blood pressure and other conditions. In a patient with diabetic nephropathy who also has bilateral renal artery stenosis, ACE inhibitors can have both potential risks and benefits. The benefits of ACE inhibitors in this patient include the potential to improve blood pressure control and slow the progression of diabetic nephropathy. However, the risks of ACE inhibitors in this patient include the potential for worsening renal function and increased risk of kidney failure. It is important to carefully monitor the patient's renal function and blood pressure while using ACE inhibitors in this patient.<|eot_id|>\"]\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uMuVrWbjAzhc"
},
"source": [
"<a name=\"Save\"></a>\n",
"### Saving, loading finetuned models\n",
"To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n",
"\n",
"**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "upcOlWe7A1vc",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c962e43a-2027-4a39-ea03-870b707a22d4"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"('lora_model/tokenizer_config.json',\n",
" 'lora_model/special_tokens_map.json',\n",
" 'lora_model/tokenizer.json')"
]
},
"metadata": {},
"execution_count": 17
}
],
"source": [
"model.save_pretrained(\"lora_model\") # Local saving\n",
"tokenizer.save_pretrained(\"lora_model\")\n",
"# model.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving\n",
"# tokenizer.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AEEcJ4qfC7Lp"
},
"source": [
"Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MKX_XKs_BNZR",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "f22dbd75-ea37-48bb-9f75-4178aebe9353"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"The Eiffel Tower, located in the heart of Paris, stands tall among the city's historic and cultural landmarks. This iron structure, standing at an impressive 324 meters high, offers breathtaking views of the City of Light's iconic landscape. The Eiffel Tower was built for the 1889 World's Fair and has since become a symbol of French engineering and culture.<|eot_id|>\n"
]
}
],
"source": [
"if False:\n",
" from unsloth import FastLanguageModel\n",
" model, tokenizer = FastLanguageModel.from_pretrained(\n",
" model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
" max_seq_length = max_seq_length,\n",
" dtype = dtype,\n",
" load_in_4bit = load_in_4bit,\n",
" )\n",
" FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
"\n",
"messages = [\n",
" {\"role\": \"user\", \"content\": \"Describe a tall tower in the capital of France.\"},\n",
"]\n",
"inputs = tokenizer.apply_chat_template(\n",
" messages,\n",
" tokenize = True,\n",
" add_generation_prompt = True, # Must add for generation\n",
" return_tensors = \"pt\",\n",
").to(\"cuda\")\n",
"\n",
"from transformers import TextStreamer\n",
"text_streamer = TextStreamer(tokenizer, skip_prompt = True)\n",
"_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128,\n",
" use_cache = True, temperature = 1.5, min_p = 0.1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QQMjaNrjsU5_"
},
"source": [
"You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yFfaXG0WsQuE"
},
"outputs": [],
"source": [
"if False:\n",
" # I highly do NOT suggest - use Unsloth if possible\n",
" from peft import AutoPeftModelForCausalLM\n",
" from transformers import AutoTokenizer\n",
" model = AutoPeftModelForCausalLM.from_pretrained(\n",
" \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
" load_in_4bit = load_in_4bit,\n",
" )\n",
" tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "f422JgM9sdVT"
},
"source": [
"### Saving to float16 for VLLM\n",
"\n",
"We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "iHjt_SMYsd3P"
},
"outputs": [],
"source": [
"# Merge to 16bit\n",
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n",
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n",
"\n",
"# Merge to 4bit\n",
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n",
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n",
"\n",
"# Just LoRA adapters\n",
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n",
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TCv4vXHd61i7"
},
"source": [
"### GGUF / llama.cpp Conversion\n",
"To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n",
"\n",
"Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n",
"* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n",
"* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n",
"* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K.\n",
"\n",
"[**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "FqfebeAdT073"
},
"outputs": [],
"source": [
"# Save to 8bit Q8_0\n",
"if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n",
"# Remember to go to https://huggingface.co/settings/tokens for a token!\n",
"# And change hf to your username!\n",
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n",
"\n",
"# Save to 16bit GGUF\n",
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n",
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n",
"\n",
"# Save to q4_k_m GGUF\n",
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n",
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")\n",
"\n",
"# Save to multiple GGUF options - much faster if you want multiple!\n",
"if False:\n",
" model.push_to_hub_gguf(\n",
" \"hf/model\", # Change hf to your username!\n",
" tokenizer,\n",
" quantization_method = [\"q4_k_m\", \"q8_0\", \"q5_k_m\",],\n",
" token = \"\", # Get a token at https://huggingface.co/settings/tokens\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bDp0zNpwe6U_"
},
"source": [
"Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html).\n",
"\n",
"**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Zt9CHJqO6p30"
},
"source": [
"And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n",
"\n",
"Some other links:\n",
"1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n",
"2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n",
"3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
"4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
"5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n",
"6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
"7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n",
"8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n",
"9. [**NEW**] We make Phi-3 Medium / Mini **2x faster**! See our [Phi-3 Medium notebook](https://colab.research.google.com/drive/1hhdhBa1j_hsymiW9m-WzxQtgqTH_NHqi?usp=sharing)\n",
"10. [**NEW**] We make Gemma-2 9b / 27b **2x faster**! See our [Gemma-2 9b notebook](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing)\n",
"11. [**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)\n",
"12. [**NEW**] We make Mistral NeMo 12B 2x faster and fit in under 12GB of VRAM! [Mistral NeMo notebook](https://colab.research.google.com/drive/17d3U-CAIwzmbDRqbZ9NnpHxCkmXB6LZ0?usp=sharing)\n",
"\n",
"<div class=\"align-center\">\n",
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
" <a href=\"https://discord.gg/u54VK8m8tk\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord.png\" width=\"145\"></a>\n",
" <a href=\"https://ko-fi.com/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png\" width=\"145\"></a></a> Support our work if you can! Thanks!\n",
"</div>"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"470008e304ad4102a760e39b93dc7428": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_13e72e122b75476eb9056c4a75089d71",
"IPY_MODEL_972895da680d49de8bc58957ce4fe341",
"IPY_MODEL_90346592f9244def90817ea11422648e"
],
"layout": "IPY_MODEL_cef09d4426c84eb09a8772ad22b02903"
}
},
"13e72e122b75476eb9056c4a75089d71": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e6c28d862df24f8ebfcd956921fa0c6d",
"placeholder": "",
"style": "IPY_MODEL_cf45cca2721842f5bc51d8e3db6b1fa6",
"value": "model.safetensors: 100%"
}
},
"972895da680d49de8bc58957ce4fe341": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "danger",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_3af46468e29348adbf3c2749394767bc",
"max": 2242762780,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_e7490d0da8854fc6abca6b9ecfb2fdaf",
"value": 2242762567
}
},
"90346592f9244def90817ea11422648e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0c356b068a6f498da7bcc5102d7a3f12",
"placeholder": "",
"style": "IPY_MODEL_1a5e5be75adb4466b90b29d4aecc9d7b",
"value": " 2.24G/2.24G [00:16<00:00, 145MB/s]"
}
},
"cef09d4426c84eb09a8772ad22b02903": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e6c28d862df24f8ebfcd956921fa0c6d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cf45cca2721842f5bc51d8e3db6b1fa6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"3af46468e29348adbf3c2749394767bc": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e7490d0da8854fc6abca6b9ecfb2fdaf": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"0c356b068a6f498da7bcc5102d7a3f12": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1a5e5be75adb4466b90b29d4aecc9d7b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"f4c568c8e686433f8763c34879f46fd3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_d37ee73737d144479b19aa9c84bcbda5",
"IPY_MODEL_94b64d29515c49e788c9b0f02f97e131",
"IPY_MODEL_e0c4626438754fcab9ba26ec84691906"
],
"layout": "IPY_MODEL_ea9e76e320e0413083985d598cc62bd5"
}
},
"d37ee73737d144479b19aa9c84bcbda5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4a1ea4cd642b437db3abb2ff39c19563",
"placeholder": "",
"style": "IPY_MODEL_a64e99e0c22c4bbf8e0bc70066475126",
"value": "generation_config.json: 100%"
}
},
"94b64d29515c49e788c9b0f02f97e131": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e9812c0a8e814202a128fd11860b6b0e",
"max": 184,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_66179fda56844c47bb5a2207744370cb",
"value": 184
}
},
"e0c4626438754fcab9ba26ec84691906": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e9eada4508064f3bb063b0640dc04224",
"placeholder": "",
"style": "IPY_MODEL_1e1cad4d3d3c4612a158551589b5be1e",
"value": " 184/184 [00:00<00:00, 7.81kB/s]"
}
},
"ea9e76e320e0413083985d598cc62bd5": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4a1ea4cd642b437db3abb2ff39c19563": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a64e99e0c22c4bbf8e0bc70066475126": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e9812c0a8e814202a128fd11860b6b0e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"66179fda56844c47bb5a2207744370cb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"e9eada4508064f3bb063b0640dc04224": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1e1cad4d3d3c4612a158551589b5be1e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"1dfa05dc7e56420ab071392e802eb233": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_bee09a78cbb24fd0b8d5edf7f48d2b1e",
"IPY_MODEL_0153b850366f4f798ef485268e62c775",
"IPY_MODEL_1a6a1710ac1e468685ec3ac850fbe225"
],
"layout": "IPY_MODEL_4e44198b265744ad954ad5c71238284a"
}
},
"bee09a78cbb24fd0b8d5edf7f48d2b1e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_f5b0ed4646f84e9293198e8a78823f0d",
"placeholder": "",
"style": "IPY_MODEL_41196d3b7ebb4b3e81ab190be3efdc0f",
"value": "tokenizer_config.json: 100%"
}
},
"0153b850366f4f798ef485268e62c775": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_f9a52bdb2e6d4da49c4a79982aae354f",
"max": 54598,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_1a3bd31d499741e398d964904a9e636d",
"value": 54598
}
},
"1a6a1710ac1e468685ec3ac850fbe225": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b47a9aebb5b447b282f0b29607bee5d3",
"placeholder": "",
"style": "IPY_MODEL_3d87f57ad8bf4d6b8da431d141f31218",
"value": " 54.6k/54.6k [00:00<00:00, 3.60MB/s]"
}
},
"4e44198b265744ad954ad5c71238284a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f5b0ed4646f84e9293198e8a78823f0d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"41196d3b7ebb4b3e81ab190be3efdc0f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"f9a52bdb2e6d4da49c4a79982aae354f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1a3bd31d499741e398d964904a9e636d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"b47a9aebb5b447b282f0b29607bee5d3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3d87f57ad8bf4d6b8da431d141f31218": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"b84a3a5d44a9417aa3c2ad089edb962f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_1fbe9f9d35d64921b567119369591fa5",
"IPY_MODEL_a8126f821b164a99a0b5514ab8d8b513",
"IPY_MODEL_e33feef2505d45f7bbfd8f2a73b07b1a"
],
"layout": "IPY_MODEL_0a1843983b5c4744a7ef148a72dd06d5"
}
},
"1fbe9f9d35d64921b567119369591fa5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e2235493048f44bbb957c5680a2c48e7",
"placeholder": "",
"style": "IPY_MODEL_5959983c01fb4cbbb45a76d729beef52",
"value": "tokenizer.json: 100%"
}
},
"a8126f821b164a99a0b5514ab8d8b513": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5fa9619b96274aa795dff3a5906992d2",
"max": 9085657,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_1a6c2123525f4ba9bb9967165c06a4a9",
"value": 9085657
}
},
"e33feef2505d45f7bbfd8f2a73b07b1a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_8301a8f379af4ba8bfbe8e4b7a2eb812",
"placeholder": "",
"style": "IPY_MODEL_0ee49d6c54594cd7a5f4d9bdfe4c8a5c",
"value": " 9.09M/9.09M [00:00<00:00, 39.5MB/s]"
}
},
"0a1843983b5c4744a7ef148a72dd06d5": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e2235493048f44bbb957c5680a2c48e7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5959983c01fb4cbbb45a76d729beef52": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5fa9619b96274aa795dff3a5906992d2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1a6c2123525f4ba9bb9967165c06a4a9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"8301a8f379af4ba8bfbe8e4b7a2eb812": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0ee49d6c54594cd7a5f4d9bdfe4c8a5c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"45d7468b23d14ea99d103689c891749f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_432ef064af77465b9da7d059179bd705",
"IPY_MODEL_ba5349ad5a8344709e8924f9ba3a306b",
"IPY_MODEL_5acddf8d428f4a3daff2b69a0ae45446"
],
"layout": "IPY_MODEL_e5d0ac47ca4042349ceb9a23f1399bf9"
}
},
"432ef064af77465b9da7d059179bd705": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ff04a0a610144d82aa271f72324a49ea",
"placeholder": "",
"style": "IPY_MODEL_1984ff4e3cc243e1a791ce094ffa87d3",
"value": "special_tokens_map.json: 100%"
}
},
"ba5349ad5a8344709e8924f9ba3a306b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4726b87618454e858d3e7a2f982558df",
"max": 454,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_33647f79114144feae792e43cf17e4b7",
"value": 454
}
},
"5acddf8d428f4a3daff2b69a0ae45446": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_138d704d84ba403695d6d8c9538e29bc",
"placeholder": "",
"style": "IPY_MODEL_bacd0d7737244fd7905d4e40ebd54f6d",
"value": " 454/454 [00:00<00:00, 34.9kB/s]"
}
},
"e5d0ac47ca4042349ceb9a23f1399bf9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ff04a0a610144d82aa271f72324a49ea": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1984ff4e3cc243e1a791ce094ffa87d3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"4726b87618454e858d3e7a2f982558df": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"33647f79114144feae792e43cf17e4b7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"138d704d84ba403695d6d8c9538e29bc": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"bacd0d7737244fd7905d4e40ebd54f6d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a41034aac0fb4301ad12bbd8e2b0cc40": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_b635e3775c164f94b6acec4dd20b192e",
"IPY_MODEL_356cc173337649588e8990e9b948e9cf",
"IPY_MODEL_17996150ba4946bc8b9531db9f5f31b5"
],
"layout": "IPY_MODEL_927a0a29edcd47e4a4d3d74df7a9ea2b"
}
},
"b635e3775c164f94b6acec4dd20b192e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5ce59b62adfb416b85bc0effcced25dd",
"placeholder": "",
"style": "IPY_MODEL_913b0f0ccc8848b0b2c3917950f70e93",
"value": "Map: 100%"
}
},
"356cc173337649588e8990e9b948e9cf": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5b0cadad0628423ea3b308a648c3c56e",
"max": 33955,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_5b0e393c08bc492aa4079297d6602aa7",
"value": 33955
}
},
"17996150ba4946bc8b9531db9f5f31b5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5c9790a723f54ec3aa26d61e1e6880b5",
"placeholder": "",
"style": "IPY_MODEL_48ca23b61bac4b9583993577ef4451c4",
"value": " 33955/33955 [00:01<00:00, 31269.82 examples/s]"
}
},
"927a0a29edcd47e4a4d3d74df7a9ea2b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5ce59b62adfb416b85bc0effcced25dd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"913b0f0ccc8848b0b2c3917950f70e93": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5b0cadad0628423ea3b308a648c3c56e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5b0e393c08bc492aa4079297d6602aa7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"5c9790a723f54ec3aa26d61e1e6880b5": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"48ca23b61bac4b9583993577ef4451c4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"2959bb04464046fd9c5b78e39e4d31aa": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_5412eabb86f54fa6b39bda564fb08334",
"IPY_MODEL_362a07edc2ba457d9939bad3ead4f683",
"IPY_MODEL_d1937db6c00840ef895654c58c5cf844"
],
"layout": "IPY_MODEL_9324776524bd44ed83972090e1def47e"
}
},
"5412eabb86f54fa6b39bda564fb08334": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b07669693dd840249f6d55d8ecc6f394",
"placeholder": "",
"style": "IPY_MODEL_7fd6c7363ade4591824599e64f62a8d8",
"value": "Map: 100%"
}
},
"362a07edc2ba457d9939bad3ead4f683": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d06aac9749f14f74b1a9b4ea7fd4ab20",
"max": 33955,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_badae3344d2448d69f5d33f419344c29",
"value": 33955
}
},
"d1937db6c00840ef895654c58c5cf844": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_afecd6f978f9451bace318a0ad92a593",
"placeholder": "",
"style": "IPY_MODEL_982831102f1f45959043b619108119b9",
"value": " 33955/33955 [00:06<00:00, 7211.46 examples/s]"
}
},
"9324776524bd44ed83972090e1def47e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b07669693dd840249f6d55d8ecc6f394": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7fd6c7363ade4591824599e64f62a8d8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d06aac9749f14f74b1a9b4ea7fd4ab20": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"badae3344d2448d69f5d33f419344c29": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"afecd6f978f9451bace318a0ad92a593": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"982831102f1f45959043b619108119b9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"11f1c457989b4211a66099e84f6beb73": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_3aa2d2085fc64bfd89d2889621cfd2ae",
"IPY_MODEL_6d85c1fb9dc8478899b39a8f49ba6fde",
"IPY_MODEL_2794d95fbb924c58acd1d806c6f847ee"
],
"layout": "IPY_MODEL_2a1e24790e2e4df99c29fc9e0fc2da9d"
}
},
"3aa2d2085fc64bfd89d2889621cfd2ae": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5b8c18ab8f934c33bab55beee17d7ac7",
"placeholder": "",
"style": "IPY_MODEL_34e7a0da7e4b494ba248654e124638b3",
"value": "Map (num_proc=2): 100%"
}
},
"6d85c1fb9dc8478899b39a8f49ba6fde": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e5c927adf18f44cdb054ae3123f8b526",
"max": 33955,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_98d8d0fed266494abd1ec14a7e3c4d05",
"value": 33955
}
},
"2794d95fbb924c58acd1d806c6f847ee": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ed3b09500a97415891a3c1cf1a681d6c",
"placeholder": "",
"style": "IPY_MODEL_5beefaa4ac9347bf8edf5d9e62e6baf0",
"value": " 33955/33955 [00:29<00:00, 2587.22 examples/s]"
}
},
"2a1e24790e2e4df99c29fc9e0fc2da9d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5b8c18ab8f934c33bab55beee17d7ac7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"34e7a0da7e4b494ba248654e124638b3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e5c927adf18f44cdb054ae3123f8b526": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"98d8d0fed266494abd1ec14a7e3c4d05": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"ed3b09500a97415891a3c1cf1a681d6c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5beefaa4ac9347bf8edf5d9e62e6baf0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"3be9f1c4ca424b08b995986b31bc6f73": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_cbaaf16637334b8c907be3c1eea8e36b",
"IPY_MODEL_ab35ff19da2b4ab49ea4f6ab3bc32981",
"IPY_MODEL_d9add78673484904995f4b3181c2d3d6"
],
"layout": "IPY_MODEL_d44d61caea1f4aa79d3fae256b5e351e"
}
},
"cbaaf16637334b8c907be3c1eea8e36b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4be9d0609a1d4a28b622ada5052fd653",
"placeholder": "",
"style": "IPY_MODEL_fbf5b0b982d5483bb160f1c745e5fa1d",
"value": "Map: 100%"
}
},
"ab35ff19da2b4ab49ea4f6ab3bc32981": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_55be8a889c8a414f83c2af904513f96d",
"max": 33955,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_567af20e2fab400aae2131ade113d39d",
"value": 33955
}
},
"d9add78673484904995f4b3181c2d3d6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a17fe71fa4f24581a5a5758d367888c3",
"placeholder": "",
"style": "IPY_MODEL_106ddc5392a747e88905c314032671fa",
"value": " 33955/33955 [00:09<00:00, 2567.44 examples/s]"
}
},
"d44d61caea1f4aa79d3fae256b5e351e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4be9d0609a1d4a28b622ada5052fd653": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fbf5b0b982d5483bb160f1c745e5fa1d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"55be8a889c8a414f83c2af904513f96d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"567af20e2fab400aae2131ade113d39d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"a17fe71fa4f24581a5a5758d367888c3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"106ddc5392a747e88905c314032671fa": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}