|
a |
|
b/trash/Unsloth.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": { |
|
|
6 |
"id": "view-in-github", |
|
|
7 |
"colab_type": "text" |
|
|
8 |
}, |
|
|
9 |
"source": [ |
|
|
10 |
"<a href=\"https://colab.research.google.com/github/sAndreotti/MedicalMeadow/blob/main/Llama_3_2_1B%2B3B_Conversational_%2B_2x_faster_finetuning.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" |
|
|
11 |
] |
|
|
12 |
}, |
|
|
13 |
{ |
|
|
14 |
"cell_type": "markdown", |
|
|
15 |
"metadata": { |
|
|
16 |
"id": "IqM-T1RTzY6C" |
|
|
17 |
}, |
|
|
18 |
"source": [ |
|
|
19 |
"To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n", |
|
|
20 |
"<div class=\"align-center\">\n", |
|
|
21 |
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n", |
|
|
22 |
" <a href=\"https://discord.gg/u54VK8m8tk\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord button.png\" width=\"145\"></a>\n", |
|
|
23 |
" <a href=\"https://ko-fi.com/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png\" width=\"145\"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href=\"https://github.com/unslothai/unsloth\">Github</a> </i> ⭐\n", |
|
|
24 |
"</div>\n", |
|
|
25 |
"\n", |
|
|
26 |
"To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth?tab=readme-ov-file#-installation-instructions).\n", |
|
|
27 |
"\n", |
|
|
28 |
"You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).\n", |
|
|
29 |
"\n", |
|
|
30 |
"**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**\n", |
|
|
31 |
"\n", |
|
|
32 |
"Features in the notebook:\n", |
|
|
33 |
"1. Uses Maxime Labonne's [FineTome 100K](https://huggingface.co/datasets/mlabonne/FineTome-100k) dataset.\n", |
|
|
34 |
"1. Convert ShareGPT to HuggingFace format via `standardize_sharegpt`\n", |
|
|
35 |
"2. Train on Completions / Assistant only via `train_on_responses_only`\n", |
|
|
36 |
"3. Unsloth now supports Torch 2.4, all TRL & Xformers versions & Python 3.12!" |
|
|
37 |
] |
|
|
38 |
}, |
|
|
39 |
{ |
|
|
40 |
"cell_type": "code", |
|
|
41 |
"execution_count": 1, |
|
|
42 |
"metadata": { |
|
|
43 |
"id": "2eSvM9zX_2d3" |
|
|
44 |
}, |
|
|
45 |
"outputs": [], |
|
|
46 |
"source": [ |
|
|
47 |
"%%capture\n", |
|
|
48 |
"!pip install unsloth\n", |
|
|
49 |
"# Also get the latest nightly Unsloth!\n", |
|
|
50 |
"!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git" |
|
|
51 |
] |
|
|
52 |
}, |
|
|
53 |
{ |
|
|
54 |
"cell_type": "markdown", |
|
|
55 |
"metadata": { |
|
|
56 |
"id": "r2v_X2fA0Df5" |
|
|
57 |
}, |
|
|
58 |
"source": [ |
|
|
59 |
"* We support Llama, Mistral, Phi-3, Gemma, Yi, DeepSeek, Qwen, TinyLlama, Vicuna, Open Hermes etc\n", |
|
|
60 |
"* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n", |
|
|
61 |
"* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n", |
|
|
62 |
"* [**NEW**] We make Gemma-2 9b / 27b **2x faster**! See our [Gemma-2 9b notebook](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing)\n", |
|
|
63 |
"* [**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)" |
|
|
64 |
] |
|
|
65 |
}, |
|
|
66 |
{ |
|
|
67 |
"cell_type": "code", |
|
|
68 |
"execution_count": 2, |
|
|
69 |
"metadata": { |
|
|
70 |
"colab": { |
|
|
71 |
"base_uri": "https://localhost:8080/", |
|
|
72 |
"height": 324, |
|
|
73 |
"referenced_widgets": [ |
|
|
74 |
"470008e304ad4102a760e39b93dc7428", |
|
|
75 |
"13e72e122b75476eb9056c4a75089d71", |
|
|
76 |
"972895da680d49de8bc58957ce4fe341", |
|
|
77 |
"90346592f9244def90817ea11422648e", |
|
|
78 |
"cef09d4426c84eb09a8772ad22b02903", |
|
|
79 |
"e6c28d862df24f8ebfcd956921fa0c6d", |
|
|
80 |
"cf45cca2721842f5bc51d8e3db6b1fa6", |
|
|
81 |
"3af46468e29348adbf3c2749394767bc", |
|
|
82 |
"e7490d0da8854fc6abca6b9ecfb2fdaf", |
|
|
83 |
"0c356b068a6f498da7bcc5102d7a3f12", |
|
|
84 |
"1a5e5be75adb4466b90b29d4aecc9d7b", |
|
|
85 |
"f4c568c8e686433f8763c34879f46fd3", |
|
|
86 |
"d37ee73737d144479b19aa9c84bcbda5", |
|
|
87 |
"94b64d29515c49e788c9b0f02f97e131", |
|
|
88 |
"e0c4626438754fcab9ba26ec84691906", |
|
|
89 |
"ea9e76e320e0413083985d598cc62bd5", |
|
|
90 |
"4a1ea4cd642b437db3abb2ff39c19563", |
|
|
91 |
"a64e99e0c22c4bbf8e0bc70066475126", |
|
|
92 |
"e9812c0a8e814202a128fd11860b6b0e", |
|
|
93 |
"66179fda56844c47bb5a2207744370cb", |
|
|
94 |
"e9eada4508064f3bb063b0640dc04224", |
|
|
95 |
"1e1cad4d3d3c4612a158551589b5be1e", |
|
|
96 |
"1dfa05dc7e56420ab071392e802eb233", |
|
|
97 |
"bee09a78cbb24fd0b8d5edf7f48d2b1e", |
|
|
98 |
"0153b850366f4f798ef485268e62c775", |
|
|
99 |
"1a6a1710ac1e468685ec3ac850fbe225", |
|
|
100 |
"4e44198b265744ad954ad5c71238284a", |
|
|
101 |
"f5b0ed4646f84e9293198e8a78823f0d", |
|
|
102 |
"41196d3b7ebb4b3e81ab190be3efdc0f", |
|
|
103 |
"f9a52bdb2e6d4da49c4a79982aae354f", |
|
|
104 |
"1a3bd31d499741e398d964904a9e636d", |
|
|
105 |
"b47a9aebb5b447b282f0b29607bee5d3", |
|
|
106 |
"3d87f57ad8bf4d6b8da431d141f31218", |
|
|
107 |
"b84a3a5d44a9417aa3c2ad089edb962f", |
|
|
108 |
"1fbe9f9d35d64921b567119369591fa5", |
|
|
109 |
"a8126f821b164a99a0b5514ab8d8b513", |
|
|
110 |
"e33feef2505d45f7bbfd8f2a73b07b1a", |
|
|
111 |
"0a1843983b5c4744a7ef148a72dd06d5", |
|
|
112 |
"e2235493048f44bbb957c5680a2c48e7", |
|
|
113 |
"5959983c01fb4cbbb45a76d729beef52", |
|
|
114 |
"5fa9619b96274aa795dff3a5906992d2", |
|
|
115 |
"1a6c2123525f4ba9bb9967165c06a4a9", |
|
|
116 |
"8301a8f379af4ba8bfbe8e4b7a2eb812", |
|
|
117 |
"0ee49d6c54594cd7a5f4d9bdfe4c8a5c", |
|
|
118 |
"45d7468b23d14ea99d103689c891749f", |
|
|
119 |
"432ef064af77465b9da7d059179bd705", |
|
|
120 |
"ba5349ad5a8344709e8924f9ba3a306b", |
|
|
121 |
"5acddf8d428f4a3daff2b69a0ae45446", |
|
|
122 |
"e5d0ac47ca4042349ceb9a23f1399bf9", |
|
|
123 |
"ff04a0a610144d82aa271f72324a49ea", |
|
|
124 |
"1984ff4e3cc243e1a791ce094ffa87d3", |
|
|
125 |
"4726b87618454e858d3e7a2f982558df", |
|
|
126 |
"33647f79114144feae792e43cf17e4b7", |
|
|
127 |
"138d704d84ba403695d6d8c9538e29bc", |
|
|
128 |
"bacd0d7737244fd7905d4e40ebd54f6d" |
|
|
129 |
] |
|
|
130 |
}, |
|
|
131 |
"id": "QmUBVEnvCDJv", |
|
|
132 |
"outputId": "e96c2216-b3f6-4cc7-d555-afe838eda86e" |
|
|
133 |
}, |
|
|
134 |
"outputs": [ |
|
|
135 |
{ |
|
|
136 |
"output_type": "stream", |
|
|
137 |
"name": "stdout", |
|
|
138 |
"text": [ |
|
|
139 |
"🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n", |
|
|
140 |
"🦥 Unsloth Zoo will now patch everything to make training faster!\n", |
|
|
141 |
"==((====))== Unsloth 2024.12.12: Fast Llama patching. Transformers: 4.47.1.\n", |
|
|
142 |
" \\\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform: Linux.\n", |
|
|
143 |
"O^O/ \\_/ \\ Torch: 2.5.1+cu121. CUDA: 7.5. CUDA Toolkit: 12.1. Triton: 3.1.0\n", |
|
|
144 |
"\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.29. FA2 = False]\n", |
|
|
145 |
" \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n", |
|
|
146 |
"Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n" |
|
|
147 |
] |
|
|
148 |
}, |
|
|
149 |
{ |
|
|
150 |
"output_type": "display_data", |
|
|
151 |
"data": { |
|
|
152 |
"text/plain": [ |
|
|
153 |
"model.safetensors: 0%| | 0.00/2.24G [00:00<?, ?B/s]" |
|
|
154 |
], |
|
|
155 |
"application/vnd.jupyter.widget-view+json": { |
|
|
156 |
"version_major": 2, |
|
|
157 |
"version_minor": 0, |
|
|
158 |
"model_id": "470008e304ad4102a760e39b93dc7428" |
|
|
159 |
} |
|
|
160 |
}, |
|
|
161 |
"metadata": {} |
|
|
162 |
}, |
|
|
163 |
{ |
|
|
164 |
"output_type": "display_data", |
|
|
165 |
"data": { |
|
|
166 |
"text/plain": [ |
|
|
167 |
"generation_config.json: 0%| | 0.00/184 [00:00<?, ?B/s]" |
|
|
168 |
], |
|
|
169 |
"application/vnd.jupyter.widget-view+json": { |
|
|
170 |
"version_major": 2, |
|
|
171 |
"version_minor": 0, |
|
|
172 |
"model_id": "f4c568c8e686433f8763c34879f46fd3" |
|
|
173 |
} |
|
|
174 |
}, |
|
|
175 |
"metadata": {} |
|
|
176 |
}, |
|
|
177 |
{ |
|
|
178 |
"output_type": "display_data", |
|
|
179 |
"data": { |
|
|
180 |
"text/plain": [ |
|
|
181 |
"tokenizer_config.json: 0%| | 0.00/54.6k [00:00<?, ?B/s]" |
|
|
182 |
], |
|
|
183 |
"application/vnd.jupyter.widget-view+json": { |
|
|
184 |
"version_major": 2, |
|
|
185 |
"version_minor": 0, |
|
|
186 |
"model_id": "1dfa05dc7e56420ab071392e802eb233" |
|
|
187 |
} |
|
|
188 |
}, |
|
|
189 |
"metadata": {} |
|
|
190 |
}, |
|
|
191 |
{ |
|
|
192 |
"output_type": "display_data", |
|
|
193 |
"data": { |
|
|
194 |
"text/plain": [ |
|
|
195 |
"tokenizer.json: 0%| | 0.00/9.09M [00:00<?, ?B/s]" |
|
|
196 |
], |
|
|
197 |
"application/vnd.jupyter.widget-view+json": { |
|
|
198 |
"version_major": 2, |
|
|
199 |
"version_minor": 0, |
|
|
200 |
"model_id": "b84a3a5d44a9417aa3c2ad089edb962f" |
|
|
201 |
} |
|
|
202 |
}, |
|
|
203 |
"metadata": {} |
|
|
204 |
}, |
|
|
205 |
{ |
|
|
206 |
"output_type": "display_data", |
|
|
207 |
"data": { |
|
|
208 |
"text/plain": [ |
|
|
209 |
"special_tokens_map.json: 0%| | 0.00/454 [00:00<?, ?B/s]" |
|
|
210 |
], |
|
|
211 |
"application/vnd.jupyter.widget-view+json": { |
|
|
212 |
"version_major": 2, |
|
|
213 |
"version_minor": 0, |
|
|
214 |
"model_id": "45d7468b23d14ea99d103689c891749f" |
|
|
215 |
} |
|
|
216 |
}, |
|
|
217 |
"metadata": {} |
|
|
218 |
} |
|
|
219 |
], |
|
|
220 |
"source": [ |
|
|
221 |
"from unsloth import FastLanguageModel\n", |
|
|
222 |
"import torch\n", |
|
|
223 |
"max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n", |
|
|
224 |
"dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n", |
|
|
225 |
"load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n", |
|
|
226 |
"\n", |
|
|
227 |
"# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n", |
|
|
228 |
"fourbit_models = [\n", |
|
|
229 |
" \"unsloth/Meta-Llama-3.1-8B-bnb-4bit\", # Llama-3.1 2x faster\n", |
|
|
230 |
" \"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit\",\n", |
|
|
231 |
" \"unsloth/Meta-Llama-3.1-70B-bnb-4bit\",\n", |
|
|
232 |
" \"unsloth/Meta-Llama-3.1-405B-bnb-4bit\", # 4bit for 405b!\n", |
|
|
233 |
" \"unsloth/Mistral-Small-Instruct-2409\", # Mistral 22b 2x faster!\n", |
|
|
234 |
" \"unsloth/mistral-7b-instruct-v0.3-bnb-4bit\",\n", |
|
|
235 |
" \"unsloth/Phi-3.5-mini-instruct\", # Phi-3.5 2x faster!\n", |
|
|
236 |
" \"unsloth/Phi-3-medium-4k-instruct\",\n", |
|
|
237 |
" \"unsloth/gemma-2-9b-bnb-4bit\",\n", |
|
|
238 |
" \"unsloth/gemma-2-27b-bnb-4bit\", # Gemma 2x faster!\n", |
|
|
239 |
"\n", |
|
|
240 |
" \"unsloth/Llama-3.2-1B-bnb-4bit\", # NEW! Llama 3.2 models\n", |
|
|
241 |
" \"unsloth/Llama-3.2-1B-Instruct-bnb-4bit\",\n", |
|
|
242 |
" \"unsloth/Llama-3.2-3B-bnb-4bit\",\n", |
|
|
243 |
" \"unsloth/Llama-3.2-3B-Instruct-bnb-4bit\",\n", |
|
|
244 |
"\n", |
|
|
245 |
" \"unsloth/Llama-3.3-70B-Instruct-bnb-4bit\" # NEW! Llama 3.3 70B!\n", |
|
|
246 |
"] # More models at https://huggingface.co/unsloth\n", |
|
|
247 |
"\n", |
|
|
248 |
"model, tokenizer = FastLanguageModel.from_pretrained(\n", |
|
|
249 |
" model_name = \"unsloth/Llama-3.2-3B-Instruct\", # or choose \"unsloth/Llama-3.2-1B-Instruct\"\n", |
|
|
250 |
" max_seq_length = max_seq_length,\n", |
|
|
251 |
" dtype = dtype,\n", |
|
|
252 |
" load_in_4bit = load_in_4bit,\n", |
|
|
253 |
" # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n", |
|
|
254 |
")" |
|
|
255 |
] |
|
|
256 |
}, |
|
|
257 |
{ |
|
|
258 |
"cell_type": "markdown", |
|
|
259 |
"metadata": { |
|
|
260 |
"id": "SXd9bTZd1aaL" |
|
|
261 |
}, |
|
|
262 |
"source": [ |
|
|
263 |
"We now add LoRA adapters so we only need to update 1 to 10% of all parameters!" |
|
|
264 |
] |
|
|
265 |
}, |
|
|
266 |
{ |
|
|
267 |
"cell_type": "code", |
|
|
268 |
"execution_count": 3, |
|
|
269 |
"metadata": { |
|
|
270 |
"id": "6bZsfBuZDeCL", |
|
|
271 |
"colab": { |
|
|
272 |
"base_uri": "https://localhost:8080/" |
|
|
273 |
}, |
|
|
274 |
"outputId": "34f0a776-1747-4b3a-989b-aff287497f2e" |
|
|
275 |
}, |
|
|
276 |
"outputs": [ |
|
|
277 |
{ |
|
|
278 |
"output_type": "stream", |
|
|
279 |
"name": "stderr", |
|
|
280 |
"text": [ |
|
|
281 |
"Unsloth 2024.12.12 patched 28 layers with 28 QKV layers, 28 O layers and 28 MLP layers.\n" |
|
|
282 |
] |
|
|
283 |
} |
|
|
284 |
], |
|
|
285 |
"source": [ |
|
|
286 |
"model = FastLanguageModel.get_peft_model(\n", |
|
|
287 |
" model,\n", |
|
|
288 |
" r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n", |
|
|
289 |
" target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n", |
|
|
290 |
" \"gate_proj\", \"up_proj\", \"down_proj\",],\n", |
|
|
291 |
" lora_alpha = 16,\n", |
|
|
292 |
" lora_dropout = 0, # Supports any, but = 0 is optimized\n", |
|
|
293 |
" bias = \"none\", # Supports any, but = \"none\" is optimized\n", |
|
|
294 |
" # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n", |
|
|
295 |
" use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n", |
|
|
296 |
" random_state = 3407,\n", |
|
|
297 |
" use_rslora = False, # We support rank stabilized LoRA\n", |
|
|
298 |
" loftq_config = None, # And LoftQ\n", |
|
|
299 |
")" |
|
|
300 |
] |
|
|
301 |
}, |
|
|
302 |
{ |
|
|
303 |
"cell_type": "code", |
|
|
304 |
"source": [ |
|
|
305 |
"from datasets import load_dataset\n", |
|
|
306 |
"from unsloth.chat_templates import get_chat_template\n", |
|
|
307 |
"\n", |
|
|
308 |
"# Load the dataset\n", |
|
|
309 |
"dataset = load_dataset(\"medalpaca/medical_meadow_medical_flashcards\", split=\"train\")\n", |
|
|
310 |
"\n", |
|
|
311 |
"def convert_to_conversations(examples):\n", |
|
|
312 |
" \"\"\"Convert the dataset format to conversations\"\"\"\n", |
|
|
313 |
" conversations = []\n", |
|
|
314 |
" for instruction, input_text, output in zip(\n", |
|
|
315 |
" examples['instruction'],\n", |
|
|
316 |
" examples['input'],\n", |
|
|
317 |
" examples['output']\n", |
|
|
318 |
" ):\n", |
|
|
319 |
" # Combine instruction and input\n", |
|
|
320 |
" user_content = f\"{instruction}: {input_text}\"\n", |
|
|
321 |
" conv = [\n", |
|
|
322 |
" {\"role\": \"user\", \"content\": user_content},\n", |
|
|
323 |
" {\"role\": \"assistant\", \"content\": output}\n", |
|
|
324 |
" ]\n", |
|
|
325 |
" conversations.append(conv)\n", |
|
|
326 |
" return {\"conversations\": conversations}\n", |
|
|
327 |
"\n", |
|
|
328 |
"# Convert to conversation format\n", |
|
|
329 |
"formatted_dataset = dataset.map(\n", |
|
|
330 |
" convert_to_conversations,\n", |
|
|
331 |
" batched=True,\n", |
|
|
332 |
" remove_columns=dataset.column_names\n", |
|
|
333 |
")\n", |
|
|
334 |
"\n", |
|
|
335 |
"# Set up the tokenizer with Llama-3.1 chat template\n", |
|
|
336 |
"tokenizer = get_chat_template(\n", |
|
|
337 |
" tokenizer,\n", |
|
|
338 |
" chat_template=\"llama-3.1\",\n", |
|
|
339 |
")\n", |
|
|
340 |
"\n", |
|
|
341 |
"def formatting_prompts_func(examples):\n", |
|
|
342 |
" \"\"\"Apply the chat template to the conversations\"\"\"\n", |
|
|
343 |
" convos = examples[\"conversations\"]\n", |
|
|
344 |
" texts = [\n", |
|
|
345 |
" tokenizer.apply_chat_template(\n", |
|
|
346 |
" convo,\n", |
|
|
347 |
" tokenize=False,\n", |
|
|
348 |
" add_generation_prompt=False\n", |
|
|
349 |
" ) for convo in convos\n", |
|
|
350 |
" ]\n", |
|
|
351 |
" return {\"text\": texts}\n", |
|
|
352 |
"\n", |
|
|
353 |
"# Apply the formatting\n", |
|
|
354 |
"formatted_dataset = formatted_dataset.map(\n", |
|
|
355 |
" formatting_prompts_func,\n", |
|
|
356 |
" batched=True\n", |
|
|
357 |
")\n", |
|
|
358 |
"\n", |
|
|
359 |
"# Save the formatted dataset to make it available in next cells\n", |
|
|
360 |
"import pickle\n", |
|
|
361 |
"with open('formatted_dataset.pkl', 'wb') as f:\n", |
|
|
362 |
" pickle.dump(formatted_dataset, f)" |
|
|
363 |
], |
|
|
364 |
"metadata": { |
|
|
365 |
"colab": { |
|
|
366 |
"base_uri": "https://localhost:8080/", |
|
|
367 |
"height": 81, |
|
|
368 |
"referenced_widgets": [ |
|
|
369 |
"a41034aac0fb4301ad12bbd8e2b0cc40", |
|
|
370 |
"b635e3775c164f94b6acec4dd20b192e", |
|
|
371 |
"356cc173337649588e8990e9b948e9cf", |
|
|
372 |
"17996150ba4946bc8b9531db9f5f31b5", |
|
|
373 |
"927a0a29edcd47e4a4d3d74df7a9ea2b", |
|
|
374 |
"5ce59b62adfb416b85bc0effcced25dd", |
|
|
375 |
"913b0f0ccc8848b0b2c3917950f70e93", |
|
|
376 |
"5b0cadad0628423ea3b308a648c3c56e", |
|
|
377 |
"5b0e393c08bc492aa4079297d6602aa7", |
|
|
378 |
"5c9790a723f54ec3aa26d61e1e6880b5", |
|
|
379 |
"48ca23b61bac4b9583993577ef4451c4", |
|
|
380 |
"2959bb04464046fd9c5b78e39e4d31aa", |
|
|
381 |
"5412eabb86f54fa6b39bda564fb08334", |
|
|
382 |
"362a07edc2ba457d9939bad3ead4f683", |
|
|
383 |
"d1937db6c00840ef895654c58c5cf844", |
|
|
384 |
"9324776524bd44ed83972090e1def47e", |
|
|
385 |
"b07669693dd840249f6d55d8ecc6f394", |
|
|
386 |
"7fd6c7363ade4591824599e64f62a8d8", |
|
|
387 |
"d06aac9749f14f74b1a9b4ea7fd4ab20", |
|
|
388 |
"badae3344d2448d69f5d33f419344c29", |
|
|
389 |
"afecd6f978f9451bace318a0ad92a593", |
|
|
390 |
"982831102f1f45959043b619108119b9" |
|
|
391 |
] |
|
|
392 |
}, |
|
|
393 |
"id": "cDgml9s70ymR", |
|
|
394 |
"outputId": "1e4276cc-1368-4792-bb37-f05e4c935954" |
|
|
395 |
}, |
|
|
396 |
"execution_count": 10, |
|
|
397 |
"outputs": [ |
|
|
398 |
{ |
|
|
399 |
"output_type": "display_data", |
|
|
400 |
"data": { |
|
|
401 |
"text/plain": [ |
|
|
402 |
"Map: 0%| | 0/33955 [00:00<?, ? examples/s]" |
|
|
403 |
], |
|
|
404 |
"application/vnd.jupyter.widget-view+json": { |
|
|
405 |
"version_major": 2, |
|
|
406 |
"version_minor": 0, |
|
|
407 |
"model_id": "a41034aac0fb4301ad12bbd8e2b0cc40" |
|
|
408 |
} |
|
|
409 |
}, |
|
|
410 |
"metadata": {} |
|
|
411 |
}, |
|
|
412 |
{ |
|
|
413 |
"output_type": "display_data", |
|
|
414 |
"data": { |
|
|
415 |
"text/plain": [ |
|
|
416 |
"Map: 0%| | 0/33955 [00:00<?, ? examples/s]" |
|
|
417 |
], |
|
|
418 |
"application/vnd.jupyter.widget-view+json": { |
|
|
419 |
"version_major": 2, |
|
|
420 |
"version_minor": 0, |
|
|
421 |
"model_id": "2959bb04464046fd9c5b78e39e4d31aa" |
|
|
422 |
} |
|
|
423 |
}, |
|
|
424 |
"metadata": {} |
|
|
425 |
} |
|
|
426 |
] |
|
|
427 |
}, |
|
|
428 |
{ |
|
|
429 |
"cell_type": "code", |
|
|
430 |
"source": [ |
|
|
431 |
"# Print an example to verify the format\n", |
|
|
432 |
"print(\"Example of formatted conversation:\")\n", |
|
|
433 |
"print(formatted_dataset[0]['text'])\n", |
|
|
434 |
"\n", |
|
|
435 |
"# The dataset is now ready for training\n", |
|
|
436 |
"# You can access it as formatted_dataset['text']\n", |
|
|
437 |
"\n", |
|
|
438 |
"# If you need to split it into train/validation sets:\n", |
|
|
439 |
"train_val = formatted_dataset.train_test_split(test_size=0.1, seed=42)\n", |
|
|
440 |
"train_data = train_val['train']\n", |
|
|
441 |
"val_data = train_val['test']\n", |
|
|
442 |
"\n", |
|
|
443 |
"print(\"\\nDataset sizes:\")\n", |
|
|
444 |
"print(f\"Train: {len(train_data)}\")\n", |
|
|
445 |
"print(f\"Validation: {len(val_data)}\")" |
|
|
446 |
], |
|
|
447 |
"metadata": { |
|
|
448 |
"colab": { |
|
|
449 |
"base_uri": "https://localhost:8080/" |
|
|
450 |
}, |
|
|
451 |
"id": "YPZSwk6319Dw", |
|
|
452 |
"outputId": "f5deb7bb-1e8a-470e-ca58-49a05cb98ab8" |
|
|
453 |
}, |
|
|
454 |
"execution_count": 11, |
|
|
455 |
"outputs": [ |
|
|
456 |
{ |
|
|
457 |
"output_type": "stream", |
|
|
458 |
"name": "stdout", |
|
|
459 |
"text": [ |
|
|
460 |
"Example of formatted conversation:\n", |
|
|
461 |
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n", |
|
|
462 |
"\n", |
|
|
463 |
"Cutting Knowledge Date: December 2023\n", |
|
|
464 |
"Today Date: 26 July 2024\n", |
|
|
465 |
"\n", |
|
|
466 |
"<|eot_id|><|start_header_id|>user<|end_header_id|>\n", |
|
|
467 |
"\n", |
|
|
468 |
"Answer this question truthfully: What is the relationship between very low Mg2+ levels, PTH levels, and Ca2+ levels?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n", |
|
|
469 |
"\n", |
|
|
470 |
"Very low Mg2+ levels correspond to low PTH levels which in turn results in low Ca2+ levels.<|eot_id|>\n", |
|
|
471 |
"\n", |
|
|
472 |
"Dataset sizes:\n", |
|
|
473 |
"Train: 30559\n", |
|
|
474 |
"Validation: 3396\n" |
|
|
475 |
] |
|
|
476 |
} |
|
|
477 |
] |
|
|
478 |
}, |
|
|
479 |
{ |
|
|
480 |
"cell_type": "markdown", |
|
|
481 |
"metadata": { |
|
|
482 |
"id": "idAEIeSQ3xdS" |
|
|
483 |
}, |
|
|
484 |
"source": [ |
|
|
485 |
"<a name=\"Train\"></a>\n", |
|
|
486 |
"### Train the model\n", |
|
|
487 |
"Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!" |
|
|
488 |
] |
|
|
489 |
}, |
|
|
490 |
{ |
|
|
491 |
"cell_type": "code", |
|
|
492 |
"execution_count": 12, |
|
|
493 |
"metadata": { |
|
|
494 |
"id": "95_Nn-89DhsL", |
|
|
495 |
"colab": { |
|
|
496 |
"base_uri": "https://localhost:8080/", |
|
|
497 |
"height": 49, |
|
|
498 |
"referenced_widgets": [ |
|
|
499 |
"11f1c457989b4211a66099e84f6beb73", |
|
|
500 |
"3aa2d2085fc64bfd89d2889621cfd2ae", |
|
|
501 |
"6d85c1fb9dc8478899b39a8f49ba6fde", |
|
|
502 |
"2794d95fbb924c58acd1d806c6f847ee", |
|
|
503 |
"2a1e24790e2e4df99c29fc9e0fc2da9d", |
|
|
504 |
"5b8c18ab8f934c33bab55beee17d7ac7", |
|
|
505 |
"34e7a0da7e4b494ba248654e124638b3", |
|
|
506 |
"e5c927adf18f44cdb054ae3123f8b526", |
|
|
507 |
"98d8d0fed266494abd1ec14a7e3c4d05", |
|
|
508 |
"ed3b09500a97415891a3c1cf1a681d6c", |
|
|
509 |
"5beefaa4ac9347bf8edf5d9e62e6baf0" |
|
|
510 |
] |
|
|
511 |
}, |
|
|
512 |
"outputId": "85db7ebb-50ef-4b1b-e2d2-314c58a84947" |
|
|
513 |
}, |
|
|
514 |
"outputs": [ |
|
|
515 |
{ |
|
|
516 |
"output_type": "display_data", |
|
|
517 |
"data": { |
|
|
518 |
"text/plain": [ |
|
|
519 |
"Map (num_proc=2): 0%| | 0/33955 [00:00<?, ? examples/s]" |
|
|
520 |
], |
|
|
521 |
"application/vnd.jupyter.widget-view+json": { |
|
|
522 |
"version_major": 2, |
|
|
523 |
"version_minor": 0, |
|
|
524 |
"model_id": "11f1c457989b4211a66099e84f6beb73" |
|
|
525 |
} |
|
|
526 |
}, |
|
|
527 |
"metadata": {} |
|
|
528 |
} |
|
|
529 |
], |
|
|
530 |
"source": [ |
|
|
531 |
"from trl import SFTTrainer\n", |
|
|
532 |
"from transformers import TrainingArguments, DataCollatorForSeq2Seq\n", |
|
|
533 |
"from unsloth import is_bfloat16_supported\n", |
|
|
534 |
"\n", |
|
|
535 |
"trainer = SFTTrainer(\n", |
|
|
536 |
" model = model,\n", |
|
|
537 |
" tokenizer = tokenizer,\n", |
|
|
538 |
" train_dataset = formatted_dataset,\n", |
|
|
539 |
" dataset_text_field = \"text\",\n", |
|
|
540 |
" max_seq_length = max_seq_length,\n", |
|
|
541 |
" data_collator = DataCollatorForSeq2Seq(tokenizer = tokenizer),\n", |
|
|
542 |
" dataset_num_proc = 2,\n", |
|
|
543 |
" packing = False, # Can make training 5x faster for short sequences.\n", |
|
|
544 |
" args = TrainingArguments(\n", |
|
|
545 |
" per_device_train_batch_size = 2,\n", |
|
|
546 |
" gradient_accumulation_steps = 4,\n", |
|
|
547 |
" warmup_steps = 5,\n", |
|
|
548 |
" # num_train_epochs = 1, # Set this for 1 full training run.\n", |
|
|
549 |
" max_steps = 60,\n", |
|
|
550 |
" learning_rate = 2e-4,\n", |
|
|
551 |
" fp16 = not is_bfloat16_supported(),\n", |
|
|
552 |
" bf16 = is_bfloat16_supported(),\n", |
|
|
553 |
" logging_steps = 1,\n", |
|
|
554 |
" optim = \"adamw_8bit\",\n", |
|
|
555 |
" weight_decay = 0.01,\n", |
|
|
556 |
" lr_scheduler_type = \"linear\",\n", |
|
|
557 |
" seed = 3407,\n", |
|
|
558 |
" output_dir = \"outputs\",\n", |
|
|
559 |
" report_to = \"none\", # Use this for WandB etc\n", |
|
|
560 |
" ),\n", |
|
|
561 |
")" |
|
|
562 |
] |
|
|
563 |
}, |
|
|
564 |
{ |
|
|
565 |
"cell_type": "markdown", |
|
|
566 |
"source": [ |
|
|
567 |
"We also use Unsloth's `train_on_completions` method to only train on the assistant outputs and ignore the loss on the user's inputs." |
|
|
568 |
], |
|
|
569 |
"metadata": { |
|
|
570 |
"id": "C_sGp5XlG6dq" |
|
|
571 |
} |
|
|
572 |
}, |
|
|
573 |
{ |
|
|
574 |
"cell_type": "code", |
|
|
575 |
"source": [ |
|
|
576 |
"from unsloth.chat_templates import train_on_responses_only\n", |
|
|
577 |
"trainer = train_on_responses_only(\n", |
|
|
578 |
" trainer,\n", |
|
|
579 |
" instruction_part = \"<|start_header_id|>user<|end_header_id|>\\n\\n\",\n", |
|
|
580 |
" response_part = \"<|start_header_id|>assistant<|end_header_id|>\\n\\n\",\n", |
|
|
581 |
")" |
|
|
582 |
], |
|
|
583 |
"metadata": { |
|
|
584 |
"id": "juQiExuBG5Bt", |
|
|
585 |
"colab": { |
|
|
586 |
"base_uri": "https://localhost:8080/", |
|
|
587 |
"height": 49, |
|
|
588 |
"referenced_widgets": [ |
|
|
589 |
"3be9f1c4ca424b08b995986b31bc6f73", |
|
|
590 |
"cbaaf16637334b8c907be3c1eea8e36b", |
|
|
591 |
"ab35ff19da2b4ab49ea4f6ab3bc32981", |
|
|
592 |
"d9add78673484904995f4b3181c2d3d6", |
|
|
593 |
"d44d61caea1f4aa79d3fae256b5e351e", |
|
|
594 |
"4be9d0609a1d4a28b622ada5052fd653", |
|
|
595 |
"fbf5b0b982d5483bb160f1c745e5fa1d", |
|
|
596 |
"55be8a889c8a414f83c2af904513f96d", |
|
|
597 |
"567af20e2fab400aae2131ade113d39d", |
|
|
598 |
"a17fe71fa4f24581a5a5758d367888c3", |
|
|
599 |
"106ddc5392a747e88905c314032671fa" |
|
|
600 |
] |
|
|
601 |
}, |
|
|
602 |
"outputId": "69af3385-fc25-41d3-8207-5fa2e9091867" |
|
|
603 |
}, |
|
|
604 |
"execution_count": 13, |
|
|
605 |
"outputs": [ |
|
|
606 |
{ |
|
|
607 |
"output_type": "display_data", |
|
|
608 |
"data": { |
|
|
609 |
"text/plain": [ |
|
|
610 |
"Map: 0%| | 0/33955 [00:00<?, ? examples/s]" |
|
|
611 |
], |
|
|
612 |
"application/vnd.jupyter.widget-view+json": { |
|
|
613 |
"version_major": 2, |
|
|
614 |
"version_minor": 0, |
|
|
615 |
"model_id": "3be9f1c4ca424b08b995986b31bc6f73" |
|
|
616 |
} |
|
|
617 |
}, |
|
|
618 |
"metadata": {} |
|
|
619 |
} |
|
|
620 |
] |
|
|
621 |
}, |
|
|
622 |
{ |
|
|
623 |
"cell_type": "markdown", |
|
|
624 |
"source": [ |
|
|
625 |
"We verify masking is actually done:" |
|
|
626 |
], |
|
|
627 |
"metadata": { |
|
|
628 |
"id": "Dv1NBUozV78l" |
|
|
629 |
} |
|
|
630 |
}, |
|
|
631 |
{ |
|
|
632 |
"cell_type": "code", |
|
|
633 |
"source": [ |
|
|
634 |
"tokenizer.decode(trainer.train_dataset[5][\"input_ids\"])" |
|
|
635 |
], |
|
|
636 |
"metadata": { |
|
|
637 |
"id": "LtsMVtlkUhja", |
|
|
638 |
"colab": { |
|
|
639 |
"base_uri": "https://localhost:8080/", |
|
|
640 |
"height": 55 |
|
|
641 |
}, |
|
|
642 |
"outputId": "f1c670d5-ed1b-4b00-df24-4ad6fc0909b0" |
|
|
643 |
}, |
|
|
644 |
"execution_count": 14, |
|
|
645 |
"outputs": [ |
|
|
646 |
{ |
|
|
647 |
"output_type": "execute_result", |
|
|
648 |
"data": { |
|
|
649 |
"text/plain": [ |
|
|
650 |
"'<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nAnswer this question truthfully: What does low Mobility and bulging of TM suggest?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nLow Mobility and bulging of TM is suggestive of Acute otitis media.<|eot_id|>'" |
|
|
651 |
], |
|
|
652 |
"application/vnd.google.colaboratory.intrinsic+json": { |
|
|
653 |
"type": "string" |
|
|
654 |
} |
|
|
655 |
}, |
|
|
656 |
"metadata": {}, |
|
|
657 |
"execution_count": 14 |
|
|
658 |
} |
|
|
659 |
] |
|
|
660 |
}, |
|
|
661 |
{ |
|
|
662 |
"cell_type": "code", |
|
|
663 |
"source": [ |
|
|
664 |
"space = tokenizer(\" \", add_special_tokens = False).input_ids[0]\n", |
|
|
665 |
"tokenizer.decode([space if x == -100 else x for x in trainer.train_dataset[5][\"labels\"]])" |
|
|
666 |
], |
|
|
667 |
"metadata": { |
|
|
668 |
"id": "_rD6fl8EUxnG", |
|
|
669 |
"colab": { |
|
|
670 |
"base_uri": "https://localhost:8080/", |
|
|
671 |
"height": 36 |
|
|
672 |
}, |
|
|
673 |
"outputId": "05599f09-3443-4fc1-82c1-4fc35958ed7f" |
|
|
674 |
}, |
|
|
675 |
"execution_count": 15, |
|
|
676 |
"outputs": [ |
|
|
677 |
{ |
|
|
678 |
"output_type": "execute_result", |
|
|
679 |
"data": { |
|
|
680 |
"text/plain": [ |
|
|
681 |
"' \\n\\nLow Mobility and bulging of TM is suggestive of Acute otitis media.<|eot_id|>'" |
|
|
682 |
], |
|
|
683 |
"application/vnd.google.colaboratory.intrinsic+json": { |
|
|
684 |
"type": "string" |
|
|
685 |
} |
|
|
686 |
}, |
|
|
687 |
"metadata": {}, |
|
|
688 |
"execution_count": 15 |
|
|
689 |
} |
|
|
690 |
] |
|
|
691 |
}, |
|
|
692 |
{ |
|
|
693 |
"cell_type": "markdown", |
|
|
694 |
"source": [ |
|
|
695 |
"[link text](https://)We can see the System and Instruction prompts are successfully masked!" |
|
|
696 |
], |
|
|
697 |
"metadata": { |
|
|
698 |
"id": "3enWUM0jV-jV" |
|
|
699 |
} |
|
|
700 |
}, |
|
|
701 |
{ |
|
|
702 |
"cell_type": "code", |
|
|
703 |
"execution_count": 23, |
|
|
704 |
"metadata": { |
|
|
705 |
"id": "2ejIt2xSNKKp", |
|
|
706 |
"colab": { |
|
|
707 |
"base_uri": "https://localhost:8080/" |
|
|
708 |
}, |
|
|
709 |
"outputId": "39fbd3c6-7979-484d-bf73-6bacf4dc8189" |
|
|
710 |
}, |
|
|
711 |
"outputs": [ |
|
|
712 |
{ |
|
|
713 |
"output_type": "stream", |
|
|
714 |
"name": "stdout", |
|
|
715 |
"text": [ |
|
|
716 |
"GPU = Tesla T4. Max memory = 14.748 GB.\n", |
|
|
717 |
"3.324 GB of memory reserved.\n" |
|
|
718 |
] |
|
|
719 |
} |
|
|
720 |
], |
|
|
721 |
"source": [ |
|
|
722 |
"#@title Show current memory stats\n", |
|
|
723 |
"gpu_stats = torch.cuda.get_device_properties(0)\n", |
|
|
724 |
"start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", |
|
|
725 |
"max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n", |
|
|
726 |
"print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n", |
|
|
727 |
"print(f\"{start_gpu_memory} GB of memory reserved.\")" |
|
|
728 |
] |
|
|
729 |
}, |
|
|
730 |
{ |
|
|
731 |
"cell_type": "code", |
|
|
732 |
"execution_count": 17, |
|
|
733 |
"metadata": { |
|
|
734 |
"id": "yqxqAZ7KJ4oL", |
|
|
735 |
"colab": { |
|
|
736 |
"base_uri": "https://localhost:8080/", |
|
|
737 |
"height": 1000 |
|
|
738 |
}, |
|
|
739 |
"outputId": "3790f36d-d523-48c4-d930-718fb512a1a7" |
|
|
740 |
}, |
|
|
741 |
"outputs": [ |
|
|
742 |
{ |
|
|
743 |
"output_type": "stream", |
|
|
744 |
"name": "stderr", |
|
|
745 |
"text": [ |
|
|
746 |
"==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1\n", |
|
|
747 |
" \\\\ /| Num examples = 33,955 | Num Epochs = 1\n", |
|
|
748 |
"O^O/ \\_/ \\ Batch size per device = 2 | Gradient Accumulation steps = 4\n", |
|
|
749 |
"\\ / Total batch size = 8 | Total steps = 60\n", |
|
|
750 |
" \"-____-\" Number of trainable parameters = 24,313,856\n" |
|
|
751 |
] |
|
|
752 |
}, |
|
|
753 |
{ |
|
|
754 |
"output_type": "display_data", |
|
|
755 |
"data": { |
|
|
756 |
"text/plain": [ |
|
|
757 |
"<IPython.core.display.HTML object>" |
|
|
758 |
], |
|
|
759 |
"text/html": [ |
|
|
760 |
"\n", |
|
|
761 |
" <div>\n", |
|
|
762 |
" \n", |
|
|
763 |
" <progress value='60' max='60' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", |
|
|
764 |
" [60/60 02:49, Epoch 0/1]\n", |
|
|
765 |
" </div>\n", |
|
|
766 |
" <table border=\"1\" class=\"dataframe\">\n", |
|
|
767 |
" <thead>\n", |
|
|
768 |
" <tr style=\"text-align: left;\">\n", |
|
|
769 |
" <th>Step</th>\n", |
|
|
770 |
" <th>Training Loss</th>\n", |
|
|
771 |
" </tr>\n", |
|
|
772 |
" </thead>\n", |
|
|
773 |
" <tbody>\n", |
|
|
774 |
" <tr>\n", |
|
|
775 |
" <td>1</td>\n", |
|
|
776 |
" <td>1.291800</td>\n", |
|
|
777 |
" </tr>\n", |
|
|
778 |
" <tr>\n", |
|
|
779 |
" <td>2</td>\n", |
|
|
780 |
" <td>1.210600</td>\n", |
|
|
781 |
" </tr>\n", |
|
|
782 |
" <tr>\n", |
|
|
783 |
" <td>3</td>\n", |
|
|
784 |
" <td>1.020600</td>\n", |
|
|
785 |
" </tr>\n", |
|
|
786 |
" <tr>\n", |
|
|
787 |
" <td>4</td>\n", |
|
|
788 |
" <td>0.976700</td>\n", |
|
|
789 |
" </tr>\n", |
|
|
790 |
" <tr>\n", |
|
|
791 |
" <td>5</td>\n", |
|
|
792 |
" <td>0.968400</td>\n", |
|
|
793 |
" </tr>\n", |
|
|
794 |
" <tr>\n", |
|
|
795 |
" <td>6</td>\n", |
|
|
796 |
" <td>1.065500</td>\n", |
|
|
797 |
" </tr>\n", |
|
|
798 |
" <tr>\n", |
|
|
799 |
" <td>7</td>\n", |
|
|
800 |
" <td>1.091000</td>\n", |
|
|
801 |
" </tr>\n", |
|
|
802 |
" <tr>\n", |
|
|
803 |
" <td>8</td>\n", |
|
|
804 |
" <td>0.828600</td>\n", |
|
|
805 |
" </tr>\n", |
|
|
806 |
" <tr>\n", |
|
|
807 |
" <td>9</td>\n", |
|
|
808 |
" <td>0.804600</td>\n", |
|
|
809 |
" </tr>\n", |
|
|
810 |
" <tr>\n", |
|
|
811 |
" <td>10</td>\n", |
|
|
812 |
" <td>0.832100</td>\n", |
|
|
813 |
" </tr>\n", |
|
|
814 |
" <tr>\n", |
|
|
815 |
" <td>11</td>\n", |
|
|
816 |
" <td>0.695600</td>\n", |
|
|
817 |
" </tr>\n", |
|
|
818 |
" <tr>\n", |
|
|
819 |
" <td>12</td>\n", |
|
|
820 |
" <td>0.702200</td>\n", |
|
|
821 |
" </tr>\n", |
|
|
822 |
" <tr>\n", |
|
|
823 |
" <td>13</td>\n", |
|
|
824 |
" <td>0.747300</td>\n", |
|
|
825 |
" </tr>\n", |
|
|
826 |
" <tr>\n", |
|
|
827 |
" <td>14</td>\n", |
|
|
828 |
" <td>0.753600</td>\n", |
|
|
829 |
" </tr>\n", |
|
|
830 |
" <tr>\n", |
|
|
831 |
" <td>15</td>\n", |
|
|
832 |
" <td>0.803100</td>\n", |
|
|
833 |
" </tr>\n", |
|
|
834 |
" <tr>\n", |
|
|
835 |
" <td>16</td>\n", |
|
|
836 |
" <td>0.856100</td>\n", |
|
|
837 |
" </tr>\n", |
|
|
838 |
" <tr>\n", |
|
|
839 |
" <td>17</td>\n", |
|
|
840 |
" <td>0.883200</td>\n", |
|
|
841 |
" </tr>\n", |
|
|
842 |
" <tr>\n", |
|
|
843 |
" <td>18</td>\n", |
|
|
844 |
" <td>0.863200</td>\n", |
|
|
845 |
" </tr>\n", |
|
|
846 |
" <tr>\n", |
|
|
847 |
" <td>19</td>\n", |
|
|
848 |
" <td>0.730900</td>\n", |
|
|
849 |
" </tr>\n", |
|
|
850 |
" <tr>\n", |
|
|
851 |
" <td>20</td>\n", |
|
|
852 |
" <td>0.716000</td>\n", |
|
|
853 |
" </tr>\n", |
|
|
854 |
" <tr>\n", |
|
|
855 |
" <td>21</td>\n", |
|
|
856 |
" <td>0.851000</td>\n", |
|
|
857 |
" </tr>\n", |
|
|
858 |
" <tr>\n", |
|
|
859 |
" <td>22</td>\n", |
|
|
860 |
" <td>0.849400</td>\n", |
|
|
861 |
" </tr>\n", |
|
|
862 |
" <tr>\n", |
|
|
863 |
" <td>23</td>\n", |
|
|
864 |
" <td>0.736900</td>\n", |
|
|
865 |
" </tr>\n", |
|
|
866 |
" <tr>\n", |
|
|
867 |
" <td>24</td>\n", |
|
|
868 |
" <td>0.807300</td>\n", |
|
|
869 |
" </tr>\n", |
|
|
870 |
" <tr>\n", |
|
|
871 |
" <td>25</td>\n", |
|
|
872 |
" <td>0.845800</td>\n", |
|
|
873 |
" </tr>\n", |
|
|
874 |
" <tr>\n", |
|
|
875 |
" <td>26</td>\n", |
|
|
876 |
" <td>0.920700</td>\n", |
|
|
877 |
" </tr>\n", |
|
|
878 |
" <tr>\n", |
|
|
879 |
" <td>27</td>\n", |
|
|
880 |
" <td>0.739800</td>\n", |
|
|
881 |
" </tr>\n", |
|
|
882 |
" <tr>\n", |
|
|
883 |
" <td>28</td>\n", |
|
|
884 |
" <td>0.816900</td>\n", |
|
|
885 |
" </tr>\n", |
|
|
886 |
" <tr>\n", |
|
|
887 |
" <td>29</td>\n", |
|
|
888 |
" <td>0.783700</td>\n", |
|
|
889 |
" </tr>\n", |
|
|
890 |
" <tr>\n", |
|
|
891 |
" <td>30</td>\n", |
|
|
892 |
" <td>0.701500</td>\n", |
|
|
893 |
" </tr>\n", |
|
|
894 |
" <tr>\n", |
|
|
895 |
" <td>31</td>\n", |
|
|
896 |
" <td>0.734100</td>\n", |
|
|
897 |
" </tr>\n", |
|
|
898 |
" <tr>\n", |
|
|
899 |
" <td>32</td>\n", |
|
|
900 |
" <td>0.804600</td>\n", |
|
|
901 |
" </tr>\n", |
|
|
902 |
" <tr>\n", |
|
|
903 |
" <td>33</td>\n", |
|
|
904 |
" <td>0.882300</td>\n", |
|
|
905 |
" </tr>\n", |
|
|
906 |
" <tr>\n", |
|
|
907 |
" <td>34</td>\n", |
|
|
908 |
" <td>0.776600</td>\n", |
|
|
909 |
" </tr>\n", |
|
|
910 |
" <tr>\n", |
|
|
911 |
" <td>35</td>\n", |
|
|
912 |
" <td>0.731700</td>\n", |
|
|
913 |
" </tr>\n", |
|
|
914 |
" <tr>\n", |
|
|
915 |
" <td>36</td>\n", |
|
|
916 |
" <td>1.109600</td>\n", |
|
|
917 |
" </tr>\n", |
|
|
918 |
" <tr>\n", |
|
|
919 |
" <td>37</td>\n", |
|
|
920 |
" <td>0.821800</td>\n", |
|
|
921 |
" </tr>\n", |
|
|
922 |
" <tr>\n", |
|
|
923 |
" <td>38</td>\n", |
|
|
924 |
" <td>0.616000</td>\n", |
|
|
925 |
" </tr>\n", |
|
|
926 |
" <tr>\n", |
|
|
927 |
" <td>39</td>\n", |
|
|
928 |
" <td>0.712900</td>\n", |
|
|
929 |
" </tr>\n", |
|
|
930 |
" <tr>\n", |
|
|
931 |
" <td>40</td>\n", |
|
|
932 |
" <td>0.735600</td>\n", |
|
|
933 |
" </tr>\n", |
|
|
934 |
" <tr>\n", |
|
|
935 |
" <td>41</td>\n", |
|
|
936 |
" <td>0.902300</td>\n", |
|
|
937 |
" </tr>\n", |
|
|
938 |
" <tr>\n", |
|
|
939 |
" <td>42</td>\n", |
|
|
940 |
" <td>0.832600</td>\n", |
|
|
941 |
" </tr>\n", |
|
|
942 |
" <tr>\n", |
|
|
943 |
" <td>43</td>\n", |
|
|
944 |
" <td>0.791600</td>\n", |
|
|
945 |
" </tr>\n", |
|
|
946 |
" <tr>\n", |
|
|
947 |
" <td>44</td>\n", |
|
|
948 |
" <td>0.813500</td>\n", |
|
|
949 |
" </tr>\n", |
|
|
950 |
" <tr>\n", |
|
|
951 |
" <td>45</td>\n", |
|
|
952 |
" <td>0.876400</td>\n", |
|
|
953 |
" </tr>\n", |
|
|
954 |
" <tr>\n", |
|
|
955 |
" <td>46</td>\n", |
|
|
956 |
" <td>0.814500</td>\n", |
|
|
957 |
" </tr>\n", |
|
|
958 |
" <tr>\n", |
|
|
959 |
" <td>47</td>\n", |
|
|
960 |
" <td>0.773300</td>\n", |
|
|
961 |
" </tr>\n", |
|
|
962 |
" <tr>\n", |
|
|
963 |
" <td>48</td>\n", |
|
|
964 |
" <td>0.739800</td>\n", |
|
|
965 |
" </tr>\n", |
|
|
966 |
" <tr>\n", |
|
|
967 |
" <td>49</td>\n", |
|
|
968 |
" <td>0.830400</td>\n", |
|
|
969 |
" </tr>\n", |
|
|
970 |
" <tr>\n", |
|
|
971 |
" <td>50</td>\n", |
|
|
972 |
" <td>0.934300</td>\n", |
|
|
973 |
" </tr>\n", |
|
|
974 |
" <tr>\n", |
|
|
975 |
" <td>51</td>\n", |
|
|
976 |
" <td>0.864700</td>\n", |
|
|
977 |
" </tr>\n", |
|
|
978 |
" <tr>\n", |
|
|
979 |
" <td>52</td>\n", |
|
|
980 |
" <td>1.015700</td>\n", |
|
|
981 |
" </tr>\n", |
|
|
982 |
" <tr>\n", |
|
|
983 |
" <td>53</td>\n", |
|
|
984 |
" <td>0.777400</td>\n", |
|
|
985 |
" </tr>\n", |
|
|
986 |
" <tr>\n", |
|
|
987 |
" <td>54</td>\n", |
|
|
988 |
" <td>0.705100</td>\n", |
|
|
989 |
" </tr>\n", |
|
|
990 |
" <tr>\n", |
|
|
991 |
" <td>55</td>\n", |
|
|
992 |
" <td>0.844800</td>\n", |
|
|
993 |
" </tr>\n", |
|
|
994 |
" <tr>\n", |
|
|
995 |
" <td>56</td>\n", |
|
|
996 |
" <td>0.861400</td>\n", |
|
|
997 |
" </tr>\n", |
|
|
998 |
" <tr>\n", |
|
|
999 |
" <td>57</td>\n", |
|
|
1000 |
" <td>0.848500</td>\n", |
|
|
1001 |
" </tr>\n", |
|
|
1002 |
" <tr>\n", |
|
|
1003 |
" <td>58</td>\n", |
|
|
1004 |
" <td>0.768700</td>\n", |
|
|
1005 |
" </tr>\n", |
|
|
1006 |
" <tr>\n", |
|
|
1007 |
" <td>59</td>\n", |
|
|
1008 |
" <td>0.684100</td>\n", |
|
|
1009 |
" </tr>\n", |
|
|
1010 |
" <tr>\n", |
|
|
1011 |
" <td>60</td>\n", |
|
|
1012 |
" <td>0.956200</td>\n", |
|
|
1013 |
" </tr>\n", |
|
|
1014 |
" </tbody>\n", |
|
|
1015 |
"</table><p>" |
|
|
1016 |
] |
|
|
1017 |
}, |
|
|
1018 |
"metadata": {} |
|
|
1019 |
} |
|
|
1020 |
], |
|
|
1021 |
"source": [ |
|
|
1022 |
"trainer_stats = trainer.train()" |
|
|
1023 |
] |
|
|
1024 |
}, |
|
|
1025 |
{ |
|
|
1026 |
"cell_type": "code", |
|
|
1027 |
"execution_count": 24, |
|
|
1028 |
"metadata": { |
|
|
1029 |
"id": "pCqnaKmlO1U9", |
|
|
1030 |
"colab": { |
|
|
1031 |
"base_uri": "https://localhost:8080/" |
|
|
1032 |
}, |
|
|
1033 |
"outputId": "df7922d2-20c8-4c99-99dd-10eff2caf2e6" |
|
|
1034 |
}, |
|
|
1035 |
"outputs": [ |
|
|
1036 |
{ |
|
|
1037 |
"output_type": "stream", |
|
|
1038 |
"name": "stdout", |
|
|
1039 |
"text": [ |
|
|
1040 |
"178.5531 seconds used for training.\n", |
|
|
1041 |
"2.98 minutes used for training.\n", |
|
|
1042 |
"Peak reserved memory = 3.324 GB.\n", |
|
|
1043 |
"Peak reserved memory for training = 0.0 GB.\n", |
|
|
1044 |
"Peak reserved memory % of max memory = 22.539 %.\n", |
|
|
1045 |
"Peak reserved memory for training % of max memory = 0.0 %.\n" |
|
|
1046 |
] |
|
|
1047 |
} |
|
|
1048 |
], |
|
|
1049 |
"source": [ |
|
|
1050 |
"#@title Show final memory and time stats\n", |
|
|
1051 |
"used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", |
|
|
1052 |
"used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n", |
|
|
1053 |
"used_percentage = round(used_memory /max_memory*100, 3)\n", |
|
|
1054 |
"lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n", |
|
|
1055 |
"print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n", |
|
|
1056 |
"print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n", |
|
|
1057 |
"print(f\"Peak reserved memory = {used_memory} GB.\")\n", |
|
|
1058 |
"print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n", |
|
|
1059 |
"print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n", |
|
|
1060 |
"print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")" |
|
|
1061 |
] |
|
|
1062 |
}, |
|
|
1063 |
{ |
|
|
1064 |
"cell_type": "markdown", |
|
|
1065 |
"metadata": { |
|
|
1066 |
"id": "ekOmTR1hSNcr" |
|
|
1067 |
}, |
|
|
1068 |
"source": [ |
|
|
1069 |
"<a name=\"Inference\"></a>\n", |
|
|
1070 |
"### Inference\n", |
|
|
1071 |
"Let's run the model! You can change the instruction and input - leave the output blank!\n", |
|
|
1072 |
"\n", |
|
|
1073 |
"**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**\n", |
|
|
1074 |
"\n", |
|
|
1075 |
"We use `min_p = 0.1` and `temperature = 1.5`. Read this [Tweet](https://x.com/menhguin/status/1826132708508213629) for more information on why." |
|
|
1076 |
] |
|
|
1077 |
}, |
|
|
1078 |
{ |
|
|
1079 |
"cell_type": "markdown", |
|
|
1080 |
"metadata": { |
|
|
1081 |
"id": "CrSvZObor0lY" |
|
|
1082 |
}, |
|
|
1083 |
"source": [ |
|
|
1084 |
" You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!" |
|
|
1085 |
] |
|
|
1086 |
}, |
|
|
1087 |
{ |
|
|
1088 |
"cell_type": "code", |
|
|
1089 |
"source": [ |
|
|
1090 |
"from unsloth.chat_templates import get_chat_template\n", |
|
|
1091 |
"from transformers import TextStreamer\n", |
|
|
1092 |
"\n", |
|
|
1093 |
"# Setup tokenizer with Llama-3.1 template\n", |
|
|
1094 |
"tokenizer = get_chat_template(\n", |
|
|
1095 |
" tokenizer,\n", |
|
|
1096 |
" chat_template = \"llama-3.1\",\n", |
|
|
1097 |
")\n", |
|
|
1098 |
"\n", |
|
|
1099 |
"# Enable faster inference\n", |
|
|
1100 |
"FastLanguageModel.for_inference(model)\n", |
|
|
1101 |
"\n", |
|
|
1102 |
"# Example medical question from our dataset\n", |
|
|
1103 |
"messages = [\n", |
|
|
1104 |
" {\"role\": \"user\", \"content\": \"Answer this question truthfully: What is the relationship between very low Mg2+ levels, PTH levels, and Ca2+ levels?\"},\n", |
|
|
1105 |
"]\n", |
|
|
1106 |
"\n", |
|
|
1107 |
"# Standard generation\n", |
|
|
1108 |
"inputs = tokenizer.apply_chat_template(\n", |
|
|
1109 |
" messages,\n", |
|
|
1110 |
" tokenize = True,\n", |
|
|
1111 |
" add_generation_prompt = True,\n", |
|
|
1112 |
" return_tensors = \"pt\",\n", |
|
|
1113 |
").to(\"cuda\")\n", |
|
|
1114 |
"\n", |
|
|
1115 |
"print(\"Standard Generation:\")\n", |
|
|
1116 |
"outputs = model.generate(\n", |
|
|
1117 |
" input_ids = inputs,\n", |
|
|
1118 |
" max_new_tokens = 128,\n", |
|
|
1119 |
" use_cache = True,\n", |
|
|
1120 |
" temperature = 0.7, # Lower temperature for medical answers to be more precise\n", |
|
|
1121 |
" min_p = 0.1\n", |
|
|
1122 |
")\n", |
|
|
1123 |
"print(tokenizer.batch_decode(outputs))\n", |
|
|
1124 |
"\n", |
|
|
1125 |
"# Streaming generation\n", |
|
|
1126 |
"print(\"\\nStreaming Generation:\")\n", |
|
|
1127 |
"text_streamer = TextStreamer(tokenizer, skip_prompt = True)\n", |
|
|
1128 |
"inputs = tokenizer.apply_chat_template(\n", |
|
|
1129 |
" messages,\n", |
|
|
1130 |
" tokenize = True,\n", |
|
|
1131 |
" add_generation_prompt = True,\n", |
|
|
1132 |
" return_tensors = \"pt\",\n", |
|
|
1133 |
").to(\"cuda\")\n", |
|
|
1134 |
"\n", |
|
|
1135 |
"_ = model.generate(\n", |
|
|
1136 |
" input_ids = inputs,\n", |
|
|
1137 |
" streamer = text_streamer,\n", |
|
|
1138 |
" max_new_tokens = 128,\n", |
|
|
1139 |
" use_cache = True,\n", |
|
|
1140 |
" temperature = 0.7,\n", |
|
|
1141 |
" min_p = 0.1\n", |
|
|
1142 |
")" |
|
|
1143 |
], |
|
|
1144 |
"metadata": { |
|
|
1145 |
"colab": { |
|
|
1146 |
"base_uri": "https://localhost:8080/" |
|
|
1147 |
}, |
|
|
1148 |
"id": "qsrXkJwN3jvL", |
|
|
1149 |
"outputId": "4492cea0-4064-4be7-d623-b68bee1101ce" |
|
|
1150 |
}, |
|
|
1151 |
"execution_count": 18, |
|
|
1152 |
"outputs": [ |
|
|
1153 |
{ |
|
|
1154 |
"output_type": "stream", |
|
|
1155 |
"name": "stderr", |
|
|
1156 |
"text": [ |
|
|
1157 |
"The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n" |
|
|
1158 |
] |
|
|
1159 |
}, |
|
|
1160 |
{ |
|
|
1161 |
"output_type": "stream", |
|
|
1162 |
"name": "stdout", |
|
|
1163 |
"text": [ |
|
|
1164 |
"Standard Generation:\n", |
|
|
1165 |
"['<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nAnswer this question truthfully: What is the relationship between very low Mg2+ levels, PTH levels, and Ca2+ levels?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nVery low Mg2+ levels, PTH levels, and Ca2+ levels are related.<|eot_id|>']\n", |
|
|
1166 |
"\n", |
|
|
1167 |
"Streaming Generation:\n", |
|
|
1168 |
"Very low Mg2+ levels are associated with very high PTH levels and very low Ca2+ levels.<|eot_id|>\n" |
|
|
1169 |
] |
|
|
1170 |
} |
|
|
1171 |
] |
|
|
1172 |
}, |
|
|
1173 |
{ |
|
|
1174 |
"cell_type": "code", |
|
|
1175 |
"source": [ |
|
|
1176 |
"# New medical question\n", |
|
|
1177 |
"messages = [\n", |
|
|
1178 |
" {\"role\": \"user\", \"content\": \"Answer this question truthfully: Who is roberto baggio?\"},\n", |
|
|
1179 |
"]\n", |
|
|
1180 |
"\n", |
|
|
1181 |
"# Standard generation\n", |
|
|
1182 |
"inputs = tokenizer.apply_chat_template(\n", |
|
|
1183 |
" messages,\n", |
|
|
1184 |
" tokenize = True,\n", |
|
|
1185 |
" add_generation_prompt = True,\n", |
|
|
1186 |
" return_tensors = \"pt\",\n", |
|
|
1187 |
").to(\"cuda\")\n", |
|
|
1188 |
"\n", |
|
|
1189 |
"print(\"Standard Generation:\")\n", |
|
|
1190 |
"outputs = model.generate(\n", |
|
|
1191 |
" input_ids = inputs,\n", |
|
|
1192 |
" max_new_tokens = 128,\n", |
|
|
1193 |
" use_cache = True,\n", |
|
|
1194 |
" temperature = 0.7,\n", |
|
|
1195 |
" min_p = 0.1\n", |
|
|
1196 |
")\n", |
|
|
1197 |
"print(tokenizer.batch_decode(outputs))\n", |
|
|
1198 |
"\n", |
|
|
1199 |
"# Streaming generation\n", |
|
|
1200 |
"print(\"\\nStreaming Generation:\")\n", |
|
|
1201 |
"text_streamer = TextStreamer(tokenizer, skip_prompt = True)\n", |
|
|
1202 |
"inputs = tokenizer.apply_chat_template(\n", |
|
|
1203 |
" messages,\n", |
|
|
1204 |
" tokenize = True,\n", |
|
|
1205 |
" add_generation_prompt = True,\n", |
|
|
1206 |
" return_tensors = \"pt\",\n", |
|
|
1207 |
").to(\"cuda\")\n", |
|
|
1208 |
"\n", |
|
|
1209 |
"_ = model.generate(\n", |
|
|
1210 |
" input_ids = inputs,\n", |
|
|
1211 |
" streamer = text_streamer,\n", |
|
|
1212 |
" max_new_tokens = 128,\n", |
|
|
1213 |
" use_cache = True,\n", |
|
|
1214 |
" temperature = 0.7,\n", |
|
|
1215 |
" min_p = 0.1\n", |
|
|
1216 |
")" |
|
|
1217 |
], |
|
|
1218 |
"metadata": { |
|
|
1219 |
"colab": { |
|
|
1220 |
"base_uri": "https://localhost:8080/" |
|
|
1221 |
}, |
|
|
1222 |
"id": "fcRMYYe74ovE", |
|
|
1223 |
"outputId": "aba9c862-5ab7-418e-f875-b781cf9e8b0c" |
|
|
1224 |
}, |
|
|
1225 |
"execution_count": 21, |
|
|
1226 |
"outputs": [ |
|
|
1227 |
{ |
|
|
1228 |
"output_type": "stream", |
|
|
1229 |
"name": "stdout", |
|
|
1230 |
"text": [ |
|
|
1231 |
"Standard Generation:\n", |
|
|
1232 |
"['<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nAnswer this question truthfully: Who is roberto baggio?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nRoberto Baggio is a former Italian professional footballer who played as a midfielder for the Italy national team. He is widely regarded as one of the greatest players of his generation and is known for his exceptional dribbling skills and vision on the pitch. Baggio played for several top-tier clubs, including Juventus, AC Milan, and Inter Milan, and won numerous honors, including the FIFA World Cup Golden Ball award. He is also a legendary figure in Italian football, known for his iconic goal against Brazil in the 1994 World Cup. Baggio is now a coach and a commentator for Italian television, and is still widely respected and admired']\n", |
|
|
1233 |
"\n", |
|
|
1234 |
"Streaming Generation:\n", |
|
|
1235 |
"Roberto Baggio is an Italian former professional footballer and coach. He is a former Italy international and is considered one of the greatest players of his generation. Baggio is best known for his time with Juventus and AC Milan, where he won numerous titles and individual awards. He is also known for his iconic goals, including the famous \"Di Stéfano\" goal in the 1996 World Cup.<|eot_id|>\n" |
|
|
1236 |
] |
|
|
1237 |
} |
|
|
1238 |
] |
|
|
1239 |
}, |
|
|
1240 |
{ |
|
|
1241 |
"cell_type": "code", |
|
|
1242 |
"source": [ |
|
|
1243 |
"# Test with a novel medical question\n", |
|
|
1244 |
"messages = [\n", |
|
|
1245 |
" {\"role\": \"user\", \"content\": \"Answer this question truthfully: What are the potential risks and benefits of using ACE inhibitors in a patient with diabetic nephropathy who also has bilateral renal artery stenosis?\"},\n", |
|
|
1246 |
"]\n", |
|
|
1247 |
"\n", |
|
|
1248 |
"# Standard generation\n", |
|
|
1249 |
"inputs = tokenizer.apply_chat_template(\n", |
|
|
1250 |
" messages,\n", |
|
|
1251 |
" tokenize = True,\n", |
|
|
1252 |
" add_generation_prompt = True,\n", |
|
|
1253 |
" return_tensors = \"pt\",\n", |
|
|
1254 |
").to(\"cuda\")\n", |
|
|
1255 |
"\n", |
|
|
1256 |
"print(\"Standard Generation:\")\n", |
|
|
1257 |
"outputs = model.generate(\n", |
|
|
1258 |
" input_ids = inputs,\n", |
|
|
1259 |
" max_new_tokens = 2048, # Increased for more detailed response\n", |
|
|
1260 |
" use_cache = True,\n", |
|
|
1261 |
" temperature = 0.7,\n", |
|
|
1262 |
" min_p = 0.1\n", |
|
|
1263 |
")\n", |
|
|
1264 |
"print(tokenizer.batch_decode(outputs))" |
|
|
1265 |
], |
|
|
1266 |
"metadata": { |
|
|
1267 |
"colab": { |
|
|
1268 |
"base_uri": "https://localhost:8080/" |
|
|
1269 |
}, |
|
|
1270 |
"id": "rfXL8wK4544g", |
|
|
1271 |
"outputId": "93cfcb0c-bf4a-4042-be88-bd1844f74092" |
|
|
1272 |
}, |
|
|
1273 |
"execution_count": 26, |
|
|
1274 |
"outputs": [ |
|
|
1275 |
{ |
|
|
1276 |
"output_type": "stream", |
|
|
1277 |
"name": "stdout", |
|
|
1278 |
"text": [ |
|
|
1279 |
"Standard Generation:\n", |
|
|
1280 |
"[\"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\nCutting Knowledge Date: December 2023\\nToday Date: 26 July 2024\\n\\n<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nAnswer this question truthfully: What are the potential risks and benefits of using ACE inhibitors in a patient with diabetic nephropathy who also has bilateral renal artery stenosis?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\nACE inhibitors are a type of medication that can be used to treat high blood pressure and other conditions. In a patient with diabetic nephropathy who also has bilateral renal artery stenosis, ACE inhibitors can have both potential risks and benefits. The benefits of ACE inhibitors in this patient include the potential to improve blood pressure control and slow the progression of diabetic nephropathy. However, the risks of ACE inhibitors in this patient include the potential for worsening renal function and increased risk of kidney failure. It is important to carefully monitor the patient's renal function and blood pressure while using ACE inhibitors in this patient.<|eot_id|>\"]\n" |
|
|
1281 |
] |
|
|
1282 |
} |
|
|
1283 |
] |
|
|
1284 |
}, |
|
|
1285 |
{ |
|
|
1286 |
"cell_type": "markdown", |
|
|
1287 |
"metadata": { |
|
|
1288 |
"id": "uMuVrWbjAzhc" |
|
|
1289 |
}, |
|
|
1290 |
"source": [ |
|
|
1291 |
"<a name=\"Save\"></a>\n", |
|
|
1292 |
"### Saving, loading finetuned models\n", |
|
|
1293 |
"To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n", |
|
|
1294 |
"\n", |
|
|
1295 |
"**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!" |
|
|
1296 |
] |
|
|
1297 |
}, |
|
|
1298 |
{ |
|
|
1299 |
"cell_type": "code", |
|
|
1300 |
"execution_count": null, |
|
|
1301 |
"metadata": { |
|
|
1302 |
"id": "upcOlWe7A1vc", |
|
|
1303 |
"colab": { |
|
|
1304 |
"base_uri": "https://localhost:8080/" |
|
|
1305 |
}, |
|
|
1306 |
"outputId": "c962e43a-2027-4a39-ea03-870b707a22d4" |
|
|
1307 |
}, |
|
|
1308 |
"outputs": [ |
|
|
1309 |
{ |
|
|
1310 |
"output_type": "execute_result", |
|
|
1311 |
"data": { |
|
|
1312 |
"text/plain": [ |
|
|
1313 |
"('lora_model/tokenizer_config.json',\n", |
|
|
1314 |
" 'lora_model/special_tokens_map.json',\n", |
|
|
1315 |
" 'lora_model/tokenizer.json')" |
|
|
1316 |
] |
|
|
1317 |
}, |
|
|
1318 |
"metadata": {}, |
|
|
1319 |
"execution_count": 17 |
|
|
1320 |
} |
|
|
1321 |
], |
|
|
1322 |
"source": [ |
|
|
1323 |
"model.save_pretrained(\"lora_model\") # Local saving\n", |
|
|
1324 |
"tokenizer.save_pretrained(\"lora_model\")\n", |
|
|
1325 |
"# model.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving\n", |
|
|
1326 |
"# tokenizer.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving" |
|
|
1327 |
] |
|
|
1328 |
}, |
|
|
1329 |
{ |
|
|
1330 |
"cell_type": "markdown", |
|
|
1331 |
"metadata": { |
|
|
1332 |
"id": "AEEcJ4qfC7Lp" |
|
|
1333 |
}, |
|
|
1334 |
"source": [ |
|
|
1335 |
"Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:" |
|
|
1336 |
] |
|
|
1337 |
}, |
|
|
1338 |
{ |
|
|
1339 |
"cell_type": "code", |
|
|
1340 |
"execution_count": null, |
|
|
1341 |
"metadata": { |
|
|
1342 |
"id": "MKX_XKs_BNZR", |
|
|
1343 |
"colab": { |
|
|
1344 |
"base_uri": "https://localhost:8080/" |
|
|
1345 |
}, |
|
|
1346 |
"outputId": "f22dbd75-ea37-48bb-9f75-4178aebe9353" |
|
|
1347 |
}, |
|
|
1348 |
"outputs": [ |
|
|
1349 |
{ |
|
|
1350 |
"output_type": "stream", |
|
|
1351 |
"name": "stdout", |
|
|
1352 |
"text": [ |
|
|
1353 |
"The Eiffel Tower, located in the heart of Paris, stands tall among the city's historic and cultural landmarks. This iron structure, standing at an impressive 324 meters high, offers breathtaking views of the City of Light's iconic landscape. The Eiffel Tower was built for the 1889 World's Fair and has since become a symbol of French engineering and culture.<|eot_id|>\n" |
|
|
1354 |
] |
|
|
1355 |
} |
|
|
1356 |
], |
|
|
1357 |
"source": [ |
|
|
1358 |
"if False:\n", |
|
|
1359 |
" from unsloth import FastLanguageModel\n", |
|
|
1360 |
" model, tokenizer = FastLanguageModel.from_pretrained(\n", |
|
|
1361 |
" model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n", |
|
|
1362 |
" max_seq_length = max_seq_length,\n", |
|
|
1363 |
" dtype = dtype,\n", |
|
|
1364 |
" load_in_4bit = load_in_4bit,\n", |
|
|
1365 |
" )\n", |
|
|
1366 |
" FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", |
|
|
1367 |
"\n", |
|
|
1368 |
"messages = [\n", |
|
|
1369 |
" {\"role\": \"user\", \"content\": \"Describe a tall tower in the capital of France.\"},\n", |
|
|
1370 |
"]\n", |
|
|
1371 |
"inputs = tokenizer.apply_chat_template(\n", |
|
|
1372 |
" messages,\n", |
|
|
1373 |
" tokenize = True,\n", |
|
|
1374 |
" add_generation_prompt = True, # Must add for generation\n", |
|
|
1375 |
" return_tensors = \"pt\",\n", |
|
|
1376 |
").to(\"cuda\")\n", |
|
|
1377 |
"\n", |
|
|
1378 |
"from transformers import TextStreamer\n", |
|
|
1379 |
"text_streamer = TextStreamer(tokenizer, skip_prompt = True)\n", |
|
|
1380 |
"_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128,\n", |
|
|
1381 |
" use_cache = True, temperature = 1.5, min_p = 0.1)" |
|
|
1382 |
] |
|
|
1383 |
}, |
|
|
1384 |
{ |
|
|
1385 |
"cell_type": "markdown", |
|
|
1386 |
"metadata": { |
|
|
1387 |
"id": "QQMjaNrjsU5_" |
|
|
1388 |
}, |
|
|
1389 |
"source": [ |
|
|
1390 |
"You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**." |
|
|
1391 |
] |
|
|
1392 |
}, |
|
|
1393 |
{ |
|
|
1394 |
"cell_type": "code", |
|
|
1395 |
"execution_count": null, |
|
|
1396 |
"metadata": { |
|
|
1397 |
"id": "yFfaXG0WsQuE" |
|
|
1398 |
}, |
|
|
1399 |
"outputs": [], |
|
|
1400 |
"source": [ |
|
|
1401 |
"if False:\n", |
|
|
1402 |
" # I highly do NOT suggest - use Unsloth if possible\n", |
|
|
1403 |
" from peft import AutoPeftModelForCausalLM\n", |
|
|
1404 |
" from transformers import AutoTokenizer\n", |
|
|
1405 |
" model = AutoPeftModelForCausalLM.from_pretrained(\n", |
|
|
1406 |
" \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n", |
|
|
1407 |
" load_in_4bit = load_in_4bit,\n", |
|
|
1408 |
" )\n", |
|
|
1409 |
" tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")" |
|
|
1410 |
] |
|
|
1411 |
}, |
|
|
1412 |
{ |
|
|
1413 |
"cell_type": "markdown", |
|
|
1414 |
"metadata": { |
|
|
1415 |
"id": "f422JgM9sdVT" |
|
|
1416 |
}, |
|
|
1417 |
"source": [ |
|
|
1418 |
"### Saving to float16 for VLLM\n", |
|
|
1419 |
"\n", |
|
|
1420 |
"We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens." |
|
|
1421 |
] |
|
|
1422 |
}, |
|
|
1423 |
{ |
|
|
1424 |
"cell_type": "code", |
|
|
1425 |
"execution_count": null, |
|
|
1426 |
"metadata": { |
|
|
1427 |
"id": "iHjt_SMYsd3P" |
|
|
1428 |
}, |
|
|
1429 |
"outputs": [], |
|
|
1430 |
"source": [ |
|
|
1431 |
"# Merge to 16bit\n", |
|
|
1432 |
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n", |
|
|
1433 |
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n", |
|
|
1434 |
"\n", |
|
|
1435 |
"# Merge to 4bit\n", |
|
|
1436 |
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n", |
|
|
1437 |
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n", |
|
|
1438 |
"\n", |
|
|
1439 |
"# Just LoRA adapters\n", |
|
|
1440 |
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n", |
|
|
1441 |
"if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")" |
|
|
1442 |
] |
|
|
1443 |
}, |
|
|
1444 |
{ |
|
|
1445 |
"cell_type": "markdown", |
|
|
1446 |
"metadata": { |
|
|
1447 |
"id": "TCv4vXHd61i7" |
|
|
1448 |
}, |
|
|
1449 |
"source": [ |
|
|
1450 |
"### GGUF / llama.cpp Conversion\n", |
|
|
1451 |
"To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n", |
|
|
1452 |
"\n", |
|
|
1453 |
"Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n", |
|
|
1454 |
"* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n", |
|
|
1455 |
"* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n", |
|
|
1456 |
"* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K.\n", |
|
|
1457 |
"\n", |
|
|
1458 |
"[**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)" |
|
|
1459 |
] |
|
|
1460 |
}, |
|
|
1461 |
{ |
|
|
1462 |
"cell_type": "code", |
|
|
1463 |
"execution_count": null, |
|
|
1464 |
"metadata": { |
|
|
1465 |
"id": "FqfebeAdT073" |
|
|
1466 |
}, |
|
|
1467 |
"outputs": [], |
|
|
1468 |
"source": [ |
|
|
1469 |
"# Save to 8bit Q8_0\n", |
|
|
1470 |
"if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n", |
|
|
1471 |
"# Remember to go to https://huggingface.co/settings/tokens for a token!\n", |
|
|
1472 |
"# And change hf to your username!\n", |
|
|
1473 |
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n", |
|
|
1474 |
"\n", |
|
|
1475 |
"# Save to 16bit GGUF\n", |
|
|
1476 |
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n", |
|
|
1477 |
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n", |
|
|
1478 |
"\n", |
|
|
1479 |
"# Save to q4_k_m GGUF\n", |
|
|
1480 |
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n", |
|
|
1481 |
"if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")\n", |
|
|
1482 |
"\n", |
|
|
1483 |
"# Save to multiple GGUF options - much faster if you want multiple!\n", |
|
|
1484 |
"if False:\n", |
|
|
1485 |
" model.push_to_hub_gguf(\n", |
|
|
1486 |
" \"hf/model\", # Change hf to your username!\n", |
|
|
1487 |
" tokenizer,\n", |
|
|
1488 |
" quantization_method = [\"q4_k_m\", \"q8_0\", \"q5_k_m\",],\n", |
|
|
1489 |
" token = \"\", # Get a token at https://huggingface.co/settings/tokens\n", |
|
|
1490 |
" )" |
|
|
1491 |
] |
|
|
1492 |
}, |
|
|
1493 |
{ |
|
|
1494 |
"cell_type": "markdown", |
|
|
1495 |
"metadata": { |
|
|
1496 |
"id": "bDp0zNpwe6U_" |
|
|
1497 |
}, |
|
|
1498 |
"source": [ |
|
|
1499 |
"Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html).\n", |
|
|
1500 |
"\n", |
|
|
1501 |
"**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**" |
|
|
1502 |
] |
|
|
1503 |
}, |
|
|
1504 |
{ |
|
|
1505 |
"cell_type": "markdown", |
|
|
1506 |
"metadata": { |
|
|
1507 |
"id": "Zt9CHJqO6p30" |
|
|
1508 |
}, |
|
|
1509 |
"source": [ |
|
|
1510 |
"And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n", |
|
|
1511 |
"\n", |
|
|
1512 |
"Some other links:\n", |
|
|
1513 |
"1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n", |
|
|
1514 |
"2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n", |
|
|
1515 |
"3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n", |
|
|
1516 |
"4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n", |
|
|
1517 |
"5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n", |
|
|
1518 |
"6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n", |
|
|
1519 |
"7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n", |
|
|
1520 |
"8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n", |
|
|
1521 |
"9. [**NEW**] We make Phi-3 Medium / Mini **2x faster**! See our [Phi-3 Medium notebook](https://colab.research.google.com/drive/1hhdhBa1j_hsymiW9m-WzxQtgqTH_NHqi?usp=sharing)\n", |
|
|
1522 |
"10. [**NEW**] We make Gemma-2 9b / 27b **2x faster**! See our [Gemma-2 9b notebook](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing)\n", |
|
|
1523 |
"11. [**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)\n", |
|
|
1524 |
"12. [**NEW**] We make Mistral NeMo 12B 2x faster and fit in under 12GB of VRAM! [Mistral NeMo notebook](https://colab.research.google.com/drive/17d3U-CAIwzmbDRqbZ9NnpHxCkmXB6LZ0?usp=sharing)\n", |
|
|
1525 |
"\n", |
|
|
1526 |
"<div class=\"align-center\">\n", |
|
|
1527 |
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n", |
|
|
1528 |
" <a href=\"https://discord.gg/u54VK8m8tk\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord.png\" width=\"145\"></a>\n", |
|
|
1529 |
" <a href=\"https://ko-fi.com/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png\" width=\"145\"></a></a> Support our work if you can! Thanks!\n", |
|
|
1530 |
"</div>" |
|
|
1531 |
] |
|
|
1532 |
} |
|
|
1533 |
], |
|
|
1534 |
"metadata": { |
|
|
1535 |
"accelerator": "GPU", |
|
|
1536 |
"colab": { |
|
|
1537 |
"gpuType": "T4", |
|
|
1538 |
"provenance": [], |
|
|
1539 |
"include_colab_link": true |
|
|
1540 |
}, |
|
|
1541 |
"kernelspec": { |
|
|
1542 |
"display_name": "Python 3", |
|
|
1543 |
"name": "python3" |
|
|
1544 |
}, |
|
|
1545 |
"language_info": { |
|
|
1546 |
"name": "python" |
|
|
1547 |
}, |
|
|
1548 |
"widgets": { |
|
|
1549 |
"application/vnd.jupyter.widget-state+json": { |
|
|
1550 |
"470008e304ad4102a760e39b93dc7428": { |
|
|
1551 |
"model_module": "@jupyter-widgets/controls", |
|
|
1552 |
"model_name": "HBoxModel", |
|
|
1553 |
"model_module_version": "1.5.0", |
|
|
1554 |
"state": { |
|
|
1555 |
"_dom_classes": [], |
|
|
1556 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1557 |
"_model_module_version": "1.5.0", |
|
|
1558 |
"_model_name": "HBoxModel", |
|
|
1559 |
"_view_count": null, |
|
|
1560 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1561 |
"_view_module_version": "1.5.0", |
|
|
1562 |
"_view_name": "HBoxView", |
|
|
1563 |
"box_style": "", |
|
|
1564 |
"children": [ |
|
|
1565 |
"IPY_MODEL_13e72e122b75476eb9056c4a75089d71", |
|
|
1566 |
"IPY_MODEL_972895da680d49de8bc58957ce4fe341", |
|
|
1567 |
"IPY_MODEL_90346592f9244def90817ea11422648e" |
|
|
1568 |
], |
|
|
1569 |
"layout": "IPY_MODEL_cef09d4426c84eb09a8772ad22b02903" |
|
|
1570 |
} |
|
|
1571 |
}, |
|
|
1572 |
"13e72e122b75476eb9056c4a75089d71": { |
|
|
1573 |
"model_module": "@jupyter-widgets/controls", |
|
|
1574 |
"model_name": "HTMLModel", |
|
|
1575 |
"model_module_version": "1.5.0", |
|
|
1576 |
"state": { |
|
|
1577 |
"_dom_classes": [], |
|
|
1578 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1579 |
"_model_module_version": "1.5.0", |
|
|
1580 |
"_model_name": "HTMLModel", |
|
|
1581 |
"_view_count": null, |
|
|
1582 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1583 |
"_view_module_version": "1.5.0", |
|
|
1584 |
"_view_name": "HTMLView", |
|
|
1585 |
"description": "", |
|
|
1586 |
"description_tooltip": null, |
|
|
1587 |
"layout": "IPY_MODEL_e6c28d862df24f8ebfcd956921fa0c6d", |
|
|
1588 |
"placeholder": "", |
|
|
1589 |
"style": "IPY_MODEL_cf45cca2721842f5bc51d8e3db6b1fa6", |
|
|
1590 |
"value": "model.safetensors: 100%" |
|
|
1591 |
} |
|
|
1592 |
}, |
|
|
1593 |
"972895da680d49de8bc58957ce4fe341": { |
|
|
1594 |
"model_module": "@jupyter-widgets/controls", |
|
|
1595 |
"model_name": "FloatProgressModel", |
|
|
1596 |
"model_module_version": "1.5.0", |
|
|
1597 |
"state": { |
|
|
1598 |
"_dom_classes": [], |
|
|
1599 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1600 |
"_model_module_version": "1.5.0", |
|
|
1601 |
"_model_name": "FloatProgressModel", |
|
|
1602 |
"_view_count": null, |
|
|
1603 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1604 |
"_view_module_version": "1.5.0", |
|
|
1605 |
"_view_name": "ProgressView", |
|
|
1606 |
"bar_style": "danger", |
|
|
1607 |
"description": "", |
|
|
1608 |
"description_tooltip": null, |
|
|
1609 |
"layout": "IPY_MODEL_3af46468e29348adbf3c2749394767bc", |
|
|
1610 |
"max": 2242762780, |
|
|
1611 |
"min": 0, |
|
|
1612 |
"orientation": "horizontal", |
|
|
1613 |
"style": "IPY_MODEL_e7490d0da8854fc6abca6b9ecfb2fdaf", |
|
|
1614 |
"value": 2242762567 |
|
|
1615 |
} |
|
|
1616 |
}, |
|
|
1617 |
"90346592f9244def90817ea11422648e": { |
|
|
1618 |
"model_module": "@jupyter-widgets/controls", |
|
|
1619 |
"model_name": "HTMLModel", |
|
|
1620 |
"model_module_version": "1.5.0", |
|
|
1621 |
"state": { |
|
|
1622 |
"_dom_classes": [], |
|
|
1623 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1624 |
"_model_module_version": "1.5.0", |
|
|
1625 |
"_model_name": "HTMLModel", |
|
|
1626 |
"_view_count": null, |
|
|
1627 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1628 |
"_view_module_version": "1.5.0", |
|
|
1629 |
"_view_name": "HTMLView", |
|
|
1630 |
"description": "", |
|
|
1631 |
"description_tooltip": null, |
|
|
1632 |
"layout": "IPY_MODEL_0c356b068a6f498da7bcc5102d7a3f12", |
|
|
1633 |
"placeholder": "", |
|
|
1634 |
"style": "IPY_MODEL_1a5e5be75adb4466b90b29d4aecc9d7b", |
|
|
1635 |
"value": " 2.24G/2.24G [00:16<00:00, 145MB/s]" |
|
|
1636 |
} |
|
|
1637 |
}, |
|
|
1638 |
"cef09d4426c84eb09a8772ad22b02903": { |
|
|
1639 |
"model_module": "@jupyter-widgets/base", |
|
|
1640 |
"model_name": "LayoutModel", |
|
|
1641 |
"model_module_version": "1.2.0", |
|
|
1642 |
"state": { |
|
|
1643 |
"_model_module": "@jupyter-widgets/base", |
|
|
1644 |
"_model_module_version": "1.2.0", |
|
|
1645 |
"_model_name": "LayoutModel", |
|
|
1646 |
"_view_count": null, |
|
|
1647 |
"_view_module": "@jupyter-widgets/base", |
|
|
1648 |
"_view_module_version": "1.2.0", |
|
|
1649 |
"_view_name": "LayoutView", |
|
|
1650 |
"align_content": null, |
|
|
1651 |
"align_items": null, |
|
|
1652 |
"align_self": null, |
|
|
1653 |
"border": null, |
|
|
1654 |
"bottom": null, |
|
|
1655 |
"display": null, |
|
|
1656 |
"flex": null, |
|
|
1657 |
"flex_flow": null, |
|
|
1658 |
"grid_area": null, |
|
|
1659 |
"grid_auto_columns": null, |
|
|
1660 |
"grid_auto_flow": null, |
|
|
1661 |
"grid_auto_rows": null, |
|
|
1662 |
"grid_column": null, |
|
|
1663 |
"grid_gap": null, |
|
|
1664 |
"grid_row": null, |
|
|
1665 |
"grid_template_areas": null, |
|
|
1666 |
"grid_template_columns": null, |
|
|
1667 |
"grid_template_rows": null, |
|
|
1668 |
"height": null, |
|
|
1669 |
"justify_content": null, |
|
|
1670 |
"justify_items": null, |
|
|
1671 |
"left": null, |
|
|
1672 |
"margin": null, |
|
|
1673 |
"max_height": null, |
|
|
1674 |
"max_width": null, |
|
|
1675 |
"min_height": null, |
|
|
1676 |
"min_width": null, |
|
|
1677 |
"object_fit": null, |
|
|
1678 |
"object_position": null, |
|
|
1679 |
"order": null, |
|
|
1680 |
"overflow": null, |
|
|
1681 |
"overflow_x": null, |
|
|
1682 |
"overflow_y": null, |
|
|
1683 |
"padding": null, |
|
|
1684 |
"right": null, |
|
|
1685 |
"top": null, |
|
|
1686 |
"visibility": null, |
|
|
1687 |
"width": null |
|
|
1688 |
} |
|
|
1689 |
}, |
|
|
1690 |
"e6c28d862df24f8ebfcd956921fa0c6d": { |
|
|
1691 |
"model_module": "@jupyter-widgets/base", |
|
|
1692 |
"model_name": "LayoutModel", |
|
|
1693 |
"model_module_version": "1.2.0", |
|
|
1694 |
"state": { |
|
|
1695 |
"_model_module": "@jupyter-widgets/base", |
|
|
1696 |
"_model_module_version": "1.2.0", |
|
|
1697 |
"_model_name": "LayoutModel", |
|
|
1698 |
"_view_count": null, |
|
|
1699 |
"_view_module": "@jupyter-widgets/base", |
|
|
1700 |
"_view_module_version": "1.2.0", |
|
|
1701 |
"_view_name": "LayoutView", |
|
|
1702 |
"align_content": null, |
|
|
1703 |
"align_items": null, |
|
|
1704 |
"align_self": null, |
|
|
1705 |
"border": null, |
|
|
1706 |
"bottom": null, |
|
|
1707 |
"display": null, |
|
|
1708 |
"flex": null, |
|
|
1709 |
"flex_flow": null, |
|
|
1710 |
"grid_area": null, |
|
|
1711 |
"grid_auto_columns": null, |
|
|
1712 |
"grid_auto_flow": null, |
|
|
1713 |
"grid_auto_rows": null, |
|
|
1714 |
"grid_column": null, |
|
|
1715 |
"grid_gap": null, |
|
|
1716 |
"grid_row": null, |
|
|
1717 |
"grid_template_areas": null, |
|
|
1718 |
"grid_template_columns": null, |
|
|
1719 |
"grid_template_rows": null, |
|
|
1720 |
"height": null, |
|
|
1721 |
"justify_content": null, |
|
|
1722 |
"justify_items": null, |
|
|
1723 |
"left": null, |
|
|
1724 |
"margin": null, |
|
|
1725 |
"max_height": null, |
|
|
1726 |
"max_width": null, |
|
|
1727 |
"min_height": null, |
|
|
1728 |
"min_width": null, |
|
|
1729 |
"object_fit": null, |
|
|
1730 |
"object_position": null, |
|
|
1731 |
"order": null, |
|
|
1732 |
"overflow": null, |
|
|
1733 |
"overflow_x": null, |
|
|
1734 |
"overflow_y": null, |
|
|
1735 |
"padding": null, |
|
|
1736 |
"right": null, |
|
|
1737 |
"top": null, |
|
|
1738 |
"visibility": null, |
|
|
1739 |
"width": null |
|
|
1740 |
} |
|
|
1741 |
}, |
|
|
1742 |
"cf45cca2721842f5bc51d8e3db6b1fa6": { |
|
|
1743 |
"model_module": "@jupyter-widgets/controls", |
|
|
1744 |
"model_name": "DescriptionStyleModel", |
|
|
1745 |
"model_module_version": "1.5.0", |
|
|
1746 |
"state": { |
|
|
1747 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1748 |
"_model_module_version": "1.5.0", |
|
|
1749 |
"_model_name": "DescriptionStyleModel", |
|
|
1750 |
"_view_count": null, |
|
|
1751 |
"_view_module": "@jupyter-widgets/base", |
|
|
1752 |
"_view_module_version": "1.2.0", |
|
|
1753 |
"_view_name": "StyleView", |
|
|
1754 |
"description_width": "" |
|
|
1755 |
} |
|
|
1756 |
}, |
|
|
1757 |
"3af46468e29348adbf3c2749394767bc": { |
|
|
1758 |
"model_module": "@jupyter-widgets/base", |
|
|
1759 |
"model_name": "LayoutModel", |
|
|
1760 |
"model_module_version": "1.2.0", |
|
|
1761 |
"state": { |
|
|
1762 |
"_model_module": "@jupyter-widgets/base", |
|
|
1763 |
"_model_module_version": "1.2.0", |
|
|
1764 |
"_model_name": "LayoutModel", |
|
|
1765 |
"_view_count": null, |
|
|
1766 |
"_view_module": "@jupyter-widgets/base", |
|
|
1767 |
"_view_module_version": "1.2.0", |
|
|
1768 |
"_view_name": "LayoutView", |
|
|
1769 |
"align_content": null, |
|
|
1770 |
"align_items": null, |
|
|
1771 |
"align_self": null, |
|
|
1772 |
"border": null, |
|
|
1773 |
"bottom": null, |
|
|
1774 |
"display": null, |
|
|
1775 |
"flex": null, |
|
|
1776 |
"flex_flow": null, |
|
|
1777 |
"grid_area": null, |
|
|
1778 |
"grid_auto_columns": null, |
|
|
1779 |
"grid_auto_flow": null, |
|
|
1780 |
"grid_auto_rows": null, |
|
|
1781 |
"grid_column": null, |
|
|
1782 |
"grid_gap": null, |
|
|
1783 |
"grid_row": null, |
|
|
1784 |
"grid_template_areas": null, |
|
|
1785 |
"grid_template_columns": null, |
|
|
1786 |
"grid_template_rows": null, |
|
|
1787 |
"height": null, |
|
|
1788 |
"justify_content": null, |
|
|
1789 |
"justify_items": null, |
|
|
1790 |
"left": null, |
|
|
1791 |
"margin": null, |
|
|
1792 |
"max_height": null, |
|
|
1793 |
"max_width": null, |
|
|
1794 |
"min_height": null, |
|
|
1795 |
"min_width": null, |
|
|
1796 |
"object_fit": null, |
|
|
1797 |
"object_position": null, |
|
|
1798 |
"order": null, |
|
|
1799 |
"overflow": null, |
|
|
1800 |
"overflow_x": null, |
|
|
1801 |
"overflow_y": null, |
|
|
1802 |
"padding": null, |
|
|
1803 |
"right": null, |
|
|
1804 |
"top": null, |
|
|
1805 |
"visibility": null, |
|
|
1806 |
"width": null |
|
|
1807 |
} |
|
|
1808 |
}, |
|
|
1809 |
"e7490d0da8854fc6abca6b9ecfb2fdaf": { |
|
|
1810 |
"model_module": "@jupyter-widgets/controls", |
|
|
1811 |
"model_name": "ProgressStyleModel", |
|
|
1812 |
"model_module_version": "1.5.0", |
|
|
1813 |
"state": { |
|
|
1814 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1815 |
"_model_module_version": "1.5.0", |
|
|
1816 |
"_model_name": "ProgressStyleModel", |
|
|
1817 |
"_view_count": null, |
|
|
1818 |
"_view_module": "@jupyter-widgets/base", |
|
|
1819 |
"_view_module_version": "1.2.0", |
|
|
1820 |
"_view_name": "StyleView", |
|
|
1821 |
"bar_color": null, |
|
|
1822 |
"description_width": "" |
|
|
1823 |
} |
|
|
1824 |
}, |
|
|
1825 |
"0c356b068a6f498da7bcc5102d7a3f12": { |
|
|
1826 |
"model_module": "@jupyter-widgets/base", |
|
|
1827 |
"model_name": "LayoutModel", |
|
|
1828 |
"model_module_version": "1.2.0", |
|
|
1829 |
"state": { |
|
|
1830 |
"_model_module": "@jupyter-widgets/base", |
|
|
1831 |
"_model_module_version": "1.2.0", |
|
|
1832 |
"_model_name": "LayoutModel", |
|
|
1833 |
"_view_count": null, |
|
|
1834 |
"_view_module": "@jupyter-widgets/base", |
|
|
1835 |
"_view_module_version": "1.2.0", |
|
|
1836 |
"_view_name": "LayoutView", |
|
|
1837 |
"align_content": null, |
|
|
1838 |
"align_items": null, |
|
|
1839 |
"align_self": null, |
|
|
1840 |
"border": null, |
|
|
1841 |
"bottom": null, |
|
|
1842 |
"display": null, |
|
|
1843 |
"flex": null, |
|
|
1844 |
"flex_flow": null, |
|
|
1845 |
"grid_area": null, |
|
|
1846 |
"grid_auto_columns": null, |
|
|
1847 |
"grid_auto_flow": null, |
|
|
1848 |
"grid_auto_rows": null, |
|
|
1849 |
"grid_column": null, |
|
|
1850 |
"grid_gap": null, |
|
|
1851 |
"grid_row": null, |
|
|
1852 |
"grid_template_areas": null, |
|
|
1853 |
"grid_template_columns": null, |
|
|
1854 |
"grid_template_rows": null, |
|
|
1855 |
"height": null, |
|
|
1856 |
"justify_content": null, |
|
|
1857 |
"justify_items": null, |
|
|
1858 |
"left": null, |
|
|
1859 |
"margin": null, |
|
|
1860 |
"max_height": null, |
|
|
1861 |
"max_width": null, |
|
|
1862 |
"min_height": null, |
|
|
1863 |
"min_width": null, |
|
|
1864 |
"object_fit": null, |
|
|
1865 |
"object_position": null, |
|
|
1866 |
"order": null, |
|
|
1867 |
"overflow": null, |
|
|
1868 |
"overflow_x": null, |
|
|
1869 |
"overflow_y": null, |
|
|
1870 |
"padding": null, |
|
|
1871 |
"right": null, |
|
|
1872 |
"top": null, |
|
|
1873 |
"visibility": null, |
|
|
1874 |
"width": null |
|
|
1875 |
} |
|
|
1876 |
}, |
|
|
1877 |
"1a5e5be75adb4466b90b29d4aecc9d7b": { |
|
|
1878 |
"model_module": "@jupyter-widgets/controls", |
|
|
1879 |
"model_name": "DescriptionStyleModel", |
|
|
1880 |
"model_module_version": "1.5.0", |
|
|
1881 |
"state": { |
|
|
1882 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1883 |
"_model_module_version": "1.5.0", |
|
|
1884 |
"_model_name": "DescriptionStyleModel", |
|
|
1885 |
"_view_count": null, |
|
|
1886 |
"_view_module": "@jupyter-widgets/base", |
|
|
1887 |
"_view_module_version": "1.2.0", |
|
|
1888 |
"_view_name": "StyleView", |
|
|
1889 |
"description_width": "" |
|
|
1890 |
} |
|
|
1891 |
}, |
|
|
1892 |
"f4c568c8e686433f8763c34879f46fd3": { |
|
|
1893 |
"model_module": "@jupyter-widgets/controls", |
|
|
1894 |
"model_name": "HBoxModel", |
|
|
1895 |
"model_module_version": "1.5.0", |
|
|
1896 |
"state": { |
|
|
1897 |
"_dom_classes": [], |
|
|
1898 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1899 |
"_model_module_version": "1.5.0", |
|
|
1900 |
"_model_name": "HBoxModel", |
|
|
1901 |
"_view_count": null, |
|
|
1902 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1903 |
"_view_module_version": "1.5.0", |
|
|
1904 |
"_view_name": "HBoxView", |
|
|
1905 |
"box_style": "", |
|
|
1906 |
"children": [ |
|
|
1907 |
"IPY_MODEL_d37ee73737d144479b19aa9c84bcbda5", |
|
|
1908 |
"IPY_MODEL_94b64d29515c49e788c9b0f02f97e131", |
|
|
1909 |
"IPY_MODEL_e0c4626438754fcab9ba26ec84691906" |
|
|
1910 |
], |
|
|
1911 |
"layout": "IPY_MODEL_ea9e76e320e0413083985d598cc62bd5" |
|
|
1912 |
} |
|
|
1913 |
}, |
|
|
1914 |
"d37ee73737d144479b19aa9c84bcbda5": { |
|
|
1915 |
"model_module": "@jupyter-widgets/controls", |
|
|
1916 |
"model_name": "HTMLModel", |
|
|
1917 |
"model_module_version": "1.5.0", |
|
|
1918 |
"state": { |
|
|
1919 |
"_dom_classes": [], |
|
|
1920 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1921 |
"_model_module_version": "1.5.0", |
|
|
1922 |
"_model_name": "HTMLModel", |
|
|
1923 |
"_view_count": null, |
|
|
1924 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1925 |
"_view_module_version": "1.5.0", |
|
|
1926 |
"_view_name": "HTMLView", |
|
|
1927 |
"description": "", |
|
|
1928 |
"description_tooltip": null, |
|
|
1929 |
"layout": "IPY_MODEL_4a1ea4cd642b437db3abb2ff39c19563", |
|
|
1930 |
"placeholder": "", |
|
|
1931 |
"style": "IPY_MODEL_a64e99e0c22c4bbf8e0bc70066475126", |
|
|
1932 |
"value": "generation_config.json: 100%" |
|
|
1933 |
} |
|
|
1934 |
}, |
|
|
1935 |
"94b64d29515c49e788c9b0f02f97e131": { |
|
|
1936 |
"model_module": "@jupyter-widgets/controls", |
|
|
1937 |
"model_name": "FloatProgressModel", |
|
|
1938 |
"model_module_version": "1.5.0", |
|
|
1939 |
"state": { |
|
|
1940 |
"_dom_classes": [], |
|
|
1941 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1942 |
"_model_module_version": "1.5.0", |
|
|
1943 |
"_model_name": "FloatProgressModel", |
|
|
1944 |
"_view_count": null, |
|
|
1945 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1946 |
"_view_module_version": "1.5.0", |
|
|
1947 |
"_view_name": "ProgressView", |
|
|
1948 |
"bar_style": "success", |
|
|
1949 |
"description": "", |
|
|
1950 |
"description_tooltip": null, |
|
|
1951 |
"layout": "IPY_MODEL_e9812c0a8e814202a128fd11860b6b0e", |
|
|
1952 |
"max": 184, |
|
|
1953 |
"min": 0, |
|
|
1954 |
"orientation": "horizontal", |
|
|
1955 |
"style": "IPY_MODEL_66179fda56844c47bb5a2207744370cb", |
|
|
1956 |
"value": 184 |
|
|
1957 |
} |
|
|
1958 |
}, |
|
|
1959 |
"e0c4626438754fcab9ba26ec84691906": { |
|
|
1960 |
"model_module": "@jupyter-widgets/controls", |
|
|
1961 |
"model_name": "HTMLModel", |
|
|
1962 |
"model_module_version": "1.5.0", |
|
|
1963 |
"state": { |
|
|
1964 |
"_dom_classes": [], |
|
|
1965 |
"_model_module": "@jupyter-widgets/controls", |
|
|
1966 |
"_model_module_version": "1.5.0", |
|
|
1967 |
"_model_name": "HTMLModel", |
|
|
1968 |
"_view_count": null, |
|
|
1969 |
"_view_module": "@jupyter-widgets/controls", |
|
|
1970 |
"_view_module_version": "1.5.0", |
|
|
1971 |
"_view_name": "HTMLView", |
|
|
1972 |
"description": "", |
|
|
1973 |
"description_tooltip": null, |
|
|
1974 |
"layout": "IPY_MODEL_e9eada4508064f3bb063b0640dc04224", |
|
|
1975 |
"placeholder": "", |
|
|
1976 |
"style": "IPY_MODEL_1e1cad4d3d3c4612a158551589b5be1e", |
|
|
1977 |
"value": " 184/184 [00:00<00:00, 7.81kB/s]" |
|
|
1978 |
} |
|
|
1979 |
}, |
|
|
1980 |
"ea9e76e320e0413083985d598cc62bd5": { |
|
|
1981 |
"model_module": "@jupyter-widgets/base", |
|
|
1982 |
"model_name": "LayoutModel", |
|
|
1983 |
"model_module_version": "1.2.0", |
|
|
1984 |
"state": { |
|
|
1985 |
"_model_module": "@jupyter-widgets/base", |
|
|
1986 |
"_model_module_version": "1.2.0", |
|
|
1987 |
"_model_name": "LayoutModel", |
|
|
1988 |
"_view_count": null, |
|
|
1989 |
"_view_module": "@jupyter-widgets/base", |
|
|
1990 |
"_view_module_version": "1.2.0", |
|
|
1991 |
"_view_name": "LayoutView", |
|
|
1992 |
"align_content": null, |
|
|
1993 |
"align_items": null, |
|
|
1994 |
"align_self": null, |
|
|
1995 |
"border": null, |
|
|
1996 |
"bottom": null, |
|
|
1997 |
"display": null, |
|
|
1998 |
"flex": null, |
|
|
1999 |
"flex_flow": null, |
|
|
2000 |
"grid_area": null, |
|
|
2001 |
"grid_auto_columns": null, |
|
|
2002 |
"grid_auto_flow": null, |
|
|
2003 |
"grid_auto_rows": null, |
|
|
2004 |
"grid_column": null, |
|
|
2005 |
"grid_gap": null, |
|
|
2006 |
"grid_row": null, |
|
|
2007 |
"grid_template_areas": null, |
|
|
2008 |
"grid_template_columns": null, |
|
|
2009 |
"grid_template_rows": null, |
|
|
2010 |
"height": null, |
|
|
2011 |
"justify_content": null, |
|
|
2012 |
"justify_items": null, |
|
|
2013 |
"left": null, |
|
|
2014 |
"margin": null, |
|
|
2015 |
"max_height": null, |
|
|
2016 |
"max_width": null, |
|
|
2017 |
"min_height": null, |
|
|
2018 |
"min_width": null, |
|
|
2019 |
"object_fit": null, |
|
|
2020 |
"object_position": null, |
|
|
2021 |
"order": null, |
|
|
2022 |
"overflow": null, |
|
|
2023 |
"overflow_x": null, |
|
|
2024 |
"overflow_y": null, |
|
|
2025 |
"padding": null, |
|
|
2026 |
"right": null, |
|
|
2027 |
"top": null, |
|
|
2028 |
"visibility": null, |
|
|
2029 |
"width": null |
|
|
2030 |
} |
|
|
2031 |
}, |
|
|
2032 |
"4a1ea4cd642b437db3abb2ff39c19563": { |
|
|
2033 |
"model_module": "@jupyter-widgets/base", |
|
|
2034 |
"model_name": "LayoutModel", |
|
|
2035 |
"model_module_version": "1.2.0", |
|
|
2036 |
"state": { |
|
|
2037 |
"_model_module": "@jupyter-widgets/base", |
|
|
2038 |
"_model_module_version": "1.2.0", |
|
|
2039 |
"_model_name": "LayoutModel", |
|
|
2040 |
"_view_count": null, |
|
|
2041 |
"_view_module": "@jupyter-widgets/base", |
|
|
2042 |
"_view_module_version": "1.2.0", |
|
|
2043 |
"_view_name": "LayoutView", |
|
|
2044 |
"align_content": null, |
|
|
2045 |
"align_items": null, |
|
|
2046 |
"align_self": null, |
|
|
2047 |
"border": null, |
|
|
2048 |
"bottom": null, |
|
|
2049 |
"display": null, |
|
|
2050 |
"flex": null, |
|
|
2051 |
"flex_flow": null, |
|
|
2052 |
"grid_area": null, |
|
|
2053 |
"grid_auto_columns": null, |
|
|
2054 |
"grid_auto_flow": null, |
|
|
2055 |
"grid_auto_rows": null, |
|
|
2056 |
"grid_column": null, |
|
|
2057 |
"grid_gap": null, |
|
|
2058 |
"grid_row": null, |
|
|
2059 |
"grid_template_areas": null, |
|
|
2060 |
"grid_template_columns": null, |
|
|
2061 |
"grid_template_rows": null, |
|
|
2062 |
"height": null, |
|
|
2063 |
"justify_content": null, |
|
|
2064 |
"justify_items": null, |
|
|
2065 |
"left": null, |
|
|
2066 |
"margin": null, |
|
|
2067 |
"max_height": null, |
|
|
2068 |
"max_width": null, |
|
|
2069 |
"min_height": null, |
|
|
2070 |
"min_width": null, |
|
|
2071 |
"object_fit": null, |
|
|
2072 |
"object_position": null, |
|
|
2073 |
"order": null, |
|
|
2074 |
"overflow": null, |
|
|
2075 |
"overflow_x": null, |
|
|
2076 |
"overflow_y": null, |
|
|
2077 |
"padding": null, |
|
|
2078 |
"right": null, |
|
|
2079 |
"top": null, |
|
|
2080 |
"visibility": null, |
|
|
2081 |
"width": null |
|
|
2082 |
} |
|
|
2083 |
}, |
|
|
2084 |
"a64e99e0c22c4bbf8e0bc70066475126": { |
|
|
2085 |
"model_module": "@jupyter-widgets/controls", |
|
|
2086 |
"model_name": "DescriptionStyleModel", |
|
|
2087 |
"model_module_version": "1.5.0", |
|
|
2088 |
"state": { |
|
|
2089 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2090 |
"_model_module_version": "1.5.0", |
|
|
2091 |
"_model_name": "DescriptionStyleModel", |
|
|
2092 |
"_view_count": null, |
|
|
2093 |
"_view_module": "@jupyter-widgets/base", |
|
|
2094 |
"_view_module_version": "1.2.0", |
|
|
2095 |
"_view_name": "StyleView", |
|
|
2096 |
"description_width": "" |
|
|
2097 |
} |
|
|
2098 |
}, |
|
|
2099 |
"e9812c0a8e814202a128fd11860b6b0e": { |
|
|
2100 |
"model_module": "@jupyter-widgets/base", |
|
|
2101 |
"model_name": "LayoutModel", |
|
|
2102 |
"model_module_version": "1.2.0", |
|
|
2103 |
"state": { |
|
|
2104 |
"_model_module": "@jupyter-widgets/base", |
|
|
2105 |
"_model_module_version": "1.2.0", |
|
|
2106 |
"_model_name": "LayoutModel", |
|
|
2107 |
"_view_count": null, |
|
|
2108 |
"_view_module": "@jupyter-widgets/base", |
|
|
2109 |
"_view_module_version": "1.2.0", |
|
|
2110 |
"_view_name": "LayoutView", |
|
|
2111 |
"align_content": null, |
|
|
2112 |
"align_items": null, |
|
|
2113 |
"align_self": null, |
|
|
2114 |
"border": null, |
|
|
2115 |
"bottom": null, |
|
|
2116 |
"display": null, |
|
|
2117 |
"flex": null, |
|
|
2118 |
"flex_flow": null, |
|
|
2119 |
"grid_area": null, |
|
|
2120 |
"grid_auto_columns": null, |
|
|
2121 |
"grid_auto_flow": null, |
|
|
2122 |
"grid_auto_rows": null, |
|
|
2123 |
"grid_column": null, |
|
|
2124 |
"grid_gap": null, |
|
|
2125 |
"grid_row": null, |
|
|
2126 |
"grid_template_areas": null, |
|
|
2127 |
"grid_template_columns": null, |
|
|
2128 |
"grid_template_rows": null, |
|
|
2129 |
"height": null, |
|
|
2130 |
"justify_content": null, |
|
|
2131 |
"justify_items": null, |
|
|
2132 |
"left": null, |
|
|
2133 |
"margin": null, |
|
|
2134 |
"max_height": null, |
|
|
2135 |
"max_width": null, |
|
|
2136 |
"min_height": null, |
|
|
2137 |
"min_width": null, |
|
|
2138 |
"object_fit": null, |
|
|
2139 |
"object_position": null, |
|
|
2140 |
"order": null, |
|
|
2141 |
"overflow": null, |
|
|
2142 |
"overflow_x": null, |
|
|
2143 |
"overflow_y": null, |
|
|
2144 |
"padding": null, |
|
|
2145 |
"right": null, |
|
|
2146 |
"top": null, |
|
|
2147 |
"visibility": null, |
|
|
2148 |
"width": null |
|
|
2149 |
} |
|
|
2150 |
}, |
|
|
2151 |
"66179fda56844c47bb5a2207744370cb": { |
|
|
2152 |
"model_module": "@jupyter-widgets/controls", |
|
|
2153 |
"model_name": "ProgressStyleModel", |
|
|
2154 |
"model_module_version": "1.5.0", |
|
|
2155 |
"state": { |
|
|
2156 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2157 |
"_model_module_version": "1.5.0", |
|
|
2158 |
"_model_name": "ProgressStyleModel", |
|
|
2159 |
"_view_count": null, |
|
|
2160 |
"_view_module": "@jupyter-widgets/base", |
|
|
2161 |
"_view_module_version": "1.2.0", |
|
|
2162 |
"_view_name": "StyleView", |
|
|
2163 |
"bar_color": null, |
|
|
2164 |
"description_width": "" |
|
|
2165 |
} |
|
|
2166 |
}, |
|
|
2167 |
"e9eada4508064f3bb063b0640dc04224": { |
|
|
2168 |
"model_module": "@jupyter-widgets/base", |
|
|
2169 |
"model_name": "LayoutModel", |
|
|
2170 |
"model_module_version": "1.2.0", |
|
|
2171 |
"state": { |
|
|
2172 |
"_model_module": "@jupyter-widgets/base", |
|
|
2173 |
"_model_module_version": "1.2.0", |
|
|
2174 |
"_model_name": "LayoutModel", |
|
|
2175 |
"_view_count": null, |
|
|
2176 |
"_view_module": "@jupyter-widgets/base", |
|
|
2177 |
"_view_module_version": "1.2.0", |
|
|
2178 |
"_view_name": "LayoutView", |
|
|
2179 |
"align_content": null, |
|
|
2180 |
"align_items": null, |
|
|
2181 |
"align_self": null, |
|
|
2182 |
"border": null, |
|
|
2183 |
"bottom": null, |
|
|
2184 |
"display": null, |
|
|
2185 |
"flex": null, |
|
|
2186 |
"flex_flow": null, |
|
|
2187 |
"grid_area": null, |
|
|
2188 |
"grid_auto_columns": null, |
|
|
2189 |
"grid_auto_flow": null, |
|
|
2190 |
"grid_auto_rows": null, |
|
|
2191 |
"grid_column": null, |
|
|
2192 |
"grid_gap": null, |
|
|
2193 |
"grid_row": null, |
|
|
2194 |
"grid_template_areas": null, |
|
|
2195 |
"grid_template_columns": null, |
|
|
2196 |
"grid_template_rows": null, |
|
|
2197 |
"height": null, |
|
|
2198 |
"justify_content": null, |
|
|
2199 |
"justify_items": null, |
|
|
2200 |
"left": null, |
|
|
2201 |
"margin": null, |
|
|
2202 |
"max_height": null, |
|
|
2203 |
"max_width": null, |
|
|
2204 |
"min_height": null, |
|
|
2205 |
"min_width": null, |
|
|
2206 |
"object_fit": null, |
|
|
2207 |
"object_position": null, |
|
|
2208 |
"order": null, |
|
|
2209 |
"overflow": null, |
|
|
2210 |
"overflow_x": null, |
|
|
2211 |
"overflow_y": null, |
|
|
2212 |
"padding": null, |
|
|
2213 |
"right": null, |
|
|
2214 |
"top": null, |
|
|
2215 |
"visibility": null, |
|
|
2216 |
"width": null |
|
|
2217 |
} |
|
|
2218 |
}, |
|
|
2219 |
"1e1cad4d3d3c4612a158551589b5be1e": { |
|
|
2220 |
"model_module": "@jupyter-widgets/controls", |
|
|
2221 |
"model_name": "DescriptionStyleModel", |
|
|
2222 |
"model_module_version": "1.5.0", |
|
|
2223 |
"state": { |
|
|
2224 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2225 |
"_model_module_version": "1.5.0", |
|
|
2226 |
"_model_name": "DescriptionStyleModel", |
|
|
2227 |
"_view_count": null, |
|
|
2228 |
"_view_module": "@jupyter-widgets/base", |
|
|
2229 |
"_view_module_version": "1.2.0", |
|
|
2230 |
"_view_name": "StyleView", |
|
|
2231 |
"description_width": "" |
|
|
2232 |
} |
|
|
2233 |
}, |
|
|
2234 |
"1dfa05dc7e56420ab071392e802eb233": { |
|
|
2235 |
"model_module": "@jupyter-widgets/controls", |
|
|
2236 |
"model_name": "HBoxModel", |
|
|
2237 |
"model_module_version": "1.5.0", |
|
|
2238 |
"state": { |
|
|
2239 |
"_dom_classes": [], |
|
|
2240 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2241 |
"_model_module_version": "1.5.0", |
|
|
2242 |
"_model_name": "HBoxModel", |
|
|
2243 |
"_view_count": null, |
|
|
2244 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2245 |
"_view_module_version": "1.5.0", |
|
|
2246 |
"_view_name": "HBoxView", |
|
|
2247 |
"box_style": "", |
|
|
2248 |
"children": [ |
|
|
2249 |
"IPY_MODEL_bee09a78cbb24fd0b8d5edf7f48d2b1e", |
|
|
2250 |
"IPY_MODEL_0153b850366f4f798ef485268e62c775", |
|
|
2251 |
"IPY_MODEL_1a6a1710ac1e468685ec3ac850fbe225" |
|
|
2252 |
], |
|
|
2253 |
"layout": "IPY_MODEL_4e44198b265744ad954ad5c71238284a" |
|
|
2254 |
} |
|
|
2255 |
}, |
|
|
2256 |
"bee09a78cbb24fd0b8d5edf7f48d2b1e": { |
|
|
2257 |
"model_module": "@jupyter-widgets/controls", |
|
|
2258 |
"model_name": "HTMLModel", |
|
|
2259 |
"model_module_version": "1.5.0", |
|
|
2260 |
"state": { |
|
|
2261 |
"_dom_classes": [], |
|
|
2262 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2263 |
"_model_module_version": "1.5.0", |
|
|
2264 |
"_model_name": "HTMLModel", |
|
|
2265 |
"_view_count": null, |
|
|
2266 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2267 |
"_view_module_version": "1.5.0", |
|
|
2268 |
"_view_name": "HTMLView", |
|
|
2269 |
"description": "", |
|
|
2270 |
"description_tooltip": null, |
|
|
2271 |
"layout": "IPY_MODEL_f5b0ed4646f84e9293198e8a78823f0d", |
|
|
2272 |
"placeholder": "", |
|
|
2273 |
"style": "IPY_MODEL_41196d3b7ebb4b3e81ab190be3efdc0f", |
|
|
2274 |
"value": "tokenizer_config.json: 100%" |
|
|
2275 |
} |
|
|
2276 |
}, |
|
|
2277 |
"0153b850366f4f798ef485268e62c775": { |
|
|
2278 |
"model_module": "@jupyter-widgets/controls", |
|
|
2279 |
"model_name": "FloatProgressModel", |
|
|
2280 |
"model_module_version": "1.5.0", |
|
|
2281 |
"state": { |
|
|
2282 |
"_dom_classes": [], |
|
|
2283 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2284 |
"_model_module_version": "1.5.0", |
|
|
2285 |
"_model_name": "FloatProgressModel", |
|
|
2286 |
"_view_count": null, |
|
|
2287 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2288 |
"_view_module_version": "1.5.0", |
|
|
2289 |
"_view_name": "ProgressView", |
|
|
2290 |
"bar_style": "success", |
|
|
2291 |
"description": "", |
|
|
2292 |
"description_tooltip": null, |
|
|
2293 |
"layout": "IPY_MODEL_f9a52bdb2e6d4da49c4a79982aae354f", |
|
|
2294 |
"max": 54598, |
|
|
2295 |
"min": 0, |
|
|
2296 |
"orientation": "horizontal", |
|
|
2297 |
"style": "IPY_MODEL_1a3bd31d499741e398d964904a9e636d", |
|
|
2298 |
"value": 54598 |
|
|
2299 |
} |
|
|
2300 |
}, |
|
|
2301 |
"1a6a1710ac1e468685ec3ac850fbe225": { |
|
|
2302 |
"model_module": "@jupyter-widgets/controls", |
|
|
2303 |
"model_name": "HTMLModel", |
|
|
2304 |
"model_module_version": "1.5.0", |
|
|
2305 |
"state": { |
|
|
2306 |
"_dom_classes": [], |
|
|
2307 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2308 |
"_model_module_version": "1.5.0", |
|
|
2309 |
"_model_name": "HTMLModel", |
|
|
2310 |
"_view_count": null, |
|
|
2311 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2312 |
"_view_module_version": "1.5.0", |
|
|
2313 |
"_view_name": "HTMLView", |
|
|
2314 |
"description": "", |
|
|
2315 |
"description_tooltip": null, |
|
|
2316 |
"layout": "IPY_MODEL_b47a9aebb5b447b282f0b29607bee5d3", |
|
|
2317 |
"placeholder": "", |
|
|
2318 |
"style": "IPY_MODEL_3d87f57ad8bf4d6b8da431d141f31218", |
|
|
2319 |
"value": " 54.6k/54.6k [00:00<00:00, 3.60MB/s]" |
|
|
2320 |
} |
|
|
2321 |
}, |
|
|
2322 |
"4e44198b265744ad954ad5c71238284a": { |
|
|
2323 |
"model_module": "@jupyter-widgets/base", |
|
|
2324 |
"model_name": "LayoutModel", |
|
|
2325 |
"model_module_version": "1.2.0", |
|
|
2326 |
"state": { |
|
|
2327 |
"_model_module": "@jupyter-widgets/base", |
|
|
2328 |
"_model_module_version": "1.2.0", |
|
|
2329 |
"_model_name": "LayoutModel", |
|
|
2330 |
"_view_count": null, |
|
|
2331 |
"_view_module": "@jupyter-widgets/base", |
|
|
2332 |
"_view_module_version": "1.2.0", |
|
|
2333 |
"_view_name": "LayoutView", |
|
|
2334 |
"align_content": null, |
|
|
2335 |
"align_items": null, |
|
|
2336 |
"align_self": null, |
|
|
2337 |
"border": null, |
|
|
2338 |
"bottom": null, |
|
|
2339 |
"display": null, |
|
|
2340 |
"flex": null, |
|
|
2341 |
"flex_flow": null, |
|
|
2342 |
"grid_area": null, |
|
|
2343 |
"grid_auto_columns": null, |
|
|
2344 |
"grid_auto_flow": null, |
|
|
2345 |
"grid_auto_rows": null, |
|
|
2346 |
"grid_column": null, |
|
|
2347 |
"grid_gap": null, |
|
|
2348 |
"grid_row": null, |
|
|
2349 |
"grid_template_areas": null, |
|
|
2350 |
"grid_template_columns": null, |
|
|
2351 |
"grid_template_rows": null, |
|
|
2352 |
"height": null, |
|
|
2353 |
"justify_content": null, |
|
|
2354 |
"justify_items": null, |
|
|
2355 |
"left": null, |
|
|
2356 |
"margin": null, |
|
|
2357 |
"max_height": null, |
|
|
2358 |
"max_width": null, |
|
|
2359 |
"min_height": null, |
|
|
2360 |
"min_width": null, |
|
|
2361 |
"object_fit": null, |
|
|
2362 |
"object_position": null, |
|
|
2363 |
"order": null, |
|
|
2364 |
"overflow": null, |
|
|
2365 |
"overflow_x": null, |
|
|
2366 |
"overflow_y": null, |
|
|
2367 |
"padding": null, |
|
|
2368 |
"right": null, |
|
|
2369 |
"top": null, |
|
|
2370 |
"visibility": null, |
|
|
2371 |
"width": null |
|
|
2372 |
} |
|
|
2373 |
}, |
|
|
2374 |
"f5b0ed4646f84e9293198e8a78823f0d": { |
|
|
2375 |
"model_module": "@jupyter-widgets/base", |
|
|
2376 |
"model_name": "LayoutModel", |
|
|
2377 |
"model_module_version": "1.2.0", |
|
|
2378 |
"state": { |
|
|
2379 |
"_model_module": "@jupyter-widgets/base", |
|
|
2380 |
"_model_module_version": "1.2.0", |
|
|
2381 |
"_model_name": "LayoutModel", |
|
|
2382 |
"_view_count": null, |
|
|
2383 |
"_view_module": "@jupyter-widgets/base", |
|
|
2384 |
"_view_module_version": "1.2.0", |
|
|
2385 |
"_view_name": "LayoutView", |
|
|
2386 |
"align_content": null, |
|
|
2387 |
"align_items": null, |
|
|
2388 |
"align_self": null, |
|
|
2389 |
"border": null, |
|
|
2390 |
"bottom": null, |
|
|
2391 |
"display": null, |
|
|
2392 |
"flex": null, |
|
|
2393 |
"flex_flow": null, |
|
|
2394 |
"grid_area": null, |
|
|
2395 |
"grid_auto_columns": null, |
|
|
2396 |
"grid_auto_flow": null, |
|
|
2397 |
"grid_auto_rows": null, |
|
|
2398 |
"grid_column": null, |
|
|
2399 |
"grid_gap": null, |
|
|
2400 |
"grid_row": null, |
|
|
2401 |
"grid_template_areas": null, |
|
|
2402 |
"grid_template_columns": null, |
|
|
2403 |
"grid_template_rows": null, |
|
|
2404 |
"height": null, |
|
|
2405 |
"justify_content": null, |
|
|
2406 |
"justify_items": null, |
|
|
2407 |
"left": null, |
|
|
2408 |
"margin": null, |
|
|
2409 |
"max_height": null, |
|
|
2410 |
"max_width": null, |
|
|
2411 |
"min_height": null, |
|
|
2412 |
"min_width": null, |
|
|
2413 |
"object_fit": null, |
|
|
2414 |
"object_position": null, |
|
|
2415 |
"order": null, |
|
|
2416 |
"overflow": null, |
|
|
2417 |
"overflow_x": null, |
|
|
2418 |
"overflow_y": null, |
|
|
2419 |
"padding": null, |
|
|
2420 |
"right": null, |
|
|
2421 |
"top": null, |
|
|
2422 |
"visibility": null, |
|
|
2423 |
"width": null |
|
|
2424 |
} |
|
|
2425 |
}, |
|
|
2426 |
"41196d3b7ebb4b3e81ab190be3efdc0f": { |
|
|
2427 |
"model_module": "@jupyter-widgets/controls", |
|
|
2428 |
"model_name": "DescriptionStyleModel", |
|
|
2429 |
"model_module_version": "1.5.0", |
|
|
2430 |
"state": { |
|
|
2431 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2432 |
"_model_module_version": "1.5.0", |
|
|
2433 |
"_model_name": "DescriptionStyleModel", |
|
|
2434 |
"_view_count": null, |
|
|
2435 |
"_view_module": "@jupyter-widgets/base", |
|
|
2436 |
"_view_module_version": "1.2.0", |
|
|
2437 |
"_view_name": "StyleView", |
|
|
2438 |
"description_width": "" |
|
|
2439 |
} |
|
|
2440 |
}, |
|
|
2441 |
"f9a52bdb2e6d4da49c4a79982aae354f": { |
|
|
2442 |
"model_module": "@jupyter-widgets/base", |
|
|
2443 |
"model_name": "LayoutModel", |
|
|
2444 |
"model_module_version": "1.2.0", |
|
|
2445 |
"state": { |
|
|
2446 |
"_model_module": "@jupyter-widgets/base", |
|
|
2447 |
"_model_module_version": "1.2.0", |
|
|
2448 |
"_model_name": "LayoutModel", |
|
|
2449 |
"_view_count": null, |
|
|
2450 |
"_view_module": "@jupyter-widgets/base", |
|
|
2451 |
"_view_module_version": "1.2.0", |
|
|
2452 |
"_view_name": "LayoutView", |
|
|
2453 |
"align_content": null, |
|
|
2454 |
"align_items": null, |
|
|
2455 |
"align_self": null, |
|
|
2456 |
"border": null, |
|
|
2457 |
"bottom": null, |
|
|
2458 |
"display": null, |
|
|
2459 |
"flex": null, |
|
|
2460 |
"flex_flow": null, |
|
|
2461 |
"grid_area": null, |
|
|
2462 |
"grid_auto_columns": null, |
|
|
2463 |
"grid_auto_flow": null, |
|
|
2464 |
"grid_auto_rows": null, |
|
|
2465 |
"grid_column": null, |
|
|
2466 |
"grid_gap": null, |
|
|
2467 |
"grid_row": null, |
|
|
2468 |
"grid_template_areas": null, |
|
|
2469 |
"grid_template_columns": null, |
|
|
2470 |
"grid_template_rows": null, |
|
|
2471 |
"height": null, |
|
|
2472 |
"justify_content": null, |
|
|
2473 |
"justify_items": null, |
|
|
2474 |
"left": null, |
|
|
2475 |
"margin": null, |
|
|
2476 |
"max_height": null, |
|
|
2477 |
"max_width": null, |
|
|
2478 |
"min_height": null, |
|
|
2479 |
"min_width": null, |
|
|
2480 |
"object_fit": null, |
|
|
2481 |
"object_position": null, |
|
|
2482 |
"order": null, |
|
|
2483 |
"overflow": null, |
|
|
2484 |
"overflow_x": null, |
|
|
2485 |
"overflow_y": null, |
|
|
2486 |
"padding": null, |
|
|
2487 |
"right": null, |
|
|
2488 |
"top": null, |
|
|
2489 |
"visibility": null, |
|
|
2490 |
"width": null |
|
|
2491 |
} |
|
|
2492 |
}, |
|
|
2493 |
"1a3bd31d499741e398d964904a9e636d": { |
|
|
2494 |
"model_module": "@jupyter-widgets/controls", |
|
|
2495 |
"model_name": "ProgressStyleModel", |
|
|
2496 |
"model_module_version": "1.5.0", |
|
|
2497 |
"state": { |
|
|
2498 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2499 |
"_model_module_version": "1.5.0", |
|
|
2500 |
"_model_name": "ProgressStyleModel", |
|
|
2501 |
"_view_count": null, |
|
|
2502 |
"_view_module": "@jupyter-widgets/base", |
|
|
2503 |
"_view_module_version": "1.2.0", |
|
|
2504 |
"_view_name": "StyleView", |
|
|
2505 |
"bar_color": null, |
|
|
2506 |
"description_width": "" |
|
|
2507 |
} |
|
|
2508 |
}, |
|
|
2509 |
"b47a9aebb5b447b282f0b29607bee5d3": { |
|
|
2510 |
"model_module": "@jupyter-widgets/base", |
|
|
2511 |
"model_name": "LayoutModel", |
|
|
2512 |
"model_module_version": "1.2.0", |
|
|
2513 |
"state": { |
|
|
2514 |
"_model_module": "@jupyter-widgets/base", |
|
|
2515 |
"_model_module_version": "1.2.0", |
|
|
2516 |
"_model_name": "LayoutModel", |
|
|
2517 |
"_view_count": null, |
|
|
2518 |
"_view_module": "@jupyter-widgets/base", |
|
|
2519 |
"_view_module_version": "1.2.0", |
|
|
2520 |
"_view_name": "LayoutView", |
|
|
2521 |
"align_content": null, |
|
|
2522 |
"align_items": null, |
|
|
2523 |
"align_self": null, |
|
|
2524 |
"border": null, |
|
|
2525 |
"bottom": null, |
|
|
2526 |
"display": null, |
|
|
2527 |
"flex": null, |
|
|
2528 |
"flex_flow": null, |
|
|
2529 |
"grid_area": null, |
|
|
2530 |
"grid_auto_columns": null, |
|
|
2531 |
"grid_auto_flow": null, |
|
|
2532 |
"grid_auto_rows": null, |
|
|
2533 |
"grid_column": null, |
|
|
2534 |
"grid_gap": null, |
|
|
2535 |
"grid_row": null, |
|
|
2536 |
"grid_template_areas": null, |
|
|
2537 |
"grid_template_columns": null, |
|
|
2538 |
"grid_template_rows": null, |
|
|
2539 |
"height": null, |
|
|
2540 |
"justify_content": null, |
|
|
2541 |
"justify_items": null, |
|
|
2542 |
"left": null, |
|
|
2543 |
"margin": null, |
|
|
2544 |
"max_height": null, |
|
|
2545 |
"max_width": null, |
|
|
2546 |
"min_height": null, |
|
|
2547 |
"min_width": null, |
|
|
2548 |
"object_fit": null, |
|
|
2549 |
"object_position": null, |
|
|
2550 |
"order": null, |
|
|
2551 |
"overflow": null, |
|
|
2552 |
"overflow_x": null, |
|
|
2553 |
"overflow_y": null, |
|
|
2554 |
"padding": null, |
|
|
2555 |
"right": null, |
|
|
2556 |
"top": null, |
|
|
2557 |
"visibility": null, |
|
|
2558 |
"width": null |
|
|
2559 |
} |
|
|
2560 |
}, |
|
|
2561 |
"3d87f57ad8bf4d6b8da431d141f31218": { |
|
|
2562 |
"model_module": "@jupyter-widgets/controls", |
|
|
2563 |
"model_name": "DescriptionStyleModel", |
|
|
2564 |
"model_module_version": "1.5.0", |
|
|
2565 |
"state": { |
|
|
2566 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2567 |
"_model_module_version": "1.5.0", |
|
|
2568 |
"_model_name": "DescriptionStyleModel", |
|
|
2569 |
"_view_count": null, |
|
|
2570 |
"_view_module": "@jupyter-widgets/base", |
|
|
2571 |
"_view_module_version": "1.2.0", |
|
|
2572 |
"_view_name": "StyleView", |
|
|
2573 |
"description_width": "" |
|
|
2574 |
} |
|
|
2575 |
}, |
|
|
2576 |
"b84a3a5d44a9417aa3c2ad089edb962f": { |
|
|
2577 |
"model_module": "@jupyter-widgets/controls", |
|
|
2578 |
"model_name": "HBoxModel", |
|
|
2579 |
"model_module_version": "1.5.0", |
|
|
2580 |
"state": { |
|
|
2581 |
"_dom_classes": [], |
|
|
2582 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2583 |
"_model_module_version": "1.5.0", |
|
|
2584 |
"_model_name": "HBoxModel", |
|
|
2585 |
"_view_count": null, |
|
|
2586 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2587 |
"_view_module_version": "1.5.0", |
|
|
2588 |
"_view_name": "HBoxView", |
|
|
2589 |
"box_style": "", |
|
|
2590 |
"children": [ |
|
|
2591 |
"IPY_MODEL_1fbe9f9d35d64921b567119369591fa5", |
|
|
2592 |
"IPY_MODEL_a8126f821b164a99a0b5514ab8d8b513", |
|
|
2593 |
"IPY_MODEL_e33feef2505d45f7bbfd8f2a73b07b1a" |
|
|
2594 |
], |
|
|
2595 |
"layout": "IPY_MODEL_0a1843983b5c4744a7ef148a72dd06d5" |
|
|
2596 |
} |
|
|
2597 |
}, |
|
|
2598 |
"1fbe9f9d35d64921b567119369591fa5": { |
|
|
2599 |
"model_module": "@jupyter-widgets/controls", |
|
|
2600 |
"model_name": "HTMLModel", |
|
|
2601 |
"model_module_version": "1.5.0", |
|
|
2602 |
"state": { |
|
|
2603 |
"_dom_classes": [], |
|
|
2604 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2605 |
"_model_module_version": "1.5.0", |
|
|
2606 |
"_model_name": "HTMLModel", |
|
|
2607 |
"_view_count": null, |
|
|
2608 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2609 |
"_view_module_version": "1.5.0", |
|
|
2610 |
"_view_name": "HTMLView", |
|
|
2611 |
"description": "", |
|
|
2612 |
"description_tooltip": null, |
|
|
2613 |
"layout": "IPY_MODEL_e2235493048f44bbb957c5680a2c48e7", |
|
|
2614 |
"placeholder": "", |
|
|
2615 |
"style": "IPY_MODEL_5959983c01fb4cbbb45a76d729beef52", |
|
|
2616 |
"value": "tokenizer.json: 100%" |
|
|
2617 |
} |
|
|
2618 |
}, |
|
|
2619 |
"a8126f821b164a99a0b5514ab8d8b513": { |
|
|
2620 |
"model_module": "@jupyter-widgets/controls", |
|
|
2621 |
"model_name": "FloatProgressModel", |
|
|
2622 |
"model_module_version": "1.5.0", |
|
|
2623 |
"state": { |
|
|
2624 |
"_dom_classes": [], |
|
|
2625 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2626 |
"_model_module_version": "1.5.0", |
|
|
2627 |
"_model_name": "FloatProgressModel", |
|
|
2628 |
"_view_count": null, |
|
|
2629 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2630 |
"_view_module_version": "1.5.0", |
|
|
2631 |
"_view_name": "ProgressView", |
|
|
2632 |
"bar_style": "success", |
|
|
2633 |
"description": "", |
|
|
2634 |
"description_tooltip": null, |
|
|
2635 |
"layout": "IPY_MODEL_5fa9619b96274aa795dff3a5906992d2", |
|
|
2636 |
"max": 9085657, |
|
|
2637 |
"min": 0, |
|
|
2638 |
"orientation": "horizontal", |
|
|
2639 |
"style": "IPY_MODEL_1a6c2123525f4ba9bb9967165c06a4a9", |
|
|
2640 |
"value": 9085657 |
|
|
2641 |
} |
|
|
2642 |
}, |
|
|
2643 |
"e33feef2505d45f7bbfd8f2a73b07b1a": { |
|
|
2644 |
"model_module": "@jupyter-widgets/controls", |
|
|
2645 |
"model_name": "HTMLModel", |
|
|
2646 |
"model_module_version": "1.5.0", |
|
|
2647 |
"state": { |
|
|
2648 |
"_dom_classes": [], |
|
|
2649 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2650 |
"_model_module_version": "1.5.0", |
|
|
2651 |
"_model_name": "HTMLModel", |
|
|
2652 |
"_view_count": null, |
|
|
2653 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2654 |
"_view_module_version": "1.5.0", |
|
|
2655 |
"_view_name": "HTMLView", |
|
|
2656 |
"description": "", |
|
|
2657 |
"description_tooltip": null, |
|
|
2658 |
"layout": "IPY_MODEL_8301a8f379af4ba8bfbe8e4b7a2eb812", |
|
|
2659 |
"placeholder": "", |
|
|
2660 |
"style": "IPY_MODEL_0ee49d6c54594cd7a5f4d9bdfe4c8a5c", |
|
|
2661 |
"value": " 9.09M/9.09M [00:00<00:00, 39.5MB/s]" |
|
|
2662 |
} |
|
|
2663 |
}, |
|
|
2664 |
"0a1843983b5c4744a7ef148a72dd06d5": { |
|
|
2665 |
"model_module": "@jupyter-widgets/base", |
|
|
2666 |
"model_name": "LayoutModel", |
|
|
2667 |
"model_module_version": "1.2.0", |
|
|
2668 |
"state": { |
|
|
2669 |
"_model_module": "@jupyter-widgets/base", |
|
|
2670 |
"_model_module_version": "1.2.0", |
|
|
2671 |
"_model_name": "LayoutModel", |
|
|
2672 |
"_view_count": null, |
|
|
2673 |
"_view_module": "@jupyter-widgets/base", |
|
|
2674 |
"_view_module_version": "1.2.0", |
|
|
2675 |
"_view_name": "LayoutView", |
|
|
2676 |
"align_content": null, |
|
|
2677 |
"align_items": null, |
|
|
2678 |
"align_self": null, |
|
|
2679 |
"border": null, |
|
|
2680 |
"bottom": null, |
|
|
2681 |
"display": null, |
|
|
2682 |
"flex": null, |
|
|
2683 |
"flex_flow": null, |
|
|
2684 |
"grid_area": null, |
|
|
2685 |
"grid_auto_columns": null, |
|
|
2686 |
"grid_auto_flow": null, |
|
|
2687 |
"grid_auto_rows": null, |
|
|
2688 |
"grid_column": null, |
|
|
2689 |
"grid_gap": null, |
|
|
2690 |
"grid_row": null, |
|
|
2691 |
"grid_template_areas": null, |
|
|
2692 |
"grid_template_columns": null, |
|
|
2693 |
"grid_template_rows": null, |
|
|
2694 |
"height": null, |
|
|
2695 |
"justify_content": null, |
|
|
2696 |
"justify_items": null, |
|
|
2697 |
"left": null, |
|
|
2698 |
"margin": null, |
|
|
2699 |
"max_height": null, |
|
|
2700 |
"max_width": null, |
|
|
2701 |
"min_height": null, |
|
|
2702 |
"min_width": null, |
|
|
2703 |
"object_fit": null, |
|
|
2704 |
"object_position": null, |
|
|
2705 |
"order": null, |
|
|
2706 |
"overflow": null, |
|
|
2707 |
"overflow_x": null, |
|
|
2708 |
"overflow_y": null, |
|
|
2709 |
"padding": null, |
|
|
2710 |
"right": null, |
|
|
2711 |
"top": null, |
|
|
2712 |
"visibility": null, |
|
|
2713 |
"width": null |
|
|
2714 |
} |
|
|
2715 |
}, |
|
|
2716 |
"e2235493048f44bbb957c5680a2c48e7": { |
|
|
2717 |
"model_module": "@jupyter-widgets/base", |
|
|
2718 |
"model_name": "LayoutModel", |
|
|
2719 |
"model_module_version": "1.2.0", |
|
|
2720 |
"state": { |
|
|
2721 |
"_model_module": "@jupyter-widgets/base", |
|
|
2722 |
"_model_module_version": "1.2.0", |
|
|
2723 |
"_model_name": "LayoutModel", |
|
|
2724 |
"_view_count": null, |
|
|
2725 |
"_view_module": "@jupyter-widgets/base", |
|
|
2726 |
"_view_module_version": "1.2.0", |
|
|
2727 |
"_view_name": "LayoutView", |
|
|
2728 |
"align_content": null, |
|
|
2729 |
"align_items": null, |
|
|
2730 |
"align_self": null, |
|
|
2731 |
"border": null, |
|
|
2732 |
"bottom": null, |
|
|
2733 |
"display": null, |
|
|
2734 |
"flex": null, |
|
|
2735 |
"flex_flow": null, |
|
|
2736 |
"grid_area": null, |
|
|
2737 |
"grid_auto_columns": null, |
|
|
2738 |
"grid_auto_flow": null, |
|
|
2739 |
"grid_auto_rows": null, |
|
|
2740 |
"grid_column": null, |
|
|
2741 |
"grid_gap": null, |
|
|
2742 |
"grid_row": null, |
|
|
2743 |
"grid_template_areas": null, |
|
|
2744 |
"grid_template_columns": null, |
|
|
2745 |
"grid_template_rows": null, |
|
|
2746 |
"height": null, |
|
|
2747 |
"justify_content": null, |
|
|
2748 |
"justify_items": null, |
|
|
2749 |
"left": null, |
|
|
2750 |
"margin": null, |
|
|
2751 |
"max_height": null, |
|
|
2752 |
"max_width": null, |
|
|
2753 |
"min_height": null, |
|
|
2754 |
"min_width": null, |
|
|
2755 |
"object_fit": null, |
|
|
2756 |
"object_position": null, |
|
|
2757 |
"order": null, |
|
|
2758 |
"overflow": null, |
|
|
2759 |
"overflow_x": null, |
|
|
2760 |
"overflow_y": null, |
|
|
2761 |
"padding": null, |
|
|
2762 |
"right": null, |
|
|
2763 |
"top": null, |
|
|
2764 |
"visibility": null, |
|
|
2765 |
"width": null |
|
|
2766 |
} |
|
|
2767 |
}, |
|
|
2768 |
"5959983c01fb4cbbb45a76d729beef52": { |
|
|
2769 |
"model_module": "@jupyter-widgets/controls", |
|
|
2770 |
"model_name": "DescriptionStyleModel", |
|
|
2771 |
"model_module_version": "1.5.0", |
|
|
2772 |
"state": { |
|
|
2773 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2774 |
"_model_module_version": "1.5.0", |
|
|
2775 |
"_model_name": "DescriptionStyleModel", |
|
|
2776 |
"_view_count": null, |
|
|
2777 |
"_view_module": "@jupyter-widgets/base", |
|
|
2778 |
"_view_module_version": "1.2.0", |
|
|
2779 |
"_view_name": "StyleView", |
|
|
2780 |
"description_width": "" |
|
|
2781 |
} |
|
|
2782 |
}, |
|
|
2783 |
"5fa9619b96274aa795dff3a5906992d2": { |
|
|
2784 |
"model_module": "@jupyter-widgets/base", |
|
|
2785 |
"model_name": "LayoutModel", |
|
|
2786 |
"model_module_version": "1.2.0", |
|
|
2787 |
"state": { |
|
|
2788 |
"_model_module": "@jupyter-widgets/base", |
|
|
2789 |
"_model_module_version": "1.2.0", |
|
|
2790 |
"_model_name": "LayoutModel", |
|
|
2791 |
"_view_count": null, |
|
|
2792 |
"_view_module": "@jupyter-widgets/base", |
|
|
2793 |
"_view_module_version": "1.2.0", |
|
|
2794 |
"_view_name": "LayoutView", |
|
|
2795 |
"align_content": null, |
|
|
2796 |
"align_items": null, |
|
|
2797 |
"align_self": null, |
|
|
2798 |
"border": null, |
|
|
2799 |
"bottom": null, |
|
|
2800 |
"display": null, |
|
|
2801 |
"flex": null, |
|
|
2802 |
"flex_flow": null, |
|
|
2803 |
"grid_area": null, |
|
|
2804 |
"grid_auto_columns": null, |
|
|
2805 |
"grid_auto_flow": null, |
|
|
2806 |
"grid_auto_rows": null, |
|
|
2807 |
"grid_column": null, |
|
|
2808 |
"grid_gap": null, |
|
|
2809 |
"grid_row": null, |
|
|
2810 |
"grid_template_areas": null, |
|
|
2811 |
"grid_template_columns": null, |
|
|
2812 |
"grid_template_rows": null, |
|
|
2813 |
"height": null, |
|
|
2814 |
"justify_content": null, |
|
|
2815 |
"justify_items": null, |
|
|
2816 |
"left": null, |
|
|
2817 |
"margin": null, |
|
|
2818 |
"max_height": null, |
|
|
2819 |
"max_width": null, |
|
|
2820 |
"min_height": null, |
|
|
2821 |
"min_width": null, |
|
|
2822 |
"object_fit": null, |
|
|
2823 |
"object_position": null, |
|
|
2824 |
"order": null, |
|
|
2825 |
"overflow": null, |
|
|
2826 |
"overflow_x": null, |
|
|
2827 |
"overflow_y": null, |
|
|
2828 |
"padding": null, |
|
|
2829 |
"right": null, |
|
|
2830 |
"top": null, |
|
|
2831 |
"visibility": null, |
|
|
2832 |
"width": null |
|
|
2833 |
} |
|
|
2834 |
}, |
|
|
2835 |
"1a6c2123525f4ba9bb9967165c06a4a9": { |
|
|
2836 |
"model_module": "@jupyter-widgets/controls", |
|
|
2837 |
"model_name": "ProgressStyleModel", |
|
|
2838 |
"model_module_version": "1.5.0", |
|
|
2839 |
"state": { |
|
|
2840 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2841 |
"_model_module_version": "1.5.0", |
|
|
2842 |
"_model_name": "ProgressStyleModel", |
|
|
2843 |
"_view_count": null, |
|
|
2844 |
"_view_module": "@jupyter-widgets/base", |
|
|
2845 |
"_view_module_version": "1.2.0", |
|
|
2846 |
"_view_name": "StyleView", |
|
|
2847 |
"bar_color": null, |
|
|
2848 |
"description_width": "" |
|
|
2849 |
} |
|
|
2850 |
}, |
|
|
2851 |
"8301a8f379af4ba8bfbe8e4b7a2eb812": { |
|
|
2852 |
"model_module": "@jupyter-widgets/base", |
|
|
2853 |
"model_name": "LayoutModel", |
|
|
2854 |
"model_module_version": "1.2.0", |
|
|
2855 |
"state": { |
|
|
2856 |
"_model_module": "@jupyter-widgets/base", |
|
|
2857 |
"_model_module_version": "1.2.0", |
|
|
2858 |
"_model_name": "LayoutModel", |
|
|
2859 |
"_view_count": null, |
|
|
2860 |
"_view_module": "@jupyter-widgets/base", |
|
|
2861 |
"_view_module_version": "1.2.0", |
|
|
2862 |
"_view_name": "LayoutView", |
|
|
2863 |
"align_content": null, |
|
|
2864 |
"align_items": null, |
|
|
2865 |
"align_self": null, |
|
|
2866 |
"border": null, |
|
|
2867 |
"bottom": null, |
|
|
2868 |
"display": null, |
|
|
2869 |
"flex": null, |
|
|
2870 |
"flex_flow": null, |
|
|
2871 |
"grid_area": null, |
|
|
2872 |
"grid_auto_columns": null, |
|
|
2873 |
"grid_auto_flow": null, |
|
|
2874 |
"grid_auto_rows": null, |
|
|
2875 |
"grid_column": null, |
|
|
2876 |
"grid_gap": null, |
|
|
2877 |
"grid_row": null, |
|
|
2878 |
"grid_template_areas": null, |
|
|
2879 |
"grid_template_columns": null, |
|
|
2880 |
"grid_template_rows": null, |
|
|
2881 |
"height": null, |
|
|
2882 |
"justify_content": null, |
|
|
2883 |
"justify_items": null, |
|
|
2884 |
"left": null, |
|
|
2885 |
"margin": null, |
|
|
2886 |
"max_height": null, |
|
|
2887 |
"max_width": null, |
|
|
2888 |
"min_height": null, |
|
|
2889 |
"min_width": null, |
|
|
2890 |
"object_fit": null, |
|
|
2891 |
"object_position": null, |
|
|
2892 |
"order": null, |
|
|
2893 |
"overflow": null, |
|
|
2894 |
"overflow_x": null, |
|
|
2895 |
"overflow_y": null, |
|
|
2896 |
"padding": null, |
|
|
2897 |
"right": null, |
|
|
2898 |
"top": null, |
|
|
2899 |
"visibility": null, |
|
|
2900 |
"width": null |
|
|
2901 |
} |
|
|
2902 |
}, |
|
|
2903 |
"0ee49d6c54594cd7a5f4d9bdfe4c8a5c": { |
|
|
2904 |
"model_module": "@jupyter-widgets/controls", |
|
|
2905 |
"model_name": "DescriptionStyleModel", |
|
|
2906 |
"model_module_version": "1.5.0", |
|
|
2907 |
"state": { |
|
|
2908 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2909 |
"_model_module_version": "1.5.0", |
|
|
2910 |
"_model_name": "DescriptionStyleModel", |
|
|
2911 |
"_view_count": null, |
|
|
2912 |
"_view_module": "@jupyter-widgets/base", |
|
|
2913 |
"_view_module_version": "1.2.0", |
|
|
2914 |
"_view_name": "StyleView", |
|
|
2915 |
"description_width": "" |
|
|
2916 |
} |
|
|
2917 |
}, |
|
|
2918 |
"45d7468b23d14ea99d103689c891749f": { |
|
|
2919 |
"model_module": "@jupyter-widgets/controls", |
|
|
2920 |
"model_name": "HBoxModel", |
|
|
2921 |
"model_module_version": "1.5.0", |
|
|
2922 |
"state": { |
|
|
2923 |
"_dom_classes": [], |
|
|
2924 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2925 |
"_model_module_version": "1.5.0", |
|
|
2926 |
"_model_name": "HBoxModel", |
|
|
2927 |
"_view_count": null, |
|
|
2928 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2929 |
"_view_module_version": "1.5.0", |
|
|
2930 |
"_view_name": "HBoxView", |
|
|
2931 |
"box_style": "", |
|
|
2932 |
"children": [ |
|
|
2933 |
"IPY_MODEL_432ef064af77465b9da7d059179bd705", |
|
|
2934 |
"IPY_MODEL_ba5349ad5a8344709e8924f9ba3a306b", |
|
|
2935 |
"IPY_MODEL_5acddf8d428f4a3daff2b69a0ae45446" |
|
|
2936 |
], |
|
|
2937 |
"layout": "IPY_MODEL_e5d0ac47ca4042349ceb9a23f1399bf9" |
|
|
2938 |
} |
|
|
2939 |
}, |
|
|
2940 |
"432ef064af77465b9da7d059179bd705": { |
|
|
2941 |
"model_module": "@jupyter-widgets/controls", |
|
|
2942 |
"model_name": "HTMLModel", |
|
|
2943 |
"model_module_version": "1.5.0", |
|
|
2944 |
"state": { |
|
|
2945 |
"_dom_classes": [], |
|
|
2946 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2947 |
"_model_module_version": "1.5.0", |
|
|
2948 |
"_model_name": "HTMLModel", |
|
|
2949 |
"_view_count": null, |
|
|
2950 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2951 |
"_view_module_version": "1.5.0", |
|
|
2952 |
"_view_name": "HTMLView", |
|
|
2953 |
"description": "", |
|
|
2954 |
"description_tooltip": null, |
|
|
2955 |
"layout": "IPY_MODEL_ff04a0a610144d82aa271f72324a49ea", |
|
|
2956 |
"placeholder": "", |
|
|
2957 |
"style": "IPY_MODEL_1984ff4e3cc243e1a791ce094ffa87d3", |
|
|
2958 |
"value": "special_tokens_map.json: 100%" |
|
|
2959 |
} |
|
|
2960 |
}, |
|
|
2961 |
"ba5349ad5a8344709e8924f9ba3a306b": { |
|
|
2962 |
"model_module": "@jupyter-widgets/controls", |
|
|
2963 |
"model_name": "FloatProgressModel", |
|
|
2964 |
"model_module_version": "1.5.0", |
|
|
2965 |
"state": { |
|
|
2966 |
"_dom_classes": [], |
|
|
2967 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2968 |
"_model_module_version": "1.5.0", |
|
|
2969 |
"_model_name": "FloatProgressModel", |
|
|
2970 |
"_view_count": null, |
|
|
2971 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2972 |
"_view_module_version": "1.5.0", |
|
|
2973 |
"_view_name": "ProgressView", |
|
|
2974 |
"bar_style": "success", |
|
|
2975 |
"description": "", |
|
|
2976 |
"description_tooltip": null, |
|
|
2977 |
"layout": "IPY_MODEL_4726b87618454e858d3e7a2f982558df", |
|
|
2978 |
"max": 454, |
|
|
2979 |
"min": 0, |
|
|
2980 |
"orientation": "horizontal", |
|
|
2981 |
"style": "IPY_MODEL_33647f79114144feae792e43cf17e4b7", |
|
|
2982 |
"value": 454 |
|
|
2983 |
} |
|
|
2984 |
}, |
|
|
2985 |
"5acddf8d428f4a3daff2b69a0ae45446": { |
|
|
2986 |
"model_module": "@jupyter-widgets/controls", |
|
|
2987 |
"model_name": "HTMLModel", |
|
|
2988 |
"model_module_version": "1.5.0", |
|
|
2989 |
"state": { |
|
|
2990 |
"_dom_classes": [], |
|
|
2991 |
"_model_module": "@jupyter-widgets/controls", |
|
|
2992 |
"_model_module_version": "1.5.0", |
|
|
2993 |
"_model_name": "HTMLModel", |
|
|
2994 |
"_view_count": null, |
|
|
2995 |
"_view_module": "@jupyter-widgets/controls", |
|
|
2996 |
"_view_module_version": "1.5.0", |
|
|
2997 |
"_view_name": "HTMLView", |
|
|
2998 |
"description": "", |
|
|
2999 |
"description_tooltip": null, |
|
|
3000 |
"layout": "IPY_MODEL_138d704d84ba403695d6d8c9538e29bc", |
|
|
3001 |
"placeholder": "", |
|
|
3002 |
"style": "IPY_MODEL_bacd0d7737244fd7905d4e40ebd54f6d", |
|
|
3003 |
"value": " 454/454 [00:00<00:00, 34.9kB/s]" |
|
|
3004 |
} |
|
|
3005 |
}, |
|
|
3006 |
"e5d0ac47ca4042349ceb9a23f1399bf9": { |
|
|
3007 |
"model_module": "@jupyter-widgets/base", |
|
|
3008 |
"model_name": "LayoutModel", |
|
|
3009 |
"model_module_version": "1.2.0", |
|
|
3010 |
"state": { |
|
|
3011 |
"_model_module": "@jupyter-widgets/base", |
|
|
3012 |
"_model_module_version": "1.2.0", |
|
|
3013 |
"_model_name": "LayoutModel", |
|
|
3014 |
"_view_count": null, |
|
|
3015 |
"_view_module": "@jupyter-widgets/base", |
|
|
3016 |
"_view_module_version": "1.2.0", |
|
|
3017 |
"_view_name": "LayoutView", |
|
|
3018 |
"align_content": null, |
|
|
3019 |
"align_items": null, |
|
|
3020 |
"align_self": null, |
|
|
3021 |
"border": null, |
|
|
3022 |
"bottom": null, |
|
|
3023 |
"display": null, |
|
|
3024 |
"flex": null, |
|
|
3025 |
"flex_flow": null, |
|
|
3026 |
"grid_area": null, |
|
|
3027 |
"grid_auto_columns": null, |
|
|
3028 |
"grid_auto_flow": null, |
|
|
3029 |
"grid_auto_rows": null, |
|
|
3030 |
"grid_column": null, |
|
|
3031 |
"grid_gap": null, |
|
|
3032 |
"grid_row": null, |
|
|
3033 |
"grid_template_areas": null, |
|
|
3034 |
"grid_template_columns": null, |
|
|
3035 |
"grid_template_rows": null, |
|
|
3036 |
"height": null, |
|
|
3037 |
"justify_content": null, |
|
|
3038 |
"justify_items": null, |
|
|
3039 |
"left": null, |
|
|
3040 |
"margin": null, |
|
|
3041 |
"max_height": null, |
|
|
3042 |
"max_width": null, |
|
|
3043 |
"min_height": null, |
|
|
3044 |
"min_width": null, |
|
|
3045 |
"object_fit": null, |
|
|
3046 |
"object_position": null, |
|
|
3047 |
"order": null, |
|
|
3048 |
"overflow": null, |
|
|
3049 |
"overflow_x": null, |
|
|
3050 |
"overflow_y": null, |
|
|
3051 |
"padding": null, |
|
|
3052 |
"right": null, |
|
|
3053 |
"top": null, |
|
|
3054 |
"visibility": null, |
|
|
3055 |
"width": null |
|
|
3056 |
} |
|
|
3057 |
}, |
|
|
3058 |
"ff04a0a610144d82aa271f72324a49ea": { |
|
|
3059 |
"model_module": "@jupyter-widgets/base", |
|
|
3060 |
"model_name": "LayoutModel", |
|
|
3061 |
"model_module_version": "1.2.0", |
|
|
3062 |
"state": { |
|
|
3063 |
"_model_module": "@jupyter-widgets/base", |
|
|
3064 |
"_model_module_version": "1.2.0", |
|
|
3065 |
"_model_name": "LayoutModel", |
|
|
3066 |
"_view_count": null, |
|
|
3067 |
"_view_module": "@jupyter-widgets/base", |
|
|
3068 |
"_view_module_version": "1.2.0", |
|
|
3069 |
"_view_name": "LayoutView", |
|
|
3070 |
"align_content": null, |
|
|
3071 |
"align_items": null, |
|
|
3072 |
"align_self": null, |
|
|
3073 |
"border": null, |
|
|
3074 |
"bottom": null, |
|
|
3075 |
"display": null, |
|
|
3076 |
"flex": null, |
|
|
3077 |
"flex_flow": null, |
|
|
3078 |
"grid_area": null, |
|
|
3079 |
"grid_auto_columns": null, |
|
|
3080 |
"grid_auto_flow": null, |
|
|
3081 |
"grid_auto_rows": null, |
|
|
3082 |
"grid_column": null, |
|
|
3083 |
"grid_gap": null, |
|
|
3084 |
"grid_row": null, |
|
|
3085 |
"grid_template_areas": null, |
|
|
3086 |
"grid_template_columns": null, |
|
|
3087 |
"grid_template_rows": null, |
|
|
3088 |
"height": null, |
|
|
3089 |
"justify_content": null, |
|
|
3090 |
"justify_items": null, |
|
|
3091 |
"left": null, |
|
|
3092 |
"margin": null, |
|
|
3093 |
"max_height": null, |
|
|
3094 |
"max_width": null, |
|
|
3095 |
"min_height": null, |
|
|
3096 |
"min_width": null, |
|
|
3097 |
"object_fit": null, |
|
|
3098 |
"object_position": null, |
|
|
3099 |
"order": null, |
|
|
3100 |
"overflow": null, |
|
|
3101 |
"overflow_x": null, |
|
|
3102 |
"overflow_y": null, |
|
|
3103 |
"padding": null, |
|
|
3104 |
"right": null, |
|
|
3105 |
"top": null, |
|
|
3106 |
"visibility": null, |
|
|
3107 |
"width": null |
|
|
3108 |
} |
|
|
3109 |
}, |
|
|
3110 |
"1984ff4e3cc243e1a791ce094ffa87d3": { |
|
|
3111 |
"model_module": "@jupyter-widgets/controls", |
|
|
3112 |
"model_name": "DescriptionStyleModel", |
|
|
3113 |
"model_module_version": "1.5.0", |
|
|
3114 |
"state": { |
|
|
3115 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3116 |
"_model_module_version": "1.5.0", |
|
|
3117 |
"_model_name": "DescriptionStyleModel", |
|
|
3118 |
"_view_count": null, |
|
|
3119 |
"_view_module": "@jupyter-widgets/base", |
|
|
3120 |
"_view_module_version": "1.2.0", |
|
|
3121 |
"_view_name": "StyleView", |
|
|
3122 |
"description_width": "" |
|
|
3123 |
} |
|
|
3124 |
}, |
|
|
3125 |
"4726b87618454e858d3e7a2f982558df": { |
|
|
3126 |
"model_module": "@jupyter-widgets/base", |
|
|
3127 |
"model_name": "LayoutModel", |
|
|
3128 |
"model_module_version": "1.2.0", |
|
|
3129 |
"state": { |
|
|
3130 |
"_model_module": "@jupyter-widgets/base", |
|
|
3131 |
"_model_module_version": "1.2.0", |
|
|
3132 |
"_model_name": "LayoutModel", |
|
|
3133 |
"_view_count": null, |
|
|
3134 |
"_view_module": "@jupyter-widgets/base", |
|
|
3135 |
"_view_module_version": "1.2.0", |
|
|
3136 |
"_view_name": "LayoutView", |
|
|
3137 |
"align_content": null, |
|
|
3138 |
"align_items": null, |
|
|
3139 |
"align_self": null, |
|
|
3140 |
"border": null, |
|
|
3141 |
"bottom": null, |
|
|
3142 |
"display": null, |
|
|
3143 |
"flex": null, |
|
|
3144 |
"flex_flow": null, |
|
|
3145 |
"grid_area": null, |
|
|
3146 |
"grid_auto_columns": null, |
|
|
3147 |
"grid_auto_flow": null, |
|
|
3148 |
"grid_auto_rows": null, |
|
|
3149 |
"grid_column": null, |
|
|
3150 |
"grid_gap": null, |
|
|
3151 |
"grid_row": null, |
|
|
3152 |
"grid_template_areas": null, |
|
|
3153 |
"grid_template_columns": null, |
|
|
3154 |
"grid_template_rows": null, |
|
|
3155 |
"height": null, |
|
|
3156 |
"justify_content": null, |
|
|
3157 |
"justify_items": null, |
|
|
3158 |
"left": null, |
|
|
3159 |
"margin": null, |
|
|
3160 |
"max_height": null, |
|
|
3161 |
"max_width": null, |
|
|
3162 |
"min_height": null, |
|
|
3163 |
"min_width": null, |
|
|
3164 |
"object_fit": null, |
|
|
3165 |
"object_position": null, |
|
|
3166 |
"order": null, |
|
|
3167 |
"overflow": null, |
|
|
3168 |
"overflow_x": null, |
|
|
3169 |
"overflow_y": null, |
|
|
3170 |
"padding": null, |
|
|
3171 |
"right": null, |
|
|
3172 |
"top": null, |
|
|
3173 |
"visibility": null, |
|
|
3174 |
"width": null |
|
|
3175 |
} |
|
|
3176 |
}, |
|
|
3177 |
"33647f79114144feae792e43cf17e4b7": { |
|
|
3178 |
"model_module": "@jupyter-widgets/controls", |
|
|
3179 |
"model_name": "ProgressStyleModel", |
|
|
3180 |
"model_module_version": "1.5.0", |
|
|
3181 |
"state": { |
|
|
3182 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3183 |
"_model_module_version": "1.5.0", |
|
|
3184 |
"_model_name": "ProgressStyleModel", |
|
|
3185 |
"_view_count": null, |
|
|
3186 |
"_view_module": "@jupyter-widgets/base", |
|
|
3187 |
"_view_module_version": "1.2.0", |
|
|
3188 |
"_view_name": "StyleView", |
|
|
3189 |
"bar_color": null, |
|
|
3190 |
"description_width": "" |
|
|
3191 |
} |
|
|
3192 |
}, |
|
|
3193 |
"138d704d84ba403695d6d8c9538e29bc": { |
|
|
3194 |
"model_module": "@jupyter-widgets/base", |
|
|
3195 |
"model_name": "LayoutModel", |
|
|
3196 |
"model_module_version": "1.2.0", |
|
|
3197 |
"state": { |
|
|
3198 |
"_model_module": "@jupyter-widgets/base", |
|
|
3199 |
"_model_module_version": "1.2.0", |
|
|
3200 |
"_model_name": "LayoutModel", |
|
|
3201 |
"_view_count": null, |
|
|
3202 |
"_view_module": "@jupyter-widgets/base", |
|
|
3203 |
"_view_module_version": "1.2.0", |
|
|
3204 |
"_view_name": "LayoutView", |
|
|
3205 |
"align_content": null, |
|
|
3206 |
"align_items": null, |
|
|
3207 |
"align_self": null, |
|
|
3208 |
"border": null, |
|
|
3209 |
"bottom": null, |
|
|
3210 |
"display": null, |
|
|
3211 |
"flex": null, |
|
|
3212 |
"flex_flow": null, |
|
|
3213 |
"grid_area": null, |
|
|
3214 |
"grid_auto_columns": null, |
|
|
3215 |
"grid_auto_flow": null, |
|
|
3216 |
"grid_auto_rows": null, |
|
|
3217 |
"grid_column": null, |
|
|
3218 |
"grid_gap": null, |
|
|
3219 |
"grid_row": null, |
|
|
3220 |
"grid_template_areas": null, |
|
|
3221 |
"grid_template_columns": null, |
|
|
3222 |
"grid_template_rows": null, |
|
|
3223 |
"height": null, |
|
|
3224 |
"justify_content": null, |
|
|
3225 |
"justify_items": null, |
|
|
3226 |
"left": null, |
|
|
3227 |
"margin": null, |
|
|
3228 |
"max_height": null, |
|
|
3229 |
"max_width": null, |
|
|
3230 |
"min_height": null, |
|
|
3231 |
"min_width": null, |
|
|
3232 |
"object_fit": null, |
|
|
3233 |
"object_position": null, |
|
|
3234 |
"order": null, |
|
|
3235 |
"overflow": null, |
|
|
3236 |
"overflow_x": null, |
|
|
3237 |
"overflow_y": null, |
|
|
3238 |
"padding": null, |
|
|
3239 |
"right": null, |
|
|
3240 |
"top": null, |
|
|
3241 |
"visibility": null, |
|
|
3242 |
"width": null |
|
|
3243 |
} |
|
|
3244 |
}, |
|
|
3245 |
"bacd0d7737244fd7905d4e40ebd54f6d": { |
|
|
3246 |
"model_module": "@jupyter-widgets/controls", |
|
|
3247 |
"model_name": "DescriptionStyleModel", |
|
|
3248 |
"model_module_version": "1.5.0", |
|
|
3249 |
"state": { |
|
|
3250 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3251 |
"_model_module_version": "1.5.0", |
|
|
3252 |
"_model_name": "DescriptionStyleModel", |
|
|
3253 |
"_view_count": null, |
|
|
3254 |
"_view_module": "@jupyter-widgets/base", |
|
|
3255 |
"_view_module_version": "1.2.0", |
|
|
3256 |
"_view_name": "StyleView", |
|
|
3257 |
"description_width": "" |
|
|
3258 |
} |
|
|
3259 |
}, |
|
|
3260 |
"a41034aac0fb4301ad12bbd8e2b0cc40": { |
|
|
3261 |
"model_module": "@jupyter-widgets/controls", |
|
|
3262 |
"model_name": "HBoxModel", |
|
|
3263 |
"model_module_version": "1.5.0", |
|
|
3264 |
"state": { |
|
|
3265 |
"_dom_classes": [], |
|
|
3266 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3267 |
"_model_module_version": "1.5.0", |
|
|
3268 |
"_model_name": "HBoxModel", |
|
|
3269 |
"_view_count": null, |
|
|
3270 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3271 |
"_view_module_version": "1.5.0", |
|
|
3272 |
"_view_name": "HBoxView", |
|
|
3273 |
"box_style": "", |
|
|
3274 |
"children": [ |
|
|
3275 |
"IPY_MODEL_b635e3775c164f94b6acec4dd20b192e", |
|
|
3276 |
"IPY_MODEL_356cc173337649588e8990e9b948e9cf", |
|
|
3277 |
"IPY_MODEL_17996150ba4946bc8b9531db9f5f31b5" |
|
|
3278 |
], |
|
|
3279 |
"layout": "IPY_MODEL_927a0a29edcd47e4a4d3d74df7a9ea2b" |
|
|
3280 |
} |
|
|
3281 |
}, |
|
|
3282 |
"b635e3775c164f94b6acec4dd20b192e": { |
|
|
3283 |
"model_module": "@jupyter-widgets/controls", |
|
|
3284 |
"model_name": "HTMLModel", |
|
|
3285 |
"model_module_version": "1.5.0", |
|
|
3286 |
"state": { |
|
|
3287 |
"_dom_classes": [], |
|
|
3288 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3289 |
"_model_module_version": "1.5.0", |
|
|
3290 |
"_model_name": "HTMLModel", |
|
|
3291 |
"_view_count": null, |
|
|
3292 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3293 |
"_view_module_version": "1.5.0", |
|
|
3294 |
"_view_name": "HTMLView", |
|
|
3295 |
"description": "", |
|
|
3296 |
"description_tooltip": null, |
|
|
3297 |
"layout": "IPY_MODEL_5ce59b62adfb416b85bc0effcced25dd", |
|
|
3298 |
"placeholder": "", |
|
|
3299 |
"style": "IPY_MODEL_913b0f0ccc8848b0b2c3917950f70e93", |
|
|
3300 |
"value": "Map: 100%" |
|
|
3301 |
} |
|
|
3302 |
}, |
|
|
3303 |
"356cc173337649588e8990e9b948e9cf": { |
|
|
3304 |
"model_module": "@jupyter-widgets/controls", |
|
|
3305 |
"model_name": "FloatProgressModel", |
|
|
3306 |
"model_module_version": "1.5.0", |
|
|
3307 |
"state": { |
|
|
3308 |
"_dom_classes": [], |
|
|
3309 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3310 |
"_model_module_version": "1.5.0", |
|
|
3311 |
"_model_name": "FloatProgressModel", |
|
|
3312 |
"_view_count": null, |
|
|
3313 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3314 |
"_view_module_version": "1.5.0", |
|
|
3315 |
"_view_name": "ProgressView", |
|
|
3316 |
"bar_style": "success", |
|
|
3317 |
"description": "", |
|
|
3318 |
"description_tooltip": null, |
|
|
3319 |
"layout": "IPY_MODEL_5b0cadad0628423ea3b308a648c3c56e", |
|
|
3320 |
"max": 33955, |
|
|
3321 |
"min": 0, |
|
|
3322 |
"orientation": "horizontal", |
|
|
3323 |
"style": "IPY_MODEL_5b0e393c08bc492aa4079297d6602aa7", |
|
|
3324 |
"value": 33955 |
|
|
3325 |
} |
|
|
3326 |
}, |
|
|
3327 |
"17996150ba4946bc8b9531db9f5f31b5": { |
|
|
3328 |
"model_module": "@jupyter-widgets/controls", |
|
|
3329 |
"model_name": "HTMLModel", |
|
|
3330 |
"model_module_version": "1.5.0", |
|
|
3331 |
"state": { |
|
|
3332 |
"_dom_classes": [], |
|
|
3333 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3334 |
"_model_module_version": "1.5.0", |
|
|
3335 |
"_model_name": "HTMLModel", |
|
|
3336 |
"_view_count": null, |
|
|
3337 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3338 |
"_view_module_version": "1.5.0", |
|
|
3339 |
"_view_name": "HTMLView", |
|
|
3340 |
"description": "", |
|
|
3341 |
"description_tooltip": null, |
|
|
3342 |
"layout": "IPY_MODEL_5c9790a723f54ec3aa26d61e1e6880b5", |
|
|
3343 |
"placeholder": "", |
|
|
3344 |
"style": "IPY_MODEL_48ca23b61bac4b9583993577ef4451c4", |
|
|
3345 |
"value": " 33955/33955 [00:01<00:00, 31269.82 examples/s]" |
|
|
3346 |
} |
|
|
3347 |
}, |
|
|
3348 |
"927a0a29edcd47e4a4d3d74df7a9ea2b": { |
|
|
3349 |
"model_module": "@jupyter-widgets/base", |
|
|
3350 |
"model_name": "LayoutModel", |
|
|
3351 |
"model_module_version": "1.2.0", |
|
|
3352 |
"state": { |
|
|
3353 |
"_model_module": "@jupyter-widgets/base", |
|
|
3354 |
"_model_module_version": "1.2.0", |
|
|
3355 |
"_model_name": "LayoutModel", |
|
|
3356 |
"_view_count": null, |
|
|
3357 |
"_view_module": "@jupyter-widgets/base", |
|
|
3358 |
"_view_module_version": "1.2.0", |
|
|
3359 |
"_view_name": "LayoutView", |
|
|
3360 |
"align_content": null, |
|
|
3361 |
"align_items": null, |
|
|
3362 |
"align_self": null, |
|
|
3363 |
"border": null, |
|
|
3364 |
"bottom": null, |
|
|
3365 |
"display": null, |
|
|
3366 |
"flex": null, |
|
|
3367 |
"flex_flow": null, |
|
|
3368 |
"grid_area": null, |
|
|
3369 |
"grid_auto_columns": null, |
|
|
3370 |
"grid_auto_flow": null, |
|
|
3371 |
"grid_auto_rows": null, |
|
|
3372 |
"grid_column": null, |
|
|
3373 |
"grid_gap": null, |
|
|
3374 |
"grid_row": null, |
|
|
3375 |
"grid_template_areas": null, |
|
|
3376 |
"grid_template_columns": null, |
|
|
3377 |
"grid_template_rows": null, |
|
|
3378 |
"height": null, |
|
|
3379 |
"justify_content": null, |
|
|
3380 |
"justify_items": null, |
|
|
3381 |
"left": null, |
|
|
3382 |
"margin": null, |
|
|
3383 |
"max_height": null, |
|
|
3384 |
"max_width": null, |
|
|
3385 |
"min_height": null, |
|
|
3386 |
"min_width": null, |
|
|
3387 |
"object_fit": null, |
|
|
3388 |
"object_position": null, |
|
|
3389 |
"order": null, |
|
|
3390 |
"overflow": null, |
|
|
3391 |
"overflow_x": null, |
|
|
3392 |
"overflow_y": null, |
|
|
3393 |
"padding": null, |
|
|
3394 |
"right": null, |
|
|
3395 |
"top": null, |
|
|
3396 |
"visibility": null, |
|
|
3397 |
"width": null |
|
|
3398 |
} |
|
|
3399 |
}, |
|
|
3400 |
"5ce59b62adfb416b85bc0effcced25dd": { |
|
|
3401 |
"model_module": "@jupyter-widgets/base", |
|
|
3402 |
"model_name": "LayoutModel", |
|
|
3403 |
"model_module_version": "1.2.0", |
|
|
3404 |
"state": { |
|
|
3405 |
"_model_module": "@jupyter-widgets/base", |
|
|
3406 |
"_model_module_version": "1.2.0", |
|
|
3407 |
"_model_name": "LayoutModel", |
|
|
3408 |
"_view_count": null, |
|
|
3409 |
"_view_module": "@jupyter-widgets/base", |
|
|
3410 |
"_view_module_version": "1.2.0", |
|
|
3411 |
"_view_name": "LayoutView", |
|
|
3412 |
"align_content": null, |
|
|
3413 |
"align_items": null, |
|
|
3414 |
"align_self": null, |
|
|
3415 |
"border": null, |
|
|
3416 |
"bottom": null, |
|
|
3417 |
"display": null, |
|
|
3418 |
"flex": null, |
|
|
3419 |
"flex_flow": null, |
|
|
3420 |
"grid_area": null, |
|
|
3421 |
"grid_auto_columns": null, |
|
|
3422 |
"grid_auto_flow": null, |
|
|
3423 |
"grid_auto_rows": null, |
|
|
3424 |
"grid_column": null, |
|
|
3425 |
"grid_gap": null, |
|
|
3426 |
"grid_row": null, |
|
|
3427 |
"grid_template_areas": null, |
|
|
3428 |
"grid_template_columns": null, |
|
|
3429 |
"grid_template_rows": null, |
|
|
3430 |
"height": null, |
|
|
3431 |
"justify_content": null, |
|
|
3432 |
"justify_items": null, |
|
|
3433 |
"left": null, |
|
|
3434 |
"margin": null, |
|
|
3435 |
"max_height": null, |
|
|
3436 |
"max_width": null, |
|
|
3437 |
"min_height": null, |
|
|
3438 |
"min_width": null, |
|
|
3439 |
"object_fit": null, |
|
|
3440 |
"object_position": null, |
|
|
3441 |
"order": null, |
|
|
3442 |
"overflow": null, |
|
|
3443 |
"overflow_x": null, |
|
|
3444 |
"overflow_y": null, |
|
|
3445 |
"padding": null, |
|
|
3446 |
"right": null, |
|
|
3447 |
"top": null, |
|
|
3448 |
"visibility": null, |
|
|
3449 |
"width": null |
|
|
3450 |
} |
|
|
3451 |
}, |
|
|
3452 |
"913b0f0ccc8848b0b2c3917950f70e93": { |
|
|
3453 |
"model_module": "@jupyter-widgets/controls", |
|
|
3454 |
"model_name": "DescriptionStyleModel", |
|
|
3455 |
"model_module_version": "1.5.0", |
|
|
3456 |
"state": { |
|
|
3457 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3458 |
"_model_module_version": "1.5.0", |
|
|
3459 |
"_model_name": "DescriptionStyleModel", |
|
|
3460 |
"_view_count": null, |
|
|
3461 |
"_view_module": "@jupyter-widgets/base", |
|
|
3462 |
"_view_module_version": "1.2.0", |
|
|
3463 |
"_view_name": "StyleView", |
|
|
3464 |
"description_width": "" |
|
|
3465 |
} |
|
|
3466 |
}, |
|
|
3467 |
"5b0cadad0628423ea3b308a648c3c56e": { |
|
|
3468 |
"model_module": "@jupyter-widgets/base", |
|
|
3469 |
"model_name": "LayoutModel", |
|
|
3470 |
"model_module_version": "1.2.0", |
|
|
3471 |
"state": { |
|
|
3472 |
"_model_module": "@jupyter-widgets/base", |
|
|
3473 |
"_model_module_version": "1.2.0", |
|
|
3474 |
"_model_name": "LayoutModel", |
|
|
3475 |
"_view_count": null, |
|
|
3476 |
"_view_module": "@jupyter-widgets/base", |
|
|
3477 |
"_view_module_version": "1.2.0", |
|
|
3478 |
"_view_name": "LayoutView", |
|
|
3479 |
"align_content": null, |
|
|
3480 |
"align_items": null, |
|
|
3481 |
"align_self": null, |
|
|
3482 |
"border": null, |
|
|
3483 |
"bottom": null, |
|
|
3484 |
"display": null, |
|
|
3485 |
"flex": null, |
|
|
3486 |
"flex_flow": null, |
|
|
3487 |
"grid_area": null, |
|
|
3488 |
"grid_auto_columns": null, |
|
|
3489 |
"grid_auto_flow": null, |
|
|
3490 |
"grid_auto_rows": null, |
|
|
3491 |
"grid_column": null, |
|
|
3492 |
"grid_gap": null, |
|
|
3493 |
"grid_row": null, |
|
|
3494 |
"grid_template_areas": null, |
|
|
3495 |
"grid_template_columns": null, |
|
|
3496 |
"grid_template_rows": null, |
|
|
3497 |
"height": null, |
|
|
3498 |
"justify_content": null, |
|
|
3499 |
"justify_items": null, |
|
|
3500 |
"left": null, |
|
|
3501 |
"margin": null, |
|
|
3502 |
"max_height": null, |
|
|
3503 |
"max_width": null, |
|
|
3504 |
"min_height": null, |
|
|
3505 |
"min_width": null, |
|
|
3506 |
"object_fit": null, |
|
|
3507 |
"object_position": null, |
|
|
3508 |
"order": null, |
|
|
3509 |
"overflow": null, |
|
|
3510 |
"overflow_x": null, |
|
|
3511 |
"overflow_y": null, |
|
|
3512 |
"padding": null, |
|
|
3513 |
"right": null, |
|
|
3514 |
"top": null, |
|
|
3515 |
"visibility": null, |
|
|
3516 |
"width": null |
|
|
3517 |
} |
|
|
3518 |
}, |
|
|
3519 |
"5b0e393c08bc492aa4079297d6602aa7": { |
|
|
3520 |
"model_module": "@jupyter-widgets/controls", |
|
|
3521 |
"model_name": "ProgressStyleModel", |
|
|
3522 |
"model_module_version": "1.5.0", |
|
|
3523 |
"state": { |
|
|
3524 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3525 |
"_model_module_version": "1.5.0", |
|
|
3526 |
"_model_name": "ProgressStyleModel", |
|
|
3527 |
"_view_count": null, |
|
|
3528 |
"_view_module": "@jupyter-widgets/base", |
|
|
3529 |
"_view_module_version": "1.2.0", |
|
|
3530 |
"_view_name": "StyleView", |
|
|
3531 |
"bar_color": null, |
|
|
3532 |
"description_width": "" |
|
|
3533 |
} |
|
|
3534 |
}, |
|
|
3535 |
"5c9790a723f54ec3aa26d61e1e6880b5": { |
|
|
3536 |
"model_module": "@jupyter-widgets/base", |
|
|
3537 |
"model_name": "LayoutModel", |
|
|
3538 |
"model_module_version": "1.2.0", |
|
|
3539 |
"state": { |
|
|
3540 |
"_model_module": "@jupyter-widgets/base", |
|
|
3541 |
"_model_module_version": "1.2.0", |
|
|
3542 |
"_model_name": "LayoutModel", |
|
|
3543 |
"_view_count": null, |
|
|
3544 |
"_view_module": "@jupyter-widgets/base", |
|
|
3545 |
"_view_module_version": "1.2.0", |
|
|
3546 |
"_view_name": "LayoutView", |
|
|
3547 |
"align_content": null, |
|
|
3548 |
"align_items": null, |
|
|
3549 |
"align_self": null, |
|
|
3550 |
"border": null, |
|
|
3551 |
"bottom": null, |
|
|
3552 |
"display": null, |
|
|
3553 |
"flex": null, |
|
|
3554 |
"flex_flow": null, |
|
|
3555 |
"grid_area": null, |
|
|
3556 |
"grid_auto_columns": null, |
|
|
3557 |
"grid_auto_flow": null, |
|
|
3558 |
"grid_auto_rows": null, |
|
|
3559 |
"grid_column": null, |
|
|
3560 |
"grid_gap": null, |
|
|
3561 |
"grid_row": null, |
|
|
3562 |
"grid_template_areas": null, |
|
|
3563 |
"grid_template_columns": null, |
|
|
3564 |
"grid_template_rows": null, |
|
|
3565 |
"height": null, |
|
|
3566 |
"justify_content": null, |
|
|
3567 |
"justify_items": null, |
|
|
3568 |
"left": null, |
|
|
3569 |
"margin": null, |
|
|
3570 |
"max_height": null, |
|
|
3571 |
"max_width": null, |
|
|
3572 |
"min_height": null, |
|
|
3573 |
"min_width": null, |
|
|
3574 |
"object_fit": null, |
|
|
3575 |
"object_position": null, |
|
|
3576 |
"order": null, |
|
|
3577 |
"overflow": null, |
|
|
3578 |
"overflow_x": null, |
|
|
3579 |
"overflow_y": null, |
|
|
3580 |
"padding": null, |
|
|
3581 |
"right": null, |
|
|
3582 |
"top": null, |
|
|
3583 |
"visibility": null, |
|
|
3584 |
"width": null |
|
|
3585 |
} |
|
|
3586 |
}, |
|
|
3587 |
"48ca23b61bac4b9583993577ef4451c4": { |
|
|
3588 |
"model_module": "@jupyter-widgets/controls", |
|
|
3589 |
"model_name": "DescriptionStyleModel", |
|
|
3590 |
"model_module_version": "1.5.0", |
|
|
3591 |
"state": { |
|
|
3592 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3593 |
"_model_module_version": "1.5.0", |
|
|
3594 |
"_model_name": "DescriptionStyleModel", |
|
|
3595 |
"_view_count": null, |
|
|
3596 |
"_view_module": "@jupyter-widgets/base", |
|
|
3597 |
"_view_module_version": "1.2.0", |
|
|
3598 |
"_view_name": "StyleView", |
|
|
3599 |
"description_width": "" |
|
|
3600 |
} |
|
|
3601 |
}, |
|
|
3602 |
"2959bb04464046fd9c5b78e39e4d31aa": { |
|
|
3603 |
"model_module": "@jupyter-widgets/controls", |
|
|
3604 |
"model_name": "HBoxModel", |
|
|
3605 |
"model_module_version": "1.5.0", |
|
|
3606 |
"state": { |
|
|
3607 |
"_dom_classes": [], |
|
|
3608 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3609 |
"_model_module_version": "1.5.0", |
|
|
3610 |
"_model_name": "HBoxModel", |
|
|
3611 |
"_view_count": null, |
|
|
3612 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3613 |
"_view_module_version": "1.5.0", |
|
|
3614 |
"_view_name": "HBoxView", |
|
|
3615 |
"box_style": "", |
|
|
3616 |
"children": [ |
|
|
3617 |
"IPY_MODEL_5412eabb86f54fa6b39bda564fb08334", |
|
|
3618 |
"IPY_MODEL_362a07edc2ba457d9939bad3ead4f683", |
|
|
3619 |
"IPY_MODEL_d1937db6c00840ef895654c58c5cf844" |
|
|
3620 |
], |
|
|
3621 |
"layout": "IPY_MODEL_9324776524bd44ed83972090e1def47e" |
|
|
3622 |
} |
|
|
3623 |
}, |
|
|
3624 |
"5412eabb86f54fa6b39bda564fb08334": { |
|
|
3625 |
"model_module": "@jupyter-widgets/controls", |
|
|
3626 |
"model_name": "HTMLModel", |
|
|
3627 |
"model_module_version": "1.5.0", |
|
|
3628 |
"state": { |
|
|
3629 |
"_dom_classes": [], |
|
|
3630 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3631 |
"_model_module_version": "1.5.0", |
|
|
3632 |
"_model_name": "HTMLModel", |
|
|
3633 |
"_view_count": null, |
|
|
3634 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3635 |
"_view_module_version": "1.5.0", |
|
|
3636 |
"_view_name": "HTMLView", |
|
|
3637 |
"description": "", |
|
|
3638 |
"description_tooltip": null, |
|
|
3639 |
"layout": "IPY_MODEL_b07669693dd840249f6d55d8ecc6f394", |
|
|
3640 |
"placeholder": "", |
|
|
3641 |
"style": "IPY_MODEL_7fd6c7363ade4591824599e64f62a8d8", |
|
|
3642 |
"value": "Map: 100%" |
|
|
3643 |
} |
|
|
3644 |
}, |
|
|
3645 |
"362a07edc2ba457d9939bad3ead4f683": { |
|
|
3646 |
"model_module": "@jupyter-widgets/controls", |
|
|
3647 |
"model_name": "FloatProgressModel", |
|
|
3648 |
"model_module_version": "1.5.0", |
|
|
3649 |
"state": { |
|
|
3650 |
"_dom_classes": [], |
|
|
3651 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3652 |
"_model_module_version": "1.5.0", |
|
|
3653 |
"_model_name": "FloatProgressModel", |
|
|
3654 |
"_view_count": null, |
|
|
3655 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3656 |
"_view_module_version": "1.5.0", |
|
|
3657 |
"_view_name": "ProgressView", |
|
|
3658 |
"bar_style": "success", |
|
|
3659 |
"description": "", |
|
|
3660 |
"description_tooltip": null, |
|
|
3661 |
"layout": "IPY_MODEL_d06aac9749f14f74b1a9b4ea7fd4ab20", |
|
|
3662 |
"max": 33955, |
|
|
3663 |
"min": 0, |
|
|
3664 |
"orientation": "horizontal", |
|
|
3665 |
"style": "IPY_MODEL_badae3344d2448d69f5d33f419344c29", |
|
|
3666 |
"value": 33955 |
|
|
3667 |
} |
|
|
3668 |
}, |
|
|
3669 |
"d1937db6c00840ef895654c58c5cf844": { |
|
|
3670 |
"model_module": "@jupyter-widgets/controls", |
|
|
3671 |
"model_name": "HTMLModel", |
|
|
3672 |
"model_module_version": "1.5.0", |
|
|
3673 |
"state": { |
|
|
3674 |
"_dom_classes": [], |
|
|
3675 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3676 |
"_model_module_version": "1.5.0", |
|
|
3677 |
"_model_name": "HTMLModel", |
|
|
3678 |
"_view_count": null, |
|
|
3679 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3680 |
"_view_module_version": "1.5.0", |
|
|
3681 |
"_view_name": "HTMLView", |
|
|
3682 |
"description": "", |
|
|
3683 |
"description_tooltip": null, |
|
|
3684 |
"layout": "IPY_MODEL_afecd6f978f9451bace318a0ad92a593", |
|
|
3685 |
"placeholder": "", |
|
|
3686 |
"style": "IPY_MODEL_982831102f1f45959043b619108119b9", |
|
|
3687 |
"value": " 33955/33955 [00:06<00:00, 7211.46 examples/s]" |
|
|
3688 |
} |
|
|
3689 |
}, |
|
|
3690 |
"9324776524bd44ed83972090e1def47e": { |
|
|
3691 |
"model_module": "@jupyter-widgets/base", |
|
|
3692 |
"model_name": "LayoutModel", |
|
|
3693 |
"model_module_version": "1.2.0", |
|
|
3694 |
"state": { |
|
|
3695 |
"_model_module": "@jupyter-widgets/base", |
|
|
3696 |
"_model_module_version": "1.2.0", |
|
|
3697 |
"_model_name": "LayoutModel", |
|
|
3698 |
"_view_count": null, |
|
|
3699 |
"_view_module": "@jupyter-widgets/base", |
|
|
3700 |
"_view_module_version": "1.2.0", |
|
|
3701 |
"_view_name": "LayoutView", |
|
|
3702 |
"align_content": null, |
|
|
3703 |
"align_items": null, |
|
|
3704 |
"align_self": null, |
|
|
3705 |
"border": null, |
|
|
3706 |
"bottom": null, |
|
|
3707 |
"display": null, |
|
|
3708 |
"flex": null, |
|
|
3709 |
"flex_flow": null, |
|
|
3710 |
"grid_area": null, |
|
|
3711 |
"grid_auto_columns": null, |
|
|
3712 |
"grid_auto_flow": null, |
|
|
3713 |
"grid_auto_rows": null, |
|
|
3714 |
"grid_column": null, |
|
|
3715 |
"grid_gap": null, |
|
|
3716 |
"grid_row": null, |
|
|
3717 |
"grid_template_areas": null, |
|
|
3718 |
"grid_template_columns": null, |
|
|
3719 |
"grid_template_rows": null, |
|
|
3720 |
"height": null, |
|
|
3721 |
"justify_content": null, |
|
|
3722 |
"justify_items": null, |
|
|
3723 |
"left": null, |
|
|
3724 |
"margin": null, |
|
|
3725 |
"max_height": null, |
|
|
3726 |
"max_width": null, |
|
|
3727 |
"min_height": null, |
|
|
3728 |
"min_width": null, |
|
|
3729 |
"object_fit": null, |
|
|
3730 |
"object_position": null, |
|
|
3731 |
"order": null, |
|
|
3732 |
"overflow": null, |
|
|
3733 |
"overflow_x": null, |
|
|
3734 |
"overflow_y": null, |
|
|
3735 |
"padding": null, |
|
|
3736 |
"right": null, |
|
|
3737 |
"top": null, |
|
|
3738 |
"visibility": null, |
|
|
3739 |
"width": null |
|
|
3740 |
} |
|
|
3741 |
}, |
|
|
3742 |
"b07669693dd840249f6d55d8ecc6f394": { |
|
|
3743 |
"model_module": "@jupyter-widgets/base", |
|
|
3744 |
"model_name": "LayoutModel", |
|
|
3745 |
"model_module_version": "1.2.0", |
|
|
3746 |
"state": { |
|
|
3747 |
"_model_module": "@jupyter-widgets/base", |
|
|
3748 |
"_model_module_version": "1.2.0", |
|
|
3749 |
"_model_name": "LayoutModel", |
|
|
3750 |
"_view_count": null, |
|
|
3751 |
"_view_module": "@jupyter-widgets/base", |
|
|
3752 |
"_view_module_version": "1.2.0", |
|
|
3753 |
"_view_name": "LayoutView", |
|
|
3754 |
"align_content": null, |
|
|
3755 |
"align_items": null, |
|
|
3756 |
"align_self": null, |
|
|
3757 |
"border": null, |
|
|
3758 |
"bottom": null, |
|
|
3759 |
"display": null, |
|
|
3760 |
"flex": null, |
|
|
3761 |
"flex_flow": null, |
|
|
3762 |
"grid_area": null, |
|
|
3763 |
"grid_auto_columns": null, |
|
|
3764 |
"grid_auto_flow": null, |
|
|
3765 |
"grid_auto_rows": null, |
|
|
3766 |
"grid_column": null, |
|
|
3767 |
"grid_gap": null, |
|
|
3768 |
"grid_row": null, |
|
|
3769 |
"grid_template_areas": null, |
|
|
3770 |
"grid_template_columns": null, |
|
|
3771 |
"grid_template_rows": null, |
|
|
3772 |
"height": null, |
|
|
3773 |
"justify_content": null, |
|
|
3774 |
"justify_items": null, |
|
|
3775 |
"left": null, |
|
|
3776 |
"margin": null, |
|
|
3777 |
"max_height": null, |
|
|
3778 |
"max_width": null, |
|
|
3779 |
"min_height": null, |
|
|
3780 |
"min_width": null, |
|
|
3781 |
"object_fit": null, |
|
|
3782 |
"object_position": null, |
|
|
3783 |
"order": null, |
|
|
3784 |
"overflow": null, |
|
|
3785 |
"overflow_x": null, |
|
|
3786 |
"overflow_y": null, |
|
|
3787 |
"padding": null, |
|
|
3788 |
"right": null, |
|
|
3789 |
"top": null, |
|
|
3790 |
"visibility": null, |
|
|
3791 |
"width": null |
|
|
3792 |
} |
|
|
3793 |
}, |
|
|
3794 |
"7fd6c7363ade4591824599e64f62a8d8": { |
|
|
3795 |
"model_module": "@jupyter-widgets/controls", |
|
|
3796 |
"model_name": "DescriptionStyleModel", |
|
|
3797 |
"model_module_version": "1.5.0", |
|
|
3798 |
"state": { |
|
|
3799 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3800 |
"_model_module_version": "1.5.0", |
|
|
3801 |
"_model_name": "DescriptionStyleModel", |
|
|
3802 |
"_view_count": null, |
|
|
3803 |
"_view_module": "@jupyter-widgets/base", |
|
|
3804 |
"_view_module_version": "1.2.0", |
|
|
3805 |
"_view_name": "StyleView", |
|
|
3806 |
"description_width": "" |
|
|
3807 |
} |
|
|
3808 |
}, |
|
|
3809 |
"d06aac9749f14f74b1a9b4ea7fd4ab20": { |
|
|
3810 |
"model_module": "@jupyter-widgets/base", |
|
|
3811 |
"model_name": "LayoutModel", |
|
|
3812 |
"model_module_version": "1.2.0", |
|
|
3813 |
"state": { |
|
|
3814 |
"_model_module": "@jupyter-widgets/base", |
|
|
3815 |
"_model_module_version": "1.2.0", |
|
|
3816 |
"_model_name": "LayoutModel", |
|
|
3817 |
"_view_count": null, |
|
|
3818 |
"_view_module": "@jupyter-widgets/base", |
|
|
3819 |
"_view_module_version": "1.2.0", |
|
|
3820 |
"_view_name": "LayoutView", |
|
|
3821 |
"align_content": null, |
|
|
3822 |
"align_items": null, |
|
|
3823 |
"align_self": null, |
|
|
3824 |
"border": null, |
|
|
3825 |
"bottom": null, |
|
|
3826 |
"display": null, |
|
|
3827 |
"flex": null, |
|
|
3828 |
"flex_flow": null, |
|
|
3829 |
"grid_area": null, |
|
|
3830 |
"grid_auto_columns": null, |
|
|
3831 |
"grid_auto_flow": null, |
|
|
3832 |
"grid_auto_rows": null, |
|
|
3833 |
"grid_column": null, |
|
|
3834 |
"grid_gap": null, |
|
|
3835 |
"grid_row": null, |
|
|
3836 |
"grid_template_areas": null, |
|
|
3837 |
"grid_template_columns": null, |
|
|
3838 |
"grid_template_rows": null, |
|
|
3839 |
"height": null, |
|
|
3840 |
"justify_content": null, |
|
|
3841 |
"justify_items": null, |
|
|
3842 |
"left": null, |
|
|
3843 |
"margin": null, |
|
|
3844 |
"max_height": null, |
|
|
3845 |
"max_width": null, |
|
|
3846 |
"min_height": null, |
|
|
3847 |
"min_width": null, |
|
|
3848 |
"object_fit": null, |
|
|
3849 |
"object_position": null, |
|
|
3850 |
"order": null, |
|
|
3851 |
"overflow": null, |
|
|
3852 |
"overflow_x": null, |
|
|
3853 |
"overflow_y": null, |
|
|
3854 |
"padding": null, |
|
|
3855 |
"right": null, |
|
|
3856 |
"top": null, |
|
|
3857 |
"visibility": null, |
|
|
3858 |
"width": null |
|
|
3859 |
} |
|
|
3860 |
}, |
|
|
3861 |
"badae3344d2448d69f5d33f419344c29": { |
|
|
3862 |
"model_module": "@jupyter-widgets/controls", |
|
|
3863 |
"model_name": "ProgressStyleModel", |
|
|
3864 |
"model_module_version": "1.5.0", |
|
|
3865 |
"state": { |
|
|
3866 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3867 |
"_model_module_version": "1.5.0", |
|
|
3868 |
"_model_name": "ProgressStyleModel", |
|
|
3869 |
"_view_count": null, |
|
|
3870 |
"_view_module": "@jupyter-widgets/base", |
|
|
3871 |
"_view_module_version": "1.2.0", |
|
|
3872 |
"_view_name": "StyleView", |
|
|
3873 |
"bar_color": null, |
|
|
3874 |
"description_width": "" |
|
|
3875 |
} |
|
|
3876 |
}, |
|
|
3877 |
"afecd6f978f9451bace318a0ad92a593": { |
|
|
3878 |
"model_module": "@jupyter-widgets/base", |
|
|
3879 |
"model_name": "LayoutModel", |
|
|
3880 |
"model_module_version": "1.2.0", |
|
|
3881 |
"state": { |
|
|
3882 |
"_model_module": "@jupyter-widgets/base", |
|
|
3883 |
"_model_module_version": "1.2.0", |
|
|
3884 |
"_model_name": "LayoutModel", |
|
|
3885 |
"_view_count": null, |
|
|
3886 |
"_view_module": "@jupyter-widgets/base", |
|
|
3887 |
"_view_module_version": "1.2.0", |
|
|
3888 |
"_view_name": "LayoutView", |
|
|
3889 |
"align_content": null, |
|
|
3890 |
"align_items": null, |
|
|
3891 |
"align_self": null, |
|
|
3892 |
"border": null, |
|
|
3893 |
"bottom": null, |
|
|
3894 |
"display": null, |
|
|
3895 |
"flex": null, |
|
|
3896 |
"flex_flow": null, |
|
|
3897 |
"grid_area": null, |
|
|
3898 |
"grid_auto_columns": null, |
|
|
3899 |
"grid_auto_flow": null, |
|
|
3900 |
"grid_auto_rows": null, |
|
|
3901 |
"grid_column": null, |
|
|
3902 |
"grid_gap": null, |
|
|
3903 |
"grid_row": null, |
|
|
3904 |
"grid_template_areas": null, |
|
|
3905 |
"grid_template_columns": null, |
|
|
3906 |
"grid_template_rows": null, |
|
|
3907 |
"height": null, |
|
|
3908 |
"justify_content": null, |
|
|
3909 |
"justify_items": null, |
|
|
3910 |
"left": null, |
|
|
3911 |
"margin": null, |
|
|
3912 |
"max_height": null, |
|
|
3913 |
"max_width": null, |
|
|
3914 |
"min_height": null, |
|
|
3915 |
"min_width": null, |
|
|
3916 |
"object_fit": null, |
|
|
3917 |
"object_position": null, |
|
|
3918 |
"order": null, |
|
|
3919 |
"overflow": null, |
|
|
3920 |
"overflow_x": null, |
|
|
3921 |
"overflow_y": null, |
|
|
3922 |
"padding": null, |
|
|
3923 |
"right": null, |
|
|
3924 |
"top": null, |
|
|
3925 |
"visibility": null, |
|
|
3926 |
"width": null |
|
|
3927 |
} |
|
|
3928 |
}, |
|
|
3929 |
"982831102f1f45959043b619108119b9": { |
|
|
3930 |
"model_module": "@jupyter-widgets/controls", |
|
|
3931 |
"model_name": "DescriptionStyleModel", |
|
|
3932 |
"model_module_version": "1.5.0", |
|
|
3933 |
"state": { |
|
|
3934 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3935 |
"_model_module_version": "1.5.0", |
|
|
3936 |
"_model_name": "DescriptionStyleModel", |
|
|
3937 |
"_view_count": null, |
|
|
3938 |
"_view_module": "@jupyter-widgets/base", |
|
|
3939 |
"_view_module_version": "1.2.0", |
|
|
3940 |
"_view_name": "StyleView", |
|
|
3941 |
"description_width": "" |
|
|
3942 |
} |
|
|
3943 |
}, |
|
|
3944 |
"11f1c457989b4211a66099e84f6beb73": { |
|
|
3945 |
"model_module": "@jupyter-widgets/controls", |
|
|
3946 |
"model_name": "HBoxModel", |
|
|
3947 |
"model_module_version": "1.5.0", |
|
|
3948 |
"state": { |
|
|
3949 |
"_dom_classes": [], |
|
|
3950 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3951 |
"_model_module_version": "1.5.0", |
|
|
3952 |
"_model_name": "HBoxModel", |
|
|
3953 |
"_view_count": null, |
|
|
3954 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3955 |
"_view_module_version": "1.5.0", |
|
|
3956 |
"_view_name": "HBoxView", |
|
|
3957 |
"box_style": "", |
|
|
3958 |
"children": [ |
|
|
3959 |
"IPY_MODEL_3aa2d2085fc64bfd89d2889621cfd2ae", |
|
|
3960 |
"IPY_MODEL_6d85c1fb9dc8478899b39a8f49ba6fde", |
|
|
3961 |
"IPY_MODEL_2794d95fbb924c58acd1d806c6f847ee" |
|
|
3962 |
], |
|
|
3963 |
"layout": "IPY_MODEL_2a1e24790e2e4df99c29fc9e0fc2da9d" |
|
|
3964 |
} |
|
|
3965 |
}, |
|
|
3966 |
"3aa2d2085fc64bfd89d2889621cfd2ae": { |
|
|
3967 |
"model_module": "@jupyter-widgets/controls", |
|
|
3968 |
"model_name": "HTMLModel", |
|
|
3969 |
"model_module_version": "1.5.0", |
|
|
3970 |
"state": { |
|
|
3971 |
"_dom_classes": [], |
|
|
3972 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3973 |
"_model_module_version": "1.5.0", |
|
|
3974 |
"_model_name": "HTMLModel", |
|
|
3975 |
"_view_count": null, |
|
|
3976 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3977 |
"_view_module_version": "1.5.0", |
|
|
3978 |
"_view_name": "HTMLView", |
|
|
3979 |
"description": "", |
|
|
3980 |
"description_tooltip": null, |
|
|
3981 |
"layout": "IPY_MODEL_5b8c18ab8f934c33bab55beee17d7ac7", |
|
|
3982 |
"placeholder": "", |
|
|
3983 |
"style": "IPY_MODEL_34e7a0da7e4b494ba248654e124638b3", |
|
|
3984 |
"value": "Map (num_proc=2): 100%" |
|
|
3985 |
} |
|
|
3986 |
}, |
|
|
3987 |
"6d85c1fb9dc8478899b39a8f49ba6fde": { |
|
|
3988 |
"model_module": "@jupyter-widgets/controls", |
|
|
3989 |
"model_name": "FloatProgressModel", |
|
|
3990 |
"model_module_version": "1.5.0", |
|
|
3991 |
"state": { |
|
|
3992 |
"_dom_classes": [], |
|
|
3993 |
"_model_module": "@jupyter-widgets/controls", |
|
|
3994 |
"_model_module_version": "1.5.0", |
|
|
3995 |
"_model_name": "FloatProgressModel", |
|
|
3996 |
"_view_count": null, |
|
|
3997 |
"_view_module": "@jupyter-widgets/controls", |
|
|
3998 |
"_view_module_version": "1.5.0", |
|
|
3999 |
"_view_name": "ProgressView", |
|
|
4000 |
"bar_style": "success", |
|
|
4001 |
"description": "", |
|
|
4002 |
"description_tooltip": null, |
|
|
4003 |
"layout": "IPY_MODEL_e5c927adf18f44cdb054ae3123f8b526", |
|
|
4004 |
"max": 33955, |
|
|
4005 |
"min": 0, |
|
|
4006 |
"orientation": "horizontal", |
|
|
4007 |
"style": "IPY_MODEL_98d8d0fed266494abd1ec14a7e3c4d05", |
|
|
4008 |
"value": 33955 |
|
|
4009 |
} |
|
|
4010 |
}, |
|
|
4011 |
"2794d95fbb924c58acd1d806c6f847ee": { |
|
|
4012 |
"model_module": "@jupyter-widgets/controls", |
|
|
4013 |
"model_name": "HTMLModel", |
|
|
4014 |
"model_module_version": "1.5.0", |
|
|
4015 |
"state": { |
|
|
4016 |
"_dom_classes": [], |
|
|
4017 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4018 |
"_model_module_version": "1.5.0", |
|
|
4019 |
"_model_name": "HTMLModel", |
|
|
4020 |
"_view_count": null, |
|
|
4021 |
"_view_module": "@jupyter-widgets/controls", |
|
|
4022 |
"_view_module_version": "1.5.0", |
|
|
4023 |
"_view_name": "HTMLView", |
|
|
4024 |
"description": "", |
|
|
4025 |
"description_tooltip": null, |
|
|
4026 |
"layout": "IPY_MODEL_ed3b09500a97415891a3c1cf1a681d6c", |
|
|
4027 |
"placeholder": "", |
|
|
4028 |
"style": "IPY_MODEL_5beefaa4ac9347bf8edf5d9e62e6baf0", |
|
|
4029 |
"value": " 33955/33955 [00:29<00:00, 2587.22 examples/s]" |
|
|
4030 |
} |
|
|
4031 |
}, |
|
|
4032 |
"2a1e24790e2e4df99c29fc9e0fc2da9d": { |
|
|
4033 |
"model_module": "@jupyter-widgets/base", |
|
|
4034 |
"model_name": "LayoutModel", |
|
|
4035 |
"model_module_version": "1.2.0", |
|
|
4036 |
"state": { |
|
|
4037 |
"_model_module": "@jupyter-widgets/base", |
|
|
4038 |
"_model_module_version": "1.2.0", |
|
|
4039 |
"_model_name": "LayoutModel", |
|
|
4040 |
"_view_count": null, |
|
|
4041 |
"_view_module": "@jupyter-widgets/base", |
|
|
4042 |
"_view_module_version": "1.2.0", |
|
|
4043 |
"_view_name": "LayoutView", |
|
|
4044 |
"align_content": null, |
|
|
4045 |
"align_items": null, |
|
|
4046 |
"align_self": null, |
|
|
4047 |
"border": null, |
|
|
4048 |
"bottom": null, |
|
|
4049 |
"display": null, |
|
|
4050 |
"flex": null, |
|
|
4051 |
"flex_flow": null, |
|
|
4052 |
"grid_area": null, |
|
|
4053 |
"grid_auto_columns": null, |
|
|
4054 |
"grid_auto_flow": null, |
|
|
4055 |
"grid_auto_rows": null, |
|
|
4056 |
"grid_column": null, |
|
|
4057 |
"grid_gap": null, |
|
|
4058 |
"grid_row": null, |
|
|
4059 |
"grid_template_areas": null, |
|
|
4060 |
"grid_template_columns": null, |
|
|
4061 |
"grid_template_rows": null, |
|
|
4062 |
"height": null, |
|
|
4063 |
"justify_content": null, |
|
|
4064 |
"justify_items": null, |
|
|
4065 |
"left": null, |
|
|
4066 |
"margin": null, |
|
|
4067 |
"max_height": null, |
|
|
4068 |
"max_width": null, |
|
|
4069 |
"min_height": null, |
|
|
4070 |
"min_width": null, |
|
|
4071 |
"object_fit": null, |
|
|
4072 |
"object_position": null, |
|
|
4073 |
"order": null, |
|
|
4074 |
"overflow": null, |
|
|
4075 |
"overflow_x": null, |
|
|
4076 |
"overflow_y": null, |
|
|
4077 |
"padding": null, |
|
|
4078 |
"right": null, |
|
|
4079 |
"top": null, |
|
|
4080 |
"visibility": null, |
|
|
4081 |
"width": null |
|
|
4082 |
} |
|
|
4083 |
}, |
|
|
4084 |
"5b8c18ab8f934c33bab55beee17d7ac7": { |
|
|
4085 |
"model_module": "@jupyter-widgets/base", |
|
|
4086 |
"model_name": "LayoutModel", |
|
|
4087 |
"model_module_version": "1.2.0", |
|
|
4088 |
"state": { |
|
|
4089 |
"_model_module": "@jupyter-widgets/base", |
|
|
4090 |
"_model_module_version": "1.2.0", |
|
|
4091 |
"_model_name": "LayoutModel", |
|
|
4092 |
"_view_count": null, |
|
|
4093 |
"_view_module": "@jupyter-widgets/base", |
|
|
4094 |
"_view_module_version": "1.2.0", |
|
|
4095 |
"_view_name": "LayoutView", |
|
|
4096 |
"align_content": null, |
|
|
4097 |
"align_items": null, |
|
|
4098 |
"align_self": null, |
|
|
4099 |
"border": null, |
|
|
4100 |
"bottom": null, |
|
|
4101 |
"display": null, |
|
|
4102 |
"flex": null, |
|
|
4103 |
"flex_flow": null, |
|
|
4104 |
"grid_area": null, |
|
|
4105 |
"grid_auto_columns": null, |
|
|
4106 |
"grid_auto_flow": null, |
|
|
4107 |
"grid_auto_rows": null, |
|
|
4108 |
"grid_column": null, |
|
|
4109 |
"grid_gap": null, |
|
|
4110 |
"grid_row": null, |
|
|
4111 |
"grid_template_areas": null, |
|
|
4112 |
"grid_template_columns": null, |
|
|
4113 |
"grid_template_rows": null, |
|
|
4114 |
"height": null, |
|
|
4115 |
"justify_content": null, |
|
|
4116 |
"justify_items": null, |
|
|
4117 |
"left": null, |
|
|
4118 |
"margin": null, |
|
|
4119 |
"max_height": null, |
|
|
4120 |
"max_width": null, |
|
|
4121 |
"min_height": null, |
|
|
4122 |
"min_width": null, |
|
|
4123 |
"object_fit": null, |
|
|
4124 |
"object_position": null, |
|
|
4125 |
"order": null, |
|
|
4126 |
"overflow": null, |
|
|
4127 |
"overflow_x": null, |
|
|
4128 |
"overflow_y": null, |
|
|
4129 |
"padding": null, |
|
|
4130 |
"right": null, |
|
|
4131 |
"top": null, |
|
|
4132 |
"visibility": null, |
|
|
4133 |
"width": null |
|
|
4134 |
} |
|
|
4135 |
}, |
|
|
4136 |
"34e7a0da7e4b494ba248654e124638b3": { |
|
|
4137 |
"model_module": "@jupyter-widgets/controls", |
|
|
4138 |
"model_name": "DescriptionStyleModel", |
|
|
4139 |
"model_module_version": "1.5.0", |
|
|
4140 |
"state": { |
|
|
4141 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4142 |
"_model_module_version": "1.5.0", |
|
|
4143 |
"_model_name": "DescriptionStyleModel", |
|
|
4144 |
"_view_count": null, |
|
|
4145 |
"_view_module": "@jupyter-widgets/base", |
|
|
4146 |
"_view_module_version": "1.2.0", |
|
|
4147 |
"_view_name": "StyleView", |
|
|
4148 |
"description_width": "" |
|
|
4149 |
} |
|
|
4150 |
}, |
|
|
4151 |
"e5c927adf18f44cdb054ae3123f8b526": { |
|
|
4152 |
"model_module": "@jupyter-widgets/base", |
|
|
4153 |
"model_name": "LayoutModel", |
|
|
4154 |
"model_module_version": "1.2.0", |
|
|
4155 |
"state": { |
|
|
4156 |
"_model_module": "@jupyter-widgets/base", |
|
|
4157 |
"_model_module_version": "1.2.0", |
|
|
4158 |
"_model_name": "LayoutModel", |
|
|
4159 |
"_view_count": null, |
|
|
4160 |
"_view_module": "@jupyter-widgets/base", |
|
|
4161 |
"_view_module_version": "1.2.0", |
|
|
4162 |
"_view_name": "LayoutView", |
|
|
4163 |
"align_content": null, |
|
|
4164 |
"align_items": null, |
|
|
4165 |
"align_self": null, |
|
|
4166 |
"border": null, |
|
|
4167 |
"bottom": null, |
|
|
4168 |
"display": null, |
|
|
4169 |
"flex": null, |
|
|
4170 |
"flex_flow": null, |
|
|
4171 |
"grid_area": null, |
|
|
4172 |
"grid_auto_columns": null, |
|
|
4173 |
"grid_auto_flow": null, |
|
|
4174 |
"grid_auto_rows": null, |
|
|
4175 |
"grid_column": null, |
|
|
4176 |
"grid_gap": null, |
|
|
4177 |
"grid_row": null, |
|
|
4178 |
"grid_template_areas": null, |
|
|
4179 |
"grid_template_columns": null, |
|
|
4180 |
"grid_template_rows": null, |
|
|
4181 |
"height": null, |
|
|
4182 |
"justify_content": null, |
|
|
4183 |
"justify_items": null, |
|
|
4184 |
"left": null, |
|
|
4185 |
"margin": null, |
|
|
4186 |
"max_height": null, |
|
|
4187 |
"max_width": null, |
|
|
4188 |
"min_height": null, |
|
|
4189 |
"min_width": null, |
|
|
4190 |
"object_fit": null, |
|
|
4191 |
"object_position": null, |
|
|
4192 |
"order": null, |
|
|
4193 |
"overflow": null, |
|
|
4194 |
"overflow_x": null, |
|
|
4195 |
"overflow_y": null, |
|
|
4196 |
"padding": null, |
|
|
4197 |
"right": null, |
|
|
4198 |
"top": null, |
|
|
4199 |
"visibility": null, |
|
|
4200 |
"width": null |
|
|
4201 |
} |
|
|
4202 |
}, |
|
|
4203 |
"98d8d0fed266494abd1ec14a7e3c4d05": { |
|
|
4204 |
"model_module": "@jupyter-widgets/controls", |
|
|
4205 |
"model_name": "ProgressStyleModel", |
|
|
4206 |
"model_module_version": "1.5.0", |
|
|
4207 |
"state": { |
|
|
4208 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4209 |
"_model_module_version": "1.5.0", |
|
|
4210 |
"_model_name": "ProgressStyleModel", |
|
|
4211 |
"_view_count": null, |
|
|
4212 |
"_view_module": "@jupyter-widgets/base", |
|
|
4213 |
"_view_module_version": "1.2.0", |
|
|
4214 |
"_view_name": "StyleView", |
|
|
4215 |
"bar_color": null, |
|
|
4216 |
"description_width": "" |
|
|
4217 |
} |
|
|
4218 |
}, |
|
|
4219 |
"ed3b09500a97415891a3c1cf1a681d6c": { |
|
|
4220 |
"model_module": "@jupyter-widgets/base", |
|
|
4221 |
"model_name": "LayoutModel", |
|
|
4222 |
"model_module_version": "1.2.0", |
|
|
4223 |
"state": { |
|
|
4224 |
"_model_module": "@jupyter-widgets/base", |
|
|
4225 |
"_model_module_version": "1.2.0", |
|
|
4226 |
"_model_name": "LayoutModel", |
|
|
4227 |
"_view_count": null, |
|
|
4228 |
"_view_module": "@jupyter-widgets/base", |
|
|
4229 |
"_view_module_version": "1.2.0", |
|
|
4230 |
"_view_name": "LayoutView", |
|
|
4231 |
"align_content": null, |
|
|
4232 |
"align_items": null, |
|
|
4233 |
"align_self": null, |
|
|
4234 |
"border": null, |
|
|
4235 |
"bottom": null, |
|
|
4236 |
"display": null, |
|
|
4237 |
"flex": null, |
|
|
4238 |
"flex_flow": null, |
|
|
4239 |
"grid_area": null, |
|
|
4240 |
"grid_auto_columns": null, |
|
|
4241 |
"grid_auto_flow": null, |
|
|
4242 |
"grid_auto_rows": null, |
|
|
4243 |
"grid_column": null, |
|
|
4244 |
"grid_gap": null, |
|
|
4245 |
"grid_row": null, |
|
|
4246 |
"grid_template_areas": null, |
|
|
4247 |
"grid_template_columns": null, |
|
|
4248 |
"grid_template_rows": null, |
|
|
4249 |
"height": null, |
|
|
4250 |
"justify_content": null, |
|
|
4251 |
"justify_items": null, |
|
|
4252 |
"left": null, |
|
|
4253 |
"margin": null, |
|
|
4254 |
"max_height": null, |
|
|
4255 |
"max_width": null, |
|
|
4256 |
"min_height": null, |
|
|
4257 |
"min_width": null, |
|
|
4258 |
"object_fit": null, |
|
|
4259 |
"object_position": null, |
|
|
4260 |
"order": null, |
|
|
4261 |
"overflow": null, |
|
|
4262 |
"overflow_x": null, |
|
|
4263 |
"overflow_y": null, |
|
|
4264 |
"padding": null, |
|
|
4265 |
"right": null, |
|
|
4266 |
"top": null, |
|
|
4267 |
"visibility": null, |
|
|
4268 |
"width": null |
|
|
4269 |
} |
|
|
4270 |
}, |
|
|
4271 |
"5beefaa4ac9347bf8edf5d9e62e6baf0": { |
|
|
4272 |
"model_module": "@jupyter-widgets/controls", |
|
|
4273 |
"model_name": "DescriptionStyleModel", |
|
|
4274 |
"model_module_version": "1.5.0", |
|
|
4275 |
"state": { |
|
|
4276 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4277 |
"_model_module_version": "1.5.0", |
|
|
4278 |
"_model_name": "DescriptionStyleModel", |
|
|
4279 |
"_view_count": null, |
|
|
4280 |
"_view_module": "@jupyter-widgets/base", |
|
|
4281 |
"_view_module_version": "1.2.0", |
|
|
4282 |
"_view_name": "StyleView", |
|
|
4283 |
"description_width": "" |
|
|
4284 |
} |
|
|
4285 |
}, |
|
|
4286 |
"3be9f1c4ca424b08b995986b31bc6f73": { |
|
|
4287 |
"model_module": "@jupyter-widgets/controls", |
|
|
4288 |
"model_name": "HBoxModel", |
|
|
4289 |
"model_module_version": "1.5.0", |
|
|
4290 |
"state": { |
|
|
4291 |
"_dom_classes": [], |
|
|
4292 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4293 |
"_model_module_version": "1.5.0", |
|
|
4294 |
"_model_name": "HBoxModel", |
|
|
4295 |
"_view_count": null, |
|
|
4296 |
"_view_module": "@jupyter-widgets/controls", |
|
|
4297 |
"_view_module_version": "1.5.0", |
|
|
4298 |
"_view_name": "HBoxView", |
|
|
4299 |
"box_style": "", |
|
|
4300 |
"children": [ |
|
|
4301 |
"IPY_MODEL_cbaaf16637334b8c907be3c1eea8e36b", |
|
|
4302 |
"IPY_MODEL_ab35ff19da2b4ab49ea4f6ab3bc32981", |
|
|
4303 |
"IPY_MODEL_d9add78673484904995f4b3181c2d3d6" |
|
|
4304 |
], |
|
|
4305 |
"layout": "IPY_MODEL_d44d61caea1f4aa79d3fae256b5e351e" |
|
|
4306 |
} |
|
|
4307 |
}, |
|
|
4308 |
"cbaaf16637334b8c907be3c1eea8e36b": { |
|
|
4309 |
"model_module": "@jupyter-widgets/controls", |
|
|
4310 |
"model_name": "HTMLModel", |
|
|
4311 |
"model_module_version": "1.5.0", |
|
|
4312 |
"state": { |
|
|
4313 |
"_dom_classes": [], |
|
|
4314 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4315 |
"_model_module_version": "1.5.0", |
|
|
4316 |
"_model_name": "HTMLModel", |
|
|
4317 |
"_view_count": null, |
|
|
4318 |
"_view_module": "@jupyter-widgets/controls", |
|
|
4319 |
"_view_module_version": "1.5.0", |
|
|
4320 |
"_view_name": "HTMLView", |
|
|
4321 |
"description": "", |
|
|
4322 |
"description_tooltip": null, |
|
|
4323 |
"layout": "IPY_MODEL_4be9d0609a1d4a28b622ada5052fd653", |
|
|
4324 |
"placeholder": "", |
|
|
4325 |
"style": "IPY_MODEL_fbf5b0b982d5483bb160f1c745e5fa1d", |
|
|
4326 |
"value": "Map: 100%" |
|
|
4327 |
} |
|
|
4328 |
}, |
|
|
4329 |
"ab35ff19da2b4ab49ea4f6ab3bc32981": { |
|
|
4330 |
"model_module": "@jupyter-widgets/controls", |
|
|
4331 |
"model_name": "FloatProgressModel", |
|
|
4332 |
"model_module_version": "1.5.0", |
|
|
4333 |
"state": { |
|
|
4334 |
"_dom_classes": [], |
|
|
4335 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4336 |
"_model_module_version": "1.5.0", |
|
|
4337 |
"_model_name": "FloatProgressModel", |
|
|
4338 |
"_view_count": null, |
|
|
4339 |
"_view_module": "@jupyter-widgets/controls", |
|
|
4340 |
"_view_module_version": "1.5.0", |
|
|
4341 |
"_view_name": "ProgressView", |
|
|
4342 |
"bar_style": "success", |
|
|
4343 |
"description": "", |
|
|
4344 |
"description_tooltip": null, |
|
|
4345 |
"layout": "IPY_MODEL_55be8a889c8a414f83c2af904513f96d", |
|
|
4346 |
"max": 33955, |
|
|
4347 |
"min": 0, |
|
|
4348 |
"orientation": "horizontal", |
|
|
4349 |
"style": "IPY_MODEL_567af20e2fab400aae2131ade113d39d", |
|
|
4350 |
"value": 33955 |
|
|
4351 |
} |
|
|
4352 |
}, |
|
|
4353 |
"d9add78673484904995f4b3181c2d3d6": { |
|
|
4354 |
"model_module": "@jupyter-widgets/controls", |
|
|
4355 |
"model_name": "HTMLModel", |
|
|
4356 |
"model_module_version": "1.5.0", |
|
|
4357 |
"state": { |
|
|
4358 |
"_dom_classes": [], |
|
|
4359 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4360 |
"_model_module_version": "1.5.0", |
|
|
4361 |
"_model_name": "HTMLModel", |
|
|
4362 |
"_view_count": null, |
|
|
4363 |
"_view_module": "@jupyter-widgets/controls", |
|
|
4364 |
"_view_module_version": "1.5.0", |
|
|
4365 |
"_view_name": "HTMLView", |
|
|
4366 |
"description": "", |
|
|
4367 |
"description_tooltip": null, |
|
|
4368 |
"layout": "IPY_MODEL_a17fe71fa4f24581a5a5758d367888c3", |
|
|
4369 |
"placeholder": "", |
|
|
4370 |
"style": "IPY_MODEL_106ddc5392a747e88905c314032671fa", |
|
|
4371 |
"value": " 33955/33955 [00:09<00:00, 2567.44 examples/s]" |
|
|
4372 |
} |
|
|
4373 |
}, |
|
|
4374 |
"d44d61caea1f4aa79d3fae256b5e351e": { |
|
|
4375 |
"model_module": "@jupyter-widgets/base", |
|
|
4376 |
"model_name": "LayoutModel", |
|
|
4377 |
"model_module_version": "1.2.0", |
|
|
4378 |
"state": { |
|
|
4379 |
"_model_module": "@jupyter-widgets/base", |
|
|
4380 |
"_model_module_version": "1.2.0", |
|
|
4381 |
"_model_name": "LayoutModel", |
|
|
4382 |
"_view_count": null, |
|
|
4383 |
"_view_module": "@jupyter-widgets/base", |
|
|
4384 |
"_view_module_version": "1.2.0", |
|
|
4385 |
"_view_name": "LayoutView", |
|
|
4386 |
"align_content": null, |
|
|
4387 |
"align_items": null, |
|
|
4388 |
"align_self": null, |
|
|
4389 |
"border": null, |
|
|
4390 |
"bottom": null, |
|
|
4391 |
"display": null, |
|
|
4392 |
"flex": null, |
|
|
4393 |
"flex_flow": null, |
|
|
4394 |
"grid_area": null, |
|
|
4395 |
"grid_auto_columns": null, |
|
|
4396 |
"grid_auto_flow": null, |
|
|
4397 |
"grid_auto_rows": null, |
|
|
4398 |
"grid_column": null, |
|
|
4399 |
"grid_gap": null, |
|
|
4400 |
"grid_row": null, |
|
|
4401 |
"grid_template_areas": null, |
|
|
4402 |
"grid_template_columns": null, |
|
|
4403 |
"grid_template_rows": null, |
|
|
4404 |
"height": null, |
|
|
4405 |
"justify_content": null, |
|
|
4406 |
"justify_items": null, |
|
|
4407 |
"left": null, |
|
|
4408 |
"margin": null, |
|
|
4409 |
"max_height": null, |
|
|
4410 |
"max_width": null, |
|
|
4411 |
"min_height": null, |
|
|
4412 |
"min_width": null, |
|
|
4413 |
"object_fit": null, |
|
|
4414 |
"object_position": null, |
|
|
4415 |
"order": null, |
|
|
4416 |
"overflow": null, |
|
|
4417 |
"overflow_x": null, |
|
|
4418 |
"overflow_y": null, |
|
|
4419 |
"padding": null, |
|
|
4420 |
"right": null, |
|
|
4421 |
"top": null, |
|
|
4422 |
"visibility": null, |
|
|
4423 |
"width": null |
|
|
4424 |
} |
|
|
4425 |
}, |
|
|
4426 |
"4be9d0609a1d4a28b622ada5052fd653": { |
|
|
4427 |
"model_module": "@jupyter-widgets/base", |
|
|
4428 |
"model_name": "LayoutModel", |
|
|
4429 |
"model_module_version": "1.2.0", |
|
|
4430 |
"state": { |
|
|
4431 |
"_model_module": "@jupyter-widgets/base", |
|
|
4432 |
"_model_module_version": "1.2.0", |
|
|
4433 |
"_model_name": "LayoutModel", |
|
|
4434 |
"_view_count": null, |
|
|
4435 |
"_view_module": "@jupyter-widgets/base", |
|
|
4436 |
"_view_module_version": "1.2.0", |
|
|
4437 |
"_view_name": "LayoutView", |
|
|
4438 |
"align_content": null, |
|
|
4439 |
"align_items": null, |
|
|
4440 |
"align_self": null, |
|
|
4441 |
"border": null, |
|
|
4442 |
"bottom": null, |
|
|
4443 |
"display": null, |
|
|
4444 |
"flex": null, |
|
|
4445 |
"flex_flow": null, |
|
|
4446 |
"grid_area": null, |
|
|
4447 |
"grid_auto_columns": null, |
|
|
4448 |
"grid_auto_flow": null, |
|
|
4449 |
"grid_auto_rows": null, |
|
|
4450 |
"grid_column": null, |
|
|
4451 |
"grid_gap": null, |
|
|
4452 |
"grid_row": null, |
|
|
4453 |
"grid_template_areas": null, |
|
|
4454 |
"grid_template_columns": null, |
|
|
4455 |
"grid_template_rows": null, |
|
|
4456 |
"height": null, |
|
|
4457 |
"justify_content": null, |
|
|
4458 |
"justify_items": null, |
|
|
4459 |
"left": null, |
|
|
4460 |
"margin": null, |
|
|
4461 |
"max_height": null, |
|
|
4462 |
"max_width": null, |
|
|
4463 |
"min_height": null, |
|
|
4464 |
"min_width": null, |
|
|
4465 |
"object_fit": null, |
|
|
4466 |
"object_position": null, |
|
|
4467 |
"order": null, |
|
|
4468 |
"overflow": null, |
|
|
4469 |
"overflow_x": null, |
|
|
4470 |
"overflow_y": null, |
|
|
4471 |
"padding": null, |
|
|
4472 |
"right": null, |
|
|
4473 |
"top": null, |
|
|
4474 |
"visibility": null, |
|
|
4475 |
"width": null |
|
|
4476 |
} |
|
|
4477 |
}, |
|
|
4478 |
"fbf5b0b982d5483bb160f1c745e5fa1d": { |
|
|
4479 |
"model_module": "@jupyter-widgets/controls", |
|
|
4480 |
"model_name": "DescriptionStyleModel", |
|
|
4481 |
"model_module_version": "1.5.0", |
|
|
4482 |
"state": { |
|
|
4483 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4484 |
"_model_module_version": "1.5.0", |
|
|
4485 |
"_model_name": "DescriptionStyleModel", |
|
|
4486 |
"_view_count": null, |
|
|
4487 |
"_view_module": "@jupyter-widgets/base", |
|
|
4488 |
"_view_module_version": "1.2.0", |
|
|
4489 |
"_view_name": "StyleView", |
|
|
4490 |
"description_width": "" |
|
|
4491 |
} |
|
|
4492 |
}, |
|
|
4493 |
"55be8a889c8a414f83c2af904513f96d": { |
|
|
4494 |
"model_module": "@jupyter-widgets/base", |
|
|
4495 |
"model_name": "LayoutModel", |
|
|
4496 |
"model_module_version": "1.2.0", |
|
|
4497 |
"state": { |
|
|
4498 |
"_model_module": "@jupyter-widgets/base", |
|
|
4499 |
"_model_module_version": "1.2.0", |
|
|
4500 |
"_model_name": "LayoutModel", |
|
|
4501 |
"_view_count": null, |
|
|
4502 |
"_view_module": "@jupyter-widgets/base", |
|
|
4503 |
"_view_module_version": "1.2.0", |
|
|
4504 |
"_view_name": "LayoutView", |
|
|
4505 |
"align_content": null, |
|
|
4506 |
"align_items": null, |
|
|
4507 |
"align_self": null, |
|
|
4508 |
"border": null, |
|
|
4509 |
"bottom": null, |
|
|
4510 |
"display": null, |
|
|
4511 |
"flex": null, |
|
|
4512 |
"flex_flow": null, |
|
|
4513 |
"grid_area": null, |
|
|
4514 |
"grid_auto_columns": null, |
|
|
4515 |
"grid_auto_flow": null, |
|
|
4516 |
"grid_auto_rows": null, |
|
|
4517 |
"grid_column": null, |
|
|
4518 |
"grid_gap": null, |
|
|
4519 |
"grid_row": null, |
|
|
4520 |
"grid_template_areas": null, |
|
|
4521 |
"grid_template_columns": null, |
|
|
4522 |
"grid_template_rows": null, |
|
|
4523 |
"height": null, |
|
|
4524 |
"justify_content": null, |
|
|
4525 |
"justify_items": null, |
|
|
4526 |
"left": null, |
|
|
4527 |
"margin": null, |
|
|
4528 |
"max_height": null, |
|
|
4529 |
"max_width": null, |
|
|
4530 |
"min_height": null, |
|
|
4531 |
"min_width": null, |
|
|
4532 |
"object_fit": null, |
|
|
4533 |
"object_position": null, |
|
|
4534 |
"order": null, |
|
|
4535 |
"overflow": null, |
|
|
4536 |
"overflow_x": null, |
|
|
4537 |
"overflow_y": null, |
|
|
4538 |
"padding": null, |
|
|
4539 |
"right": null, |
|
|
4540 |
"top": null, |
|
|
4541 |
"visibility": null, |
|
|
4542 |
"width": null |
|
|
4543 |
} |
|
|
4544 |
}, |
|
|
4545 |
"567af20e2fab400aae2131ade113d39d": { |
|
|
4546 |
"model_module": "@jupyter-widgets/controls", |
|
|
4547 |
"model_name": "ProgressStyleModel", |
|
|
4548 |
"model_module_version": "1.5.0", |
|
|
4549 |
"state": { |
|
|
4550 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4551 |
"_model_module_version": "1.5.0", |
|
|
4552 |
"_model_name": "ProgressStyleModel", |
|
|
4553 |
"_view_count": null, |
|
|
4554 |
"_view_module": "@jupyter-widgets/base", |
|
|
4555 |
"_view_module_version": "1.2.0", |
|
|
4556 |
"_view_name": "StyleView", |
|
|
4557 |
"bar_color": null, |
|
|
4558 |
"description_width": "" |
|
|
4559 |
} |
|
|
4560 |
}, |
|
|
4561 |
"a17fe71fa4f24581a5a5758d367888c3": { |
|
|
4562 |
"model_module": "@jupyter-widgets/base", |
|
|
4563 |
"model_name": "LayoutModel", |
|
|
4564 |
"model_module_version": "1.2.0", |
|
|
4565 |
"state": { |
|
|
4566 |
"_model_module": "@jupyter-widgets/base", |
|
|
4567 |
"_model_module_version": "1.2.0", |
|
|
4568 |
"_model_name": "LayoutModel", |
|
|
4569 |
"_view_count": null, |
|
|
4570 |
"_view_module": "@jupyter-widgets/base", |
|
|
4571 |
"_view_module_version": "1.2.0", |
|
|
4572 |
"_view_name": "LayoutView", |
|
|
4573 |
"align_content": null, |
|
|
4574 |
"align_items": null, |
|
|
4575 |
"align_self": null, |
|
|
4576 |
"border": null, |
|
|
4577 |
"bottom": null, |
|
|
4578 |
"display": null, |
|
|
4579 |
"flex": null, |
|
|
4580 |
"flex_flow": null, |
|
|
4581 |
"grid_area": null, |
|
|
4582 |
"grid_auto_columns": null, |
|
|
4583 |
"grid_auto_flow": null, |
|
|
4584 |
"grid_auto_rows": null, |
|
|
4585 |
"grid_column": null, |
|
|
4586 |
"grid_gap": null, |
|
|
4587 |
"grid_row": null, |
|
|
4588 |
"grid_template_areas": null, |
|
|
4589 |
"grid_template_columns": null, |
|
|
4590 |
"grid_template_rows": null, |
|
|
4591 |
"height": null, |
|
|
4592 |
"justify_content": null, |
|
|
4593 |
"justify_items": null, |
|
|
4594 |
"left": null, |
|
|
4595 |
"margin": null, |
|
|
4596 |
"max_height": null, |
|
|
4597 |
"max_width": null, |
|
|
4598 |
"min_height": null, |
|
|
4599 |
"min_width": null, |
|
|
4600 |
"object_fit": null, |
|
|
4601 |
"object_position": null, |
|
|
4602 |
"order": null, |
|
|
4603 |
"overflow": null, |
|
|
4604 |
"overflow_x": null, |
|
|
4605 |
"overflow_y": null, |
|
|
4606 |
"padding": null, |
|
|
4607 |
"right": null, |
|
|
4608 |
"top": null, |
|
|
4609 |
"visibility": null, |
|
|
4610 |
"width": null |
|
|
4611 |
} |
|
|
4612 |
}, |
|
|
4613 |
"106ddc5392a747e88905c314032671fa": { |
|
|
4614 |
"model_module": "@jupyter-widgets/controls", |
|
|
4615 |
"model_name": "DescriptionStyleModel", |
|
|
4616 |
"model_module_version": "1.5.0", |
|
|
4617 |
"state": { |
|
|
4618 |
"_model_module": "@jupyter-widgets/controls", |
|
|
4619 |
"_model_module_version": "1.5.0", |
|
|
4620 |
"_model_name": "DescriptionStyleModel", |
|
|
4621 |
"_view_count": null, |
|
|
4622 |
"_view_module": "@jupyter-widgets/base", |
|
|
4623 |
"_view_module_version": "1.2.0", |
|
|
4624 |
"_view_name": "StyleView", |
|
|
4625 |
"description_width": "" |
|
|
4626 |
} |
|
|
4627 |
} |
|
|
4628 |
} |
|
|
4629 |
} |
|
|
4630 |
}, |
|
|
4631 |
"nbformat": 4, |
|
|
4632 |
"nbformat_minor": 0 |
|
|
4633 |
} |